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Dynamic Load Balancing and Efficient Load
Estimators for Asynchronous Iterative Algorithms

Jacques M. BahiMember, IEEE Sylvain Contassot-ViviedMember, IEEE,
and Raphaél CouturieMember, IEEE

Abstract—In a previous paper [1], we have shown the very to exchange data to perform their job. We evaluate the gain
high power of asynchronism for parallel iterative algorithms in  of the load balancing in some experiments on a represeatativ
a global context of grid computing. In this article, we study  chemical test problem which is described by a Partial Differ
the interest of coupling load balancing with asynchronism m . - . .
such algorithms. After proposing a non-centralized versio of ential Equat'on (PDE). Finally, we st_udy the 'mpaCt of the
dynamic load balancing which is best suited to asynchronism load estimator on the performances in the particular case of
we verify its efficiency by some experiments on a general Paal PIAs and propose to use the residual instead of the classical
Differential Equation (PDE) problem. Finally, we give some amount of data to evaluate the load. The residual is defined by
general conditions for the use of load balancing to obtain god e yax norm of the difference between data values from two
results with this kind of algorithms and discuss the choice bthe - - - .
residual as an efficient load estimator. consef:u'uve iterations. In fact, choosing such a Ioa_d estim

takes into account the actual progress of the iterativegamc

The following section recalls the principles of asynchraso
iterative algorithms and replaces them in the context ofsPIA
Then, Section Ill presents a small discussion about the-moti

|. INTRODUCTION vations of using load balancing in such algorithms. A brief

N the context of scientific computations, iterative algooverview of related works concerning non-centralized load

rithms are very well suited to a large class of problenfgalancing techniques is given in Section IV. An example
(see for example [2]-[7]). In many cases, they are preferrefl application is exhibited with a chemical reaction prable
to direct methods and sometimes they are even the singkfailed in Section V. The corresponding algorithm and the
way to solve the problem (e.g. root polynomial problemsmsertion of load balancing are then detailed in Section VI.
Direct algorithms give the exact solution of a problem withi Experimental results are given and interpreted togethtr ai
a finite number of operations whereas iterative algorithngéscussion about the best conditions of use in Section VII.
provide an approximation of it. We say that they converggnally, we study the impact of the load estimator on the
(asymptotically) towards the solution. When dealing witRperformances of load balancing in Section VII-B.
very large-sized problems, iterative algorithms are prefé
especially if they give a good approximation within a smallj, WHAT ARE ASYNCHRONOUS ITERATIVE ALGORITHMS?
number of iterations.

The latter properties have led to a good expansion
parallel iterative algorithms (PIAs). Nevertheless, mo$t lterative algorithms have the following structure
those parallel versions are synchronous. We have showi in [1 . .
all thel?nterest of using asynzhronism in such parallehiierl [ = f(h), k=0,1,... witha" given (1)

algorithms especially in a global context of grid computingyhere each:* is ann - dimensional vector, ang is some

Moreover, we have also shown in [8] that static load balagiCiflunction fromR™ into itself. If the sequencéz”} generated

can sharply improve the performances of our algorithms. py the above iteration converges to some and if f is
In this article, we discuss the general interest of usingntinuous then we have* — f(z*), we say thatz* is a

dynamic load balancing in asynchronous iterative algor#th fixed point of f.

and we empirically show its major efficiency in the globajet ;* pe partitioned into m  block-components

context of grid computing. Xk i e {1,..,m}, and f be partitioned in a compatible
Due to the nature of PIAs, a centralized version of loagay into m block-components?;, then equation (1) can be

balancing would not be well suited in a global context Ofyitten as

grid computing. Hence, the technique used in this study

works locally between neighboring processors. In our dhee, X' = F; (X{,...,XE) i=1,..,m, with X° given

neighborhood is determined by the communications between (2)

processors. Two nodes are defined as neighbors if they hawg the iterative algorithm can be parallelized by lettingte

of the m processors updates a different block-component of

This research was supported by the STIC Department of theSCNR according to (2) (see [9], [10]). At each stage, ih’ieprocessor
The authors are with LIFC (Laboratoire d’'Informatique d&niversité

A .
de Franche-Comté), FRE CNRS 2661, IUT de Beffort-Morithé| BP 527, KNOWs the value of all components of™ on which F;
90016 Belfort, France depends, computes the new valu€§™, and communicates

Index Terms—Parallel iterative algorithms, asynchronism,
load-balancing.
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those on which other processors depend to make their owhich can actually be implemented and used. The main

iterations. difference with fully asynchronous algorithms lies in the
Considering fully asynchronous iterative algorithms, théelays which are bounded in the practical case. So, this clas
model is as follows: can be decomposed into three main parts:

« the block nodes of the network may be updated in a
random order and moreover it is possible that some nodesSynchronous Iterations - Synchronous Communications
may not be updated at some times. Nevertheless, no bId&SC) algorithms: all processors begin the same iteration
is permanently idle. at the same time since data exchanges are performed at the
. at each timet, each node updates its own state usingnd of each iteration by synchronous global communications
the last received version of its dependencies rather thAfter parallelization of the problem, these algorithms dav
waiting for their version computed at tinte— 1. exactly the same behavior as the sequential version in terms

Fully asynchronous networks including overlapping upda?—f the iterations performed. Hence, their convergence is

ing were characterized by Herz and Marcus in [11]. directly deducible from the initial algorithm. Unforturedy,

In the classical definition of fully asynchronous networkdn® synchronous communications strongly penalize  the

we denote byJ(#) the set of nodes updated at timeand performances of these algorithms. As can be seen in
si(t) . . Figure 1, there may be a lot of idle times (white spaces)
by X,”"" the state of the group of nodes available for the

_ ) R ; . between iterations (grey blocks) depending on the speed of
groupi at timet. sj(t) is the iteration number of the data

] . ] i . - communications.

from group j available on group at time¢. It is defined
by s%(t) = t —r;(t) < t, wherer(t) denotes the delay of
the group of nodeg with respect to the group. Moreover P -
. X . rocessor 1
limy— 0 8 (t) = oo, which means that although the delays are .
unbounded, they follow the evolution of the system. Finatly
can be noticed that the group§ may be reduced to a single ;o essor 2
nodex;, .

Then, the fully asynchronous dynamic of thenodes
network associated to the given transition functihand
to the activation set/, and with the initial configuration rig 1. Execution flow of a SISC algorithm with two processors

X0 =(X?,..,X2), is described by Algorithm 1.

time >

Synchronous lIterations - Asynchronous Communica-

Algorithm 1 Asynchronous iteration tions (SIAC) algorithms: all processors also wait for the
Given an initial stateX® = (X¢,..., X?) receptions of needed data updated at the previous itertion
for each time step =0, 1,... do begin the next one. Nevertheless, each data (or group of data

for each block-componenis=1,...,m do required on another processor is sent asynchronously @s soo
if i € J(t) then v as it has been updated, so that the remaining computations of
X = px® L xem ) the current iteration overlap its communication. This sohe
else lies on the probability that data will be received on the
Xf“ = X! destination processor before the end of its current iwmati
end if and then will be directly available for the next iteration.
end for Hence, this partial overlapping of communications with
end for computations during each iteration implies shorter idieets

and thus better performances. Since each processor begins i

It is interesting to note that this model is the most gener@fXt iteration as soon as it has received all the needed data
form of PIA. This implies that if an algorithm converges ir!Pdated from the previous iteration, all the processors may
this context, it will also converge in more synchronous one§0t begin their iterations at the same time. Nonetheless, in

In this model, the residual of blockis defined by the max terms of iterations, the notion of synchronism still holds i
norm of the difference between its values from two conseeutithis scheme since at any tingit is not possible to have two

iterations: processors performing different iterations. In fact, attetime
. , , 1 , oy t, the processors are either computing the same iteration or
residual; = || X7 — X ||oo = maz;|X; ; — X;; idle (waiting for data). Hence, from the algorithmic poirft o

view, this category of algorithms, like the SISC one, parfsr

the same iterations as the sequential version. Thus, they ha

o ) ) ) the same convergence properties. Unfortunately, thisnsehe

B. A categorization of parallel iterative algorithms does not completely eliminate idle times between iteration
Since this article deals with what we commonly calds shown in Figure 2. In fact, some communications may be

asynchronous iterative algorithms, it appears necessdonger than the computation of the current iteration and the

to make it clear, to detail the class of parallel iterativeending of the last updated data on the latest processor can

algorithms. In this part, we present classes of algorithm®t be overlapped with computations. It can also be seen on

where X/ ; is the j* component of the block-vectox .



that figure that the order of the communications may not lr@ocessor 1
respected.

Processor 2

Processor 1

time >

Fig. 3. Execution flow of an AIAC algorithm with two processoDashed
lines represent the communications of the first half of dataj solid lines
are for the second half.

Processor 2

time >

Fig. 2. Execution flow of a SIAC algorithm with two processors this ~ efficiently. Indeed, load balancing can efficiently takeoint
example, the first half of data is sent as soon as updated ansettond half gccount the heterogeneity of the machines involved in the
is sent at the end of the iteration. . . . . .

parallel iterative computation. This heterogeneity carfdosd

at the hardware level when using machines with different

. . o ~ speeds but also at the user level if the machines are used
thn (AIAC). algorithms: all processors perform their teration;, o, iti-users or multi-tasks contexts. All these cases are
without taking care of the progression of the other pro.soespecially encountered when dealing with grid computing.
They do not wait for any reception of needed_ datac_ommg l‘romIn numerous problems resolved by iterative algorithms,
other processors but they keep on computing, trying to sol

. ) ; ) progression towards the solution is not the same for
the given problem with the current version of data availab | the components of the system and some of them reach

a_lt that ';:me. Since the pro_((:ﬁssc_)rs dobnot walt fr(])r communIGgz;, partial fixed point faster than others. By performing a
tions, there are no more idie tlmes_ etween t € |terat|on§ fﬂ?propriate load balancing with some criteria based on this
can be seen in Figure 3. Although widely the_oreucally %t_idl rogression (the residual for example) instead of the idass
(see for example [9], [12]-[14]), very few |.mplementat|on_§) d estimator (amount of data), it is then possible to enfan
f'i”d experimental ar_1a|yses ha?"e been ca_rned out, esgec_'m distribution of the actually evolving computations ove
in the context of grid computing. In the literature, there i%he processors. Thus, even in a homogeneous context, this

a major alg_orlthm|c mpdel corr(_espondmg to these algomm&oupling has the great advantage to deal with the evolution
expressed in two main theoretical results, the Bertsekds R the computation during the iterative process

Tsitsiklis theorem [13] and the El Tarazi’'s theorem [12].€Th Hence, there are two main ideas motivating the coupling of
former is based on nested sets whereas the latter uses@onffa, 4 balancing and AIAC algorithms:

tion properties. Neverthele_ss, several variants can PE’“_*”@” o when the workload is efficiently distributed on the sys-
from these models depending on when the communications are hroni I fficientl |
erformed and when the received data are incorporated into tem,.async ronism afiows us toe |C|er_1ty overiap com-
tphe computations, see e.g. [3], [15]. Figure 3 depicts a géne munications with computations, especially on networks
version gf an AIA'C al c;(‘r:]iihm’with.a 3ata decoFr)n osition in with very fluctuating latencies and/or bandwidths.
9 ; omp « even if AIAC algorithms are potentially more efficient
two halves for the asynchronous sendings. This type of algo- .
rithms requires a meticulous study to ensure their converge than the other models, they do not take into account the
q y workload distribution over the processors. If this is well

becayse, even if a sequential iterative algorithm congerge managed, it can reasonably make us expect yet better
the right solution, its asynchronous parallel counterpaaty performances

not converge. It is then needed to develop new convergin h d ¢ lorithms in thi .
algorithms and several problems appear such as choosing th ﬁ great ? vantagil ° .kﬁlAg’ algorit rr]ns n this contle>(<jt 'Sd
right criterion for convergence detection and the rightihgl t "_ﬂt €y are far more tiexi e than syhchronous ones. Indee
procedure. There are also some implementation problems (ﬁtubs less imperative to have at all times exactly the same
to the asynchronous communications which imply the use %l%nount of work on each processor. The goal here is thus to

an adequate programming environment. Nevertheless,tdes }/0|d too Iargg differences of progression bgtween pracess
non-centralized strategy of load balancing appears to be

all these obstacles, these algorithms are quite convemenn cessary since it avoids global communications which g@oul
implement and are the most efficient ones especially in 5 y 9
nchronize the processors.

global context of grid computing as we have already show
in [1]. This comes from the fact that they allow communicatio |\ Ex|STING NON-CENTRALIZED LOAD BALANCING
delays to be substantial and unpredictable which is a typica MODELS AND RELATED WORKS

situation in large networks of heterogeneous machines.

Asynchronous lterations - Asynchronous Communica-

The load balancing problem has been widely studied from
different perspectives and in different contexts [16]. Aeca
gorization of the various techniques for load balancing can

The scope of this paper is to study the interest of usidge found in [17] based on criteria like centralized/digitdd,
dynamic load balancing in the AIAC model. One of oustatic/dynamic, and synchronous/asynchronous. To beissmnc
goals is to show that, contrary to a generally accepted ideee present here the few techniques which are the most suited
asynchronism does not exempt from distributing the worlo@ao AIAC algorithms.

I1l. WHY USING LOAD BALANCING IN THE AIAC MODEL ?



In the context of parallel iterative computations, the loadhe reaction. This is the graph representing the concémtrat
balancing scheme must be non-centralized and iterative d&fy X against those oY and it corresponds in this case to a
nature. Local iterative load balancing algorithms weret firglosed loop.
proposed by Cybenko in [18]. These algorithms iteratively The desired results are the evolutions of the concentrstion
balance the load of a node with its neighbors until the wholeandv of both elementsX andY along the discretized space
network is globally balanced. There are mainly two itemativin function of time. If the discretization is made witti points,
load balancing algorithms: diffusion algorithms [18]-J2td the evolution of theu; andwv; for i = 1, ..., N is given by the
dimension exchange algorithms [17]-[19], [21]. Diffusiorfollowing differential system:
algorithms assume that a processor simultaneously exekang
load with its neighbors, whereas dimension exchange algo-%; = 1 +ufv; — 4u; + (N +1)*(ui—1 — 2u; + uit1)
rithms assume that a processor exchanges load with only onev; = 3u; — uv; + a(N + 1)*(vi—1 — 20; + vit1)
neighbor (along each dimension or link) at each time step. . (4)

All these works took place in the context of a homogeneofgIe boundary conditions are:
system. The problem of load balancing in a heterogeneous w(t) = unpi(t) = a(N+1)?
system has been addressed by Elsasser et al in [22]. wlt) = v ) = 3

Unfortunately, these techniques are all synchronous wikich 0 Nt
not convenient for the AIAC class of algorithms. Bertsekas a and the initial conditions are, for eadre {1,..., N}:
Tsitsiklis have proposed in [13] an asynchronous model for
iterative non-centralized load balancing. The princigehat N . _ - ot
each processor has an evaluation of its load and those of all us(0) = 1+ sin(2mz;) with ;= N+1
its neighbors. Then, at some given times, this processdsloo v;(0) =3
for its neighbors which are less loaded than itself. Finatly i ) _ 1 _
distributes a part of its load to all these processors. Neger H€reé, we fix the time interval tq0, 10] anda = 5. N is a
less, the authors have focused their work on proving that tRiarameter of the problem. _
iterative load balancing asymptotically leads to a homegess 1 1iS problem corresponds to a large stiff system of PDEs
distribution of the work. In ‘our work, the asynchronism oy formulated as an IVP (Initial Value Problem) which is very
both in the numerical application and in the load balancing. €0mmon in many scientific domains. It is .Welll-k.nown (see flor
addition, we describe how to efficiently perform the couglin®@mple [4], [23], [24]) that the use of implicit methods is
of asynchronous load balancing and asynchronous iteratf@guired and then, large systems of nonlinear equations hav
algorithms. to be solved qt each |ter_at|on. Further mfo_rmaﬂon aboist th

A variant evoked by the authors is to send a part of the woRkoblem and its formulation can be found in [S].
only to the lightest-loaded neighbor. This last variant besn
chosen for implementation in our AIAC algorithms since it
has the most suited properties: it maintains the asyncémoni
in the system with only local communications between two In this section, we consider the use of a network of
neighboring nodes. workstations composed aNbProcs machines (processors,

In the following section, we describe a typical problem ofiodes...) numbered from to NbProcs — 1. Each processor
Partial Differential Equations (PDEs) which has been chosean send and receive data from any other one.

V1. AIAC ALGORITHM AND LOAD BALANCING

for our experimentations. It must be noticed that the principle of AIAC algorithms
is generic and can be adapted to every iterative process
V. TEST PROBLEM under convergence hypotheses which are satisfied for a large

To perform our experiments, a classical example of nonlass of problems. In most cases, the adaptation comes from
linear problem has been chosen since iterative algoritmms ¢he data dependencies, the function to approximate and the
mostly used for this kind of problems. methods used for intermediate computations. By this way,

Our test problem is known as the Brusselator problerihese algorithms can be used to solve either linear or non-
It models a chemical reaction mechanism which leads lioear systems which can be stationary or not.
an oscillating reaction. It deals with the conversion of two In the case of our non-linear problem, theandv; of the
elements4 and B into two othersC and D by the following system are represented in a single vector as follows:
series of steps:

y = (u1,v1, ..., N, UN)

A

— X
2X+Y — 3Y (3) with Ui = Y2i—1 andvi = Y2i, = {1, ,N} The denomina-
B+§ - E*‘C tion y, used in the classical formulation of the Brusselator
N

problem, is equivalent in our context to the vector in
There is an autocatalysis and when the concentrations ofeguation (1).

and B are maintained constant, the concentrations ehdY They; functions,j € {1, ...,2N} thereby defined will also
oscillate with time. For any initial concentrations &fandY, be referred to as spatial components in the remaining of the
the reaction converges towards what is called the limitepél article.



A. Unbalanced AIAC algorithm In order to facilitate and enhance the implementation of
To solve the system (4), we use a two-stage iterati@ynchronous communications, we have chosen to use the
algorithm: PM2 multi-threaded programming environment [25]. Thisckin
. At each iteration: of environment allows us to make the sending and receiving
— use of the implicit Euler algorithm to approximateoPerat'on,S in additional thrgads rather than in t_he main pro
the derivative, gram. This is why the receptions of data do not directly appea

— use of the Newton algorithm to solve the resultina" our algorithms. In fact, they are localized in functions
nonlinear system called by a thread created at the beginning of the program

The inner procedure will be callegbl ve in our algorithm. In 2”;2?2:”% W';?fc')r:;oergmc?n rr;esgagr(]es. rzzg:;g:hfﬁeafsﬁgggg
order to exploit the parallelism, thg, functions are initially peration IS p given p ' unct

homogeneously distributed over the processors. Sincee th §“Ch will manage the message on the destination node must

functions are represented in a one-dimensional space ( ee rsgtieg:;eg' Igatr?: Siinz)eurW;}y’orti?ﬁmzsg;ggﬁnOcuosrreszngr'wng
state vectory), we have chosen to logically organize ou P PP 9 9 y P

processors in a linear way and map the spatial compone s:{h? creation of a communication _thread Ca””.‘g t_he relate
%endlng function. According to the linear organization loé t

(y; functions) on them. This organization is directly deduce lained ab h node h left and a riaht
from the data dependencies of the problem in order to explg{tc_)cessors expiained above, each node nas a [eft and a rg

. : . eighbor, except for the first node which only has a right
as much parallelism as possible. Hence, each processdesppl . hb d the last hich onlv h left neiahb
the Newton method to its local components using the nee ggnoor an € 'ast ohe which only nas a et neignobor.

data from other processors involved in its computationsufr areenrceef;arsrggdt?%solz ?tr?}:pnhst)tg;vrirmds;.Zzt!gzs(/;'%t)mr‘:t?hb
the problem formulation given in Section V, it arises that th '9 unicat in Alg '

processing of componenig, to y, also depends on the tWOAIgorithm 2 Unbalanced AIAC algorithm
spatial components befogg and the two spatial components Intalize he communication nterface

after y,. Hence, if we consider that each processor owns at
least two functionsy;, the non-local data needed by each NbProcs =Number of processors
processor to perform its iterations only come from the presi ~ MyRank =Rank of the processor
processor and the following one in the logical organization ~ Yold, Ynew = Arrays of local spatial components
practical cases, there will be much more than two functionsStartC, EndC =Indices of the first and last local spatial
on each node. components

In Algorithm 2, the core of the AIAC algorithm withoutload ReT =Range of evolution time of the spatial components
balancing is presented. Since the convergence detectidon anStartT, EndT =First (0) and last (Re®t) values of time

halting procedure are not directly involved in the modificas Initialization of local data
brought by the load balancing, only the iterative compotadi repeat
and corresponding communications are detailed. for j=StartCto EndCdo
In this algorithm, the array¥new and Yol d have always for t=StartTto EndT do
the same organization which consists in the following ceder Ynewlj,{] = Solve(Yold[j,{])

contents: the last two components of the left neighbor,dball end for

components of the current node and the first two components ;¢ j—StartC+2and MyRank > 0 then
of the right neighbor. This organization is depicted in Fed
where data (in grey levels) have been drawn on two separated Send asynchronously the first two local compo-
lines (to be clearer) whereas they should all be represemted nents to left processor

the same line. Hence, two vertical instances of data with the end if

same abscissa actually represent the same data.

if there is no left communication in progregen

end if
contents of Ynew and Yold arrays on proc i end for
y fStanc Endcy | if MyRank < NbProcs-lthen
Proc i1 BRI, Proc i+1 if there is no right communication in progretsen
) Send asynchronously the last two local components
f Proci W to right processor
U data dependencies of pret i end if

end if
Copy Ynew in Yold

This structure will have to be maintained even when per- Until Global convergence is achieved
forming load balancing. Thét art C and EndC variables ~ Display or save local components
are used to indicate the beginning and the end of the locatalt the communication system
components actually computed by the node as shown in
Figure 4. Finally, thejt variable represents the precision of the Data reception functions only consist in receiving two
time discretization needed to compute the evolution ofigpatcomponents from the corresponding neighbor (left or right)
components in time. and in putting them at the right place, before or after the

Fig. 4. Contents of data arrays Ynew and Yold on processor i.




local components, in array Ynew. It can be noticed that @l order to receive the additional data which then have to be
the variables in Algorithm 2 can be directly accessed by tlwepied in this new array. This step is indicated by balloon
reception functions since they are in threads which shage 8a) in the figure. In the latter case, arrays have to be rebuce
same memory space. and no data copying is necessary. This is indicated by the
For each communication function (sending or receivinghalloon (3b) of the figure. Once the arrays have been coyrectl
a mutual exclusion system is used to avoid simultaneoupdated, the computations can be performed and the overall
threads to perform the same kind of communication wititerative process resumes as if nothing special had happene
different data which could lead to incoherent situationd amhe only difference being the data distribution (which has
also to a useless overloading of the network. This also hasanged) between the two processors.
the advantage to generate fewer communications. Hence, th# no load balancing has been performed, two tests have
AIAC variant used here and detailed in Figure 5 is slightljo be done to eventually perform a load balancing towards
different from the general case given in Figure 3. the left or right processor. The first one allows us to try
load balancing periodically every iterations. This is useful
to tune the frequency of load balancing during the iterative
process which directly depends on the considered problem.

NS N vv In some cases, a high frequency will be efficient whereas in
"%-AAA\ - other cases lower frequencies will be recommended since too

Processor 1

Processor 2 much load balancing could take most of the computation time

of the process according to the iterations, especially \oith
time » bandwidth networks.
The second test detects if a communication from a previous
Fig. 5. Execution flow of our AIAC variant with two processoBashed lines |ggd balancing is not finished yet. In this case. the trial is

represent communications which are not actually performieel to mutual del d till th t iterati d til th .
exclusion. Solid lines starting during iterations corsp to left sendings elayed u € nextiteration and so on unti the previoasie

whereas those at the end of iterations are for right ones. munication is achieved. In the other case, the correspgndin
_ function is called.
B. Load-balanced AIAC algorithm It can be noticed that according to the current organization

As evoked in Section IV, Bertsekas and Tsitsiklis [13] havef these tests, the left load balancing is tested beforeidjne r
proposed a theoretical algorithm to perform load balancimge, which could seem to give an advantage to it. In fact, this
asynchronously and have proved its convergence. We has@ot actually the case and this does not alter the geneddilit
used this model to design our load balancing algorithm ahpour algorithm. This has only been done to avoid simultaneous
to parallel iterative algorithms and particularly to AIAQya- load balancings of a processor with its two neighbors, which
rithms on the grid. would not correspond to the model used.

An additional contribution of our study is to explicity Finally, the last point in the main algorithm concerns the
describe the implementation of the load balancing scherde afata sendings performed at each iteration. Since the arrays
to give very efficient load estimators to be used with AIACsnay change from an iteration to another, we have to ensure

Our load balancing scheme of the AIAC algorithm is givethat the received data correspond to the local data before
in Figure 6. In order to provide a general and uniform versigfafter) the current arrays and that they can thus be safgly p
of this scheme, all the sendings in this Figure are performbdfore (/after) them. This is why the global position of the
at the end of the iterations. According to the treated pmblefirst (/last) two components are joined to the data. Moreover
these sendings may appear sooner in the iterations (as showin order to decide whether or not to balance the load, the
Figure 5 for the Brusselator problem). However, these pésssilocal load evaluations are used and then sent together kéth t
variants do not affect the load balancing scheme. components.

In this scheme, each processor periodically tests if it bas t In Algorithm 3 is presented the load-balanced version of
balance its load with one of its neighbors, the left or théatrigthe AIAC algorithm given in Section VI-A. To be clearer,
one here. If needed, it sends a given amount of data to itsplementation details which are related to the prograngmin
lightest loaded neighbor. This step corresponds to th@dall environment used are not shown.

(1) in Figure 6. In Algorithm 4 is detailed the function to balance the
Concerning the load balancing process itself, most of thead with the left neighbor. Obviously, this function has it
additional parts take place at the beginning of the main logymmetrical version for the right neighbor. Its first step is
of the iterative algorithm. At each iteration, we test if adb to test if a balancing is actually needed by computing the
balancing process has been performed. This may be a loatio of the workloads on the two processors and comparing
reception (as indicated by balloon (2) in the figure) or & to a given threshold. If satisfied, the number of data to be
load sending. In these cases, data arrays have to be resigmmt is then computed and another test is done to verify that
at the end of the iteration during which the load balancinfpe number of remaining data on the processor will be large
was performed, in order to contain just the local componergaough. This is done to avoid the famine phenomenon on

affected to the node. Hence, a second test is performed to fatowest processors. Finally, the first (/last) data whosaber
the nature of the load balancing on the node (load receptibas been previously computed are asynchronously sent with
or sending). In the former case, the arrays have to be ewdlarg@o more components which will represent the dependencies
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Fig. 6. Execution flow of our load balancing scheme

of the left (/right) processor. These two additional dat#l wiit is not possible to ensure exactly the same values for the
continue to be computed by the current processor but thedsult. This is not properly due to the load-balancing sahem
values will be sent to the left (/right) processor to allowdt but mainly to the non-deterministic nature of asynchronous
perform its own computations with updated values of its datdgorithms. Indeed, this fact even holds for asynchronous
dependencies. In the same way, the two components befalgorithms without load-balancing since the delays may be
(/after) those two ones will be kept on the current processdifferent from an execution to another. It comes that thalloc
and become its new data dependencies related to the taftnputations on each processor (the series of iterates) may
(/right) neighbor. not exactly be the same and thus the final result too. The only

Concerning the reception functionsy the first type, exhbibit thlng which is ensured with our initial aSSUmptionS is that
in Algorithm 5, is related to the load balancing whereas tHe algorithm will converge in a small space around the exact
second type, given in Algorithm 6, deals with the classicgPlution according to the specified accuracy.
data exchanges induced by dependencies. The former fanctio
consists in placing additional data into a temporary arnatjl u VII. EXPERIMENTS
they are copied in the resized array Yold, then the temporaryin order to perform our experiments, we have used the
array is destroyed. Once the reception is done, the flagMm2 (Parallel Multi-threaded Machine) environment [25% |
indicating the completion of a load balancing communiaatidirst goal is to efficiently support irregular parallel apmali
and its nature are set. The latter function correspondseo tions on distributed architectures. We have already shown
data reception function used in Algorithm 2. Nonethelesw [1] how convenient this kind of environment is to program
some modifications appear in this version, the global pwsitiasynchronous iterative algorithms in a global context adl gr
of the received data must be confronted to the expected ammputing.
before stocking them in the array. Besides, another additio The context of our experiments is as follows: the space is
information to be received is the load evaluation obtained aliscretized in 60000 points, the time interval is from 0 to 10
the source node. by steps of 0.05 and the required accuracyds- 4.

Concerning the behavior of this load-balanced versiortesin
the iterative process is not modified in itself, we can guaf. Balancing vs not balancing

antee that the load-balancing will not affect the convecgen The evaluation of the gain obtained by coupling load
property. Thus, any converging non-balanced asynchron®{fancing with asynchronism is obtained by comparing the
algorithm will also converge with our load-balancing scteenpalanced and non-balanced versions of our AIAC algorithm in
and will provide a similar result according to the accuracyyo different contexts. The first is a local homogeneoustetus
threshold. of PIII-733Mhz with a 100Mb/s network and the second is
It can be noticed that under the specified accuracy threshadcollection of heterogeneous machines scattered on tlistan



Algorithm 4 function TryLeftLB()
/* symmetrical for TryRightLB() */

Algorithm 3 Load-balanced AIAC algorithm
Initialize the communication interface

Variables from Algorithm 2

LBDone =boolean indicating if LB has just been performed

LBReception =boolean indicating if additional data from
LB have been received

OkToTryLB = integer allowing to periodically test for
performing LB. Initially set to 20

Initialization of local data
repeat
if LBDone=truethen
if LBReceptior=true then
Resize Ynew,Yold arrays after reception of addi-
tional data

Ratio = Ratio of load evaluations between local node and
its left neighbor
NbLocal =Number of local data
NbToSend =Number of data to send to perform the
load-balancing

Ratio=local load evaluation / left load evaluation
if Ratio>ThresholdRatidhen
Compute the number of data to send NbToSend
if NbLocal-NbToSend ThresholdDatahen
Send asynchronously the first NbToSend+2 data to left
processor /* +2 is added for data dependencies */
OkToTryLB=20
LBDone=true
end if
end if

Complete new Yold array with additional data from

temporary array
LBReception=false

Algorithm 5 function RecvDataFromLeftLB()
/* symmetrical for RecvDataFromRightLB() */

else

Resize Ynew,Yold arrays after the sending of trans-

Receive the number of additional data sent
Receive these data and put them in a temporary array

ferred data LBReception=true
end if LBDone=true
LBDone=false
else

if OkToTryLB=0 then o sites linked together with a 10Mb/s network. Since différen
if there is no left LB communication in progressonfigurations have been used, the heterogeneous context is

then described for each experiment. In all our experiments, the
TryLeftLB() given results correspond to an average of a series of 20
else executions.

if there is no right LB communication in progress Figure 7 shows the evolution of execution times in func-
then tion of the number of processors on a local homogeneous

TryRightLB() cluster. The residual is used as the load estimator in the
en_d if balanced version. It can be seen that both versions have
end if a very good scalability. This is quite an important point
else since load balancing usually introduces sensitive overhaa
OkToTryLB=OKToTryLB-1 parallel algorithms leading to quite moderate scalab#itiThis
Zn_? if good result mainly comes from the non-centralized nature of
end i

the balancing used in our algorithm. Nevertheless, the most

for j=StartCto EndCdo interesting point is the large vertical offset between theves
.. I* The ... indicate a same part as in Algorithm 2 */

Send asynchronously the first two local components
together with their global position and the load Algorithm 6 function RecvDataFromLeft()
evaluation of previous iteration to left processor /* symmetrical for RecvDataFromRight() */
if not accessing data arrdlyen
Receive the global position and the two components from
left node
if global position corresponds to the two left data needed
on local nodethen
Put these data before local components in array Yold
else
Do not stock these data in array Yold
[* array Yold is being resized */
end if
Receive the load evaluation obtained on the left node
end if

end for
Send asynchronously the last two local components
together with their global position and the load
evaluation of current iteration to right processor

until Global convergence is achieved




which denotes a high gain in performances. In fact, the rafiocal homogeneous context would only produce slightlydrett
of execution times between the non-balanced and balancedults than their SISC counterparts. On the opposite,én th
versions varies from 6.2 to 7.4 with an average of 6.8. Thegibal context, the difference between SISC and AIAC load-
results show all the efficiency of coupling load balancinghwi balanced versions will be much larger. In fact, this lassi@r
AIAC algorithms on a local cluster of homogeneous machinesill obtain the very best performances.

As explained in Section Il and pointed out by these

100000 E— — experiments, load balancing and asynchronism are thus not
! Without LB --------- incompatible and can actually lead to very efficient patalle
With LB —+— iterative algorithms.

The attainment of this efficiency lies on the way this
coupling is performed and the context in which it is used.
The first point has already been discussed and the important
role played by the non-centralized nature of the balancing
technique has been shown. Concerning the second poirg, ther
are also some conditions which should be verified on the
treated problem to ensure good performances.

According to our experiments, at least four conditions
required to get an efficient load balancing on asynchronous
iterative algorithms have arisen. The first one concerns the

10 Ll Lo number of iterations which must be large enough to make it
1 10 100 worth performing load balancing. In the same way, the awverag
Number of processors time to perform one iteration must be long enough to have a
reasonable ratio of computations over communicationshén t
Fig. 7. Execution times (in seconds) on a homogeneous cluste opposite case, the load balancing will not sensibly infleenc
the performances and will have the drawback to overload the

Concerning the heterogeneous cluster, fifteen machines hggtwork. Another important point is the frequency of load
been used over three sites in France: Belfort, MOﬂtbé'iaﬂMancing Operations which must neither be too h|gh (tOdiVOi
and Grenoble, between which the speed of the network may overloading of the system) nor too low (to avoid too large
sharply vary. The organization of the system has been choggnimbalance in the system). It is then important to design a
irregular in order to get a grid computing context which i$ N@yood measure of the need to load balance, that is to say a
favorable to load balancing. The machine types vary frommeasure which gives a quite precise idea of the unbalance of
Pll 400Mhz to an Athlon 1.6Ghz. In this Cluster, no direCﬂ]e System_ It is important to perform just the right number
neighbors are similar in terms of power. Again, the loagf |oad balancings. Finally, the last point is the accuraty o
estimator used in the balanced version is the residual.  the |oad balancing which depends on the network load. If the

The results obtained in this context are given in Table hetwork is heavily loaded (or slow) it may be preferable to
Here also, the balancing brings a potential enhancemehtof perform a coarse load balancing with less data migration. On
the other hand, an accurate load balancing will tend to speed

10000

1000

Time (s)

100

version not-balanced| balanced|| ratio ; ; -
axecution fima 5153 T055 1488 up the global convergence. The tricky Worl_< is then to find the
good trade-off between those two constraints.
TABLE |

EXECUTION TIMES (IN SECONDS ON A HETEROGENEOUS SYSTEM
B. Residual vs classical load evaluation

performances of the initial AIAC algorithm. In this casegth In this section, we focus our attention on two different load
ratio is smaller than in the local case because of the lamgr cestimators which can be chosen to perform load balancing in
of communications and thus of data migrations. Although thAIAC algorithms.
ratio remains very satisfying, this remark would imply assdo = The most classical estimator consists in computing the
study concerning the tuning of the load balancing frequenpyocessing time of a given amount of data (a component of
during the iterative process. This is not within the scopthisf  the problem here) and then in distributing the data in order t
article but it will probably be the subject of a future work. obtain merely the same computation times for an iteration on
Despite this, the load balancing is more interesting in th&l the processors in the system. Unfortunately, this diimi
context than in local clustering. This comes from the facf the load is not very efficient in our context of PIAs and
that in the homogeneous context, as was shown in [1], there particularly of AIAC algorithms. This is due to the fact
synchronous and asynchronous iterative algorithms almdisat in these algorithms, the critical point for efficiensythat
have the same behavior and performances whereas in a@flghe processors reach local convergence merely at the sam
global context of grid computing, the asynchronous versidime. However, using this estimator only tends to equaliee t
reveals all its interest by providing far better resultsne we processing times of each iteration on all the processors.
can reasonably deduce that load balancing AIAC algorithmsThe load estimator we propose to use is thus the residual on
with a load estimator based on the amount of data ineach processor which allows to take into account the relativ
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progression of the processors during the iterative prodess Procl sidual Proc 2

may seem surprising to use the residual as a load estimator
this choice is very well adapted to this kind of computatio
as was briefly exposed in Section lll. If a processor has a |
residual, all its components are not evolving so far and i
computations are not so useful for the overall progressfon
the algorithm. Hence, it can receive more components ta tr
in order to potentially increase its usefulness and alsdioava

its neighbor to progress faster. 4

In this context, several variants could be used. For examp R —
we could use one residual per data and move those d N
independently. However, this strategy may break the dataror U )
and then the dependencies between processors too, leagng /\/\/\ reception
to a sharp increase of the number of communications a
to a modification of the communication graph (all-to-all i
the worst case). Thus, our choice is to maintain the logical array rearrangment
organization of the data in order to always use the sa
communication graph. Hence, each processor only has
residual which consists of the maximum norm of all its loc
components. Moreover, the data are moved while maintaini
their global logical organization.

Since the residual on each processor is computed for all
components on this processor, it is not possible to precis
identify data which have the highest residuals. Thus, duan
load balancing, nothing can ensure us that the moved data
actually the ones with the highest residuals. Neverthetmas
method has the great advantage of enhancing the progres
in all cases. If the moved data have a high residual, then t
processor with a lower residual will become in charge of
larger residual as initially expected. If the moved data db n
have the highest residual (see Figure 8), then the resid{Zil
of the receiving processor may not change much but the
processor which has sent the data will have fewer componegts g | oad transfer between two processors based on tiiaés
to manage. So, it will perform its iterations faster and thdh
tend to evolve faster, its residual will decrease fasteritwvdl
eventually overtake its initial lag.

Moreover, although in most cases the error will not follow 812y rearrangements can be performed on both processors
monotonous decrease, convergence conditions ensuretis tt the end of their current iteration. Then, both processors
will globally decrease during the entire process until héag —continue their computations with the new load d|_str|bu1|An
the desired accuracy. Hence, this estimator actually ga,e§mall break can be seen mth_e error curve of the rlghtproces_s
good indication of the distribution of the remaining work ir{tér the rearrangement. This is due to the fact that during
the iterative process. the load transfer, components already on the right processo

This scheme is exhibited in Figure 8 where a load transfepntinue to evolve and their residual decreases whereas it
takes place between two processors according to theiivelalS obviously not the case for the transferred components
residuals. This figure is a detailed version of Figure 6 witfnose error stays the same as at their sending time. After
computational errors of the components and residuals exhi3e balancing, the left processor computes its iteratiasgef
ited. The grey rectangles on both sides of the figure repteséfice it has fewer components whereas the right processor is
the flow of consecutive iterations on each processor with th§/owed down by its increased number of components. Hence,
length proportional to their duration. At the first iteratio the left processor tends to catch up with the right one and
shown at the top of the figure, both processors have meréffer Some iterations, both processors have approximétely
the same amount of data but their residuals are sufficienfigme residuals. The process can be repeated as soon as the
different to detect the necessity of a load balancing. Heate difference between the residuals becomes too large again.
the following iteration, the left processor sends a giveri ph To show the impact of the load estimator on the over-
its components to its right neighbor. We recall that thegranall performances of the algorithm, we have compared the
fered components are always chosen to maintain the globakcution times of our load-balanced AIAC with those two
order of the components which, in turn, maintains the globestimators in function of the final accuracy. This experiinen
organization of the processors and thus the communicatioas been realized using ten heterogeneous machines (from a
graph between them. Once the load transfer is completed, Bie450Mhz to a PIV 2.4Ghz) scattered over three geographica

residual

erro
error

e ——————
components

awI L

[ Iteration duration
[ Transfered load V




sites (Belfort, Besangon and Montbéliard). The
given in Figure 9.
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results a Finally, the required conditions for an efficient use of

this coupling have been discussed as well as the choice
of an efficient load estimator. Among the most interesting
possibilities, the residual seems to be the most convenient
load estimator as it does not try to balance the computation
time at the level of one iteration but at the global level of
the complete set of iterations needed in the process. Hence,
it tends to make all the processors reach local convergence
at the same time. Moreover, although we have obtained good
results with our residual based load balancing algorithm, w
think that some optimizations could be brought leading tb ye
better performances. This will probably be the subject of a
future work.

In conclusion, a residual based load balancing whose fre-
guency is tuned in function of the network speed is recom-
mended in AIAC algorithms to obtain the best performances

0.01 0.008 0.006 0.004 0.002
Precision

Fig. 9. Execution times (in seconds) with two different laestimators

Obviously, it can be seen that using the residual leads to &
better performances especially for higher accuracies evaer
larger number of iterations is necessary. This comes fram th
fact that with the classical load estimator, the probabili 2]
have some processors which do not perform actually useful
iterations drastically increases with the number of iiers.

This is not the case with the residual with which there is &%
continuous attention to have all processors performindulise

iterations.
[4]

VIIl. CONCLUSION (5]

The general interest of load balancing parallel iterativ
algorithms has been discussed and its major efficiency in the
context of grid computing has been experimentally shown. [7]

A comparison has been presented between a non-balanced

and a balanced asynchronous iterative algorithm. The catepl (g

in both local and global contexts of grid computing.
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