
Approximate Algorithms for Document
Placement in Distributed Web Servers

Savio S.H. Tse

Abstract—We study approximate algorithms for placing a set of documents intoM distributed Web servers in this paper. We define the

load of a server to be the summation of loads induced by all documents stored. The size of a server is defined in a similar manner. We

propose five algorithms. Algorithm 1 balances the loads and sizes of the servers by limiting the loads to kl and the sizes to ks times their

optimal values, where 1
kl�1 þ 1

ks�1 � 1. This result improves the bounds on load and size of servers in [10]. Algorithm 2 further reduces the

load bound on each server by using partial document replication, and Algorithm 3 by sorting. Algorithm 4 employs both partial replication

and sorting. Last, without using sorting and replication, we give Algorithm 5 for the dynamic placement at the cost of a factorOðlogMÞ in
the time-complexity.

Index Terms—Distributed Web server, load balancing, document placement, document replication, file allocation problem,

approximate algorithm, NP-completeness.

�

1 INTRODUCTION

THEREhasbeena tremendousdemandofhighperformance
internet Web servers for many years. Standalone Web

servers are often unable to provide reliable and scalable
services. In contrast, distributed solutions are a natural and
popular way to improve the reliability, scalability, efficiency,
and availability of a system. The advantages of distributed
solutions in a cluster are higher computing power and fault-
tolerance with graceful degradation. Their disadvantages,
however, are the complexity involved in scheduling and
balancing the work of individual servers. In this paper, we
address the problem of balancing load and required storage
space among all servers under different assumptions on the
input documents.

Many papers have addressed the load balancing problem
[5], [10], [11], [15], [17]. Their solutions can be classified into
three categories: the dispatcher-based approach, the domain-
name-server-based (DNS-based) approach, and the (context-
aware) document placement approach. One can refer to [6]
for a survey of the variants of the dispatcher-based approach;
and one can refer to [4], [7], [8], [11], [12] for the DNS-based
approach. These two approaches assume full or excessive
replicationofdocuments in thedistributed servers.However,
excessive replications induce much overhead for data
transfers and replica updates, especially when the servers
are hosted in a network with limited bandwidth or the
number of documents is large. Along with this, the cost of
storage space is also high, of course, in a sense that the spaces
are not efficiently used. The inefficiency of space usage
confines the related algorithms to storing the replicas in on-
disk caches, rather than in memory. This space-cost will in
turn affect the performance of Web server systems.

In this paper, we consider the document placement
approach. This approach uses a kind of algorithms called
document placement algorithm to store documents in servers.

One of the purposes of this kind of algorithms is to balance
the workload among the servers. A static document
placement algorithm determines the mapping from each
document to a server,1 and allows another (phase of the)
algorithm to place the documents into the servers. A
dynamic (or online) version computes and places one
document at a time. In Section 3.5, we develop algorithms
for dynamic placement in which the execution time slows
down by a factor logM, compared with static placement.
Since it is not supposed to do a full or excessive replication,
the dispatcher must be content-aware [18] in order to
forward each client request to the precise server. The price
of the content-awareness is the high overhead associated
with looking up the content of a request in the dispatcher. It
should be noted that the load balancing problem might not
be resolved by using a single approach out of the above
three, but may require a hybrid of them.

The document placement problem is a variant of the
classical File Allocation Problem (FAP). In [9], Ceri et al. gave
a solution for the optimal FAP based on the classical
Knapsack Problem. Fisher and Hochbaum studied the trade
off between the cost of assessing data and storing replicated
copies [14]. A survey of results of FAP before 1982 can be
found in [13]. In 1996, Simha et al. extended the idea of FAP
to parallel Web servers [19]. Many of these previous works
used heuristics; however, none of them focused on the trade
off between the bounds of the loads and spaces of file
servers. In [20], Zhou et al. gave algorithms for balancing
the loads empirically, but not in theory. In [17], Narendran
et al. proposed the Binning Algorithm which allows a
document to be replicated to multiple servers. Different
replicas may have different probabilities of being accessed.
The Binning Algorithm balances the loads optimally, but
the system needs counters to count the frequencies of client
requests received. Moreover, this algorithm does not
balance the space utilization, and the space-inefficiency
will increase time-cost as mentioned. In [10], Chen and Choi
showed the optimal placement problem can be reduced to
the bin packing problem in polynomial time. Thus, the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005 489

. The author is with the Department of Computer Science, The University of
Hong Kong, Pokfulam Road, Hong Kong. E-mail: sshtse@cs.hku.hk.

Manuscript received 15 Jan. 2004; revised 30 June 2004; accepted 13 Sept.
2004; published online 21 Apr. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0018-0104.

1. The algorithm maps a document to a subset of servers if document
replication is allowed.

1045-9219/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



placement problem is NP-hard and for this reason two
approximation algorithms have been proposed. The first
algorithm results in a factor 2 of the optimal load
distribution (per HTTP connection). The second algorithm
results in a factor 4 of the optimal load distribution using at
most four times the optimal storage space. In this paper, we
first improve Chen et al.’s result by giving a generalized
solution for the load-space trade off in Theorem 1. From this
theorem, one could choose a better load balancing perfor-
mance at the expense of space utilization. On the other
hand, we could balance the spaces of the distributed servers
at the expense of load distribution. Extending this result, we
improve the result for a specific case in which the input
documents are sorted according to their loads. We also
improve the load-space balancing performance by replicat-
ing documents where the input is both sorted and unsorted.
Last, we consider the dynamic aspects of the problem. In
our model, we assume each replica of a document shares
the same probability of being assessed.

2 DEFINITIONS AND MODELS

In ourmodel,wehaveM homogeneous serverswith capacity

C, and N independent documents. As a common phenom-

enon, we assumeN � M. For all i 2 ½1; N �, the ith document

has a positive size si and load li. The load of a document is the

product of its access rate and size. We assume si � C for any

i 2 ½1; N�, and
P

i2½1;N � si � MC. The load of a server is the

sum of loads of all documents allocated to it. A similar

definition applies for the size of a server. The size of a server

cannot exceedC,while the loadof a server canbeunbounded.

LetL andS be the optimal boundson the load and size of each

server, respectively, where

L ¼ max max
i2½1;N�

li;

P
i2½1;N� li

M

� �
; and

S ¼ max max
i2½1;N �

si;

P
i2½1;N � si

M

� �
:

Let kl > 2 and ks > 2 be two numbers satisfying the
fundamental inequality

1

kl � 1
þ 1

ks � 1
� 1: ð1Þ

These two numbers play important roles in the upper
bounds of load and size. The fundamental inequality is to
guarantee the existence of a server with load and size
bounded by ðkl � 1ÞL and ðks � 1ÞS, respectively, before we
place a document. The motivation of this inequality will
become clear in the proof of Theorem 1.

If a document is replicated in another server, its replicas
will share the load equally. Each replica will be of the same
size as the original document. For all i 2 ½1; N �, let ri be the
number of replicas of the ith document, including its
original copy. Precisely, 8i 2 ½1; N�, if the ith document has
replicas, each of its replicas will be of a size si and a load li

ri
.

(In [17], different replicas may have different loads.) It is
also reasonable to place all replicas of the same document in
different servers. Hereafter, by saying that a document has r
replicas, we mean there are r copies of the document
including the original one. For the case that we do not
replicate the ith document, it still has (only) one replica
which is itself, i.e., ri ¼ 1.

It is already well-known that the general problems
associated with the allocation of documents so as to bound
the loads or sizes of all servers are NP-hard [10]. The bin-
packing problem can be reduced to some special cases of
these problems. Using the same argument, the problems
associated with bounding the number of replicas for each
document so as to achieve the optimal load for all servers is
also NP-hard.

In the following sections, we find P-Time approximate
algorithms for placing the documents. The price for the
improvement in time complexity is to release the optimality
of thebounds. In Section 3.1,we try the simplegreedymethod
for bounding the loads and sizes of all servers to klL and ksS,
respectively. In Sections 3.2, 3.3, and 3.4, we apply the sorting
and/or replication to achieve better solutions.

3 APPROXIMATE ALGORITHMS AND THEIR
ANALYSES

For all algorithms discussed in this section, the inputs are N
documents with individual loads and sizes, and M servers,
which are initially empty sets of documents and replicas. The
output is the M servers with documents and/or replicas
allocated. We assume each server keeps the knowledge of its
last input document. The function LastðXÞ outputs the latest
document placed in server X. Note that replication of
documents will not increase the total load of all the servers,
but will increase the total size. Therefore, in our discussion,
the total load is always

P
i2½1;N � li.

3.1 Algorithm 1—Simple Placement

We first give Algorithm 1 without applying sorting and
replication. This is the simplest document placement
algorithm in this paper. We relate the parameters kl and
ks to the upper bounds on load and size of each server in
Theorem 1.

Algorithm 1 ðkl; ksÞ:
1. Compute L and S;

2. SERVER :¼ set of all servers;
3. For every document d

3.1 Find a server X 2 SERVER;

3.2 Place d into X;

3.3 If (the load of X is at least ðkl � 1ÞL) or (the size of X is

at least ðks � 1ÞS)
SERVER :¼ SERVER� fXg;

Theorem 1. After execution of Algorithm 1ðkl; ksÞ, all

documents can be placed such that each server’s load is less

than klL and size less than ksS.

Proof. Consider a document d. Before placing d on any

server, there are less than 1
kl�1M servers which loads are

at least ðkl � 1ÞL; otherwise, total load is greater than

ML, where ML �
P

i2½1;N � li. A contradiction.
On the other hand, there are less than 1

ks�1M servers
which sizes are at least ðks � 1ÞS; otherwise, total size is
greater thanMS, whereMS �

P
i2½1;N � si. A contradiction.

Hence, by the fundamental inequality, there exists at
least one server X which load is less than ðkl � 1ÞL and
size is less than ðks � 1ÞS. After placing d into X, X’s
load is less than klL and size is less than ksS. Inductively,
we prove the lemma. tu

490 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005



In particular, if we assign 5
2 to kl and 4 to ks, we will

improve the result by [10], the load and size bounds of
which are both 4.

The data structure of SERVER can be a (cyclic) link list.
Therefore, inside the for-loop, each step needs Oð1Þ time.
Step 1 will take OðNÞ time and Step 2 OðMÞ. Hence, the
time-complexity for Algorithm 1 is then OðNÞ.

3.2 Algorithm 2—Placement with Replication

In this section, we propose a partial replication technique
for replicating some of the documents and balancing the
loads of servers. We call this technique selective replication
because we will replicate only the top documents of those
servers having loads higher than our load bound ðkl � 1

2ÞL.
We replicate a document by making one more replica. This
is because we do not want to place a heavy burden on the
size bound.

Replicating documents will not increase the total load,
but will inevitably increase the total size. However, if we
make only one extra copy for each replication, Theorem 2
shows that the load bound can be decreased by L

2 without
increasing the size bound. Therefore, in the proof of
Theorem 2, we try to avoid the effect of increasing total size.

Algorithm 2 ðkl; ksÞ:
1. Perform Algorithm 1ðkl; ksÞ;
2. Let SERVER be the set of all servers which loads are less

than ðkl � 1ÞL and sizes are less than ðks � 1ÞS;
3. For every server X with a load at least ðkl � 1

2ÞL
3.1 d :¼ LastðXÞ;
3.2 Find a server Y 2 SERVER;

3.3 Replicate d and put the replica into Y ;

3.4 If (the load of Y is at least ðkl � 1ÞL) or (the size is at

least ðks � 1ÞS)
SERVER :¼ SERVER� fY g;

Theorem 2. After execution of Algorithm 2ðkl; ksÞ, all
documents are placed such that each server’s load is less than
ðkl � 1

2ÞL and size less than ksS.

Proof. After execution of Algorithm 1ðkl; ksÞ, if the loads of
all servers are less than ðkl � 1

2ÞL, then it is done. We now
assume the other case.

Let P be the set of servers which loads are at least
ðkl � 1

2ÞL, A be the set of servers which loads are at least
ðkl � 1ÞL. P 6¼ ;; otherwise, it is done already. Clearly,
P � A, which implies A 6¼ ;. Let B be the set of servers
which sizes are at least ðks � 1ÞS. Note that the three sets
change during the execution of Algorithm 2ðkl; ksÞ.

Consider a serverX inP . Recall the proof of Theorem1.
Before placing the last document d intoX in Algorithm 1,
X’s load is less than ðkl � 1ÞL. Therefore, if we replicate d
once in another server, d’s load is at most L2. Then,X’s load
will be less than ðkl � 1ÞLþ L

2 ¼ ðkl � 1
2ÞL. Note that X’s

load will still be greater than ðkl � 1
2ÞL� L

2 ¼ ðkl � 1ÞL. So,
X will still be in A. To guarantee that we can find a server
for d’s replica before the end of Algorithm 2, we need to
prove the existence of a server which is not in A [B.

Before we do any replication, if B ¼ ;, then jA [Bj
¼ jAj � M

kl�1 < M. It means that we can find a server for

replication. If B 6¼ ; and shares a positive load, jAj < M
kl�1 .

Similarly, jBj < M
ks�1 because A 6¼ ;, implying that

jA [Bj � jAj þ jBj < M. Therefore, we can always find a

server for the first replication. (Base case.) Supposewe can
find servers to replicate the last documents of k servers in

P , where 1 < k < jP j. After placing these replicas,

jAj < 1
kl�1M; otherwise, the sum of the loads of all servers

will be greater than the sum of the loads of all the

documents and their replicas (if any). A contradiction.

After these replications, these k servers will then be in A

(althoughnot inP ). LetSA be the sumof the sizes of servers

in A. Assume the k replicas are also in A. jB�Aj < M
ks�1 ;

otherwise, the sumof the sizes of all serverswill be greater

than the sum of the sizes of all documents before

replication (i.e., ðks � 1ÞSjB�Aj þ SA

2 > MS). Assume

that some replicas are not in A, and the sum of sizes of

these replicas is S 6¼A. We have S 6¼A � SA because the

original documents are all in A. jB�Aj < MS�SAþS6¼A

ðks�1ÞS
� M

ks�1 . Hence, by the fundamental inequality, we have

jA [Bj ¼ jAj þ jB�Aj < M. Then, we can find a server
for replicating the last document of another server in P .

By induction, we can always find a server for
replicating the last document of each server in P . tu

Step 1 takes OðNÞ time and Step 2 OðMÞ. There are at

most 2
2kl�1M < M servers which loads are greater than

ðkl � 1
2ÞL. So, Step 3 has OðMÞ iterations, and each Step 3.x

needs Oð1Þ time. Altogether, the time-complexity of Algo-

rithm 2 ðkl; ksÞ is OðN þMÞ ¼ OðNÞ. A remark to this

algorithm is that the load bound can be very close to 3L
2 , if

we allow a large ks.

3.3 Algorithm 3—Placement with Sorting

For simplicity, we have one more positive number q � 1 in
the parameter of the following algorithm. The algorithm can
be divided into two parts. The first part is from Step 1 to 8,
which handles documents with loads greater than qL. This
part sorts the documents and places them into servers in
rounds. In the second part, we do not applying sorting. It is
only for placing documents with load not exceeding qL in
the greedy manner as in Algorithm 1. If we choose a small
value for q, the first part will dominate. For large values of q,
the second part takes the role. We will choose the best value
of q later after Theorem 3.

Algorithm 3 ðkl; ks; qÞ:
1. Compute L and S;

2. Let D be a list of documents and D :¼ ;;
3. Take out the documents with loads greater than qL from

input to D, and sort D in descending order;
4. Take out the remaining documents from input and

append to D without sorting.

5. d :¼ the first document of D;

6. SERVER :¼ set of all M servers;

7. round :¼ 1;

8. while (D 6¼ ;) and (d’s load is greater than qL)

8.1 Find a server X 2 SERVER;

8.2 Place d into X;
8.3 D :¼ D� fdg;
8.4 SERVER :¼ SERVER� fXg;
8.5 If SERVER ¼ ;
8.5.1 round :¼ roundþ 1;

8.5.2 If round � bksc

TSE: APPROXIMATE ALGORITHMS FOR DOCUMENT PLACEMENT IN DISTRIBUTED WEB SERVERS 491



Recompute SERVER such that it contains servers
which loads are less than L;

8.5.3 If round > bksc
Recompute SERVER such that it contains servers

which loads are at most ½kl � 1� q0�L with

q0 ¼ bkscqðkl � 2ÞL, and sizes less than ðks � 1ÞS;
8.6 If D 6¼ ;

d :¼ the first document of D;

9. Recompute SERVER such that it contains servers which
loads are less than ðkl � 1ÞL and sizes less than

ðks � 1ÞS;
10. while D 6¼ ;
10.1 d :¼ the first document of D;

10.2 Find a server X 2 SERVER;

10.3 Place d into X;

10.4 D :¼ D� fdg;
10.5 If (the load of X is at least ðkl � 1ÞL) or (size at least

ðks � 1ÞS)
SERVER :¼ SERVER� fXg;

Definition 1. A document is r-round if it is placed in some

server in Step 8 when the value of the variable round is r.

Step 8 can be applied because of the sorted property of

the input. The existence of low-loaded servers in Step 8.5.2

is a benefit of the sorted feature. Step 10 is “borrowed” from

Algorithm 1. We can see a large value of q may be beneficial

in Step 8, but not in Step 9, and vice versa.

Lemma 1. The server set SERVER is nonempty whenever

Step 8.1 is executed.

Proof. Initially, SERVER 6¼ ; in Step 6. If round � bksc in

Step 8.5.2, then before placing all documents, there should

always be some server(s) with load(s) less than L. Hence,

SERVER 6¼ ;. Suppose round > bksc in Step 8.5.3. Let K

be the set of servers which loads are greater than

½k1 � 1� q0�L. We argue that jKj < M
kl�1 . We consider the

caseK 6¼ ;; otherwise, it is trivial. By theproperty of sorted

list, the loads of all servers which are not in K will be at

least bkscqL. By direct counting, we have

LM �
X

i2½1;N �
li > ½kl � 1� q0�LjKj þ bkscqðM � jKjÞL;

which implies jKj < M
kl�1 . Moreover, the number of

servers which sizes are at least ðks � 1ÞS is at most M
ks�1.

By the fundamental inequality, in Step 8.5.3, we can find

at least one server which load is at most ½kl � 1� q0�L and

size less than ðks � 1ÞS. In other words, SERVER 6¼ ;.tu

Lemma 2. Algorithm 3 can place all documents into servers and

terminate.

Proof. Consider the case that Step 8 terminates before

placing all documents into servers. Since there are at

most M
kl�1 servers having loads of at least ðkl � 1ÞL, and at

most M
ks�1 servers having sizes of at least ðks � 1ÞS, by the

fundamental inequality, there always exists a server

which load is less than ðkl � 1ÞL and size less than

ðks � 1ÞS. Therefore, Step 10 can complete the placement.

For the case that Step 8 terminates after placing all
documents in the servers, it is already done.

We now prove that Step 8 will terminate. By Lemma 1,
we can always find a server X in Step 8.1. Since server X
exists, Step 8.2 can place d in X and Step 8.3 can decrease
the size of D by one for each iteration. Hence, there are at
most jDj iterations in Step 8. In other words, Step 8 will
terminate. tu

Lemma 3. Immediately after placing a document into a server X
in Step 10, X’s load is less than ðkl � 1þ qÞL and size less
than ksS.

Proof. In Step 10, we only place documents, which loads are
at most qL, on the servers with loads less than ðkl � 1ÞL.
Result follows. tu

Lemma 4. 82 � r � bksc, if there exists a document of r-round
in a server, then its load is at most L

r�1.

Proof. Suppose thatwearenow toplace an r-rounddocument
in serverX. Since 2 � r � bksc, before placing the r-round
documents in X, the condition in Step 8.5.2 must be true.
This condition was also true in all previous iterations of
Step 8. Hence, we have already placed r� 1 documents in
X, and the sum of their loads are at most L. By the pigeon
hole principle, one of these documents will have a load of
at most L

r�1. By the sorted property, the coming r-round
document will have a load of at most L

r�1. tu
Lemma 5. 8r 2 ½2; bksc�, immediately after placing an r-round

document into a server X in Step 8, X’s load is less than
ð1þ 1

r�1ÞL and size less than ksS.

Proof. According to the algorithm, before placing this
r-round document, X has a load of less than L. By
Lemma 4, the load of an r-round document is at most L

r�1.
Result follows. tu

Lemma 6. 8r > bksc, immediately after placing an r-round
document into a server X in Step 8, X’s load is less than
½kl � 1� q0 þ 1

bksc�L and size less than ksS.

Proof. According to the algorithm, X will have a load of
½kl � 1� q0�L plus the load of this r-round document. By
Lemma 4, this document has a load of at most L

bksc. Result
follows. tu

Theorem 3. After execution of Algorithm 3, all documents can be
placed, and each server’s load is less than maxð2L; ðkl � 1þ
qÞL; ½kl � 1� q0 þ 1

bksc�LÞ and size less than ksS.

Proof. By Lemma 2, we can place all documents by
Algorithm 3. Consider a server X. If LastðXÞ is placed
in Step 10, by Lemma 3, X will have a load of
ðkl � 1þ qÞL. If LastðXÞ is an r-round document placed
in Step 8, where r 2 ½2; bksc�, by Lemma 5, X will have a
load of less than 2L. If r > bksc, by Lemma 6, X will have
a load of ½kl � 1� q0 þ 1

bksc�L. tu

For a given kl, the last two terms can be minimized by

setting q to 1
bkscð1þbkscðkl�2ÞÞ . The upper bound of the servers’

loads is simplified to maxð2L; ðkl � 1þ qÞLÞ. Hence, for

kl � 3� q, the bound of the loads of the servers is

ðkl � 1þ qÞL, which is less than ðkl � 1
2ÞL. For kl < 3� q,

the bound of the loads of the servers is 2L. In particular, if

492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005



1
kl�1 þ 1

ks�1 ¼ 1, kl � 7þ
ffiffi
3

p

3 is equivalent to kl � 1þ q � 2.

Recall that in Algorithm 2, the load bound is ðkl � 1
2ÞL. In

other words, while the size limit remains unchanged, for

kl � 3� q, the power of sorting is even greater than the

replication technique in Algorithm 2. Since a full replication

technique will share the load equally and give a load bound

of L, one may hope for a better replication technique in

future work. On the other hand, for kl < 3� q, the bound is

2L, which is optimal regardless of the power of sorting. It

can be illustrated by the worst case: 8i 2 ½1; N �, li ¼ MN
N ,

N ¼ M þ 1, and M � 2. The bound on the loads of the

servers is approaching 2L when M is very large. All

documents carry the same load and make sorting useless.

Its means that the load bound 2L should be tackled by

replication in general.
Here are some examples of the effect of different choices

of kl and ks: When kl ¼ 5
2 and ks ¼ 4, we can bound the

loads of the servers by 2L. When kl ¼ 3 and ks ¼ 3, we can
bound the loads by 25

12L, while q ¼ 1
12 . When kl ¼ 4 and

ks ¼ 5
2 , we can bound the loads by 37

12L, while q ¼ 1
12 .

We can find a duality between the bounds on the servers’
loads and sizes in the proof of the above lemmas and
theorem in this section. If we exchange the positions of load
and size in Algorithm 3, we can easily get Theorem 4 in the
following.

Theorem 4. We can place all documents such that each server’s
load is less than klL and size less thanmaxð2S; ðks � 1þ tÞSÞ,
where t ¼ 1

bklcð1þbklcðks�2ÞÞ .

Step 3 takes OðNÞ time to transfer those documents with
loads at least qL to the listD. If kl and ks are constants, q will
also be a constant.2 The time for sorting D will then be
OðM logMÞ. Obviously, Step 4 takes OðNÞ time. In Step 8.4,
we can put X into another set SERVER2 of servers if it
satisfies the conditions on size and load as in Step 6. The set
SERVER2will then be SERVER in the next round. Hence,
we do not need Steps 8.5.2 and 8.5.3 to rebuild the server
set. These steps are stated in the algorithm only for ease of
discussion. The whole Step 8 can be done in OðNÞ time.
Step 10 takes OðNÞ time. Therefore, the time-complexity for
Algorithm 3 is OðN þM logMÞ.

3.4 Algorithm 4—Placement with Sorting and
Replication

In Sections 3.1 and 3.3, we show the trade off between the
bounds on the loads and sizes of the servers when the
bound of the loads is higher than 2L and that of the sizes
higher than 2S. However, 2L is an optimal bound that we
can hope for without replication. We now combine the
techniques of sorting and selection replication and replicate
some documents to achieve a better load bound of maxðð32 þ
2�ÞL; ðkl � 1þ qÞLÞ with the same size limit, where

� ¼
ks�2

bkscðksþbksc�2Þ if ks � 4
1

4ðks�1Þ if ks > 4:

(

In particular, if 1
kl�1 þ 1

ks�1 ¼ 1 and ks � 4, then � ¼ q. The
load bound here is strictly less than ðkl � 1

2ÞL which is given
by Algorithm 2. If kl � 3� q, it is already done by
Algorithm 3. Therefore, we consider the case kl < 3� q.
Let p be maxð32 þ 2�; kl � 1þ qÞ.

Algorithm 4 ðkl; ks; qÞ:
1. Perform Algorithm 3 ðkl; ks; qÞ;
2. If kl < 3� q

2.1 For every server X which load is at least pL

2.1.1 d :¼ LastðXÞ;
2.1.2 Find a server Y 6¼ X with minimum load and size less

than ðks � 1ÞS;
2.1.3 Replicate d and put the replica into Y ;

Theorem 5. After execution of Algorithm 4, all documents can
be placed, and each server’s load is less than pL and size less
than ksS.

Proof. By Lemma 2, Step 1 has placed all documents into
servers. By Lemma 3, we are done for the case kl � 3� q.
Consider the other case kl < 3� q. If a server X has a
load greater than pL (i.e., greater than ðkl � 1þ qÞL),
LastðXÞ must be placed in Step 8 in Algorithm 3. By
Lemmas 5 and 6, if X has load ranging from pL to 2L,
exclusively, LastðXÞ must be of 2-round. By the property
of a sorted list, all other servers must have 1-round
documents with a load not less than ðp� 1ÞL.

Let K be the set of servers having loads at least pL
immediately after the execution of Step 1. If we replicate
the (2-round) document in each server in K, the load of
this server will drop to less than 3

2L. This document and
its replica will share half of the load, which is at most L

2.
Altogether, we have jKj new replicas. Thus, the problem
is now to find jKj other servers whose loads are less than
ðp� 1

2ÞL, and sizes less than ðks � 1ÞS, so that we can
place the replicas into these servers, respectively, with-
out exceeding the load bound pL.

Let P be the set of servers which loads are less than pL
and at least ðp� 1

2ÞL immediately after the execution of
Step 1. The loads of servers which are not in K [ P are at
least ðp� 1ÞL, but less than ðp� 1

2ÞL. By direct counting
on the load of the whole system, we have

LM �
X

i2½1;N �
li

� pLjKj þ ðp� 1

2
ÞLjP j þ ðp� 1ÞLðM � jKj � jP jÞ;

which implies ð2� pÞM � jKj þ jP j
2 . The number of

servers which sizes are at least ðks � 1ÞS is at most M
ks�1.

Therefore, the number of servers which loads are less
than ðp� 1

2ÞL and sizes less than ðks � 1ÞS is at least

ðM � jKj � jP jÞ � M

ks � 1

� ð1� 1

ks � 1
� ð4� 2pÞÞM þ jKj � jKj;

while 2p� 3� 1
ks�1 � 0 can be proven by checking two

cases, ks � 4 and 4 > ks > 3, separately. The validity of
either case is deduced by substituting kl < 3� q to the
fundamental inequality. tu

TSE: APPROXIMATE ALGORITHMS FOR DOCUMENT PLACEMENT IN DISTRIBUTED WEB SERVERS 493

2. In practice, we will not assign a very large value to ks. Increasing ks
from 16 to 32 will only result in a reduction of at most 4

105 for kl. However, in
theory, if we do not assume kl and ks to be constant, we need OðN logNÞ
time for Step 3, and the whole algorithm.



This result improves the load bounds of Algorithms Two
and Three. In particular, for kl ¼ 5

2 , ks ¼ 4, the load bound is
5
3L; if kl ¼ 2:25, ks ¼ 6, the load bound will be 8

5L.
Step 1 takes OðN þM logMÞ time. There are at most

OðMÞ iterations in Step 2. Step 2.1.2 will take logM steps to
find a server which has the minimum load. It can be done
by maintaining a heap of servers according to their loads.
Hence, like Algorithm 3, the time-complexity of this
algorithm is also OðN þM logMÞ. It should be noted that
without the constraint on sizes of the servers, we can
achieve 3

2L as a bound for the loads.

3.5 Algorithm 5—Dynamic Simple Placement

The algorithms discussed in Sections 3.1, 3.2, 3.3, and 3.4 are
offline and as such do not cater for dynamic insertion. The
values of L and S in those algorithms are calculated before
actual insertion. In this section, we consider dynamic
placement, in which we do not know the total number of
documents to be placed. As in Algorithm 1, we will not
apply sorting and replication in this algorithm.

We redefine N to be the number of inserted documents,
and 8i 2 ½1; N�, li and si are the load and size of the ith
inserted document, respectively. The values for L and S
refer to the inserted documents only. We need to guarantee
that after each insertion, the load and size of each server are
bounded by some constants times L and S, respectively.

Algorithm 5 ðkl; ksÞ:
1. S :¼ 0; L:=0;

2. Upon the arrival of a document d with load l and size s

2.1 Update L and S;

2.2 Find a server X with lowest possible load such that size

< ðks � 1ÞS;
2.3 Place d into X;

Using arguments similar to those in the proof of
Theorem 1, the same bounds for load klL and size ksS
can still be obtained here. Consider the time complexity.
Assuming addition and division can be done in constant
time, Step 2.1 takes constant time, too, as updating the
maximum and average of a set of values requires two
additions and one division. As for Step 2.2, similar steps for
finding a suitable server requires constant time in previous
algorithms. This is because, in those algorithms, servers are
tested against static load and size limits, L, ½kl�1�
qbkscðkl � 2Þ� L, ðkl � 1ÞL, and ðks � 1ÞS, respectively. Once
a server’s load or size exceed their limits, they will always
exceed the limits and the server can never accommodate
any new documents again. However, this is not the case in
this section as long as the values of L and S are dynamic
and keep growing whenever any new documents arrive. A
server, with load or size momentarily exceeding their
limits, may be able to accommodate new documents later as
the values of L and S rise to higher values. It means that we
cannot exclude any servers permanently, even if they
currently cannot be used for storing any new documents.

We define a tree, called B0-tree of order K, to maintain
all servers according to their loads and sizes, where
4 � K < M. The purpose is to bound the time required to
find a suitable server by OðlogMÞ. OðlogMÞ-time should
also be enough to maintain the tree properties. We assign
each server a unique identity. The B0-tree stores only the
servers’ identities, not their content. We define loðxÞ to be
the load of the server with identity x, and siðxÞ is defined in

a similar way for size. Each leaf node stores the identity of a
server. Hence, we always have M leaf nodes.

Modifying from the Bþ-tree, which was proposed by
Knuth [16], a B0-tree of order K has the following
properties: The root node has 0, or 2 to K children. All
nodes except the root and the leaf nodes have dK2 e to K
children. All leaf nodes are at the same level. Each node has
a key. Recall that a leaf node stores the unique identity of a
server. Its key is then assigned to be this identity. Each
nonleaf node keeps a list of key-pointer pairs of its children.
Formally, ðx; yÞ is a (key, pointer) pair in a node A if x is the
key of a child node B of A and y is pointing to B. The key x
of an internal node A is chosen from the key of one of its
children B such that for any child C of A, if C 6¼ B and y is
the key of C, then siðxÞ � siðyÞ. We call this property the
property of minimum size.

The list of pairs is sorted in ascending order from left to
right according to the loads that the key values correspond
to. All the leaves form a sorted linear structure from left to
right. Formally, the sorted list of key-pointer pairs in a node
is ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxk; ykÞ, where dK2 e � k � K, if for any
identities u and v of nodes accessible from yi and yj,
respectively, where 1 � i < j � k, we have loðuÞ � loðvÞ. We
call this property the property of increasing load. Fig. 1 shows
an example. The document placement algorithm maintains
implicit pointers for assessing the actual servers. In the
B0-tree, leaves are sorted according to the corresponding
loads. Inside each noninternal node, a key is chosen
according to the corresponding size.

To search for a suitable server, we start from the root. We
scan the keys in the root list from left (smallest load) to
right. Let x be the first key that can satisfy the size
constraint. All descendant nodes of each key before x
violate the size limit due to the property of minimum size.
On the other hand, all descendant nodes of each key after x
have loads at least as high as x due to the property of
increasing load. If there is a suitable server that can be
found under a key after x, then a suitable server must exist
under x, too. Hence, we do not need to scan the keys after x.
After choosing x, we stop scanning the root and go down to
the child of x. In the child of x, we perform steps similar to
those performed in the root. Eventually, we will find a
suitable server at the leaf level. For example: We need to
find a server of minimum load and a size of at most 31
(Fig. 1). Then, key D is chosen in the root, as server D gives
the smallest load while siðDÞ is bounded by the required
size limit 31. Next, in the leftmost node in the second level,
key G is chosen, as server G gives the smallest load while
siðGÞ is still bounded by 31.

After placing a document on a server, its load and size
will both increase. Maintenance of the B0-tree is like what
we do for a Bþ-tree, except that we may need to do both
insertion and deletion at the same time. The reason for this
is that after insertion the property of increasing load may be
violated. If this is the case, we need to delete the
corresponding leaf node and insert it to a proper position
to preserve the property. (This position is found with the
help of an auxiliary Bþ-tree.) Like the Bþ-tree, insertion and
deletion can cause splitting and merging of nodes, respec-
tively. Both of splitting and merging may induce a change
the keys of the ancestors of the splitting/merging nodes
because of the property of minimum size. An example of
document placement is shown in Fig. 2.

In this example, we place a document in server G. After
document placement, loðGÞ and siðGÞ become 100 and 50,

494 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005



respectively, as shown in Fig. 2. The leaf node with key G
needs to be moved to a new position, which is between L
and J . Such a move induces restructuring of the B0-tree.

Obviously, the depth of the B0-tree is OðlogK MÞ and, in
each node, it takesK steps to find a suitable identity in each
level. Hence, to find a suitable server requires OðK logK MÞ
time. In the worst case, maintenance must traverse from the
bottom node to the root twice. Both steps require
OðK logK MÞ time. (The auxiliary Bþ-tree requires the same
time-complexity, too.) By choosing K ¼ Oð1Þ, the time
required to place one document is then OðlogMÞ. Therefore,
to place N documents, the time-complexity is OðN logMÞ.
Compared with Algorithm 1, the factor logM is the price of
the dynamic insertion.

4 CONCLUSION

In this paper, we make use of the fundamental inequality (1)

to represent the relationshipbetween theparameters kl andks

for the upper bounds of loads and sizes of the servers. Table 1

summarizes our results. The symbols q and t in the table

represent 1
bkscð1þbkscðkl�2ÞÞ and

1
bklcð1þbklcðks�2ÞÞ . The parameter �

is ks�2
bkscðksþbksc�2Þ for ks � 4, and 1

4ðks�1Þ for ks > 4.

Although we have only balanced the loads and sizes of
the servers, we can modify the fundamental inequality in
order to cope with more independent parameters such as
the number of documents in each server, if necessary. If the
parameters are dependent, however, the fundamental
inequality cannot be applied directly.

In practice, in order to achieve the best bounds, we need
to equalize both sides of the fundamental inequality. Then,
the value of kl decreases with the value of ks. Balancing the
loads of servers is a way to minimize the user waiting time.
Where the user waiting time is critical, we need a smaller kl.

Another practical concern is that a document’s load may
vary periodically, but not its size. In this case, we need a
smaller ks because size balancing is more rewarding than

TSE: APPROXIMATE ALGORITHMS FOR DOCUMENT PLACEMENT IN DISTRIBUTED WEB SERVERS 495

Fig. 1. An example of B0-tree of order 4.

Fig. 2. An example of document placement.



load balancing, as long as the load is still affordable.
Another example is to store historical archive documents.
We are more concerned with the size because the load of
each document is normally low.

The practicability of the results in this paper is based on
the simplicity of the algorithms. The basic operation of the
algorithms is greedy approach which makes the algorithms
easy to be handled. Moreover, the upper bounds in this
paper act as a guarantee of the practical performance.

ACKNOWLEDGMENTS

The author thanks the anonymous referees for their very

useful comments. In Algorithm 4 (Section 3.4), the value

� ¼ 1
4ðks�1Þ , for ks > 4, was proposed by one of them. The

preliminary version of this paper is in the Proceeding of the

Seventh International Symposium on Parallel Architectures,

Algorithms, and Networks (I-SPAN 2004), pp. 61-66.

REFERENCES

[1] Akamai Technologies, Inc., http://www.akamai.com, 2005.
[2] D. Andresen, T. Yang, V. Holmedahl, and O.H. Ibarra, “SWEB:

Towards a Scalable World Wide Web Server on Multicomputers,”
Proc. 10th Int’l Parallel Processing Symp., pp. 850-856, Apr. 1996.

[3] M.F. Arlitt and T. Jin, “A Workload Characterization Study of the
1998 World Cup Web Site,” IEEE Network, vol. 14, no. 3, pp 30-37,
May/June 2000.

[4] T. Brisco, “DNS Support for Load Balancing,” RFC 1794, The
Internet Eng. Task Force, Apr. 1995.

[5] R.B. Bunt, D.L. Eager, G.M. Oster, and C.L. Williamson, “Achiev-
ing Load Balance and Effective Caching in Clustered Web
Servers,” Proc. Fourth Int’l Web Caching Workshop, Mar. 1999.

[6] V. Cardellini, E. Casalicchio, M. Colajanni, and P.S. Yu, “The State
of the Art in Locally Distributed Web-Server Systems,” ACM
Computing Surveys, vol 34, no. 2, pp. 263-311, June 2002.

[7] V. Cardellini, M. Colajanni, and P.S. Yu, “DNS Dispatching
Algorithms with State Estimators for Scalable Web-Server
Clusters,” World Wide Web, vol. 2, no. 3, pp. 101-113, 1999.

[8] V. Cardellini, M. Colajanni, and P.S. Yu, “Dynamic Load
Balancing on Web-Server Systems,” IEEE Internet Computing,
vol. 3, no. 3, pp 28-39, May/June 1999.

[9] S. Ceri, G. Pelagatti, and G. Martella, “Optimal File Allocation in a
Computer Network: A Solution Based on the Knapsack Problem,”
Computer Networks, vol. 6, pp. 345-357, 1982.

[10] L.C. Chen and H.A. Choi, “Approximation Algorithms for Data
Distribution with Load Balancing of Web Servers,” Proc. IEEE Int’l
Conf. Cluster Computing, pp. 274-281, Oct. 2001.

[11] M. Colajanni, P.S. Yu, and V. Cardellini, “Dynamic Load
Balancing in Geographically Distributed Heterogeneous Web
Servers,” Proc. Int’l Conf. Distributed Computing Systems, pp. 295-
302, May 1998.

[12] M. Colajanni, P.S. Yu, and D.M. Dias, “Analysis of Task Assign-
ment Policies in Scalable Distributed Web Server Systems,” IEEE
Trans. Parallel and Distributed Systems, vol. 9, no. 6, pp. 585-600,
June 1998.

[13] L.W. Dowdy and D.V. Foster, “Comparative Models of the File
Assignment Problem,” ACM Computing Surveys, vol. 14, no. 2,
pp. 287-313, 1982.

[14] M.L. Fisher and D.S. Hochbaum, “Database Location in Computer
Networks,” J. ACM, vol. 27, pp. 718-735, 1980.

[15] E.D. Katz, M. Butler, and R. McGrath, “A Scalable HTTP Server:
The NCSA Prototype,” Computer Networks and ISDN Systems,
vol. 27, no. 2, pp. 155-164, 1994.

[16] D.E. Knuth, The Art of Computer Programming, vol. 3: Sorting and
Searching, Section 6.2.4, Addison-Wesley, 1973.

[17] B. Narendran, S. Rangarajan, and S. Yajnik, “Data Distribution
Algorithms for Load Balanced Fault-Tolerant Web Access,” Proc.
16th Symp. Reliable Distributed Systems, pp. 97-106, Oct. 1997.

[18] V.S. Pai, M. Aron, and G. Banga, “Locality-Aware Request
Distribution in Cluster-Based Network Servers,” ACM SIGOPS
Operating Systems Rev., vol 32, no. 5, pp. 205-216, Dec. 1998.

[19] R. Simha, B. Narahari, H.A. Choi, and L.C. Chen, “File Allocation
for a Parallel Webserver,” Proc. Third Int’l Conf. High Performance
Computing, pp. 16-21, Dec. 1996.

[20] L. Zhuo, C.L. Wang, and F.C.M. Lau, “Load Balancing in
Distributed Web Server Systems with Partial Document Replica-
tion,” Proc. 2002 Int’l Conf. Parallel Processing, pp. 305-312, Aug.
2002.

Savio S.H. Tse received the BSc degree in
physics in 1988 and the PhD degree in computer
science in 1997 from the University of Hong
Kong. After graduation, he was a visiting assis-
tant professor at The University of Hong Kong for
two years and a lecturer at The Hong Kong
Polytechnic University for three years. Currently,
he is a guest lecturer at The University of Hong
Kong. His research interests are in the areas of
parallel and distributed computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 6, JUNE 2005

TABLE 1
A Summary


