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Abstract—We study the connection capacity of a class of rearrangeable nonblocking (RNB) and strictly nonblocking (SNB) networks

with/without crosstalk-free constraint, model their routing problems as weak or strong edge-colorings of bipartite graphs, and propose

efficient routing algorithms for these networks using parallel processing techniques. This class of networks includes networks

constructed from Banyan networks by horizontal concatenation of extra stages and/or vertical stacking of multiple planes. We present

a parallel algorithm that runs in Oðlg2 NÞ time for the RNB networks of complexities ranging from OðN lgNÞ to OðN1:5 lgNÞ crosspoints
and parallel algorithms that run in Oðminfd� lgN;

ffiffiffiffiffi
N
p
gÞ time for the SNB networks of OðN1:5 lgNÞ crosspoints, using a completely

connected multiprocessor system of N processing elements. Our algorithms can be translated into algorithms with an OðlgN lg lgNÞ
slowdown factor for the class of N-processor hypercubic networks, whose structures are no more complex than a single plane in the

RNB and SNB networks considered.

Index Terms—Banyan network, crosstalk, optical switching, rearrangeable nonblocking network, strictly nonblocking network, switch

control, self-routing, graph coloring, parallel algorithm.
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1 INTRODUCTION

TO build a large IP router with capacity of 1 Tb/s and
beyond, either electronic or optical switching can be

used. The deployment of optical fibers as a transmission
medium has prompted searching for the solution to the
problem of speed mismatching between transmission and
switching. Optical routers have better scalability than
electronic routers in terms of switching capacity. However,
the required optical technologies are immature for all-
optical switching to happen any time soon. A hybrid
approach in which optical signals are switched, but both
switch control and routing decisions are carried out
electronically, becomes more practical. Advances in elec-
tro-optic technologies provide a promising choice to meet
the increasing demands for high channel bandwidth and
low communication latency in optical communication.
However, due to the nature of optical devices, optical
switches hold their own challenges [26].

1.1 Crosstalk in Photonic Switching

A switching network usually comprises a number of

switching elements (SEs), grouped into several stages

interconnected by a set of links. Without loss of generality,

we assume that an SE is of size 2� 2, i.e., it has two inputs

and two outputs. The two inputs (respectively, outputs) of

an SE intending to be connected with the same output

(respectively, input) causes output link conflict(respectively,
input link conflict). If an I/O connection path does not have
any link conflict with other connection paths, it is called a
conflict-free path. Nonblocking switching networks have
been favored in switching systems because they can be used
to set up any conflict-free one-to-one I/O connection paths.
There are three types of nonblocking networks: strictly
nonblocking (SNB), wide-sense nonblocking (WSNB), and
rearrangeable nonblocking (RNB) [3], [13]. In both SNB and
WSNB networks, a connection can be established from any
idle input to any idle output without disturbing existing
connections. In SNB networks any of available conflict-free
paths for a connection can be chosen and in WSNB
networks, however, a rule must be followed to choose
one. The high degree of connection capability in SNB and
WSNB networks is at a high hardware cost. RNB networks,
usually constructed with lower hardware cost, can establish
a conflict-free path for the connection from any idle input to
any idle output if the rearrangement of existing connections
is allowed.

In an electrical switching network, links are wires and
SEs are simple crossbar switches. In an optical switching
network, links are implemented by optical waveguides and
SEs can be implemented by electro-optical SEs such as
common lithium-niobate (LiNbO3) SEs (e.g., [11], [12], [28]).
Each electro-optical SE is a directional coupler with two
inputs and two outputs. Depending on the amount of
voltage at the junction of two waveguides, optical signals
carried on either of two inputs can be coupled to either of
two outputs. An electronically controlled optical SE can
have switching speed ranging from hundreds of picose-
conds to tens of nanoseconds [27]. However, due to the
nature of optical devices, optical switches introduce addi-
tional challenges. One problem is path dependent loss, the
substantial signal loss is directly proportional to connection
diameter, the number of SEs on the longest connection path.
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Another problem is crosstalk,1 which is caused by undesired
coupling between signals with the same wavelength carried
in two waveguides so that two signal channels interfere
with each other within an SE.

The crosstalk problem in photonic switching networks
adds a new dimension of blocking, called node conflict,
which happens when more than one connection with the
same wavelength passes through the same SE at the same
time. A technique called space dilation was introduced to
avoid node conflict by increasing the number of SEs in a
switching network (e.g., [15], [16], [24], [29], [30], [31], [33]).

1.2 Motivation and Main Results

In a switching network, when more than one input request
to be connected with the same output, output contention
occurs. Output contentions can be resolved by switch
scheduling. For a set of connection requests without output
contentions, the process of establishing conflict-free con-
nection paths to satisfy these requests is called switch
routing. A switch routing (or simply, routing) algorithm is
needed to find these paths. Once a set of conflict-free paths
is found, the SEs on these paths can be properly set up.
Routing algorithms play a more fundamental role in WSNB
and RNB networks since the nonblockingness depends on
them. For SNB networks, routing algorithms tend to be
overlooked since a conflict-free path is always guaranteed
for the connection from any idle input to any idle output
without rerouting the existing connections. An efficient
routing algorithm, however, is still needed to find such a
conflict-free path for each connection request. Any routing
algorithm requiring more than linear time would be
considered too slow. Thus, finding efficient algorithms to
speed up routing process is crucial for high-speed switch-
ing networks.

Recently, a class of multistage nonblocking switching
networks has been proposed. In this class, each network,
denoted by BðN; x; p; �Þ, has relatively low hardware cost
and short connection diameter in terms of the number of
SEs. A BðN; x; p; �Þ, � 2 f0; 1g, is constructed by horizon-
tally concatenating xð� lgN � 1Þ extra stages to an N �N
Banyan-type network, and then vertically stacking p copies
of the extended Banyan.2 BðN; x; p; 0Þ and BðN; x; p; 1Þ are
similar in structure, but the latter does not allow any two
connections with the same wavelength passing through the
same SE at the same time while the former does.
BðN; x; p; �Þ contains 1

2 pðxþ lgNÞN ¼ OðpN lgNÞ SEs, and
its diameter is OðlgNÞ. BðN; x; p; 0Þ and BðN; x; p; 1Þ are
suitable for electronic and optical implementation, respec-
tively. It has been shown that BðN; x; p; �Þ can be SNB,
WSNB, and RNB with certain values of x and p for given N
and � [15], [16], [21], [30], [31].

The focus of this paper is studying the control aspect of
the class BðN; x; p; �Þ networks in the context of being used
as electrical and optical switching networks. In particular,
our objective is to speed up routing process using parallel
processing techniques. By examining the connection capa-
city of BðN; x; p; �Þ, we reduce the routing problems for this

class of networks to a problem of partitioning a bipartite
graph into “disjoint” subgraphs. Three general approaches
for solving this type of graph partition problems have been
reported. They are matrix decomposition (e.g., [5], [17], [23],
[25]), matching (e.g., [6], [7], [9]), and graph edge-coloring
(e.g., [6], [7], [10], [19], [22], [32]). For routing, these
approaches are essentially equivalent [13]. We model the
routing problems for this class of networks as weak and
strong edge-colorings of bipartite graphs, which unifies and
extends previous models for RNB and SNB networks.
Basing on our model, we propose fast routing algorithms
for BðN; x; p; �Þ using parallel processing techniques. We
show that the presented parallel routing algorithms can
route K connections in OðlgN lgKÞ time for an RNB
BðN; x; p; �Þ and in Oðminfd� lgN;

ffiffiffiffiffi
N
p
gÞ time for an SNB

BðN; 0; p�; �Þ, where d� is the degree of the I/O mapping
graph of the new connections. Since K ¼ N and d� ¼
Oð

ffiffiffiffiffi
N
p
Þ in the worst case, the proposed algorithms can

always route OðNÞ connections in an RNB BðN; x; p; �Þ in
Oðlg2 NÞ time and in an SNB BðN; x; p; �Þ in Oð

ffiffiffiffiffi
N
p
Þ time.

The remainder of this paper is organized as follows: In
Section 2, we discuss the topology of BðN; x; p; �Þ. In
Section 3, we model routing in BðN; x; p; �Þ as two coloring
problems of an I/O mapping graph GðN;K; gÞ. In Section 4,
we propose a fast parallel routing algorithm for RNB
BðN; x; p; �Þ based on a weak g-edge coloring of GðN;K; gÞ.
In Section 5, we present parallel routing algorithms for SNB
BðN; x; p; �Þ based on a strong ð2g� 1Þ-edge coloring of
GðN;K; gÞ. We conclude our paper in Section 6.

2 NONBLOCKING NETWORKS BASED ON

BANYAN NETWORKS

2.1 Banyan-Type Networks

A switching network is a self-routing network if any
connection within which can be established only by the
addresses of its source and destination regardless of other
connections. Self-routing is an attractive feature in that no
complicated control mechanism is needed for establishing
connection. A class of multistage self-routing networks,
Banyan-type networks, has received considerable attention.
A network belonging to this class satisfies the following
basic properties:

1. It has N ¼ 2n inputs, N ¼ 2n outputs, n-stages, and
N=2 SEs in each stage.

2. There is a unique path between each input and each
output.

3. Let u and v be two SEs in stage i, and let SjðuÞ and
SjðvÞ be two sets of SEs to which u and v can reach in
stage j, 0 < j ¼ iþ 1 � lgN , respectively. Then,
SjðuÞ \ SjðvÞ ¼ ; or SjðuÞ ¼ SjðvÞ for any u and v.

Because of the above three properties (short connection
diameter, unique connection path, uniform modularity,
etc.), Banyan-type networks are very attractive for con-
structing switching networks. Several well-known net-
works, such as Banyan, Omega, and Baseline, belong to this
class. It has been shown that these networks are topologi-
cally equivalent [1], [34]. In this paper, we use Baseline
network as the representative of Banyan-type networks.
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An N �N Baseline network, denoted by BLðNÞ, is

constructed recursively. A BLð2Þ is a 2� 2 SE. A BLðNÞ
consists of a switching stage of N=2 SEs, and a shuffle

connection, followed by a stack of two BLðN=2Þs. Thus, a
BLðNÞ has lgN stages labeled by 0; � � � ; n� 1 from left to

right, and each stage has N=2 SEs labeled by 0; � � � ; N=2� 1

from top to bottom. The upper and lower outputs of each SE

in stage i are connected with two BLðN=2iþ1Þs, named upper

subnetwork and lower subnetwork, respectively. The N links

interconnecting two adjacent stages i and iþ 1 are called

output links of stage i and input links of stage iþ 1. The input

(respectively, output) links in the first (respectively, last)

stage of BLðNÞ are connected with N inputs (respectively,

outputs) of BLðNÞ. To facilitate our discussions, the labels

of stages, links, and SEs are represented by binary numbers.

Let alal�1 � � � a1a0 be the binary representation of a. We use �aa

to denote the integer that has the binary representation

alal�1 � � � a1ð1� a0Þ. An example is shown in Fig. 1.
The self-routing in BLðNÞ is decided by the destination,

dn�1dn�2 � � � d0, of each connection. If dn�i�1 ¼ 0, the input of

theSEon the connectionpath in stage i is connected to theSE’s

upper output, and to the lower output otherwise (i.e.,

dn�i�1 ¼ 1). As shown in Fig. 1, connection paths P0 and P1

are set up by self-routing in BLð16Þ. In general, the unique

path for a connection from source sn�1 � � � s0 to destination

dn�1 � � � d0 can be derived as follows: the path enters SE

dn�1 � � � dn�isn�1 � � � siþ1 in stage i via input link dn�1 � � � dn�i
sn�1 � � � siþ1si of the SE and leaving the SEusing its output link

dn�1 � � � dn�isn�1 � � � siþ1dn�i�1. By this self-routing property,

the connection path for any input/output pairs ofBLðNÞ can
be computed in OðlgNÞ time. Therefore, we have the

following simple fact:

Lemma 1. Given any K(� N) one-to-one distinct input/output

pairs, the connection paths in BLðNÞ for these pairs can be

computed in OðlgNÞ time using N processing elements (PEs)

if each PE is assigned to Oð1Þ pairs.

2.2 Horizontal Concatenation and Vertical Stacking

If Baseline network is used for photonic switching, it is a
blocking network since two connections may pass through
the same SE, which causes node conflict. Even if Baseline
network is used for electronic switching, it is still blocking
since two connections may try to pass through the same
input (respectively, output) link, which causes input
(respectively, output) link conflict. Fig. 1 shows two
connection paths P0 from 0010 to 1011 and P1 from 0100
to 1010. P0 and P1 have output link conflict in stage 2 and
input link conflict in stage 3. If each SE is an electro-optic SE
in BLð16Þ, then they also have node conflict at SEs 4 and 5
in stages 2 and 3, respectively.

Although a Baseline network is blocking, a nonblocking
network can be built by extending it in three ways:
horizontal concatenation of extra stages to the back of a
Baseline network, vertical stacking of multiple copies of a
Baseline network, and the combination of both horizontal
concatenation and vertical stacking [15], [16], [30], [31]. In
the general approach, a network is constructed by con-
catenating the mirror image of the first xð< nÞ stages of
BLðNÞ to the back of a BLðNÞ to obtain BLðN; xÞ, then
vertically making p copies of BLðN; xÞ, where each copy is
called a plane and, finally, connecting the inputs (respec-
tively, outputs) in the first (respectively, last) stage to N
1� p splitters (respectively, p� 1 combiners). Specifically,
the ith input (respectively, output) of the jth plane is
connected with the jth output (respectively, input) of the
ith 1� p splitter (respectively, p� 1 combiner), which is
connected with the ith input (respectively, output) of this
network. We denote a network constructed in this way by
BðN; x; p; �Þ, where � is crosstalk factor: � ¼ 0 if the network
has no crosstalk-free constraint (i.e., the network has only
link conflict-free constraint) and � ¼ 1 if the network has
crosstalk-free constraint (i.e., the network has node conflict-
free constraint). Asymptotically, the cost of BðN; x; p; �Þ is
OðpN lgNÞ, measured either by the number of SEs or by the
number of crosspoints [13]. Note that BðN; x; p; �Þ can be
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nonblocking for certain combinations of N , x, p, and �. The
complexity of RNB networks considered in this paper have
complexities ranging from OðN lgNÞ to from OðN1:5 lgNÞ
and the SNB networks considered have complexity
OðN1:5 lgNÞ.

In BðN; x; 1; �Þ, a subnetwork, denoted by BðN; x; 1=2l; �Þ
(0 � l � n� 1) is defined as a BðN=2l;maxfx� l; 0g; 1; �Þ
from stage l to stage nþmaxfx� l; 0g � 1. Fig. 2 shows an
example of Bð16; 2; 3; �Þ, which contains three planes of
Bð16; 2; 1; �Þ, and each Bð16; 2; 1; �Þ is constructed from
Bð16; 0; 1; �Þ by adding two extra stages. Each Bð16; 2; 1; �Þ
contains two Bð16; 2; 1=2; �Þs, each being Bð8; 1; 1; �Þ, and
four Bð16; 2; 1=4; �Þs, each being Bð4; 0; 1; �Þ.

2.3 Designing Parallel Switch Routing Algorithms

A trivial lower bound on the time for routing K ð0 � K �
NÞ connections sequentially in BðN; x; p; �Þ is �ðK lgNÞ.
This lower bound is obtained by assuming that for any
connection it takes Oð1Þ time to correctly guess which plane
to use without conflict and OðlgNÞ time to compute the
connection path in that plane. Clearly, correctly assigning
connections to planes is not a simple task, when x 6¼ 0 and
p > 1. When the number of connection requests is large, the
routing time complexity is greater than OðNÞ. Parallel
processing techniques should be used to meet the stringent
real-time timing requirement [13]. To the best of our
knowledge, except for some special cases such as Banyan
network (i.e., BðN; 0; 1; �Þ) and Benes network (i.e.,
BðN; lgN � 1; 1; �Þ), no effort of investigating faster routing
for the whole class of these networks has been reported in
the literature.

We choose to present our parallel algorithms for a
completely connected multiprocessor system. A completely
connected multiprocessor system of size N consists of N

processing elements (PEs), PEi, 0 � i � N � 1, connected in
such a way that there is a connection between every pair of
PEs. We assume that each PE can communicate with at
most one PE during a communication step. The time
complexity of an algorithm on such a multiprocessor
system is measured in terms of the total number of parallel
computation and communication steps required by the
algorithm. Such a multiprocessor system is by no means to
be practical, but used as a general abstract model to derive
parallel algorithms. Efficient algorithms on more realistic
models, such as the class of hypercubic parallel computers,
whose architectural complexity is the same as that of a
single plane of BðN; x; p; �Þ, can be easily obtained from our
algorithms.

3 GRAPH MODEL

3.1 I/O Mapping Graphs

ForBðN; x; p; �Þ, let I be a set ofN inputs, I0; � � � ; IN�1, andO
be a set of N outputs, O0; � � � ; ON�1. Let g ¼ 2i, 0 � i � n.
Then, the kth modulo-g input group comprises inputs
Iðk�1Þg; Iðk�1Þgþ1; � � � ; Ikg�1, and the kth modulo-g output group
comprises outputs Oðk�1Þg; Oðk�1Þgþ1; � � � ; Okg�1, where 1 � k
� N=g. Let � : I 7�!O be an I=O mapping that indicates
connections from I to O. If there is a connection from Ii to
Oj, then set �ðiÞ ¼ j and ��1ðjÞ ¼ i; otherwise, set �ðiÞ ¼ �1.
If j 6¼ �ðiÞ for any Ii, then set ��1ðjÞ ¼ �1. We say that an
input (respectively, output, link, SE) is active if it is on a
connection path, and idle otherwise. An I/Omapping from I
to O is one-to-one if each Ii is mapped to at most one Oj and
�ðiÞ 6¼ �ðjÞ for any i 6¼ j. In this paper, all I/O mappings are
one-to-one and all connections belong to a one-to-one I/O
mapping. Our goal is to quickly route Kð� NÞ link
(respectively, node) conflict-free paths for K connections of
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any I/Omapping inBðN; x; p; 0Þ (respectively,BðN; x; p; 1Þ).
To achieve this goal, we decompose a set of connections into
disjoint subsets, and route each subset in one plane of
BðN; x; p; �Þ so that each subset is feasible for its assigned
plane.

Given any I/O mapping with K connections for
BðN; x; p; �Þ, we construct a graph GðN;K; gÞ, named I/O
mapping graph, as follows: The vertex set consists of two
parts, V1 and V2. Each of them has N=g vertices labeled from
0 to N=g� 1. Each modulo-g input (respectively, output)
group is represented by a vertex in V1 (respectively, V2).
There is an edge between vertex bi=gc in V1 and vertex bj=gc
in V2 if j ¼ �ðiÞ. Thus, GðN;K; gÞ is a bipartite graph with
N=g vertices in each of V1 and V2 and K edges, where at
most g edges are incident at any vertex. Clearly, the degree of
GðN;K; gÞ, the maximum number of edges incident at a
vertex, is no larger than g. Since there may be more than one
connection from a modulo-g input group to the same
modulo-g output group, GðN;K; gÞ may have parallel edges,
the edges between the same two vertices, and it may be a
multigraph. However, there is a one-to-one correspondence
between active inputs/outputs in an I/O mapping and the
edges in the I/O mapping graph and, thus, we can label
each edge by its corresponding input.

An edge e is called the left edge (respectively, right edge) of

edge f if e ¼ �ff (respectively, �ðeÞ ¼ �ðfÞ). Any edge has at

most one left edge and at most one right edge in GðN;K; gÞ.
Two edges e and f are called neighboring edges if e is the left or

right edge of f . We define a linear component (or simply, a

component) ofGðN;K; gÞ as follows: two edges e and f belong

to the same component if and only if there is a sequence of

edges e ¼ e1; � � � ; ej ¼ f such that ei and eiþ1, 1 � i � j� 1,

are neighboring edges. If every edge in a component has two

neighboring edges, the component is called a closed compo-

nent; otherwise, it is called an open component. By generalizing

“neighboring edge” to an equivalent relation, each edge is in

exactly one component and, thus, components are edge

disjoint inGðN;K; gÞ. Fig. 3a shows an I/Omapping with 32

inputs, 25 ofwhich are active. Fig. 3b shows the I/Omapping

graph Gð32; 25; 8Þ of Fig. 3a, where V1 (respectively, V2) of

Gð32; 25; 8Þ has four vertices and each vertex in V1 (respec-

tively, V2) includes eight inputs (respectively, outputs)

belonging to the same modulo-8 input (respectively, output)

group. Fig. 3c shows all components ofGð32; 25; 8Þ in Fig. 3b.

3.2 Graph Coloring and Nonblockingness

Let us study the connection capability of BðN; x; p; �Þ first.
We say that two connections share a modulo-g input
(respectively, output) group if their sources (respectively,
destinations) are in the same modulo-g input (respectively,
output) group.

Lemma 2. For any connection set C of BðN; 0; 1; �Þ, if no two
connections in C share any modulo-g input (respectively,
output) group, then the connection paths for C satisfy the
following conditions: 1) they are node conflict-free in the first
(respectively, last) lg g stages, and 2) they are input link
conflict-free in the first lg gþ 1 (respectively, last lg g) stages
and output link conflict-free in the first lg g (respectively, last
lg gþ 1) stages.

Lemma 3. For any pair of input and output in BðN; x; 1; �Þ,
there are 2x paths connecting them.
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jumping.



It is easy to verify that Lemmas 2 and 3 are true
according to the topology of BLðNÞ (refer to [21] for formal
proofs). We say that a set C of I/O connections is feasible for
BðN; x; p; 0Þ (respectively, BðN; x; p; 1Þ) if they can be routed
without any link (respectively, node) conflict. Using the
above two lemmas, the following claim can be easily
derived from the results of [21].

Lemma 4. Given a connection set C of BðN; x; 1; �Þ, if any two
connections in C do not share any modulo-2b

n�xþ�
2 c input

group and also do not share anymodulo-2b
n�xþ�

2 c output group,
then C is feasible for BðN; x; 1; �Þ.

By Lemma 4, if we assign the connections of BðN; x; p; �Þ
with sources (respectively, destinations) passing through
the same modulo-g input (respectively, output) group to
different planes, then we can route connections in
BðN; x; p; �Þ without conflict. Thus, in order to route
conflict-free connections in BðN; x; p; �Þ, we first need to
determine which plane to be used for each connection. By
constructing an I/O mapping graph GðN;K; gÞ with
g ¼ 2b

n�xþ�
2 c, we can reduce the problem of routing K

connections in BðN; x; p; �Þ to the following two graph
coloring problems:

Weak Edge Coloring Problem (WEC problem): Given an I/
O mapping graph GðN;K; gÞ with K0ð< KÞ colored edges,
color K edges with a set of colors such that no two edges
with the same color are incident at the same vertex of
GðN;K; gÞ with changing the colors of the K0 colored edges
allowed. If we can find a weak edge-coloring of GðN;K; gÞ
using at most c1 different colors, we call this coloring a
(weak)3 c1-edge coloring of GðN;K; gÞ.

Strong Edge Coloring Problem(SEC problem): Given an I/
O mapping graph GðN;K; gÞ with K0ð< KÞ colored edges,
color K �K0 uncolored edges with a set of colors such that
no two edges with the same color are incident at the same
vertex of GðN;K; gÞ without changing the colors of the K0

colored edges. If we can find a strong edge-coloring of
GðN;K; gÞ using at most c2 different colors, we call this
coloring a strong c2-edge coloring of GðN;K; gÞ.

If we consider the colored (respectively, uncolored)
edges in GðN;K; gÞ as the existing (respectively, new)
connections in BðN; x; p; �Þ, a solution to the WEC problem
is a plane assignment for routing in an RNB network since
we can reroute existing connections, and a solution to the
SEC problem is a plane assignment for routing in an SNB
network since rerouting existing connections is prohibited.

Clearly, for the same GðN;K; gÞ, c1 � c2. In Fig. 4, we show
a simple example. There are three edges labeled a, b, c,
respectively. Edges a and b have already been colored using
colors 1 and 2, respectively. A WEC solution is given in
Fig. 4a, and an SEC solution is given in Fig. 4b. Note that,
in Fig. 4b, an additional color is needed for edge b because
the colors of existing colored edges a and c cannot be
changed. To our knowledge, no parallel algorithm for the
SEC problem has been reported in the literature.

4 ROUTING IN REARRANGEABLE NONBLOCKING

NETWORKS

4.1 Rearrangeable Nonblockingness of BðN; x; p; �Þ
The following claim is implied by the results of [21].

Lemma 5. If p � 2b
n�xþ�

2 c for 0 � x � n� 1, thenBðN; x; p; �Þ is
rearrangeable nonblocking.

It is important to note that the minimum value of p in
Lemma 5 equals to the value of g in Lemma 4, where p is the
number of BðN; x; 1; �Þ planes required for BðN; x; p; �Þ to
be rearrangeable nonblocking. The number of crosspoints in
such an RNB network is OðN lgNÞ for x ¼ n� 1 and
OðN1:5 lgNÞ for x ¼ 0. By Lemmas 4 and 5, if we assign the
connections (including existing and new connections)
sharing the same modulo-g input/output group to different
planes, the connections assigned to each plane are feasible
for that plane. Then, the routing can be completed by
finding conflict-free connection paths within each plane.
The following known fact is useful.

Lemma 6. Every bipartite multigraph G has a �ðGÞ-edge
coloring, where �ðGÞ is the degree of G.

By Lemma 6 (see a proof in [4]), if we set g ¼ 2b
n�xþ�

2 c in
GðN;K; gÞ, the plane assignments for a set of connections in
RNB BðN; x; p; �Þ can be solved by finding a g-edge coloring
of GðN;K; gÞ.

4.2 Algorithm for Balanced 2-Coloring of GðN;K; gÞ
In order to solve WEC problem efficiently, we present an
algorithm for a related problem, named balanced 2-coloring
problem: Given an I/O mapping graph GðN;K; gÞ, color its
edges with two colors so that every vertex is adjacent to at
most g=2 edges with one color and g=2 with the other.

Our algorithm is for a completely connected multi-
processor system of size N consists of N PEs. Initially, each
PEi reads �ðiÞ from input i and sets the value of ��1 in
PE�ðiÞ as i. Then, the algorithm performs the following two
steps.
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Step 1. Divide the I/O mapping graph GðN;K; gÞ into a
set of components. This step can be done by each edge
finding its left edge �ii and right edge ��1ð�ðiÞÞ.

Step 2. Color components with two colors, red and blue,
so that neighboring edges in each component have different
colors.

Each component has two specific representatives, simply
referred to Reps. (There is an exception: for the component
with length of 1, there is only one Rep, which is itself.). For
closed and open components, the Reps are defined
differently. For a closed component, we define two edges
with the minimum labels as two Reps; for an open
component, if an edge e has no left edge or e’s left edge
has no right edge, e is defined as one Rep. Fig. 3c shows the
Reps of all possible types of components. Step 2 can be done
by coloring edges with the Reps as references using the
pointer jumping technique in [14]. At the beginning, each
edge sets its pointer to point to the right edge of its left edge
if it exists and to itself otherwise. By doing so, two disjoint
directed cycles are formed for a closed component, and two
disjoint directed paths are formed for an open component
with more than one edge, each containing a Rep. For an
open component, furthermore, the end pointer of every
directed path is pointing to one of the Reps. For example,
Fig. 3d shows that the directed cycles and paths formed
from the components of Fig. 3c. Then, by performing
dlgK=2e times of parallel pointer jumping, each edge finds
the Rep belonging to the same directed cycle or path.
Finally, each edge can be colored by comparing the value of
the Rep found by itself with that by its neighbor. That is, if
the value of the Rep founded by an edge is no larger than its
neighbor’s, color the edge with red; otherwise, color it with
blue. The detailed implementation of a balanced 2-coloring
algorithm is referred to Algorithm 14 (see Fig. 5), and the
correctness and time complexity of this algorithm are given
in the following theorem.

Theorem 1. A balanced 2-coloring of any GðN;K; gÞ can be
found in OðlgKÞ time using a completely connected multi-
processor system of N PEs.

Proof. Given an I/O mapping graph GðN;K; gÞ, Step 1 can
be done in Oð1Þ time using a completely connected
multiprocessor system of N PEs. In Step 2, since the
length of each directed cycle or path is at most dK=2e,
each edge can find a Rep by dlgK=2e times of pointer
jumping. Clearly, all edges in the same directed cycle or
path are colored with the same color since they find the
same Rep. The pointer initialization implies that each
edge and its neighboring edge are in different directed
cycle or path and, thus, they have different colors. By the
definition of left/right edge, there are no more than g=2
pairs of neighboring edges incident at any vertex of
GðN;K; gÞ. Thus, the coloring of all components com-
pose a balanced 2-coloring of GðN;K; gÞ. Therefore, a
balanced 2-coloring of any GðN;K; gÞ can be found in
OðlgKÞ time. tu

4.3 Algorithm for g-Edge Coloring of GðN;K; gÞ
Based on the balanced 2-coloring algorithm, aWEC solution
to any I/O mapping graph GðN;K; gÞ with no more than g

colors can be found as follows: Let d be the degree of
GðN;K; gÞ. Let k be the smallest integer such that d � 2k.
Clearly, 0 � k � lg g since d � g. First, remove colors of theK0

colored edges. Then, perform at most dlg de iterations as
follows: In initial iteration (i.e., iteration 0),we findabalanced
2-coloring of GðN;K; gÞ using colors 0 and 1 if d > 1, and let
G0 and G1 be the graphs induced by the edges with colors 0
and 1, respectively. If �ðG0Þ > 1 (respectively, �ðG1Þ > 1),
we execute iteration 1 to find a balanced 2-coloring for G0

(respectively,G1) using colors 00 and 01 (respectively, 10 and
11). Thisprocess recursively continues in abinary tree fashion
until a solution to WEC is reached. More formally, in each
recursive iteration i, 1 � i � dlg de � 1, we find a balanced 2-
coloring for each graph Gz using colors z0 and z1 (i.e.,
concatenate 0 or 1 with z) if �ðGzÞ > 1, where z is a binary
representation of an integer in f0; 1; � � � ; 2i � 1g denoting the
color of edges in Gz in iteration i� 1.

Theorem 2. For any I/O mapping graph GðN;K; gÞ, a g-edge
coloring can be found in Oðlg d � lgKÞ time using a completely
connected multiprocessor system of N PEs, where d is the
degree of GðN;K; gÞ.

Proof. Let d0 ¼ 2k such that k is the smallest integer satisfying
d � 2k.We prove the theorem by induction on k. If k ¼ 1, it
is true since a balanced 2-coloring is a 2-edge coloring by
Theorem 1. Assume that for any k < m � n, the theorem
holds. Now, we prove that the theorem holds for k ¼ m.
First, we find a balanced 2-coloring of GðN;K; gÞ, which
canbedone inOðlgKÞ timebyTheorem1.LetG0 andG1 be
the graphs induced by the edges of two different colors
from this balanced 2-coloring. By the definition of
balanced 2-coloring, we know that �ðG0Þ � d0=2 and
�ðG1Þ � d0=2. By the hypothesis, we can find a
ðd0=2Þ-edge coloring for each of G0 and G1 in Oððk� 1Þ �
lgKÞ time on a completely connected multiprocessor
subsystem of jEðG0Þj and jEðG1Þj PEs, respectively. These
two colorings can be carried out simultaneously since
EðG0Þ \ EðG1Þ ¼ ;. The ðd0=2Þ-edge colorings ofG0 andG1

compose a d0-edge coloring ofGðN;K; gÞ, which takes total
Oðk � lgKÞ time using a completely connected multi-
processor system of N PEs. Since d0=2 < d � d0 � g, this
theorem holds. tu

4.4 Parallel Routing in a Plane

We have shown how to assign each connection to a plane in
an RNB BðN; x; p; �Þ. In this section, we show how
connections are routed within each plane.

Lemma 7. Let C be a set of feasible connections for BðN; x; 1; �Þ.
If each connection in C is routed in the first and last x stages
such that the output link in stage i and the input link in stage
lgN � i on each connection are connected with the same
subnetwork BðN; x; 1=2iþ1; �Þ, 0 � i � x� 1, then C can be
routed by self-routing in the middle lgN � x stages.

Proof. By the topology of BðN; x; 1; �Þ, we know that each
connection must pass through the same subnetwork
BðN; x; 1=2i; �Þ, 0 � i � lgN � 1. Since the middle lgN �
x stages of BðN; x; 1; �Þ consists of 2x BLðN2xÞs, this lemma
is true. tu

Theorem 3. Let C be a set of K feasible connections of
BðN; x; 1; �Þ. Then, C can be correctly routed in Oðx lgK þ
lgNÞ time using a completely connected multiprocessor
system of N PEs.
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Proof. By Lemma 7, what we only need to do is to route C

correctly in the first and last x stages for x � 1. By the

topology of BðN; x; 1; �Þ, we know that the output link in

stage i and the input link in stage lgN � i on each

connection are connected with the same subnetwork

BðN; x; 1=2iþ1; �Þ, 0 � i � x� 1. Thus, we need to decide
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which subnetwork is to be used for each connection since
there are 2i BðN; x; 1=2i; �Þs. This can be reduced to a
2-edge coloring of a bipartite graph with degree of 2. For
each subnetwork BðN; x; 1=2i; �Þ, 0 � i � x� 1, we con-
struct an I/O mapping graph GðN=2i; Ki; 2Þ, where Ki is
the number of connections passing through it. We color
the edges of GðN=2i; Ki; 2Þ with two different colors and
assign the connections (edges) with the same color to the
same subnetwork BðN; x; 1=2iþ1; �Þ. Specifically, in each
iteration i, 0 � i � x� 1, we run g-edge coloring algo-
rithm for 2i GðN=2i; Ki; 2Þs with g ¼ 2. By Theorem 2,
each iteration can be done in OðlgKÞ time. Thus, the time
to route K feasible connections in the first and last x
stages is Oðx lgKÞ. By Lemmas 1 and 7, we can route the
connections in the middle lgN � x stages by self-routing,
which takes lgN � x time. Therefore, the total time to
routeK feasible connections of BðN; x; 1; �Þ is Oðx lgK þ
lgNÞ using a completely connected multiprocessor
system of N PEs. tu

4.5 Overall Routing Performance

Theorem 4. For any RNB BðN; x; p; �Þ such that p � 2b
n�xþ�

2 c,
K connections (including existing and new connections) can
be correctly routed in OðlgK lgNÞ time using a completely
connected multiprocessor system of N PEs.

Proof. Let g ¼ 2b
n�xþ�

2 c. By Theorem 2, we can find a g-edge
coloring of the I/O mapping graph GðN;K; gÞ in
Oðlg d lgKÞ time, where d is the degree of GðN;K; gÞ.
By Lemma 4, we assign the connections with the same
color to the same plane. In each plane BðN; x; 1; �Þ, by
Theorem 3, we can route the connections in Oðx lgK þ
lgNÞ time. Since x < lgN , d � g ¼ 2b

n�xþ�
2 c, the total time

is Oððxþ lg dÞ lgK þ lgNÞ ¼ OðlgK lgNÞ. tu

By Lemma 5, for special cases of an RNB BðN; 0; p; �Þ and
anRNBBðN;n� 1; p; �Þ, theminimumnumber p of planes of

Baseline network and Benes network, equals 2b
nþ�
2 c and 2b

1þ�
2 c,

respectively. Consequently, we can route N connections in

Oðlg2 NÞ time for bothBðN;n� 1; 1; �Þ andBðN; 0; bnþ�2 c; �Þ,
which have OðN lgNÞ and OðN1:5 lgNÞ crosspoints, respec-
tively. For the RNB BðN;n� 1; 1; 0Þ, which is the electronic

Benes network, this performance is the same as the best

known results reported in [19], [22].

5 ROUTING IN STRICTLY NONBLOCKING NETWORKS

5.1 Strict Nonblockingness

The following lemma can be easily derived from the results
of [31].

Lemma 8. If

p � ð1þ �Þxþ 2
n�x
2 ð32þ 1

2�Þ � 1; for even n� x

ð1þ �Þxþ 2
n�xþ1

2 ð1þ 1
2�Þ � 1; for odd n� x;

�

then BðN; x; p; �Þ is strictly nonblocking.

For an SNB network, we can route new connections (as
long as these connections form an I/O mapping from idle
inputs to idle outputs) without disturbing the existing ones;

however, this routing problem is harder than that in an
RNB network when we need to route the new connections
simultaneously. Based on the discussions in Section 3.2, we
know that the routing problem for an SNB BðN; x; p; �Þ can
be solved by finding a strong edge-coloring of the I/O
mapping graph GðN;K; gÞ.
Lemma 9. Any multigraph G has a strong ð2�� 1Þ-edge

coloring, where � is the degree of G.

Proof. Consider coloring edges in an arbitrary order. Since
each edge in G is adjacent to at most 2�� 2 edges, any
uncolored edge in G can always be assigned a color so
that the total number of colors used is no larger than
2�� 1. tu

We consider a subclass of SNB networks, BðN; 0; p�; �Þ
with p� ¼ 2b

nþ�
2 cþ1 � 1. By Lemma 8, we know that

BðN; 0; p�; �Þ is an SNB network. Since each plane of
BðN; 0; p�; �Þ is a Baseline network, the routing of connec-
tions in any plane can be done by self-routing. Thus, the
problem of routing connections in BðN; 0; p�; �Þ is reduced
to finding a plane for each new connection so that all
connections, including existing ones, are conflict-free. By
Lemmas 4 and 9, this can be done by finding a strong ð2g�
1Þ-edge coloring for GðN;K; gÞ of BðN; 0; p�; �Þ with K0

existing connections and K �K0 new connections, where
g ¼ 2b

nþ�
2 c ¼ p�þ1

2 . In the next two sections, we present two
parallel algorithms to find a strong ð2g� 1Þ-edge coloring of
GðN;K; gÞ using different approaches.

Before presenting our algorithms, we give a couple of
definitions. Let GðN;K �K0; gÞ and GðN;K0; gÞ denote the
graphs obtained from GðN;K; gÞ by removing the K0

colored edges and only keeping K0 colored edges, respec-
tively. Since GðN;K; gÞ is a bipartite multigraph, GðN;K �
K0; gÞ is also a bipartite multigraph with two vertex set V1 ¼
fv01; v02; � � � ; v0N=gg and V2 ¼ fv001 ; v002 ; � � � ; v00N=gg such that v0k and
v00k corresponds to the kth modulo-g input group and output
group, respectively. We say color c is free at vertex v if none
of edges adjacent to v has color c. If color c is free at two
ends of edge e, then c is free for e. One edge e is conflict with
another edge f if e and f are adjacent to each other and they
have the same color.

5.2 First Algorithm for Strong Edge-Coloring of
GðN;K; gÞ

The idea of the first algorithm is that we first partition the
set of uncolored edges into edge-disjoint subsets, and then
we color the subsets one by one. The edges in the same
subset may be colored differently depending on the free
colors for each edge. The edge-disjoint subsets can be found
by finding a set of matchings of GðN;K �K0; gÞ, where a
matching ofGðN;K �K0; gÞ is defined as a setM of edges in
GðN;K �K0; gÞ such that no two edges in M are adjacent.

Let d� is the degree of GðN;K �K0; gÞ. Let d0 ¼ 2k such
that k is the smallest integer satisfying d� � 2k. Our first
algorithm computes a strong ð2g� 1Þ-edge coloring of
GðN;K; gÞ with K0ð< KÞ colored edges by performing the
following two steps.

Step 1: Find a set of matchings fM1;M2; � � � ;Md0 g of
GðN;K �K0; gÞ.
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Step 2: For i from 1 to d0, do the following: Color the
edges in Mi without changing the colors of the edges in
GðN;K0; gÞ

S
([j<iMj).

Finding a set of d0 matchings in a graph is equivalent to
coloring the edges in the graph with d0 different colors,
because edges with the same color are not adjacent to each
other. Thus, Step 1 canbedoneby finding a d0-edge coloring of
GðN;K �K0; gÞ using the algorithm described in Section 4.
This d0-edge coloring divides K �K0 uncolored edges
(corresponding to new connections) into d0 matchings. By
Theorem 2, Step 1 takes Oðlg d0 � lgðK �K0ÞÞ ¼ Oðlg d� �
lgðK �K0ÞÞ time using a completely connected multiproces-
sor system ofN PEs.

InGðN;K; gÞ, each edge is adjacent to atmost 2g� 2 edges
and, hence, there are at most 2g� 2 colored edges adjacent to
each edge in a matchingMi. Since edges with the same color
cannot be adjacent, we can color every edge in amatching by
one of the unused colors. This can be done by parallel
searching for a free color among 2g� 1 colors as follows:
Associate a Boolean array C½02g� 2� of 2g� 1 elements with
each vertex inGðN;K; gÞ, withC½r� ¼ 0 if and only if an edge
adjacent to the vertex has been coloredwith color r. Consider
an edge e inMi that connects vertices v

0 and v00 ofGðN;K; gÞ,
and let Cv0 and Cv00 be the C array associated with vertices v0

and v00, respectively. Performing bit-wise AND operation on
Cv0 and Cv00 and obtain a Boolean array Dv0;v00 such that
Dv0;v00 ½s� ¼ Cv0 ½s� ^ Cv00 ½s�, 0 � s � 2g� 2. Then, Dv0;v00 ½t� ¼ 1 if
and only if color t is free for edge e. We can assign g=2 PEs to
each vertex v of GðN;K; gÞ, and these PEs collectively
maintain Cv. Then, using g PEs, Dv0;v00 can be computed Oð1Þ
time, and finding some t such thatDv0;v00 ½t� ¼ 1 by performing
a parallel binary prefix sums operation onDv0;v00 , which takes
Oðlg gÞ time. Since no two edges are adjacent in a matching,
uncolored edges in the matching can be colored simulta-
neously by their assigned PEs inOðlg gÞ time, and Step 2 takes
Oðd0 lg gÞ time. Since d0=2 < d� � d0, Oðd0 lg gÞ ¼ Oðd� lg gÞ.
Therefore, we have the following claim.

Theorem 5. For any I/O mapping graph GðN;K; gÞ with
K0ð< KÞ colored edges, a strong ð2g� 1Þ-edge coloring can
be found in Oðlg d� lgðK �K0Þ þ d� lg gÞ time using a
completely connected multiprocessor system of N PEs,
where d� is the degree of GðN;K �K0; gÞ.

5.3 Second Algorithm for Strong Edge-Coloring of
GðN;K; gÞ

Let Ei;j ¼ fei;jjei;j ¼ ðv0i; v00j Þ 2 GðN;K �K0; gÞg. Thus, Ei;j

contains all uncolored parallel edges between nodes v0i and
v00j . Clearly, each uncolored edge in GðN;K �K0; gÞ is in
exactly one of such Ei;js.

Our second algorithm consists of 2g iterations. In each
iteration, we try to color a set of nonparallel uncolored
edges using one of colors in a set of 2g colors,
f0; 1; � � � ; 2g� 1g, so that no two edges with the same color
are adjacent to the same vertex. Then, for each edge e with
color 2g� 1, we recolor it by a free color in f0; 1; � � � ; 2g� 2g.
The following is the outline of the algorithm:

for l ¼ 0 to 2g� 1 do

for all i; j 2 f1; 2; � � � ; N=gg do
ci;j :¼ ðiþ jþ lÞmod 2g;

if there is an uncolored edge in Ei;j and color ci;j is free at

both v0i and v00j then

assign color ci;j to this edge;

update free colors at v0i and v00j and remove the colored

edge from Ei;j;

end if

end for

end for

for all edges with color 2g� 1 do

color these edges with one of free colors in
f0; 1; � � � ; 2g� 2g;

end for

The correctness of this algorithm can be derived from the

following five simple facts:

1. In iteration i, one uncolored edge, if any, in each Ei;j is
selected. This is obvious. Note that such a selected
edge may not be colored in the iteration.

2. In iteration i, if two edges, one in Ei;j and one in Ep;q,

are assigned the same color, i.e., ci;j ¼ cp;q, then i 6¼ p

and j 6¼ q. Fact 2 can be proven by contradiction as

follows: Assume that there are two pairs of ði; jÞ
and ði; qÞ with j 6¼ q and ci;j ¼ ci;q. (For the case

that there are two pairs of ði; jÞ and ðp; jÞ with

i 6¼ p and ci;j ¼ cp;j, the proof is similar.) Then, by

the algorithm, iþ jþ lmod 2g ¼ iþ q þ lmod 2g,

which implies that jj� qj ¼ 2g� y, where y is a

nonnegative iteger. Since j; q 2 f1; 2; � � � ; N=gg and

g ¼ 2b
nþ�
2 c, we have jj� qj < 2g. Thus, y ¼ 0 and

j ¼ q, which contradicts the assumption.
3. For each uncolored edge, all 2g possible colors are tried

before it is assigned a color in the worst case. By the
algorithm, this is obviously true.

4. After 2g iterations, no two adjacent edges are assigned the
same color. By Fact 2, this is obviously true for any
two nonparallel edges. For any two (parallel) edges
in Ei;j, they are assigned different colors because of
Fact 3 and the fact that their colors are computed
using different l values in different iterations.

5. The edges with the same color 2g can be recolored
concurrently using the colors in f0; 1; � � � ; 2g� 2g so that
none of adjacent edges is assigned the same color. By
Fact 4 and Lemma 9, each edge with color 2g can be
reassigned a color in f0; 1; � � � ; 2g� 2g without
resulting in any color conflict.

Now, we show that this algorithm can be implemented

in OðgÞ ¼ Oð
ffiffiffiffiffi
N
p
Þ time using a completely connected

multiprocessor system of N PEs. This is equivalent to

showing that each of the 2g iterations takes Oð1Þ time. We

associate a 2g-bit binary array Cv½0::2g� 1� with each

vertex v of GðN;K; gÞ such that Cv½c� ¼ 1 if and only if

color c is available at vertex v, and assign N=ð2gÞ PEs to

v. Then, the operations of finding if a given color c is

available at v and updating Cv½c� can be carried out in

Oð1Þ time. We only need to make sure that the operation

of finding an uncolored edge in Ei;j, 1 � i; j � N=g, (if

any) in each iteration can be done in Oð1Þ time. This can

be achieved by a preprocessing step of sorting. For each

vertex v0i, we can sort all edges in each Ei ¼ [N=g
j¼1Ei;j,
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1 � i � N=g, of GðN;K �K0; gÞ, using g PEs with Oð1Þ
edges per PE, in nondecreasing order of j in Oðlg2 gÞ time.
Then, we assign a set of N=ð2gÞ ¼ OðgÞ PEs to each vertex
of GðN;K; gÞ in such a way that each Ei;j is allocated
Oð1Þ PE, which is used to find an uncolored edge in Ei;j.
Based on the sorted edges, a PE associated with Ei;j can
find the starting locations of its assigned edges in OðgÞ
time. After this preprocessing, the operation of finding
uncolored edges in each iteration can be done in Oð1Þ
time. Finally, recoloring edges with color 2g can be done
in Oðlg gÞ time, since this operation is similar to one
iteration of Step 2 of our first algorithm presented in the
previous section. In summary, we have the following
result.

Theorem 6. For any I/O mapping graph GðN;K; gÞ with
K0ð< KÞ colored edges, a strong ð2g� 1Þ-edge coloring can
be found in OðgÞ time using a completely connected
multiprocessor system of N PEs.

5.4 Performance Analysis

We summarize the overall performance of our routing
algorithm for SNB network BðN; 0; p�; �Þ by the following
theorem.

Theorem 7. For an SNB network BðN; 0; p�; �Þ with

p� ¼ 2b
nþ�
2 cþ1 � 1, connections from any K �K0 idle inputs

to anyK �K0 idle outputs, withK0 existing connections, can

be correctly routed in Oðminfd� lgN;
ffiffiffiffiffi
N
p
gÞ time using a

completely connected multiprocessor system of N PEs, where

d� is the degree of GðN;K �K0; gÞ.
Proof. ByTheorems5and6,wecan findastrong ð2g� 1Þ-edge

coloring of GðN;K; gÞ in Oðlg d� lgðK �K0Þ þ d� lg gÞ ¼
Oðd� lgNÞ time and OðgÞ time using our first and second
algorithms, respectively. Using an algorithm for finding
the maximum, d� can be computed in OðlgNÞ time. If
d� �

ffiffiffi
N
p

lgN ,weapplyour first algorithm;otherwise,weapply
oursecondalgorithm.Weassigneachnewconnectionwith
color i to the ithplane ofBðN; 0; p�; �Þ. ByLemmas 1 and 4,
these new connections can be routed by self-routing in
OðlgNÞ time.Thus, the total time isOðminfd� lgN;

ffiffiffiffiffi
N
p
gÞ.tu

The two algorithms for strong ð2g� 1Þ-edge coloring of
GðN;K; gÞ have time bounds Oðlg d� lgðK �K0Þ þ d� lg gÞ
and Oð

ffiffiffiffiffi
N
p
Þ, where d� is the degree of GðN;K �K0; gÞ. In

the worst case, Oðlg d� lgðK �K0Þ þ d� lg gÞ ¼ Oð
ffiffiffiffiffi
N
p

lgNÞ
and the first algorithm is slower than the second. But, when
d� is small, the first algorithm can be much faster.

By Lemma 8, we can derive the minimum number of
planes, pmin, for BðN; 0; p; �Þ to be SNB as follows: If there is
no crosstalk-free constraint (i.e., � ¼ 0), then pmin ¼ 3

2 2
n
2 � 1

for even n and pmin ¼ 2
nþ1
2 � 1 for odd n. If there is a

crosstalk-free constraint (i.e., � ¼ 1), then pmin ¼ 2
n
2þ1 � 1 for

even n and pmin ¼ 3
2 2

nþ1
2 � 1 for odd n. Compared with

BðN; 0; pmin; �Þ, the hardware redundancy pred ¼ p� � pmin

of BðN; 0; p�; �Þ is: pred ¼ 0 if � ¼ 0 and n is odd or � ¼ 1
and n is even, pred ¼

ffiffiffiffiffi
N
p

=2 if � ¼ 0 and n is even, and
pred ¼

ffiffiffiffiffiffiffi
2N
p

=2 if � ¼ 1 and n is odd. The hardware cost of
BðN; 0; p�; �Þ, in terms of the number of SEs, is higher than
that of BðN; 0; pmin; �Þ in half of the cases, but both have the
same hardware complexity of �ðN1:5 lgNÞ. The time for

routing OðNÞ connections, however, is improved from
�ðN lgNÞ to sublinear Oð

ffiffiffiffiffi
N
p
Þ in the worst case.

6 CONCLUSION

The major contribution of this paper is the design and
analysis of parallel routing algorithms for a class of
nonblocking switching networks, BðN; x; p; �Þ. Although
the assumed parallel machine model is a completely
connected multiprocessor system of N PEs, the proposed
algorithms can be transformed to algorithms for more
realistic parallel computing models. The pointer jumping
technique and any one-to-one permutation communication
step used in our proposed algorithms can be implemented
by sorting on realistic parallel computing structures. Let
SðNÞ be the time for sorting N elements on a parallel
machine M with N processors, then our algorithms can be
implemented with a slow-down factor SðNÞ on M. It is
known that sorting N numbers on the class of hypercubic
networks takes OðlgN lg lgNÞ time [8], [18]. This class of
networks include hypercube, cube-connected-cycles, butter-
fly networks, baseline networks, reverse baseline networks,
Omega networks, flip networks, de Bruijin graphs, shuffle-
exchange networks, banyan networks, delta networks,
bidelta networks, k-ary butterflies, and Benes networks
[18]. Our algorithms can route connections in BðN; x; p; �Þ
with a slow-down factor OðlgN lg lgNÞ on all these realistic
parallel machine models, though some have topologies that
are quite different from others, whose structural complex-
ities are no larger than that of one plane in BðN; x; p; �Þ.
Compared with sequential algorithms, we consider that our
algorithms on realistic parallel computers provide a
significant speedup, making them potentially valid and
useful for large switches.

The approach of applying edge-coloring techniques to
investigate the capacity and routability of RNB switching
networks has been widely used (refer to [6], [13], [19], [22]).
We extended this approach to SNB networks by defining
strong edge-coloring. For a class of RNB and SNB banyan-
based switching networks obtained by horizontal expansion
and vertical replication, we proposed a unified mathema-
tical formulation, namely, WEC and SEC problems, for
designing parallel routing algorithms using this approach.
Our algorithms can find the solutions for WEC problem in
polylogarithmic time and SEC problem in sublinear time.
Finding faster parallel algorithms for WEC and SEC
problems, especially for the SEC problem, however,
remains to be very challenging.

The results of this paper have valuable architectural
implications for the design and implementation of future
large-scale electronic and optical switching networks.
Scalable nonblocking switching networks tend to have no
self-routing capability. For example, for a nonblocking
switching network BðN; x; p; �Þ, though self-routing cap-
abilities exist in a portion of it, its routing is still
computation intensive. Therefore, for the design of a
switching network, in addition to its hardware cost in
terms of the cost of SEs and interconnection links (and
wavelengths), we must take the routing complexity into
consideration. It remains a great challenge for finding low-
cost high-speed nonblocking switching networks.
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