
A Fault-Local Self-Stabilizing Clustering Service
for Wireless Ad Hoc Networks

Murat Demirbas, Member, IEEE, Anish Arora, Senior Member, IEEE,

Vineet Mittal, and Vinodkrishnan Kulathumani

Abstract—We present a fast, local clustering service, FLOC, that partitions a multihop wireless network into nonoverlapping and

approximately equal-sized clusters. Each cluster has a clusterhead such that all nodes within unit distance and some nodes within

distance m of the clusterhead belong to the cluster. We show that, by asserting a stretch factor m � 2, FLOC achieves locality of

clustering and fault-local self-stabilization: The effects of cluster formation and faults/changes at any part of the network are contained

within at most mþ 1 units. Through simulations and experiments with actual deployments, we analyze the trade-offs between

clustering time and the quality of clustering and suggest suitable parameters for FLOC to achieve a fast completion time without

compromising the quality of the resulting clustering.

Index Terms—Wireless sensor networks, fault tolerance, reliability, availability, and serviceability.

�

1 INTRODUCTION

LARGE-SCALE ad hoc wireless networks introduce chal-
lenges for self-configuration and maintenance. Centra-

lized solutions that rely on predefined configurer or
maintainer nodes are unsuitable: Requiring all the nodes
in a large-scale network to communicate their data to a
centralized base station depletes the energy of the nodes
quickly due to the long distance and multihop nature of the
communication and also results in network contention.

Clustering [1], [3], [9], [13], [4] is a standard approach for
achieving efficient and scalable control in these networks, as
it facilitates the distribution of control over the network.
Clustering also saves energy and reduces network conten-
tion by enabling locality of communication: Nodes com-
municate their data over shorter distances to their
respective clusterheads. The clusterheads aggregate these
data into a smaller set of meaningful information. Not all
nodes, but only the clusterheads, need to communicate far
distances to the base station; this burden can be alleviated
further by hierarchical clustering, i.e., by applying cluster-
ing recursively over the clusterheads of a lower level.

To enable efficient and scalable control of the network, a
clustering service should combine several properties. The
service should achieve clustering in a fast and local manner:
Cluster formation and changes/failures in one part of the
network should be insulated from other parts. Furthermore,

the service should produce approximately equal-sized
clusters with minimum overlap among clusters. Equal-
sized clusters is a desirable property because it enables an
even distribution of control (e.g., data processing, aggrega-
tion, storage load) over clusterheads; no clusterhead is
overburdened or underutilized. Minimum overlap among
clusters is desirable for energy efficiency because a node
that participates in multiple clusters consumes more energy
by having to transmit to multiple clusterheads.

In this paper, we are interested in a stronger property,
namely, a solid-disc clustering property, that implies
minimization of overlap. The solid-disc property requires
that all nodes that are within a unit distance of a clusterhead
belong only to its cluster. In other words, all clusters have a
nonoverlapping unit radius solid-disc.

Solid-disc clustering is desirable since it reduces the
intracluster signal contention: The clusterhead is shielded at
all sides with nodes that belong to only its cluster, so the
clusterhead receives messages from only those nodes that
are in its cluster and does not have to endure receiving
messages from nodes that are not in its cluster. Solid-disc
clustering also results in a guaranteed upper bound on the
number of clusters: In the context of hierarchical clustering,
minimizing the number of clusters at a level leads to lower-
cost clustering at the next level. Finally, solid-discs yield
better spatial coverage with clusters: Aggregation at the
clusterhead is more meaningful since the clusterhead is at
the middle of the cluster and receives readings from all
directions of the solid disc (i.e., is not biased to only one
direction).

Equi-radius solid-disc clustering with bounded overlaps
is, however, not achievable in a distributed and local
manner. We illustrate this observation with an example for
a 1D network (for the sake of simplicity).

Consider a clustering scheme that constructs clusters
with a fixed radius, say R ¼ 1, solid-disc. We show that, for
fixed radius clustering schemes, a reclustering of the entire
network may be unavoidable. In Fig. 1, consider the node j:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006 1

. M. Demirbas is with the Computer Science and Engineering Department,
University at Buffalo, Buffalo, NY 14260.
E-mail: demirbas@cse.buffalo.edu.

. A. Arora and V. Kulathumani are with the Computer Science and
Engineering Department, The Ohio State University, Columbus, OH
43210. E-mail: {anish, vinodkri}@cse.ohio-state.edu.

. V. Mittal is with QUALCOMM Incorporated, 5775 Morehouse Dr., San
Diego, CA 92121-1714. E-mail: vmittal@qualcomm.com.

Manuscript received 22 Feb. 2005; revised 29 May 2005; accepted 30 Aug.
2005; published online 26 July 2006.
Recommended for acceptance by I. Stojmenovic, S. Olariu,
and D. Simplot-Ryl.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDSSI-0171-0205.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

It cannot be subsumed into its neighboring clusters as j is
not within unit distance of neighboring clusterheads L and
K. j thus forms a new cluster with itself as the clusterhead.
Since all nodes within unit radius of a clusterhead should
belong to its cluster, j subsumes neighboring nodes l1 and
k1 in its cluster. This leads to neighboring clusterheads L
and K to relinquishing their clusters and election of l2 and
k2 as the new clusterheads (Fig. 2). The cascading effect
propagates further as the new clusterheads l2 and k2

subsume their neighboring nodes, leading to reclustering
of the entire network.

1.1 Our Contributions

We show that solid-disc clustering with bounded overlaps
is achievable in a distributed and local manner for
approximately equal radii (instead of exactly equal radii).
More specifically, we present FLOC, a fast local clustering
service that produces nonoverlapping and approximately
equal-sized clusters. The resultant clusters have at least a
unit radius solid-disc around the clusterheads, but they
may also include nodes that are up to m, where m � 2, units
away from their respective clusterheads. By asserting a
stretch factor of m � 2, FLOC achieves locality of clustering
and fault-local self-stabilization: Effects of cluster formation
and faults/changes at any part of the network are contained
within at most m unit distance.

While presenting FLOC we take unit radius to be the
reliable communication radius of a node and m to be the
maximum communication radius. In so doing, we exploit
the double-band nature of wireless radio-model and
present a communication and, hence, energy-efficient
clustering.

FLOC is suitable for clustering large-scale wireless ad hoc
networks since it is fast and scalable. FLOC achieves
clustering in O(1) time regardless of the size of the network.
FLOC is also locally self-stabilizing in that, after faults (such
as node failure and recovery, arbitrary state corruption) stop
occurring, faults and changes are contained within the
respective cluster or within the immediate neighboring
clusters, and FLOC stabilizes within constant time.

We simulate FLOC using Prowler [18] and analyze the
trade-offs between clustering time and the quality of the
clustering. We observe that forcing a very short clustering
time leads to network traffic congestion and message losses
and, hence, degrades the quality of the resultant clustering.
We suggest suitable parameters for FLOC to achieve a fast
completion time without compromising the quality of the
clustering. Furthermore, we implement FLOC on the Mica2

[19] sensor node platform and experiment with actual
deployments on 25 nodes to corroborate our simulation
results.

1.2 Outline

After presenting the network and fault model in the next
section, we present the basic FLOC program in Section 3.
We discuss the fault-local self-stabilization of FLOC in
Section 4. In Section 5, we present additional actions that
improve the convergence time of the clustering. We discuss
our simulation and implementation results in Section 6. In
Section 7, we present related work and we conclude the
paper in Section 8.

2 MODEL

We consider a wireless ad hoc network where nodes lie on
an undirected graph topology. The wireless radio-model for
the nodes is double-band: A node can communicate
(transmit and receive messages) reliably with the nodes
that are in its inner-band (i-band) range and unreliably (i.e.,
only a percentage of messages go through) with the nodes
in its outer-band (o-band) range. This double-band behavior
of the wireless radio is observed in [20], [6], [21].

We define the unit distance to be the i-band range. We
require that the o-band range be m units, where m�2.
This is a reasonable assumption for the o-band range [20],
[21], [6]. Nodes can determine whether they fall within
the i-band or o-band of a certain node by using any of
the following methods:

. Nodes are capable of measuring the signal strength
of a received message [19]. This measurement may
be used as an indication of distance from the sender.
For example, assuming a signal strength loss
formula ð 1

1þd2Þ, where d denotes distance from the
sender, the i-band neighbors receive the message
with [0.5, 1] of the transmission power and, for
m ¼ 2, the o-band neighbors receive the message
with [0.2, 0.5] power.

. Nodes may use time of flight of audio or ultrasound
signals to calculate the distances to the nodes within
single radio hop [7], [16].

. An underlying localization service [15], [14] may
provide the nodes with these distance information.

In our paper, any of these three techniques could be
applicable. We assume that all the nodes have the same i-
band/o-band range. By using the ranging and localization
methods, it is possible to get the i-band of all nodes in the

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

Fig. 1. Each pair of brackets constitutes one cluster of unit radius and colored nodes denote clusterheads.

Fig. 2. Node j forms a new cluster and leads to reclustering of the entire network.

network to have same “unit distance” modulo the measure-
ment errors.

We say that a clustering of nodes satisfies solid-disc
clustering if every node within i-band of any clusterhead j
belongs to j’s cluster. Locality of clustering states that every
node is assigned to a cluster in a way that satisfies solid-disc
clustering and also preserves the solid-disc property of the
existing clusters.

We assume that nodes have timers, but we do not
require time synchronization across the nodes. Timers are
used for tasks such as sending of periodic heartbeats and
timing out of a node when waiting on a condition. Nodes
have unique ids. We use i, j, and k to denote the nodes and
j:var to denote a program variable residing at j. We denote
a message broadcast by j as msg j.

A program consists of a set of variables and actions at
each node. Each action has the form:

< guard > �! < assignment statement >

A guard is a Boolean expression over variables. An
assignment statement updates one or more variables. A
state is defined by a value for every variable in the program,
chosen from the predefined domain of that variable. An
action whose guard is true at some state is said to be enabled
at that state and is executed.

2.1 Fault Model

Nodes may fail-stop [17] and crash and new nodes may join
the network. Moreover, the state of a node’s program can be
arbitrarily and transiently corrupted. Channels may suffer
faults that corrupt, manufacture, duplicate, or lose (e.g., due
to collision or fading) messages. These faults can occur in
any finite number, at any time, and in any order.

A program is self-stabilizing iff, after faults stop occurring,
the program eventually recovers to a state from where its
specification is satisfied. A self-stabilizing program is fault-
local self-stabilizing if the time and number of messages
required for stabilization are bounded by functions of
perturbation size rather than network size. The perturbation
size for a given state is the minimum number of nodes whose
state must change to achieve a consistent state of the network.

2.2 Problem Statement

Design a distributed, local, scalable, and self-stabilizing
program that constructs a clustering of a network such that:

. a unique node is designated as a clusterhead of each
cluster,

. every node in the inner-band of a clusterhead j
belongs to j’s cluster,

. no node outside the outer-band of a clusterhead j
belongs to j’s cluster,

. every node belongs to a cluster, and

. no node belongs to multiple clusters.

3 FLOC PROGRAM

In this section, we present the basic FLOC program in the
absence of faults (i.e., no state corruptions, no node failures,
or node additions occur during clustering). First, we show
why a stretch factor m � 2 is sufficient for local clustering.

3.1 Justification for m � 2

As an illustration of local clustering of FLOC, consider
Fig. 3. When m � 2, j is subsumed by one of its neighboring
clusters as j is within two units of the clusterhead L, thus
leading to local clustering.

Furthermore, Fig. 4 illustrates how FLOC constructs
clusters locally when all clusters are of radius 2 and a node j
is to be assigned a cluster. In this case, j elects itself as the
clusterhead since it is not within two units of the cluster-
heads of its neighbors l1 and k1. Nodes l1 and k1 then join
the cluster of j because they are not within one unit of their
respective clusterheads but are within one unit of j. Thus, j
forms a legitimate cluster as in Fig. 5.

Lemma 1. A stretch factor m � 2 ensures locality of clustering.

Proof. The proof is by induction. Locality of clustering states
that each node is assigned to a cluster without affecting the
solid-disc property of the existing clusters. In the base case,
let CH be the set of existing clusterheads such that each
cluster satisfies the solid-disc property and includes no
node beyond distance m from the clusterhead. In the
induction step, there are two cases for a node j not
included in a cluster. If j is within distance m of a
clusterhead in CH, then j is subsumed within that cluster
(no existing cluster is affected). If j is outside of m of any
clusterhead inCH, then stretch factorm � 2 ensures that j
can become a clusterhead and construct its solid-disc (by
including all nodes within unit distance in its cluster)
without violating the solid-disc property of any existing
clusterhead in CH. tu

DEMIRBAS ET AL.: A FAULT-LOCAL SELF-STABILIZING CLUSTERING SERVICE FOR WIRELESS AD HOC NETWORKS 3

Fig. 3. Node j is subsumed by one of its neighboring clusters.

Fig. 4. j0s neighbors are l1 and k1.

Fig. 5. j becomes the clusterhead.

3.2 Program

Each node j maintains only two variables, status and
cluster id, for the FLOC program. j:status has a domain of
{idle, cand, c_head, i_band, o_band}. As shorthand, we use j:x
to denote j:status¼x. j:idle is true when j is not part of any
cluster. j:cand means j wants to be a clusterhead and
j:c head means j is a clusterhead. j:i band (respectively,
j:o band) means j is an inner-band (respectively, outer-
band) member of a clusterhead; j:cluster id denotes the
cluster j belongs to. Initially, for all j, j:status ¼ idle and
j:cluster id ¼ ?.

The FLOC program consists of six actions, as seen in
Fig. 7. Fig. 6 illustrates the effect of actions on the status
variable of a node.

Action 1 is enabled when a node j has been idle for some
random wait-time chosen from the domain ½0 . . .T �. Upon
execution of action 1, j becomes a candidate for becoming a
clusterhead and broadcasts its candidacy.

Action 2 is enabled at an i-band node of an existing
cluster when this node receives a candidacy message. If this
recipient node determines that it is also in the i-band of the
new candidate, it replies with a conflict message to the
candidate and attaches its cluster-id to the message. We use
a random wait-time from the domain ½0 . . . t� to prevent
several nodes replying at the same time so as to avoid
collisions.

Action 3 is enabled at j when j receives a conflict
message in reply to its candidacy announcement. The
conflict message indicates that if j forms a cluster, its i-band
will overlap with the i-band of the sender’s cluster. Thus, j
gives up its candidacy and joins the cluster of the sender
node as an o-band member.

Action 4 is enabled at j if j does not receive a conflict
message to its candidacy within a predefined period �. In
this case, j becomes a clusterhead, broadcasting this
decision with c head msgj.

Action 5 is enabled at all the idle nodes that receive a
c head msg. These nodes determine whether they are in the
i-band or o-band of the sender, adjust their status accord-
ingly, and adopt the sender as their clusterhead.

Action 6 is enabled at an o band node j when j receives a
c_head_msg from a clusterhead i. If j determines that j falls
in the i-band of i, j joins i’s cluster as an i band member.

3.3 Analysis

For the correctness of the FLOC program, we require that
the election of a clusterhead be completed in an atomic
manner: If two nodes that are less than two units apart
become candidates concurrently, both may succeed and, as

a result, the i-bands of the resultant clusters could be
overlapping. To avoid this case with a high probability, the
domain T of the timeout period for action 1 should be large
enough to ensure that, for a node j whose idle-timer
expires, the idle-timers of none of the nodes within two
units of j expire within � time of j’s candidacy as the
candidacy period for a node can last at most � time.
Therefore, the probability of atomicity of elections can be
calculated as ð1� �

T Þ
!, where ! denotes the maximum

number of nodes within two units of a node.
Note that T depends only on the local density of nodes

and is independent of the network size. Hence, it is
sufficient to experiment with a representative small portion
of a network to come up with a T that avoids collisions of
clusterhead elections with a high probability. For the cases
where the atomicity requirement for elections is violated,
our additional actions presented in Section 5 reassert the
solid-disc clustering property.

Lemma 2. The following invariant holds for FLOC:

8j; k ::

I1: j:idle _ j:cand � j:cluster id ¼ ?
I2: j:c head � j:cluster id ¼ j
I3: j:i band ^ j:cluster id ¼ k) k:c head ^ j 2

i-band of k

I4: j:o band ^ j:cluster id ¼ k) k:c head ^ j 2
o-band of k

I5: k:c head ^ j 2 i-band of k) j:i band^
j:cluster id ¼ k

Proof. I1 and I2 follow trivially from the program. Also, I3
and I4 follow from actions 5 and 6. I5 holds when the

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

Fig. 6. The effect of actions on the status variable.

Fig. 7. Program actions for j.

atomicity of elections is satisfied. If there is a conflict with
the i-band of a candidate j and that of a nearby cluster, then
j is notified via action 2, upon which j becomes an o band
member of this nearby cluster via action 3. If there is no
conflict, j becomes a clusterhead and achieves a solid-disc
by dominating all the nodes in its i-band via action 5. The
o bandmembers of other clusters that fall in the i-band of j
join j’s cluster due to action 6. tu
Above, I5 is the dual of I3 and is satisfied when the

atomicity of elections holds. Due to I5, the dual of I4 does
not always hold. That is, a node j within the o-band of a
clusterhead k and within the i-band of another clusterhead
k0 will choose to become a member of k0 due to I5.

Note that the above invariant implies the solid-disc
clustering property (due to I5) and satisfies the clustering
requirement in the problem statement.

Theorem 1. Regardless of network size, FLOC produces a

clustering of nodes that satisfies the problem statement and

terminates within constant time T þ�.

Proof. An action is enabled at every node within at most
T time: If no other action is enabled in the meanwhile,
action 1 is enabled within T time.

From Fig. 6, it is easy to observe that once an action is
enabled at a node j, j is assigned to a cluster within at
most � time: If the enabled action is 5, then j is assigned
to a cluster instantaneously. If the enabled action is 1,
then, due to Lemma 1, one of actions 3 or 4 is enabled
within at most � time, upon which j is assigned to a
cluster immediately.

Also note that, once j is assigned to a cluster (i.e.,
j:status 2 fc head; i band; o bandg), no further action can
violate this property. Only actions 2 and 6 can be enabled
at j: Action 2 does not change j:status and action 6
changes j:status from o band to i band, but j is still a
member of a cluster (in this case a closer cluster).

Thus, every node belongs to a cluster within T þ�
and no further action is enabled after T þ�. Further-
more, due to Lemma 2, the clustering satisfies the solid-
disc property and the problem statement. tu

Theorem 2. The number of clusters constructed by FLOC is

within 3-folds of the minimum possible number.

Proof. A partitioning of the network with minimum
number of clusters is achieved by tiling hexagonal
clusters of radius 2 (and circular radius

ffiffiffi

3
p

). This best-
case construction is shown in Fig. 8. The worst-case
construction, where FLOC partitions the network with
maximum number of clusters, is achieved by tiling

hexagonal clusters of radius 2=
ffiffiffi

3
p

(and circular radius 1).
Since the solid-disc clustering property asserts a circular
radius of unit distance at least, it is not possible to do
worse than this number. In this worst case, the number
of clusters constructed by FLOC is 3 times the minimum
possible number. tu

3.4 Discussion

After clustering, a node can be in the i-band of at most one
clusterhead. A clusterhead has all the nodes in its i-band as its
members and some from its o-band. The o-band members do
not need to hear the clusterhead every time, the i-band
members may suffice for most operations. If the clusterhead is
sending an important message that needs to reach all
members, in order for the o-band members to also receive it
reliably, the i-band members may relay this message when
they detect missing acknowledgments from nearby o-band
members—the i-band members can hear both the clusterhead
and the o-band members reliably. During a convergecast
(data aggregation) to the clusterhead, the messages from o-
band members may or may not reach the clusterhead directly.
If a message from an o-band member is tagged as important, it
may be relayed by an i-band member upon detection of a
missing acknowledgment from the clusterhead.

Ideally, first, we want a conflict to be reported by a node
that is closest to the candidate, so that the candidate, upon
aborting its candidacy, can join this closest cluster. One way
to choose the closest notifier is to set t at a notifier node to
be inversely proportional to the distance from the candi-
date. If an underlying localization service is not available,
the same effect can be achieved by setting t inversely
proportional with respect to the received signal strength of
the candidacy message. The higher the received signal
strength of the candidacy message at a notifier, the notifier
sets t smaller.

4 SELF-STABILIZATION

In this section, we present the stabilization actions to restore
the system to its invariant and discuss the fault-local self-
stabilization properties of our clustering service. These
actions, S1 through S6, are presented in Fig. 9.

Actions S1 & S2. Violations of I1 and I2 (e.g., due to
transient state corruption) are locally checkable and are
locally corrected.

Action S3. For detecting any violation of I3 and I4 (e.g.,
due to failure of a clusterhead), we employ heartbeats. The
clusterheads periodically broadcast a c_head_msg.

Action S4. For correcting I3 and I4, we employ leases. If the
lease at a node j expires, i.e., j fails to receive a heartbeat from
its clusterhead within the duration of a lease period, then j
dissociates itself from the cluster by setting j:status :¼ idle
and j:cluster id :¼ ?. The lease for o-band nodes should be
kept high. Since they receive only a percentage of the
heartbeats, they may make mistakes for small lease periods.
Keeping the lease period high for the o-band nodes does not
affect the performance significantly because the o-band
nodes are moldable: Even if they have misinformation about
the existence of a clusterhead, the o-band nodes do not hinder
new cluster formation, and even join these clusters if they fall
within the i-band of these clusterheads.

DEMIRBAS ET AL.: A FAULT-LOCAL SELF-STABILIZING CLUSTERING SERVICE FOR WIRELESS AD HOC NETWORKS 5

Fig. 8. The minimum number of clusters is achieved by tiling hexagonal

clusters of radius 2.

Action S5. Violation of I5 (e.g., due to the addition of a

new node j) is detected by an i band node j that receives a

c head msg from a clusterhead i different from j’s current

clusterhead and j is also within the i-band of i. In this case, j

sends a demote message to both clusterheads and both

clusters are collapsed.
Action S6. For correcting I5, the clusters whose solid-

discs overlap are collapsed. This is achieved by setting a

clusterhead to be idle upon receiving a demote message.

Theorem 3. FLOC is fault-locally self-stabilizing.

Proof. Correction of I1 and I2 follow immediately from S1

and S2 and are local to the node. I3 and I4 are corrected

due to action S4 and the correction is local to the node. I5

is detected by an i-band node j in S5 and is corrected due

to S6. A violation of I5 is reduced to violation of I3 and I4

for the nodes that are at most mþ 1 distance from j

(since j is an i-band node, it is at most unit distance away

from the clusterheads and, since clusterheads do not

have nodes beyond distance m, only mþ 1 distance is

affected). Since the corrections of I3 and I4 are local,

correction of I5 is contained in distance mþ 1. tu

Note that, once the invariant is satisfied via the stabiliza-

tion actions, due to locality of clustering (Lemma 1),

reclustering is also achieved locally.

4.1 Node Failures and Additions

FLOC is inherently robust to failures of cluster members

(nonclusterhead nodes) since such failures do not violate

the invariant. The failure of a clusterhead leaves its cluster

members orphaned and is dealt with via actions S3 and S4

above. The effects are contained within at most distance m.

The addition of a new node to the system may violate I5.

Due to periodic clusterhead messages (action S3), the new

node may hear from an existing clusterhead and join a

cluster via actions 5 and 6. If j is in the i-band of multiple

clusterheads, this situation is handled via stabilization

actions S5 and S6. On the other hand, if there are no

clusterheads j can join, due to Lemma 1, j can construct a

cluster via actions 1 and 4.

5 EXTENSIONS TO THE BASIC FLOC PROGRAM

Choosing a sufficiently large T guarantees the atomicity of
elections (and, hence, the solid-disc clustering) with a high
probability. Here, we present some additional actions to
ensure that the solid-disc property is satisfied even in the
statistically rare cases where the atomicity of elections is
violated.

Consider a candidate i and an idle node k that is within 2
units of i. If k’s idle timer expires before i’s election is
completed (i.e., within � time of i’s candidacy announce-
ment), then the atomicity of elections is violated. Even
though there exists a node j that is within the i-bands of
both i and k, both candidates may succeed in becoming
clusterheads: Since k’s candidacy announcement occurs
before i’s c head msg, action 2 is not enabled at j and j does
not send a conflict msg to k.

Our solution is based on the following observation: Since
i broadcasts its cand msg earlier than that of k and since a
broadcast is an atomic operation in wireless networks: i’s
broadcast is received at the same instant by all the nodes
within i’s i-band. These i-band nodes can be employed for
detecting a conflict if a nearby node announces candidacy
within � of i’s candidacy.

To implement our solution, we introduce a Boolean
variable lock to capture the states where an idle node j is
aware of a candidacy of a node that is within unit distance
of itself. The value of j:lock is material only when
j:status ¼ idle. Our solution consists of four actions, as
seen in Fig. 10.

Action 7 is enabled when an idle node j receives a
candidacy message. If j determines that j is in the i-band of
the candidate, j sets lock as true.

Action 8 is enabled when an idle and locked node j

receives a candidacy message. If j determines that it is also
in the i-band of this new candidate, it replies with a
“potential conflict” message to the candidate.

Action 9 is enabled when a node receives a “potential
conflict” message as a reply to its candidacy announcement.
In this case, the node gives up its candidacy and becomes
idle again. This time, to avoid a lengthy waiting, the node
selects the random wait-time from the domain ½0 . . .T=2�.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

Fig. 9. Stabilization actions for j.

Action 10 is enabled if an idle j remains locked for
� time. Expiration of the � timer indicates that the
candidate that locked j failed to become a leader since,
otherwise, j would have received a c_head_msg and j.status

would have been set to i band. So as to not block future
candidates, j removes the lock by setting j:lock :¼false.

Note that these additional actions are applicable only in
the statistically rare violations of atomicity of elections; they
do not cure the problem for every case. If T is chosen too
small, there may be some pathological cases where there is
a chain of candidates whose i-bands overlap with each
other that results in the deferring of all candidates in the
chain. For example, assume that x1; x2; x3; . . .xn become
candidates in that order in time and space (say, on a line). In
this case, xi suppresses xiþ1 and is suppressed by xi�1. In
the end, only x1 survives. So, even though each node’s
behavior is still local, the resulting pathological chain—due
to high contention—is not local. These chains should be
avoided by choosing a large enough T .

Lemma 3. The additional actions preserve the invariant.

Proof. The program with the additional actions is a
superimposition [11] of the original program. In the
absence of violations of the atomicity of elections, the
additional actions do not modify any variables of the
original program (since actions 8 and 9 are not enabled at
all). In the presence of violations of the atomicity of
elections, the program with the additional actions
produces a subset of the behavior of the original
program. In particular, in the amended program, the
effects of the violations of the atomicity of elections is
suppressed (i.e., I5 still holds). tu
The safety part of Theorem 1 still holds for the amended

program, however, in the presence of chain effects, it is not
possible to put a constant upper bound on the termination
time. Theorem 3, the fault-local stabilization proof, still
holds for the amended program since the invariant of the
program is unchanged. The lock variable itself is self-
stabilizing since it is a soft-state variable that is cleaned
when the lease period is over.

6 SIMULATION AND IMPLEMENTATION RESULTS

In this section, we analyze, through simulations and
experiments, the trade-offs between smaller T and the
quality of clustering, and determine a suitable value for T
with a fast completion time without compromising the

quality of the resulting clustering. We also analyze the
scalability of FLOC with respect to network size.

6.1 Simulation

For our simulations, we use Prowler [18], a MATLAB-based,
event-driven simulator for wireless sensor networks. Prowler
simulates the radio transmission/propagation/reception
delays of Mica2 motes [19], including collisions in ad-hoc
radio networks and the operation of the MAC-layer.

Our implementation of FLOC under Prowler is per node
and is a message-passing distributed program. Our imple-
mentation includes actions 1 through 9 and leaves out the
stabilization actions. Our code is available from http://
www.cse.buffalo.edu/~demirbas/floc/. In our simulations,
we use a grid topology for simplicity (note that FLOC is
applicable for any kind of topology and does not require a
uniform distribution of nodes). In the grid, each node is unit
distance away from its immediate North, South, East, and
West neighbors. We use a signal strength of 1 andm ¼ 2; the i-
band neighbors are the nodes with Received Signal Strength
Indicator (RSSI) > 0:5 and the o-band neighbors have
RSSI > 0:2. It follows that immediate N, S, E, W neighbors
are i-band neighbors and immediate diagonal neighbors and
2-unit distance N, S, E, W neighbors are o-bound neighbors.
Thus, the degree of a node in our network is between 4 and 12.

Below, we analyze the trade-offs involved in the
selection of T ; for this part, we use a 10-by-10 grid (as
described above) for the simulations. Then, we consider
larger networks (up to 25-by-25 grids) and investigate the
scalability of the performance of FLOC with respect to
network size. We repeat each simulation 10 times and take
the average value from these runs. In all our graphs, the
error bars denote the standard deviation in our data.

Due to MAC-layer delays, the average transmission time
for a packet is around 25 msec. Thus, we fix t¼50 msec and
�¼200 msec for our simulations.

6.1.1 Trade-Offs in the Selection of T

Using a small value for T allows a shorter completion time
for FLOC, as shown in Fig. 11. However, a small value for T
also increases the probability of violation of atomicity of
elections; Fig. 12 shows that, while T decreases, the number
of violations of atomicity of elections increases. The
experimental data in Fig. 12 are consistent with the formula
we presented in Section 3 for estimating the probability of

DEMIRBAS ET AL.: A FAULT-LOCAL SELF-STABILIZING CLUSTERING SERVICE FOR WIRELESS AD HOC NETWORKS 7

Fig. 10. Additional actions for handling the violations of atomicity of

elections.

Fig. 11. Completion time versus T.

satisfaction of atomicity of elections. In the formula ð1� �
T Þ

!,

using � ¼ 0:2 sec, ! ¼ 12, T ¼20 sec returns 0.89 as the

probability for satisfaction of atomicity of elections. Using

T ¼10 sec returns 0.78, T ¼5 sec returns 0.61, T ¼1 sec

returns 0.07, and T ¼0:5 sec returns 0:02 for the atomicity of

elections.
Ideally, we want the elections to be completed in an atomic

manner. For up to some number of atomicity violations, our
extra actions in Section 5 enable successful solid-disc
clustering. However, for small values of T (T <5 sec), several
nodes declare their candidacy around the same times and we
encounter a sharp increase in the number of messages sent
and the number of nodes sending messages, as shown in
Fig. 13. This leads to network traffic congestion and loss of
messages due to collisions. For T ¼2 sec, the number of
receptions of collided messages is 20 percent of the total
messages received. This collision rate climbs to 30 percent for
T ¼1 sec and 55 percent for T ¼0:5 sec. Due to these lost
messages, forT <5, we observe deformities in the shape of the
clusters formed; the solid-disc clustering property is violated.
For example, for T ¼0:5 sec, half of the clusters formed are
single node clusters. As a result, we observe an increase in the
number of clusters formed as shown in Fig. 14.

To achieve a quick completion time while not compro-

mising the quality of the resulting clustering, we choose

T ¼5 sec in our FLOC program—and for the rest of this

section. Although T ¼5 sec produces 0.61 probability for

atomicity of elections according to the formula in Section 3

and T ¼5 sec results in five atomicity violations in Fig. 12,

the additional actions in Section 5 ensure that the solid-disc

clustering property is satisfied by every run of the FLOC

program for T ¼5 sec. Fig. 15 shows a resulting partitioning

on a 10-by-10 grid. The arrow at a node points to its

respective clusterhead. There are 16 clusters; each cluster-

head contains at least its i-band neighbors as its members,

that is, solid-disc clustering is observed.

6.1.2 Scalability with Respect to Network Size

In Theorem 1, we showed that the completion time of FLOC

is unaffected by the network size. To corroborate this result

empirically, we simulated FLOC with T ¼5 sec for increas-

ing network size of up to 25-by-25 nodes while preserving

the node density. Fig. 16 shows that the clustering is

achieved in 5 sec regardless of network size.
We also investigated the average number of clusters

constructed (NCC) by FLOC with respect to increasing

network size. An interesting observation is that, NCC for a

given N is predictable; the variance is very small, as seen in

Fig. 17. Since clusters have, on average, around six

members, N=6 gives NCC for our grid topology networks.

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

Fig. 12. Number of atomicity violations versus T. Fig. 13. Messages sent versus T.

Fig. 14. Number of clusters formed versus T.

For a grid of 25-by-25, FLOC constructs around 100 clus-
ters. In the theoretical best case, an omniscient centralized
partitioning scheme (see Theorem 2) could tile this grid with
60 hexagons (with circular radius of

ffiffiffi

3
p

and hexagonal radius
of 2). That is, in practice, FLOC has an overhead of only 1:67
when compared with the best scheme. Note that, in Theorem
2, we have determined that NCC for FLOC is always within 3-
folds of this best scheme.

6.2 Implementation

We implemented FLOC on the Mica2 [19] sensor node
(mote) platform using the TinyOS [10] programming suite.
Our implementation includes actions 1 through 9 and
leaves out the stabilization actions. Our implementation is
about 500 lines of code and available from http://
www.cse.buffalo.edu/~demirbas/floc/.

The Mica2 motes use Chipcon [5] radio CC1000 for
transmission. RSSI at a mote can be obtained using the
CC1000 radio interface in the TinyOS radio stack: RSSI
varies from -53dB to -94dB, the radio interface encodes this
into a 16 bit integer value—the lower the value the higher
the signal strength. By experimenting with an outdoor
environment and comparing power level and reliable range
of reception we chose a transmission power of 7, from a
range of 1 to 255. At a power level 7, we obtain reliable
reception up to 5 meters with RSSI ranging from 0 to 140. By

selecting appropriate thresholds for RSSI, we took m¼2

and divided this 5 meters distance into two equal halves as

the i-band range and o-band range: We considered RSSI

between 0-80 as i-band and 80-140 as o-band.
We performed our experiments at an outdoor parking lot;

Fig. 18 shows a picture of our deployment. To mimic our

simulation topology settings, we arranged 25 Mica2 motes in

a 5-by-5 grid where each mote is 2 meters away from its

immediate North, South, East, and West neighbors. From our

signal strength settings, it follows that, ideally, immediate N,

S, E, W neighbors are i-band neighbors and immediate

diagonal neighbors and 2-unit distance N, S, E, W neighbors

are o-bound neighbors. Based on our simulation results, to

achieve a quick completion time while avoiding network

contention, we chose T ¼5 sec, �¼200 msec.
In our set up, we placed a laptop in the center of the

network to collect status reports from the motes: After the

clustering is completed, every mote temporarily sets its

transmission power to maximum level and broadcasts a

status report. This report indicates the completion time of

the clustering program at the respective mote and whether

the mote is a clusterhead, i-band, or o-band member of a

DEMIRBAS ET AL.: A FAULT-LOCAL SELF-STABILIZING CLUSTERING SERVICE FOR WIRELESS AD HOC NETWORKS 9

Fig. 15. Clusters formed by FLOC on a 10-by-10 grid.

Fig. 16. Completion time versus network size.

Fig. 17. Number of clusters formed versus network size.

Fig. 18. 5-by-5 grid topology deployment.

cluster. In order to avoid collisions, these reports are spread
in time.

We performed over 20 experiments with these settings.
We observed the average number of clusters formed to be 4.
The cluster sizes were reasonably uniform, the average
number of motes per cluster was 6. The average completion
time was 4.5 seconds.

When we increased the internode spacing to 2.5 meters,
with the same settings for signal strength measurements,
the number of clusters increased, as expected, to an average
of 6. The average completion time was again 4.5 seconds.

We observed in our experiments that, due to the
nondeterministic nature of wireless radio communication,
the i-band/o-band membership determination using RSSI is
not always robust. Transmitting candidacy and clusterhead
messages 3 times and using the average RSSI from the
corresponding 3 receptions would make the i-band/o-band
determination more robust. Alternatively, as we discussed
in Section 2, a connectivity service or an audio-based
ranging service can be employed for i-band/o-band
membership determination.

7 RELATED WORK

Several protocols have been proposed recently for cluster-
ing in wireless networks [1], [3], [9], [13], [4].

The Max-Min D-cluster algorithm [1] partitions the
network into d-hop clusters. It does not guarantee solid-
disc clustering and, in the worst case, the number of clusters
generated may be equal to the number of nodes in the
network (for a connected network).

Clubs [13] forms 1-hop clusters: If two clusterheads are
within 1-hop range of each other, then both the clusters are
collapsed and the process of electing clusterheads via
random timeouts is repeated. Clubs does not satisfy our
unit distance solid-disc clustering property: Clusterheads
can share their 1-hop members.

LEACH [9] also forms 1-hop clusters. The energy load of
being a clusterhead is evenly distributed among the nodes
by incorporating randomized rotation of the high-energy
clusterhead position among the nodes. Nodes elect them-
selves as clusterheads based on this probabilistic rotation
function and broadcast their decisions. Each nonclusterhead
node determines its cluster by choosing the clusterhead that
requires the minimum communication energy. LEACH
does not satisfy our solid-disc property: Not all nodes
within 1-hop of a clusterhead j belong to j. Hence, in
LEACH, the clusterheads are susceptible to network
contention induced by members of other clusters. The
authors [9] suggest using different Code Division Multiple
Access (CDMA) spreading codes for each cluster to solve
this problem, however, for most sensor network platforms
(including Mica2), the CDMA mechanism is not available.
FLOC complements LEACH since it addresses the network
contention problem at the clusterheads by constructing
solid-disc clusters. Moreover, LEACH style load-balancing
is readily applicable in FLOC by using the above-mentioned
probabilistic rotation function for determining the waiting-
times for the candidacy announcements at the nodes.

The algorithm in [3] first finds a rooted spanning tree of
the network and then forms desired clusters from the

subtrees. It gives a bound on the number of clusters
constructed and the convergence time is on the order of the
diameter of the network. It is locally fault-tolerant to node
failures/joins but may lead to reclustering of the entire
network for some pathological scenarios.

For a given value of R, the algorithm in [4] constructs
clusters such that all the nodes within R=2 hops of a
clusterhead belong to that clusterhead and the farthest
distance of any node from its clusterhead is 3.5R hops. With
high probability, a network cover is constructed in OðRÞ
rounds; the communication cost is OðR3Þ.

In an earlier technical report [12], we have presented
—under a shared memory model—a self-stabilizing cluster-
ing protocol, LOCI, that partitions a network into clusters of
bounded physical radius ½R;mR� for m � 2. LOCI achieves
a solid-disc clustering with radius R. Clustering is
completed iteratively within OðR4Þ rounds. In a recent
paper [8], we outlined the basic FLOC algorithm. However,
[8] does not include self-stabilization results with respect to
transient state corruption. Also, neither [12] nor [8] contain
the extension to the undirected graph topology.

8 CONCLUDING REMARKS

The properties of FLOC that make it suitable for large scale
wireless ad hoc networks are its: 1) locality, in that each
node is affected only by nodes within m units, 2) scalability,
in that clustering is achieved in constant time independent
of network size and, finally, 3) self-stabilization capability,
in that it tolerates faults and changes locally within m units.

Through simulations and experiments with actual
deployments of Mica2 nodes in a 5-by-5 grid topology, we
analyzed the trade-offs between completion time and the
quality of the resulting clustering and suggested suitable
values for the domain, T , of the randomized candidacy
timer to achieve a fast completion time without compromis-
ing the quality of the clustering. Since, in FLOC, each node
is affected only by nodes within m units, it is sufficient to
experiment with a representative small portion of a network
to determine suitable values for T .

As part of future work, we are planning on integrating
FLOC into our “Line in the Sand” (LITeS) tracking service
[2] to achieve scalable and fault-local clustering. As part of
the DARPA/Network Embedded Systems Technology
project, our research group has already deployed LITeS
over a 100-node sensor network across a large terrain and
achieved detection, classification, and tracking of various
types of intruders (e.g., people, cars) as they moved through
the network. We are also investigating the role of geometric,
local clustering in designing efficient data structures for
evaluation of spatial queries in the context of ad hoc
networks. An interesting direction for future work is to
study our clustering program under the mobile ad hoc
networks model.

ACKNOWLEDGMENTS

This material is based upon work supported by the US
National Science Foundation under Grant No. 0341703 and
The US Defense Advanced Research Projects Agency (DAR-
PA) NEST contract OSU-RF program F33615-01-C-1901.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006

REFERENCES

[1] A. Amis, R. Prakash, T. Vuong, and D. Huynh, “Max-Min d-
Cluster Formation in Wireless Networks,” Proc. IEEE INFOCOM,
pp. 32-41, Mar. 2000.

[2] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik,
V. Mittal, H. Cao, M. Demirbas, M. Gouda, Y.-R. Choi, T.
Herman, S.S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora,
and M. Miyashita, “A Line in the Sand: A Wireless Sensor
Network for Target Detection, Classification, and Tracking,”
Computer Networks J., vol. 46, no. 5, pp. 605-634, Dec. 2004.

[3] S. Banerjee and S. Khuller, “A Clustering Scheme for Hierarchical
Control in Multi-Hop Wireless Networks,” Proc. IEEE INFOCOM,
pp. 1028-1037, Apr. 2001.

[4] J. Beal, “A Robust Amorphous Hierarchy from Persistent Nodes,”
AI Memo 2003-011, MIT, 2003.

[5] Chipcon, Cc1000 Radio Datasheet, www.chipcon.com/files/
CC1000_Data_Sheet_2_2.pdf, 2004.

[6] Y. Choi, M. Gouda, M.C. Kim, and A. Arora, “The Mote
Connectivity Protocol,” Proc. Int’l Conf. Computer Comm. and
Networks (ICCCN ’03), pp. 533-538, Oct. 2003.

[7] B. Dalton and M. Bov, “Audio-Based Self-Localization for
Ubiquitous Sensor Networks,” Proc. Audio Eng. Soc. (AES) 118th
Convention, 2005.

[8] M. Demirbas, A. Arora, V. Mittal, and V. Kulathumani, “Design
and Analysis of a Fast Local Clustering Service for Wireless Sensor
Networks,” Proc. Broadband Wireless Networking Symp. (BroadNets),
pp. 700-709, Oct. 2004.

[9] W.B. Heinzelman, A.P. Chandrakasan, and H. Balakrishnan,
“Application Specific Protocol Architecture for Wireless Micro-
sensor Networks,” IEEE Trans. Wireless Networking, vol. 1, no. 4,
pp. 660-670, Oct. 2002.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System Architecture Directions for Network Sensors,” Proc. Int’l
Conf. Architectural Support for Programming Languages (ASPLOS),
pp. 93-104, 2000.

[11] S. Katz, “A Superimposition Control Construct for Distributed
Systems,” ACM Trans. Programming Language Systems, vol. 15,
no. 2, pp. 337-356, 1993.

[12] V. Mittal, M. Demirbas, and A. Arora, “LOCI: Local Clustering
Service for Large Scale Wireless Sensor Networks,” Technical
Report OSU-CISRC-2/03-TR07, The Ohio State Univ., Feb. 2003.

[13] R. Nagpal and D. Coore, “An Algorithm for Group Formation in
an Amorphous Computer,” Proc. 10th Int’l Conf. Parallel and
Distributed Computing Systems (PDCS), pp. 28-31, Oct. 1998.

[14] D. Niculescu and B. Nath, “DV Based Positioning in Ad Hoc
Networks,” J. Telecomm. Systems, vol. 22, pp. 267-280, 2003.

[15] B. Parkinson and J. Spilker, “Global Positioning System: Theory
and Application,” Am. Inst. of Aeronautics and Astronautics, 1996.

[16] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket
Location-Support System,” Proc. MOBICOM, pp. 32-43, Aug. 2000.

[17] F.B. Schneider, “Byzantine Generals in Action: Implementing Fail-
Stop Processors,” ACM Trans. Computer Systems, vol. 2, no. 2, 1984.

[18] G. Simon, P. Volgyesi, M. Maroti, and A. Ledeczi, “Simulation-
Based Optimization of Communication Protocols for Large-Scale
Wireless Sensor Networks,” Proc. IEEE Aerospace Conf., Mar. 2003.

[19] Crossbow Technology, Mica2, 2004, www.xbow.com/Products/
Wireless_Sensor_Networks.htm.

[20] A. Woo, T. Tong, and D. Culler, “Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks,”
Proc. First ACM Conf. Embedded Networked Sensor Systems, pp. 14-
27, 2003.

[21] J. Zhao and R. Govindan, “Understanding Packet Delivery
Performance in Dense Wireless Sensor Networks,” Proc. First
ACM Conf. Embedded Networked Sensor Systems, pp. 1-13, 2003.

Murat Demirbas received the BTech degree
from the Middle East Technical University,
Ankara, Turkey, in 1997. He received the
Master’s and PhD degrees from The Ohio State
University in 2000 and 2004, respectively. After a
one-year postdoctorate with the Theory of Com-
puting Group at the Massachusetts Institute of
Technology, he is currently an assistant professor
in the Computer Science and Engineering De-
partment at the University at Buffalo (SUNY

Buffalo). His research interests are in the area of distributed systems,
sensor networks, and fault tolerance. He is a member of the IEEE.

Anish Arora received the BTech degree from
the Indian Institute of Technology at New Delhi
and the Master’s and PhD degrees from the
University of Texas at Austin, all in computer
science. He is a professor of computer science
at The Ohio State University. His research is on
fault tolerance, security, and timeliness proper-
ties of systems, especially distributed and
networked systems of large scale. Recent case
studies in his research have centered on sensor

networking and home networking, with support from the US Defense
Advanced Research Projects Agency (DARPA), the US National
Science Foundation (NSF), and Microsoft Research. He is a leading
expert in self-stabilization and has chaired or cochaired seminars and
symposia in this area in 1998, 1999, 2000, and 2002. He is program
cochair of the 25th International Conference on Distributed Computer
Systems. From 1989 to 1992, he worked at Microelectronics and
Computer Technology Corporation (MCC) in Austin, Texas. He is a
senior member of the IEEE.

Vineet Mittal received the Bachelor’s degree in
computer science and technology from the
University of Roorkee, India. He received the
Master’s degree in computer and information
science from The Ohio State University. His
research interests are in wireless networks and
distributed systems. He is currently working at
QUALCOMM Incorporated in the WCDMA/
HSDPA Technologies Group.

Vinodkrishnan Kulathumani is a PhD student
in the Department of Computer Science and
Engineering at The Ohio State University. His
research interests are in distributed systems
and sensor networks. Specifically, his research
focuses on 1) designing robust network track-
ing services for distributed pursuer evader
applications and 2) designing reliable distribu-
ted control application using sensors and
actuators despite faults in the underlying net-

work components and services.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

DEMIRBAS ET AL.: A FAULT-LOCAL SELF-STABILIZING CLUSTERING SERVICE FOR WIRELESS AD HOC NETWORKS 11

