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Abstract—The InfiniBand architecture has been proposed as a technology both for communication between processing nodes and I/O

devices, and for interprocessor communication. Its specification defines a basic management infrastructure that is responsible for

subnet configuration and fault tolerance. Each time a topology change is detected, new forwarding tables have to be computed and

uploaded to devices. The time required to compute these tables is a critical issue, due to application traffic is negatively affected by the

temporary lack of connectivity. In this paper, we show the way to integrate several routing algorithms, in order to combine their

advantages. In particular, we merge a new proposal, characterized by its high computation speed but low efficiency, with a traditional

one, slower but more efficient. Our goal is to provide new routes in a short period of time, minimizing the degradation mentioned before,

and maintaining, at the same time, high network performance.

Index Terms—High-speed LANs, network management, network topology, routing protocols.
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1 INTRODUCTION

THE InfiniBand Architecture (IBA) [8], [14] is a new
standard for high-speed I/O and interprocessor com-

munication in clusters developed by the InfiniBand Trade
Association (IBTA). IBA defines a technology for inter-
connecting processor nodes (hosts) and I/O nodes to form a
system area network. Hosts and I/O units are intercon-
nected using an arbitrary (possibly irregular) switched
point-to-point network, instead of using a shared bus.
Processor nodes can include several CPUs and memory
modules, and they use one or several host channel adapters
(HCAs) to connect to the switch fabric. I/O nodes can have
any structure, from a simple console to a RAID subsystem.
These devices use target channel adapters (TCAs) to
connect to the fabric.

IBA subnets are managed in an autonomous way. There
is a subnet management mechanism capable of assimilating
any topology change without external intervention, guar-
anteeing service availability. The specification defines
various subnet management entities, describing their
functions and the structure of the control packets used to
exchange information among them. An entity called subnet
manager (SM) is in charge of discovering, configuring,
activating, and maintaining the subnet. This entity ex-
changes subnet management packets (SMPs) with the
subnet management agents (SMAs) present in every device.
Fig. 1 shows an example of irregular subnet including these
management entities.

The SM periodically sweeps the subnet searching for
topology changes. Optionally, switch SMAs can inform the

SM about the occurrence of a change by means of trap
messages. In both cases, after a change is detected, the SM
obtains the current subnet topology by exchanging SMPs
with active devices. Once the exploration finishes, it uses
the topological information collected to build the routes
through the subnet. Finally, new forwarding tables (FTs) are
distributed to the subnet switches, concluding the process.

During the entire assimilation process (topology dis-
covery, FT computation, and distribution), there is a lack of
network connectivity, negatively affecting to application
traffic. Fig. 2 shows that the time required to compute new
FTs is the most critical step. The methodology we have used
to obtain these results is presented in the evaluation section.
More details may be found in [2].

In this work, we present a new routing algorithm for IBA
that focuses on reducing paths computation time, even if
the resulting network performance is temporarily sacri-
ficed. Also, we proceed to mix several routing algorithms
(based on the same up*/down* directed graph) to combine
their advantages.

The rest of the paper is organized as follows: First of all,
Section 2 describes the IBA forwarding tables and the up*/
down* routing algorithm and revises several techniques to
obtain up*/down* routes in IBA. In Section 3, we detail our
proposal to compute IBA routes, including its formal
description and some proofs of convergence, connectivity,
and deadlock-freedom. Also, this section describes how we
merge routing algorithms in order to improve network
performance. Then, in Section 4, we evaluate the perfor-
mance of several pure and hybrid algorithms through
several simulation results. Finally, Section 5 gives some
conclusions.

2 BACKGROUND: UP*/DOWN* ROUTING ON IBA

2.1 IBA Forwarding Tables

IBA switches are responsible for relaying packets toward
their destinations by using a DLID (destination local
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identifier) value in the packet header. In order to select the

output port to be used, a switch must support one of two

types of forwarding tables, the random forwarding table

(RFT) and the linear forwarding table (LFT), shown in Fig. 3.
In an RFT, each entry includes an DLID/LMC (LID mask

control) pair, which specifies a range of identifiers from

DLID to DLIDþ 2LMC � 1, and the output port associated to

them. When a DLID is not found into the table, then the

packet is relayed through a predefined default port. On the

other hand, in a LFT, the DLID value is implicit to the

position of the entry into the table. Also, this table can

include up to 16K entries for multicast routing containing a

256-bits mask which specifies the set of output ports for a

multicast packet.
During the distribution process, forwarding table entries

are sent by the SM in 64-entry or 16-entry blocks (a block in

each SMP), depending on the type of table supported by the

destination switch (LFT or RFT).

2.2 Up*/Down* Routing

Up*/down* [15] is probably the most popular deadlock-free
routing algorithm developed for irregular topologies. This
algorithm configures the network as an acyclic directed graph
with a single sink node. For each link, a direction is named up
and the opposite one is named down. As an example, Fig. 4
shows a possible assignment of directions for the topology of
Fig. 1. In this case, link directions have been assigned
according to the distance to the SM of the device at the end
of the link. There are several algorithms in the literature to
build the directed graph; MDST [15], POST [10], DFS [11], and
partial discovery [3] are some of them. Their detailed
descriptions are out of the scope of this paper.

To avoid deadlocks, up*/down* states that legal routes
cannot use a link in the up direction after having used one in
the down direction. In Fig. 4, an example of legal route from
node 7 to node 14 could be 7! 2! 1 3 9 14, but
not 7! 2 6! 3 9 14. The reason is that an un-
allowed down-up transition was used at node 6.

It is relatively easy to compute a set of up*/down* routes
without using down-up transitions if the technology con-
siders the input port when routing packets. That is the case
of Autonet [15] and Myrinet [5]. Autonet explicitly con-
siders the input port into the routing tables. In the case of
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Fig. 1. Example of irregular subnet topology composed of eight switches
and seven end nodes. The location of the SM is highlighted with a
dashed oval. Circled numbers represent the local identifier (LID)
assigned to each subnet device by the SM during the discovery
process. Small numbers at the ends of the links represent switch and
channel adapter port numbers.

Fig. 2. Time required by the subnet management mechanism to update

the subnet routes for a topology change consisting of a switch failure.

Fig. 3. Structure of IBA forwarding tables.



Myrinet, the input port is implicitly used into the source
route. However, IBA does not take into account the input
port when routing packets, and down-up transitions may be
used if we consider routes independently and the directed
graph is not balanced. As an example, suppose the situation
shown in Fig. 5. The path from node n2 to node n1 through
port 1 requires three hops, and the path through port 3
requires four hops. Therefore, the best choice would be to
use the first route. Now, let us consider node n3, connected
to n2 by means of a downward link. This node routes
packets to n1 through n2. The consequence is that an
unallowed down-up transition appears between ports 2 and
1 at node n2, and the network may lead to deadlock.

The solutions to these situations proposed in the
literature [2], [4], [6], [7], [12], [13] can be classified into
two categories. Some techniques sacrifice performance
using paths longer than necessary, in order to guarantee
deadlock-freedom. The alternative consists of differentiat-
ing paths in conflict by increasing resource utilization (as
routing information, virtual channels, etc.). Fully explicit
routing and destination renaming are examples of both
categories, and they are described below.

2.3 Fully Explicit Routing

The Fully Explicit Routing algorithm (FERa) [2] is a Dijkstra-
based routing algorithm that fits InfiniBand constrains. It
takes its name from the fact that it computes all the FT entries
required by each route. As we will see later, another proposal
could take advantage of the utilization of default ports,
reducing the amount of entries computed.

The algorithm works as follows: For each destination
node nd in the subnet, the rest of subnet nodes are
considered. This is done by performing a controlled
flooding and preventing those hops that involve a for-
bidden down-up transition. During this flooding, a new table
entry is added for each visited node nv (if it is a switch),
considering the port used to reach nv as output port for nd.
Also, the length of the route is stored. Then, if a shorter
route is later found, we may discard the first one because
IBA routing is deterministic.

To guarantee that the combination of several routes does
not generate down-up transitions, FERa proceeds as follows:

If, for a given destination, there is any output port in the
down direction, it ignores all the routing options that imply
the use of a link in the up direction, even if they lead to
shorter paths. Then, in the example of Fig. 5, node n2 uses
port 3 to reach n1.

Fig. 6 shows the sequence of table entries that are
computed for the subnet shown in Fig. 1, assuming the
directed graph shown in Fig. 4. When FERa is applied, the
algorithm computes 120 forwarding table entries (15 entries
for each subnet switch).

To conclude, let us analyze FERa complexity. As the
well-known Dijkstra algorithm is Oðn2Þ, the complexity of
FERa, when it is applied to every destination node, is Oðn3Þ.

2.4 Destination Renaming

Destination Renaming (DR) [7] encodes the information
related to the input port in the destination identifier.
Basically, the idea to solve situations as presented in Fig. 5
is to provide several LIDs for the same destination, in order
to differentiate among the conflicting routes. Fig. 7 shows
the same example, after renaming destination n1 at switch
n2. Then, node n2 sends its own packets to n1 through the
shortest route using DLID 20 and relays packets from node
n3 to n1 without using a down-up transition. Destination
renaming can be easily implemented on IBA networks due
to the possibility of assigning multiple virtual LIDs to the
same port (using the LMC value described before).

DR requires that a routing algorithm, which considers
the input port (as happens in Autonet and Myrinet),
computes all paths between any pair of hosts. After that,
every path is sequentially checked, comparing, at each
switch, if it presents a conflict with any other path already
processed. If there is a conflict, then the destination node is
renamed and new forwarding table entries are obtained.

Intuitively, we can see that DR requires much more
resources (memory and computation time) than FERa with
the goal of achieving better performance. To minimize this
effect, DR is only applied to obtain routes between hosts.
Routes with switches acting as source and/or destination
should be obtained by other way.

3 PARTIALLY IMPLICIT ROUTING

As we have described in the previous section, the FER and DR
algorithms compute an individual route for each pair of
subnet nodes. In this section, we present the Partially Implicit
Routing algorithm (PIRa) [4], an alternative mechanism that
reduces the amount of table entries to compute and,
consequently, the global computation time. To achieve this,
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Fig. 4. Directed graph for the subnet shown in Fig. 1.

Fig. 5. Example of unallowed down-up transition when not considering

the input port to route packets.



PIRa groups several routes in each switch by taking

advantage of the existence of a default port. As we have seen,

the default port is used to deliver an incoming packet when

there is no information in the switch forwarding table related
to its DLID.

3.1 Preliminary Definitions and Assumptions

Let GðN;AÞ be the up*/down* directed graph associated to
the subnet topology. Let N be the set of nodes (switches and
hosts) in the subnet. Let A be a set of edges that represent
the links between nodes. For each edge, its direction
corresponds to the up*/down* direction assignment for
the corresponding link. An edge in A from node nx to node
ny will be denoted as ðnx; nyÞ. We assume that, if
ðnx; nyÞ 2 A, then ðny; nxÞ =2 A. By definition, G is an acyclic
directed graph containing only one sink node.

Each node has a set of ports connecting to other nodes.
Let P be the set of ports in the subnet. We will denote as
pyx 2 P the port of node nx connected to node ny. Then,
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Fig. 6. Sequence of steps required to compute a complete set of FERa up*/down* routes for the subnet shown in Fig. 1. Table entries are
represented by means of the LID of the switch where the entry is stored, a destination LID, the output port to use for that destination (a value of 0
means that the switch itself is the destination of the packet and, therefore, it must be delivered to the internal management port), and the distance to
the destination node (in brackets).

Fig. 7. Example of destination renaming.



8ðnx; nyÞ 2 A, pyx; p
x
y 2 P . Additionally, every node nx has an

internal (management) port denoted as px 2 P . For con-
venience, we will assign a direction to each port (except for
internal ports), which corresponds to the up*/down*
direction assignment for the attached link. Let DðpÞ be the
direction of a port p. If ðnx; nyÞ 2 A, then we define
DðpyxÞ ¼ DOWN , and DðpxyÞ ¼ UP , that is, a port direction
is down if it is attached to the down end the link, and vice
versa.

Let FT ðnx; nyÞ be the forwarding table entry at node nx
containing the output port to reach node ny. Initially,
8nx; ny 2 N;FT ðnx; nyÞ is not assigned. Also, let DEF ðnxÞ
be the default routing port at node nx. In the same way,
8nx 2 N;DEF ðnxÞ is not assigned.

3.2 The Algorithm

The base of PIRa is the following one: If we consider the
directed graph that models the subnet, a valid up*/down*
route includes zero or more upward links (i.e., in the up
direction) followed by zero or more downward links. As all
upward segments converge at the sink node of the directed
graph, we can define them by using the default port in each
switch. On the other hand, downward segments are defined
using explicit table entries.

The algorithm requires an exploration of the directed
graph, starting from the sink node. In each step, the process
selects a node n1 for which all the upward links are
connected to previously visited nodes. If n1 is a switch, we
assign as the default port at n1 one of the ports that
connects it to one of the previously visited nodes (say, n2).
Next, a new table entry must be added at n1 for each
additional neighbor that has already been visited (reachable
through upward links). Finally, the process considers
inserting a table entry at each previously visited switch
n3, which will be used to reach n1. This entry selects as
output port the one that n3 uses to reach n2, except when n3
and n1 are neighbors. Note that it is not necessary to add a
new table entry for a switch when the output port selected
is equal to the switch default port. In particular, when n3
does not have any entry to reach n2 (i.e., it uses the default
port), no new entry is added.

Fig. 8 shows the sequence of table entries that are
computed by PIRa for the subnet shown in Fig. 1, assuming
the directed graph shown in Fig. 4. Fig. 9 shows the set of
visited nodes in each step. Note that, in this case, in
addition to seven default ports, the algorithm only
computes 50 table entries. This is a small amount compared
to the 120 entries required by FERa over the same scenario.

Next, we propose a formal definition for the PIR
algorithm:

Let PREV ðnxÞ be the set of neighbors of nx such that the

links connecting those nodes to nx have their down end

attached to a port in nx, that is, 8ny 2 N;ny 2 PREV ðnxÞ iff

DðpyxÞ ¼ DOWN . This set contains the neighbor nodes of nx
that have been visited before visiting nx when computing
the routes.

Let Xi be the set of explored nodes after step i.

Step 1

X1 ¼ {sink}

Step ii

Find nx =2 Xi�1 such that PREV ðnxÞ � Xi�1.

Add nx to the set of explored nodes, that is,

Xi ¼ Xi�1 [ fnxg.
Randomly select a node nf 2 PREV ðnxÞ and set
DEF ðnxÞ ¼ pfx. Let us call nf the father of nx.

Update the forwarding table of nx to reach explored

neighbors, 8ny 2 PREV ðnxÞ; ny 6¼ nf; FT ðnx; nyÞ ¼ pyx.

Update the forwarding tables for the explored neighbors of

nx; 8ny 2 PREV ðnxÞ; FT ðny; nxÞ ¼ pxy .

Update forwarding tables for the rest of explored nodes,

8ny 2 Xi�1 such that

ny=2PREV ðnxÞ; FT ðny; nxÞ ¼ FT ðny; nfÞ.
As described above, each step of PIRa selects a node not

selected before, which interacts with every previously
selected node. Then, the total number of required interac-
tions is

Pn
i¼1 i� 1 ¼ nðn�1Þ

2 and, consequently, the complex-
ity of PIRa is Oðn2Þ.

3.3 Formal Proof

In what follows, we are going to prove that the proposed
algorithm to compute forwarding table entries converges
(i.e., it is able to explore the entire subnet) and delivers a set
of routes that are collectively connected (i.e., they provide a
path from every node to every other node in the subnet)
and deadlock-free.

Lemma 1 (Convergence). XcardðNÞ ¼ N .

Proof. We have to prove that, at each Step i, ifXi�1 6¼ N , it is
possible to find nx =2 Xi�1 such that PREV ðnxÞ � Xi�1.

BERM�UUDEZ ET AL.: FAST ROUTING COMPUTATION ON INFINIBAND NETWORKS 219

Fig. 8. Sequence of steps required to compute a complete set of PIRa
up*/down* routes for the subnet shown in Fig. 1. Table entries are
represented using the criteria applied in Fig. 6.



We proceed by contradiction. Assume that 8nx =2 Xi�1;
PREV ðnxÞ � Xi�1. Then, 9ny 2 PREV ðnxÞ such that
ny =2 Xi�1. If ny satisfies that PREV ðnyÞ � Xi�1, we have
found a node to explore at Step i and we are done.
Otherwise, we continue the search considering ny instead
of nx. By proceeding in this iterative way, and taking into
account that G is finite, in a finite number of steps we will
find:

. A node nz satisfying that nz =2 Xi�1 and PREV ðnzÞ
� Xi�1.

. A sink node not included in Xi�1. This option
contradicts the initial assumption about the
existence of only one sink node in G, which was
included in Xi�1 in the first iteration.

. A previously analyzed node. This contradicts the
initial assumption about the inexistence of cycles
in G.

Therefore, at each Step i, if Xi�1 6¼ N , it is possible to
find nx =2 Xi�1 such that PREV ðnxÞ � Xi�1 and add nx
to the set of explored nodes, that is, Xi ¼ Xi�1 [ fnxg.

This implies that, after cardðNÞ steps, we will have
XcardðNÞ ¼ N . tu

Lemma 2 (Connectivity). The PIR algorithm provides a path

between every pair of nodes.

Proof. Taking into account Lemma 1, we can prove
connectivity by showing that, at every Step i, there is
connectivity among the already explored nodes. We
proceed by induction, proving connectivity to X1; X2 . . .
X1 ¼ fsinkg. Paths are not required in this case.
X2 ¼ fsink; n1g, where n1 is a neighbor of the sink

node. The path between both nodes is set by definition
using the edge connecting them.

Let us assume the connectivity ofXi�1. Now, we have to
prove the connectivity of Xi ¼ Xi�1 [ fnxg. For each
neighbor of nx belonging to Xi�1, a path is established
among them through the edge that connects it tonx. For the
rest of nodes in Xi�1, the algorithm establishes connectiv-
ity from any of those nodes to nx by using the already
existing path to the father ofnx (regardless of whether such
a path uses default ports or not) and adding the edge
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Fig. 9. Example of PIRa flooding. Steps are shown in brackets.



between this node and nx. Note that the edge from the
father ofnx tonx is always a down link and, thus, it does not
contradict the up*/down* routing rules. Similarly, the
algorithm establishes connectivity from nx to the rest of
nodes in Xi�1 by using the already existing path from the
father of nx to the corresponding node (regardless of
whether such a path uses default ports or not) and using
the default port at nx to reach its father. tu

Lemma 3 (Deadlock Freedom). The set of routes generated by

PIRa is deadlock-free.

Proof. Taking into account that G is an acyclic directed
graph and that the up*/down* routing algorithm is
deadlock-free [10], it is enough to prove that a forbidden
down-up transition cannot occur.

We proceed by contradiction. Let us assume that a
down-up transition exists. We denote the implied nodes
as nx  ny ! nz, where arrows indicate link direction
assignment. By definition, for some Step i, ny was added
to Xi after adding nx and nz. Before adding ny to Xi,
connectivity between nx and nz was guaranteed by
Lemma 2. Therefore, nx and nz will not use ny to reach
each other, and paths between them will not use that
forbidden down-up transition. tu

3.4 Hybrid Routing

As we will see in the evaluation section, PIRa is faster than
FERa and DR at the expense of performance. The reason is
that this algorithm favors congestion close to the root of the
up*/down* directed graph. Of course, it is desirable to
maintain both speed and performance at the same time, and
mixing these routing algorithms may be an easy way to
achieve it.

The basic idea is, first, we use PIRa to quickly obtain a set

of valid subnet routes after the occurrence of a topology

change. After that, we could add an additional step to the

change assimilation process in order to restore network

performance. In this way, once a “provisional” set of PIRa

routes have been computed and distributed to switches,

and subnet traffic has been reactivated, the management

mechanism could use either FERa or DR to obtain a better

set of “final” routes.
Additionally, final routes could be dynamically distrib-

uted (i.e., without stopping user traffic) in a deadlock-free

manner. The reason is that provisional and final routes can

coexist without producing deadlocks due to both sets of

routes use a subset of the routes provided by the original

up*/down* routing algorithm.

4 PERFORMANCE EVALUATION

In this section, we compare the three routing approaches

described before (FERa, DR, and PIRa). We have analyzed

their individual properties and the benefits obtained when

they are mixed, attending to the methodology described in

Section 3.4. We have studied their behavior when the

change assimilation process is being performed, as well as

the final network performance provided. The evaluation

has been performed using simulation techniques. Before

showing and analyzing the results we have obtained, we

briefly describe the simulation methodology.

4.1 Simulation Methodology

Our model embodies key physical and link layer features of
IBA, allowing the simulation of various IBA-compliant
network designs. Also, it incorporates the subnet manage-
ment entities and packets defined in the specification. To
develop it, we have used the OPNET Modeler [9] simulation
software. The current model is composed of IBA links, 4-port
fully demultiplexed switches, and end nodes containing a
HCA (hosts). See [1] for more detail.

We have evaluated randomly generated irregular sub-
nets with 8, 16, 24, 32, 48, and 64 switches, assuming that
there is at least a host connected to each switch, if a port is
available. Also, not all switch ports are connected. All the
plots presented here correspond to 1X links; however,
results for different link bandwidths are almost identical.
Logically, differences are clearly appreciated when we
measure packet latency.

In all cases, the amount of operational data virtual lanes
(VLs) per subnet port is 2 (VL0 and VL1). The size of the input
and output buffers associated to each VL is 4,096 bytes. VL
mapping and link arbitration schemes are not relevant for this
work. In this case, for service level (SL) to VL mapping, a
cyclic assignment of VLs is considered. Also, physical links
are assigned to data VLs using a round-robin strategy.

We have considered a packet maximum transfer unit
(MTU) of 256 bytes (the minimum MTU value allowed by
the IBA specification). The packet generation rate is Poisson,
and we have used several packet destination distributions
(uniform, bit-reversal, matrix transpose, and perfect-shuf-
fle). The SL value (from 0 to 15) is randomly generated for
each packet. The traffic load applied is different for each
subnet topology, varying from low loads to saturation.

For each simulation run, after a transient period, we have
programmed a topology change, consisting of the failure of
a switch or link. The experiment is repeated for each switch
and link in the subnet, and average values are shown in the
plots. In order to detect the change as quickly as possible,
traps support is active in all subnet switches. The simula-
tion is stopped once the topology change has been
completely assimilated.

Next, we analyze the time spent in the computation of
the routing tables. After that, we show the performance
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Fig. 10. Time required to compute a set of routes for different subnet
sizes. The values have been empirically obtained by executing the
computation algorithms on an Intel Pentium III (1.06 GHz) processor.



degradation produced by the execution of the change
assimilation process. Finally, we evaluate network perfor-
mance after the topology change.

4.2 Routing Table Computation Time

Fig. 10 shows the time required by the analyzed computa-
tion algorithms to build a complete set of subnet forwarding
tables. In general, PIRa works about five times faster than
FERa, and 10 times faster than DR. Also, as subnet size
increases, disparities become more noticeable due to the
significant differences in the complexity of the algorithms.

Next, Fig. 11 shows the time required by the routing
algorithms to compute the set of routes, integrated between
the subnet exploration task and the forwarding table
distribution task. Results correspond to a topology change
consisting of a switch (Fig. 11a) and link (Fig. 11b) failure,
respectively. Exploration time has been measured from the
moment in which the change is detected, and it is exactly
the same for all the mechanisms. In the plots, “PIRa + FERa”

and “PIRa + DR,” legends refer to the hybrid management
mechanisms introduced in Section 3.4, in which the
distribution of PIRa routes is followed by the computation
and distribution of FERa or DR ones.

Comparing this figure with Fig. 10, we can see as the
time required to compute new forwarding tables deter-
mines the time consumed by the entire management
process. Therefore, DR is the algorithm that spends more
time managing the subnet, followed by FERa. The time
required by PIRa to provide a valid set of new routes is the
shortest one, and it is independent of if it is followed by a
second computation process or not.

Moreover, we may appreciate in the figure that link
failures require slightly longer reconfigurations than switch
failures. The reason is that the remaining topology is bigger
in the first case and reconfiguration time is high dependent
of this parameter (as shown in Fig. 10). In fact, a link failure
does not imply the faulty of the two switches connected to
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Fig. 11. Time required by the subnet management mechanism to update the subnet routes for a change consisting of a switch or link failure. Uniform
traffic. (a) Switch failure and (b) link failure.

Fig. 12. Amount of packets discarded during the change assimilation. Uniform traffic. (a) Switch failure and (b) link failure.



it; whether the switch failure implies the fault of all the links

connected to it. These differences are more appreciable

when considering super-connected topologies, with high

switch degrees.

4.3 Performance Degradation during the Execution

Fig. 12 shows the amount of (link level) data packets that

are discarded during the assimilation of a switch or link

failure. In any case, discarded packets are not reinjected into

the network, assuming that this function is performed by an

upper layer mechanism.
As we can see, the fast computation of PIRa benefits the

entire management process independently of if it is

followed by FERa or DR, considerably reducing the total

amount of discarded packets. Differences are more notice-

able for large subnets. Also, we can appreciate as the

execution of FERa or DR after PIRa does not imply an

important additional packet discarding. The reason is that

FERa (or DR) forwarding tables are distributed without

stopping application traffic, as mentioned in Section 3.4.

Next, Fig. 13 shows packet discarding due to a switch

failure in function of different traffic patterns. Only slight

differences are appreciated. We may conclude that the

particular traffic pattern applied is not relevant, and packet

discarding mainly depends on time spent and network

load. For this reason, from now on, only uniform traffic is

applied.

4.4 Performance Evaluation after the
Topology Change

Fig. 14 shows network performance (latency and through-

put) provided by PIRa, FERa, DR, and their combinations,

in function of subnet size. Curiously, DR provides better

performances than FERa only in a few cases, highlighting

the importance of obtaining well balanced routes instead of

the shortest ones. As we may expect, PIRa provides the

lowest performances. Obviously, the final performance for

the hybrid mechanisms (PIRa + FERa and PIRa + DR) is

very similar to the obtained when FERa and DR are

executed alone.
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Fig. 13. Number of packets discarded during the change assimilation consisting of a switch failure. (a) Uniform, (b) bit-reversal, (c) matrix transpose,

and (d) perfect-shuffle.



5 CONCLUSIONS

The InfiniBand architecture provides a management me-

chanism that allows the subnet to autonomously assimilate

the occurrence of a topology change. The main bottleneck of

this mechanism is the time the subnet manager requires to

compute a deadlock-free set of routes. In this paper, we

have presented and evaluated a way to quickly compute a

valid set of subnet routes. These routes take advantage of
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Fig. 14. Network latency and throughput for different topologies. (a) Eight switches and seven hosts (Fig. 1), (b) 16 switches and 14 hosts, and
(c) 24 switches and 22 hosts.



the existence of a switch default port. The main advantage

of the proposed strategy is that forwarding table entries can

be distributed to subnet switches much earlier. The

consequence is that the negative effects that the change

assimilation process produces over application traffic are

reduced. Once the change has been assimilated, network

performance can be easily restored by computing and

distributing a new set of more efficient paths.
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Fig. 14 (continued). (d) 32 switches and 40 hosts, (e) 48 switches and 64 hosts, and (f) 64 switches and 82 hosts.
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