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Towards a Realistic Task Scheduling Model
Oliver Sinnen, Leonel Sousa, Frode Eika Sandnes

Abstract

Task scheduling is an important aspect of parallel programming. Most of the heuristics for this
NP-hard problem are based on a very simple system model of the target parallel system. Experiments
revealed the inappropriateness of this classic model to obtain accurate and efficient schedules for real
systems. In order to overcome this shortcoming, a new scheduling model was proposed that considers
the contention for communication resources.

Even though the accuracy and efficiency improved with the consideration of contention, the new
contention model is still not good enough. The crucial aspect is the involvement of the processor in
communication. This paper investigates the involvement of the processor in communication and its impact
on task scheduling. A new system model is proposed based on the contention model that is aware of the
processor involvement. The challenges for the scheduling techniques are analysed and two scheduling
algorithms are proposed. Experiments on real parallel systems show the significantly improved accuracy
and efficiency of the new model and algorithms.

Index Terms

Parallel processing, concurrent programming, scheduling and task partitioning, processor involve-
ment, heterogeneous system model

I. INTRODUCTION

Scheduling is an important aspect of efficient parallel computer utilisation. In task scheduling,

the program is represented by a task graph, or Directed Acyclic Graph (DAG), where the nodes

represent the tasks of the program and the edges the communications between the tasks. The

scheduling problem is to find the spatial and temporal assignments of the tasks onto the processors

of the target system which results in the shortest possible execution time of the program. In its

general form, this problem is NP-hard [28], [35]. Many heuristics have been proposed for the

near optimal solution of the problem [3], [4], [12], [14], [19], [22], [26], [37], [38].

Oliver Sinnen is with Dept. of Electrical and Computer Engineering, University of Auckland, Private Bag 92019, Auckland,
New Zealand; Email: o.sinnen@auckland.ac.nz

Leonel Sousa, Senior Member, IEEE, is with INESC-ID, Instituto Superior Técnico, Technical University of Lisbon, Rua
Alves Redol 9, P-1000-029 Lisboa, Portugal; Email: las@inesc-id.pt

Frode Eika Sandnes is with Dept. Computer Science, Faculty of Engineering, Oslo University College, P.O. Box 4, St. Olav
Plass, N-0130 Oslo, Norway. Email: frode-eika.sandnes@iu.hio.no

We would like to thank the anonymous reviewers for their valuable comments and suggestions. This work was partially
supported by Portuguese Foundation for Science and Technology (FCT) through Program FEDER, by FCT and FSE (Fundo
Social Europeu) in the context of III European Framework of Support, and by the European Commission through ARI grant
HPRI-CT-1999-00026 and TMR grant ERB FMGE CT950051 (TRACS Programme at EPCC), which we gratefully acknowledge.



2

Unfortunately, most of the algorithms are based on a very simple system model, which does

not accurately reflect real parallel systems. The main problematic assumptions are: i) a dedicated

subsystem for the interprocessor communication; ii) completely concurrent communication; iii)

a fully connected communication network. The last two assumptions avoid the consideration of

contention for communication resources in task scheduling. Experiments [24], [31] showed that

the consideration of contention is essential for the generation of accurate and efficient schedules.

A contention aware task scheduling strategy that captures end-point and network contention has

been proposed in [34].

Even though the accuracy and efficiency of scheduling was significantly improved through the

consideration of contention in task scheduling, the experiments also demonstrated that there is still

one aspect regarding communication, which is not sufficiently addressed by the new contention

model, namely the involvement of the processors in communication, which is in opposition to

the assumption of a dedicated subsystem for the interprocessor communication.

This paper investigates the involvement of the processor in communication, its impact on task

scheduling and how it can be considered in task scheduling. A new system model for scheduling

that considers the involvement of the processor in communication is proposed based on the

contention model. As a result, the new model is general and unifies the existing scheduling

models. The concept of edge scheduling, used in contention aware scheduling, is extended to the

scheduling of the edges on the processors in order to reflect the processors’ involvement. Since

scheduling under the new model requires the adjustment of the existing techniques, it is shown

how this can be done for list scheduling and a new genetic algorithm based heuristic is proposed.

Experiments are performed which demonstrate the greatly improved accuracy and efficiency of

the schedules produced under the new involvement-contention model.

The remainder of this paper is organised as follows. Section II establishes the background and

definitions of task scheduling under the classic and the contention model. Section III generically

analyses the processor involvement in communication. Based on this analysis, Section IV

investigates the integration of the awareness for the processor involvement in task scheduling.

Section V discusses scheduling heuristics based on the new model. Experimental results are
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presented in Section VI and this paper concludes with Section VII.

II. TASK SCHEDULING

In task scheduling the program to be scheduled is represented by a directed acyclic graph.

Definition 1 (Directed Acyclic Graph (DAG)): A DAG is a directed acyclic graph G =

(V,E, w, c) representing a program P . The nodes in V represent the tasks of P and the edges

in E the communications between the tasks. An edge eij ∈ E represents the communication

from node ni to node nj . The positive weight w(n) associated with node n ∈ V represents its

computation cost and the non-negative weight c(eij) associated with edge eij ∈ E represents its

communication cost.

All instructions, or operations, of one task are executed in sequential order; there is no

parallelism within a task. The nodes are strict with respect to both their inputs and their outputs:

that is, a node cannot begin execution until all its inputs have arrived, and no output is available

until the computation has finished and at that time all outputs are available for communication

simultaneously.

The set {nx ∈ V : exi ∈ E} of all direct predecessors of ni is denoted by pred(ni) and

the set {nx ∈ V : eix ∈ E} of all direct successors of ni, is denoted by succ(ni). A node

n ∈ V without predecessors, pred(n) = ∅, is named source node and if it is without successors,

succ(n) = ∅, it is named sink node.

A. Basis

A schedule of a DAG is the association of a start time and a processor with every node of the

DAG. To describe a schedule S of a DAG G = (V,E, w, c) on a target system consisting of a

set P of dedicated processors the following terms are defined: ts(n, P ) denotes the start time

and ω(n, P ) the execution time of node n ∈ V on processor P ∈ P. Thus, the node’s finish

time is given by tf (n, P ) = ts(n, P ) +ω(n, P ). In a homogeneous system the execution time is

equivalent to the computation cost of the node, thus ω(n, P ) = w(n). In a heterogeneous system

the computation cost w(n) of node n describes its average computation cost. The processor to

which n is allocated is denoted by proc(n). Further, let tf (P ) = maxn∈V:proc(n)=P{tf(n)} be



4

the processor finish time of P and let sl(S) = maxn∈V{tf(n)} be the schedule length (or

makespan) of S, assuming minn∈V{ts(n)} = 0.

For such a schedule to be feasible, the following two conditions must be fulfilled for all nodes

in G.

Condition 1 (Processor Constraint (dedicated processor)): For any two nodes ni,nj ∈ V

proc(ni) = proc(nj) = P ⇒





tf(ni, P ) ≤ ts(nj, P )

or tf(nj, P ) ≤ ts(ni, P )
(1)

Condition 2 (Precedence Constraint (node strictness)): For ni, nj ∈ V, eij ∈ E, P ∈ P,

ts(nj, P ) ≥ tf (eij), (2)

where tf(eij) is the edge finish time of the communication associated with eij , which is defined

later, depending on the model.

The earliest time a node nj ∈ V can start execution on processor P ∈ P, which is constrained

by nj’s entering edges (2), is called the Data Ready Time (DRT) tdr with

tdr(nj, P ) = max
eij∈E,ni∈pred(nj)

{tf (eij)} (3)

and hence

ts(n, P ) ≥ tdr(n, P ) (4)

for all n ∈ V. If pred(n) = ∅, i.e. n is a source node, tdr(n) = tdr(n, P ) = 0, for all P ∈ P.

B. Classic scheduling

Most scheduling algorithms employ a strongly idealised model of the target parallel system [3],

[4], [12], [14], [19], [22], [26], [37], [38]. This model, which shall be referred to as the classic

model, is defined in the following, including a generalisation towards heterogeneous processors.

Definition 2 (Classic System Model): A parallel system Mclassic = (P, ω) consists of a

finite set of dedicated processors P connected by a communication network. The processor

heterogeneity, in terms of processing speed, is described by the execution time function ω.
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This dedicated system has the following properties: i) local communication has zero costs;

ii) communication is performed by a communication subsystem; iii) communication can be

performed concurrently; iv) the communication network is fully connected.

Based on this system model, the edge finish time only depends on the finish time of the origin

node and the communication time.

Definition 3 (Edge Finish Time): The edge finish time of eij ∈ E is given by

tf (eij) = tf(ni) +





0 if proc(ni) = proc(nj)

c(eij) otherwise
(5)

Thus, communication can overlap with the computation of other nodes, an unlimited number

of communications can be performed at the same time, and communication has the same cost

c(eij), regardless of the origin and the destination processor, unless the communication is local.

C. Contention aware scheduling

The classic scheduling model (Definition 2) does not consider any kind of contention for

communication resources. To make task scheduling contention aware, and thereby more realistic,

the communication network is modelled by a graph, where processors are represented by vertices

and the edges reflect the communication links. The awareness for contention is achieved by edge

scheduling [29], i.e. the scheduling of the edges of the DAG onto the links of the network graph,

in a very similar manner to how the nodes are scheduled on the processors.

The details of contention aware scheduling are out of the scope of this paper, the interested

reader should refer to [34]. The network model proposed in [34] captures network [29], [32]

as well as end-point contention [6], [17] and can represent heterogeneous communication links.

This is achieved by using different types of edges and by using switch vertices in addition to

processor vertices. Here, it suffices to define the topology network graph to be TG = (P,L),

where P is a set of vertices representing the processors and L is a set of edges representing the

communication links. The system model is then defined as follows.

Definition 4 (Target Parallel System – Contention Model): A target parallel system MTG =

(TG, ω) consists of a set of possibly heterogeneous processors P connected by the commu-
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nication network TG = (P,L). This dedicated system has the following properties: i) local

communications have zero costs; ii) communication is performed by a communication subsystem.

The notions of concurrent communication and a fully connected network found in the

classic model (Definition 2) are substituted by the notion of scheduling the edges E on the

communication links L. Corresponding to the scheduling of the nodes, ts(e, L) and tf(e, L)

denote the start and finish time of edge e ∈ E on link L ∈ L, respectively.

When a communication, represented by the edge e, is performed between two distinct

processors Psrc and Pdst, the routing algorithm of TG returns a route from Psrc to Pdst:

R = 〈L1, L2, . . . , Ll〉, Li ∈ L for i = 1, . . . , l. The edge e is scheduled on each link of the

route.

This only affects the scheduling of the nodes with an altered definition of the edge finish time

(Definition 3).

Definition 5 (Edge Finish Time – Contention Model): Let G = (V,E, w, c) be a DAG and

MTG = ((P,L), ω) a parallel system. Let R = 〈L1, L2, . . . , Ll〉 be the route for the

communication of eij ∈ E, ni, nj ∈ V, if proc(ni) 6= proc(nj). The finish time of eij is

tf (eij) =





tf(ni) if proc(ni) = proc(nj)

tf (eij, Ll) otherwise
(6)

Thus, the edge finish time tf (eij) is now the finish time of eij on the last link of the route,

Ll, unless the communication is local.

D. Scheduling heuristics

The scheduling problem is to find a schedule with minimal length. As this problem is NP-hard,

under the classic model [28], [35] as well as under the contention model [34], many heuristics

have been proposed for its solution.

A heuristic must schedule a node on a processor so that it adheres to all resource (1) and

precedence constraints (2). The following Condition 3 ensures this. The notion of a free node,

used in the condition, is a node whose predecessors have already been scheduled, which is a

requisite for the calculation of the DRT.
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Condition 3 (Scheduling Condition): Let G = (V,E, w, c) be a DAG and Mclassic = (P, ω)

a parallel system. Let [A,B], A,B ∈ [0,∞], be an idle time interval on P ∈ P, i.e. an interval

in which no node is executed. A free node n ∈ V can be scheduled on P within [A,B] if

max{A, tdr(n, P )}+ ω(n, P ) ≤ B. (7)

So, Condition 3 allows node n to be scheduled between already scheduled nodes (insertion

technique) [18], i.e. [A,B] = [tf (nPl, P ), ts(nPl+1
, P )], or after the finish time of processor P

(end technique) [1], i.e. [A,B] = [tf (P ),∞].

A similar condition is formulated for the scheduling of the edges on the links [34], additionally

considering routing aspects and the causality of the communication along the route.

III. PROCESSOR INVOLVEMENT IN COMMUNICATION

Experimental results demonstrated that the utilisation of the contention aware model in

scheduling heuristics significantly improves the accuracy and efficiency of the produced schedules

[33]. Yet, the experiments also showed that the contention model is still not sufficiently realistic

in terms of communication [31].

The contention model (Definition 4) supposes, as does the classic model (Definition 2),

a dedicated communication subsystem to be present in the target system. With the assumed

subsystem, computations can overlap with communications, because the processor is not involved

in communication. However, many parallel systems do not possess such a subsystem [10].

Therefore, in many systems the processors are involved, in one way or the other, in interprocessor

communication. Furthermore, the involvement of the processor also serialises communication,

even if the network interfaces were capable of performing multiple message transfers at the

same time, since a processor can only handle one communication at a time. For example a

processor can usually only perform one memory copy at a time. Thus, considering the processors’

involvement in task scheduling is of utmost importance as it serialises the communication and,

more importantly, prevents the overlap of computation and communication.
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Fig. 1. The three types of interprocessor communication

A. Involvement types

In the context of the processor involvement, interprocessor communication can be divided into

three basic types: two sided, one sided and third party, as illustrated in Figure 1.

Two sided – In two sided interprocessor communication both the source and the destination

processor are involved in the communication (Figure 1(a)). For example in a PC cluster, the

TCP/IP based communication over the LAN involves both processors. The sending processor

must divide a message into packages and wrap them into TCP/IP protocol envelopes before

setting up the network card for the transfer. On the receiving side, the processor is involved in

the unwrapping and assembling of the packages into the original message [10].

One sided – Communication is said to be one sided, if only one of the two participating

processors is involved (Figure 1(b)). Thus, this type of communication is limited to shared

memory systems: either the source processor writes the data into its destination location (shared

memory “put”) or the destination processor reads the data from its source location (shared memory

“get”). For example, on the Cray T3E a processor can read from or write into remote memory

using special registers [10].

Third party – In third party interprocessor communication, the data transfer is performed by

dedicated communication devices, as illustrated in Figure 1(c). The processor only informs the

communication device of the memory area it wants transfered and the rest of the communication

is performed by the device, usually employing some kind of Direct Memory Access (DMA).

Examples for machines that possess such subsystems are Meiko CS-2 [5] or IBM SP-2 [15].

Task scheduling, both under the classic and under the contention model, assumes the third-party
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type of interprocessor communication (Definitions 2 and 4).

It is important to note that the software layer employed in parallel programming strongly affects

the type of communication used. For example, in a shared memory system, communication can

be one sided, but the software layer might use a common buffer (one processor writes, the other

reads) which turns it into two sided communication. This effect is not uncommon, as shown

by the analysis of MPI implementations on common parallel systems in [16]. Task scheduling

should of course reflect the effective type of involvement, taking into account the software layer

employed in the code generation.

B. Involvement characteristics

The classification of interprocessor communication into three different types can be refined

with the notions of overhead and direct involvement.

Overhead – The first component of the processor’s involvement is the communication setup

or overhead. From the initiation of the communication process until the first data item is put onto

the network, the processor is engaged in preparing the communication. An overhead is in general

also imposed on the destination processor from after the data has arrived until it can be used by

the receiving task. The overhead consists mainly of the path through the communication layers

(e.g. MPI [25], Active Messages [36], TCP/IP) and hence is usually of constant time on both

processors. In some environments, however, data might be copied into and from a buffer, which is

an operation taking time proportional to the data size. Examples are some MPI implementations

as described in [16]. Note, the overhead does not arise for communication between tasks executed

on the same processor. Therefore, it cannot be made part of the computation reflected by the

origin and the destination tasks of the communication.

Direct involvement – After the communication has been prepared by the processor during the

overhead, any further participation in communication is the direct involvement of the processor. It

is characterised by the circumstance that data is already in transit on the communication network.

Figure 2 features both the overhead and the direct involvement of the processor and thereby

illustrates their differences. From now on, the term involvement means the direct involvement of

the processor and the term overhead is used for the pre and post phases discussed above.
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Fig. 2. The decomposing of the processor’s participation in communication into overhead and direct involvement

The distinction between communication types becomes obsolete if the communication is

described in terms of overhead and involvement, even when the processors’ participation is only

partial. Therefore it is assumed that overhead and involvement are imposed on both the source

and the destination processor. Then, one communication type differs from another merely by the

length of the two components. Logically, the involvement time is zero on some processors, namely

on both in third party communication and on one – either the sending or the receiving processor

– in one sided communication. In contrast, the overhead is a common part of interprocessor

communication, independent of the type of communication. Thus, third party communication is

affected just as much as two and one sided communication, in terms of overhead.

The separation into overhead and involvement is also more general than the approach taken

by the LogP model [9] and the computational overhead of communication considered in [28],

which is discussed in detail in [30].

IV. INVOLVEMENT SCHEDULING

The notions of overhead and involvement discussed in the last section are the key concept to

enhance task scheduling towards the awareness of the processor involvement in communication.

In the first step, a new target system model is defined.

Definition 6 (Target Parallel System – Involvement-Contention Model): A target parallel sys-

tem M = (TG, ω, o, i) consists of a set of possibly heterogeneous processors P connected by

the communication network TG = (P,L). This dedicated system has the following property: i)

local communication has zero costs.

So, in comparison with the contention model (Definition 4), the involvement-contention model

departs from the assumption of a dedicated communication subsystem. Instead, the role of the
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processors in communication is described by the new components o – for overhead – and i –

for (direct) involvement.

Let R = 〈L1, L2, . . . , Ll〉 be the route for the communication of edge e ∈ E from Psrc ∈ P

to Pdst ∈ P, Psrc 6= Pdst.

Overhead – os(e, Psrc) is the computational overhead, i.e. the execution time, incurred by

processor Psrc for preparing the transfer of the communication associated with edge e and

or(e, Pdst) is the overhead incurred by processor Pdst after receiving e.

Involvement – is(e, L1) is the computational involvement, i.e. execution time, incurred by

processor Psrc during the transfer of edge e and ir(e, Ll) is the computational involvement

incurred by Pdst during the transfer of e.

This is the general definition of overhead and involvement for heterogeneous arbitrary systems.

Therefore, the overhead is made a function of the processor and the involvement a function of

the utilised communication link. As discussed in the previous section, the overhead depends

largely on the employed communication environment and is thereby normally unaffected by

the utilised communication resources. In contrast, the involvement depends to a large extent on

the capabilities of the utilised communication resources. Hence, the processor involvement is

characterised by the outgoing or incoming link utilised for a communication.

With the distinction between the sending (os, is) and the receiving side (or, ir) of com-

munication, all three types of communication – third party, one sided, two sided – can be

precisely represented. The corresponding functions are simply defined accordingly, e.g. is(e, L) =

ir(e, L) = 0 for involvement-free third party communication.

Note, for homogeneous systems or systems that have homogeneous parts, the definition of

overhead and involvement can be significantly simplified. For example, in a systems with a

homogenous network, the involvement functions can be defined globally, i.e. is,r(e, L) = is,r(e).

A. Scheduling edges on the processors

Incorporating overhead and involvement into contention aware task scheduling is accomplished

by extending edge scheduling so that edges are not only scheduled on the links but also on the

processors.
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So, the start time of an edge e ∈ E on a processor P ∈ P is denoted by ts(e, P ). Let

R = 〈L1, L2, . . . , Ll〉 be the route for the communication of edge e ∈ E from Psrc ∈ P to

Pdst ∈ P, Psrc 6= Pdst. The finish time of e on Psrc is

tf(e, Psrc) = ts(e, Psrc) + os(e, Psrc) + is(e, L1) (8)

and on Pdst it is

tf(e, Pdst) = ts(e, Pdst) + os(e, Pdst) + is(e, Ll). (9)

Figure 3 illustrates scheduling under the involvement-contention model. The execution time

of an edge on a processor is the sum of the overhead and the involvement (see (8) and (9)).

As an edge scheduled on a processor represents computation, precisely the computation

necessary for the communication of the edge, its scheduling must fulfil the processor constraint

as formulated in Condition 1. For a meaningful and feasible schedule, the scheduling of the

edges on the processors must obey this condition:

Condition 4 (Causality in Involvement Scheduling): Let R = 〈L1, L2, . . . , Ll〉 be the route for

the communication of edge eij ∈ E, ni, nj ∈ V, from Psrc ∈ P to Pdst ∈ P, Psrc 6= Pdst.

To assure the node strictness of ni

ts(eij, Psrc) ≥ tf (ni, Psrc). (10)

Edge eij can be transfered on the first link L1 only after the overhead completed on the source
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processor Psrc:

ts(eij, L1) ≥ ts(eij, Psrc) + os(eij, Psrc) (11)

To assure the causality of the direct involvement on the destination processor Pdst

ts(eij, Pdst) ≥ tf(eij, Ll)− ir(eij, Ll). (12)

The three inequalities can be observed in effect in Figure 3. Edge eAB starts on P1 after the

origin node A finishes (inequality (10)). On the first link L1, eAB starts after the overhead finishes

on P1 (inequality (11)), at which time the involvement of P1 begins. And last, eAB starts on P2

so that the involvement finishes at the same time as eij on L2 (inequality (12)).

Condition 4 leaves scheduling algorithms some freedom for the node-edge order on the

processor. An edge leaving a processor does not have to start immediately after the processor

(10) – other edges or nodes can be executed before. The same principle holds on the destination

processor (12).

1) Scheduling: Just as for the scheduling of the nodes on the processors (Section II-D,

Condition 3), a scheduling condition is formulated for the correct choice of an idle time interval

into which an edge can be scheduled on a processor, with either the end or insertion scheduling

technique.

Condition 5 (Edge Scheduling Condition on a Processor): Let G = (V,E, w, c) be a DAG,

M = ((P,L), ω, o, i) a parallel system and R = 〈L1, L2, . . . , Ll〉 the route for the communication

of edge eij ∈ E, ni, nj ∈ V, from Psrc ∈ P to Pdst ∈ P, Psrc 6= Pdst. Let [A,B], A,B ∈ [0,∞],

be an idle time interval on P , P ∈ {Psrc, Pdst}. Edge eij can be scheduled on P within [A,B] if

B − A ≥





os(eij, Psrc) + is(eij, L1) if P = Psrc

or(eij, Pdst) + ir(eij, Ll) if P = Pdst
(13)

B ≥





tf (ni, Psrc) + os(eij, Psrc) + is(eij, L1) if P = Psrc

tf (eij, Ll) + or(eij, Pdst) if P = Pdst
(14)

This condition ensures that the time interval [A,B] adheres to the inequalities (10) and (12)

of the causality Condition 4. For an idle time interval [A,B] adhering to Condition 5, the start
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time of eij on Psrc and Pdst is

ts(eij, P ) =





max{A, tf(ni)} if P = Psrc

max{A, tf(eij, Ll)− ir(eij, Ll)} if P = Pdst
(15)

So, the edge is scheduled as early as possible within the limits of the interval. Of course, the

choice of the interval should follow the same policy on the links and on the processors, i.e. either

end or insertion scheduling should be used.

Note, the size of the involvement does not depend on the contention in the network. The

assumption is that if the processor has to wait to send or receive a communication due to

contention, this wait is passive or non-blocking, which means it can perform other operations in

the meantime.

B. Node and edge scheduling

Few alterations are imposed by the new model on the edge scheduling on the links and on the

scheduling of the nodes.

Edge scheduling on links – The Causality Condition 4 of Involvement Scheduling only

imposes a constraint on the scheduling of an edge on the first link of its communication route.

This is formulated in (11), which requires that edge eij must not start on the first link L1of its

route until after the overhead has finished on the source processor Psrc, ts(eij, L1) ≥ ts(eij, Psrc)+

os(eij, Psrc). In comparison, under the contention model edge eij can start on the first link L1

immediately after its origin node ni has finished, ts(eij, L1) ≥ tf(ni).

Note, the rest of the edge scheduling procedure is completely unaffected by the scheduling of

the edges on the processors and remains unchanged.

Node scheduling – To adapt the scheduling of the nodes to the new model, it is only necessary

to redefine the finish time of the edge.

Definition 7 (Edge Finish Time): Let G = (V,E, w, c) be a DAG and M = ((P,L), ω, o, i) a

parallel system. The finish time of eij ∈ E, ni, nj ∈ V is

tf (eij) =





tf(ni) if proc(ni) = proc(nj)

tf(eij, proc(nj)) otherwise
(16)
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C. NP-completeness

Scheduling under the involvement-contention model remains an NP-hard problem. This is easy

to see, as the involvement model is based on the contention model, which is NP-hard. It is proven

with the straightforward reduction from the NP-complete decision problem C-SCHED(G, MTG)

associated with the scheduling under the contention model [30].

Theorem 1 (NP-Completeness – Involvement-Contention Model): Let G = (V,E, w, c) be a

DAG and M = ((P,L), ω, o, i) a parallel system. The decision problem IC-SCHED(G, M )

associated with the scheduling problem is as follows: Is there a schedule S for G on M with

length sl(S) ≤ T, T ∈ Q+? IC-SCHED(G, M ) is NP-complete.

The formal proof is given in [30].

V. SCHEDULING ALGORITHMS

In contrast to scheduling on the links, the scheduling of the edges on the processors, which

seems at first sight a simple extension, has a strong impact on the operating mode of scheduling

algorithms. Essentially, the problem is that at the time a free node n is scheduled, it is generally

unknown to where its successor nodes will be scheduled. It is not even known if the corresponding

outgoing communications will be local or remote. Thus, no decision can be taken whether to

schedule n’s leaving edges on its processor or not. Later, at the time a successor is scheduled,

the period of time directly after node n might have been occupied with other nodes. Hence, there

is no space left for the scheduling of the corresponding edge. Scheduling under the LogP model

faces the same problem with the scheduling of o for each communication [17].

Two approaches to scheduling under the involvement-contention model are proposed, namely

i) direct scheduling and ii) scheduling based on a given processor allocation. Both approaches

are investigated in the next sections, followed by the proposal of two scheduling heuristics, one

for each approach.

A. Direct scheduling

Direct scheduling means that the processor allocation and the start/finish time attribution of

a node are done in one single step. The application of the scheduling method from contention
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Fig. 4. Direct scheduling: edges are provisionally scheduled on source processor; left and centre chart illustrate intermediate
schedules, right chart the finial schedule of the depicted DAG; os,r(e, P ) = 0.5, is,r(e, L) = 0.75 · (tf (e, L)− ts(e, L))

scheduling is inadequate under the new model, since the decision whether a communication is

remote or local is made too late. Consequently, it is necessary to investigate how edges can be

scheduled earlier.

The most viable solution is to reserve an appropriate time interval after a node for the postponed

scheduling of the leaving edges. This must be done in a worst case fashion, which means the

interval must be large enough to accommodate all leaving edges. A straightforward manner to

do so, is to schedule all leaving edges on the source processor, directly after the origin node.

The scheduling of the edges on the links and the destination processors can take place when the

destination node is scheduled. If the destination node is scheduled on the same processor as the

origin node, the corresponding edge, which was provisionally scheduled with the origin node, is

simply removed from that processor.

Figure 4 shows an example. First, A is scheduled on P1, together with its three leaving edges

(shown in the left chart), hence the worst case that B, C and D are going to be scheduled on

P2 is assumed. Indeed, node B is scheduled on P2, which includes the preceding scheduling of

eAB on the link and on P2. Next, C is scheduled on P1, hence eAC is removed from P2 (centre

chart). Finally, D is scheduled on P2 with the respective scheduling of eAD on the link and P2

(right chart).

On heterogeneous systems, provisional scheduling of an edge on its source processor must take

the fact that the involvement depends on the first link of the utilised route into consideration.

Again, as the route is unknown during the scheduling, the worst case must be assumed. So, the
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provisional finish time of edge eij ∈ E on its source processor P = proc(ni), P ∈ P, is

tf (eij, P ) = ts(eij, P ) + os(eij, P ) + is,max(eij, P ), (17)

where is,max(eij, P ) = maxL∈L:L leaving P{is(eij, L)}. When the destination node nj is scheduled,

the finish time must be reduced, if applicable, to the correct value.

With the reservation of a time interval for the outgoing edges on the processor, the remaining

scheduling can be performed as under the contention model. The disadvantage of this approach is

the gaps left behind by removed edges, which can make a schedule less efficient. This shortcoming

can be relieved using the insertion technique in scheduling. Inserting a node or an edge into a

gap, is very likely to separate edges from their origin or destination node, but this is allowed by

the causality Condition 4. Further, the gaps can be eliminated, i.e. the schedule is compacted, by

repeating the scheduling. In this rescheduling the nodes and their edges must be scheduled in the

exact same order as in the first run, because as under the contention model the scheduling order

of the edges matters. Then, with the processor allocation taken from the completed schedule, the

provisional scheduling of edges becomes obsolete and the gaps are avoided.

B. Scheduling with given processor allocation

The second approach to involvement scheduling assumes a given processor allocation, also

referred to as a mapping, of the nodes to the processors as a prerequisite to the scheduling

procedure. Hence, for every node it is known to where its successors will be scheduled. With a

given mapping, the schedule is constructed with a list scheduling heuristic (Section V-C), where

the processor choice is simply a lookup from the given mapping.

The scheduling of an edge eij can be divided into three parts: scheduling on the source

processor Psrc, on the links of the route R, and on the destination processor Pdst. On the

source processor, an edge must be scheduled together with its origin node ni, as the foregoing

considerations in the context of the direct scheduling showed. The scheduling on the links and

on the destination processor can take place with either the origin node ni or the destination node

nj. Hence, there are three alternatives for the scheduling of an edge eij .
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1. – The first alternative is identical to the approach of direct scheduling, where the edge eij

is scheduled on the links of R and on the destination processor Pdst, when its destination node

nj is scheduled.

2. – In this alternative, eij is not only scheduled on Psrc, but also on the links, when ni is

scheduled. This way, the edges are scheduled on the links of R in the scheduling order of their

origin nodes, while in the first alternative the edges are scheduled on the links in the order of

their destination nodes. There is no clear advantage of the first over the second alternative or

vice versa. Which one is better, i.e. more realistic, depends on the way the communication is

realised in the target parallel system, whether it is initiated by the receiving (first alternative) or

by the sending side (second alternative).

3. – Edge eij is completely scheduled (i.e. on Psrc, R and Pdst), when its origin node ni

is scheduled. This alternative is likely to produce the best scheduling alignment of the edge

on the source processor, the links and the destination processor, as the scheduling is done at

once. Unfortunately, it has the disadvantage that the scheduling of the edges on their destination

processors might prevent the efficient scheduling of the nodes. The early scheduling of the

edges on their destination processors rapidly increases their finish times, leaving large idle gaps.

Therefore, the conjoint scheduling of an edge on all resources is only sensible with the insertion

scheduling technique.

The processor allocation can originate from any heuristic or can be extracted from a given

schedule. For example, a schedule produced under the classic or contention model might serve as

the input. In Section V-D a genetic algorithm is proposed for the determination of the processor

allocation.

C. List scheduling

In this section list scheduling [1] is adapted for the involvement-contention model, using the

direct scheduling approach (Section V-A). In the simple, but common, variant of list scheduling

(Algorithm 1) the nodes are ordered according to a priority in the first part of the algorithm.

The schedule order of the nodes is important for the schedule length and many different priority

schemes have been proposed, e.g. [1], [32], [37]. A common and usually good priority is the
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Algorithm 1 List scheduling
1: B 1. Part:
2: Sort nodes n ∈ V into list L, according to priority scheme and precedence constraints.
3: B 2. Part:
4: for each n ∈ L do
5: Find processor P ∈ P that allows earliest finish time of n.
6: Schedule n on P .

Algorithm 2 Scheduling of node nj on processor P in involvement-contention model
1: for each ni ∈ pred(nj) do
2: if proc(ni) = P then
3: remove eij from P
4: for each ni ∈ pred(nj) in a definite order do
5: if proc(ni) 6= P then
6: determine route R = 〈L1, L2, . . . , Ll〉 from proc(ni) to P
7: correct tf(eij, proc(ni))
8: schedule eij on R
9: schedule eij on P

10: schedule nj on P
11: for each nk ∈ succ(nj) in a definite order do B reserve space for leaving edges
12: schedule ejk on P with worst case finish time

node’s bottom level bl, which is the length of the longest path leaving the node. Recursively bl

is defined as

bl(ni) = w(ni) + max
nj∈succ(ni)

{c(eij) + bl(nj)} (18)

Under the involvement-contention model, and in accordance with the direct scheduling

approach, the scheduling of a node (line 6 in Algorithm 1) is performed as described in

Algorithm 2.

As under the contention model, finding the processor that allows the earliest finish time of a

node involves the tentative scheduling on every processor (line 5 of Algorithm 1), including the

incoming edges on the links and the destination processor. In this way it is possible to consider

the communication contention and the processor involvement in the scheduling decisions.

To determine the start time (i.e. the “schedule” lines in Algorithm 2) of a node or edge on a

processor or link, both the end technique and insertion technique (Section II-D) can be employed

with list scheduling. Under the involvement-contention model, the insertion technique is more
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indicated, since the removing of provisionally scheduled edges leaves gaps (Section V-A), which

should be filled by other nodes or edges.

Compared to contention aware list scheduling, the time complexity under the involvement-

contention model does not increase. The complexity of the second part of list scheduling is

O(P(V+EO(routing))) (end technique) or O(V2+PE2O(routing)) (insertion technique) [30].

O(routing) is the complexity of determining the communication route and scheduling an edge on

this route (lines 6 and 8 of Algorithm 2). In regular networks determining the route is often O(P)

or even O(1) (e.g. central switch or fully connected network). If the route can be determined in

O(1) time (calculated or looked up), then O(routing) is just the complexity of the length of the

route (the edge must be scheduled on each link of the route). For comparison, the complexity

expressions under the classic model are O(P(V+E)) (end technique) and O(V2+PE) (insertion

technique).

D. A genetic scheduling algorithm

In this section a genetic algorithm (GA) based scheduling heuristic is proposed that follows

the approach of using a given processor allocation (Section V-B). Genetic algorithms have been

successfully employed for the scheduling problem, e.g. [2], [7], [13], [21], [27]. A GA is a

search algorithm which is inspired by the principles of evolution and natural genetics [11]. It

begins with an initial population (a set of chromosomes) and then operates through a simple

cycle of stages: evaluation of the chromosomes of the population, stochastic selection of the

best chromosomes and reproduction to create a new population, using crossover and mutation

operators. This process is repeated and terminates after a specified number of generations or

when a time limit is exceeded.

The idea of the proposed heuristic, referred to as Genetic Involvement-Contention Scheduling

(GICS), is that the genetic algorithm searches for an efficient processor allocation, while the

actual scheduling is performed with a list-scheduling based heuristic, where the decision for a

processor is taken from the calculated processor allocation. Below, the components of GICS are

described.
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Chromosome – The chromosome, encoded as an array of size |V|, represents the processor

allocation [7]. Hence, the value of array element i is the index of the processor assigned to node

ni ∈ V.

Initial population – Randomly created chromosomes make the largest part of the initial pool

of chromosomes. In order to avoid the creation of schedules that are slower than the sequential

execution, sequential processor allocations, i.e. all nodes are allocated to one single processor,

are also included. The pool is completed by one allocation extracted from a schedule produced

with a list scheduling heuristic [21]. The chosen list scheduling uses finish time minimisation,

insertion scheduling and the nodes are in bottom-level order (Section V-C).

Evaluation – At each iteration, a schedule is produced for every chromosome, i.e. processor

allocation, with a heuristic based on the list scheduling structure (the decision for the processor

is taken from the chromosome). The heuristic employs the third alternative for the scheduling of

the edges (Section V-B), where an edge is completely scheduled with its origin node. This kind

of edge scheduling requires the insertion technique. To reduce the running time of the evaluation,

the node order is determined only once at the beginning of the algorithm, namely according to

their bottom-levels. The fitness value of each chromosome is the length of its schedule.

Selection – Selection is performed by randomly picking two chromosomes out of the current

pool from which the fitter one goes into the next generation, i.e. so called tournament selection.

This process is repeated until the pool of the next generation has the specified population size.

It is also guaranteed that the fittest chromosome, the one with the shortest schedule, survives.

Crossover – Two new chromosomes, nc1, nc2 are generated from two randomly selected

chromosomes, c1, c2, by swapping the array values of a randomly determined element interval.

Let the interval range from i to j. Outside this interval, i.e. [1, i−1] and [j+1, |V|], the elements

of nc1 have the values of c1 and inside those of c2. For nc2 it is converse.

Mutation – The mutation operator creates a new chromosome by copying a randomly picked

chromosome and swapping the values of two randomly determined array elements. This operation

helps to balance the load, as the number of nodes per processor is not changed. For DAGs with

a high CCR, i.e. with a lot of communication, load balancing is not very promising. The CCR is



22

the communication to computation ratio defined as the sum of all communication costs divided

by the sum of all computation costs, CCR =
P
e∈E c(e)P
n∈V w(n)

. Therefore, if the CCR is high (currently

> 5), the swapping is substituted with an increase or decrease (randomly decided) by one of an

array element.

The complexity of GICS is O(population_size × number_of_generations × (V +

EO(routing))), where the last term is the complexity of list scheduling without the processor

choice (hence without factor P, see Section V-C).

The edge scheduling of GICS is different to the edge scheduling of list scheduling as proposed

in the previous section. Consequently, the comparison of the two heuristics in the following

experiments will also provide some insights regarding the quality of the different edge scheduling

approaches.

Finally, the control parameters which delivered good results and were used in the experiments

are: population size = 100, number of generations = 40 (60 for DAGs with high CCR, see

mutation operator), probability of a chromosome to participate in a crossover = 0.4, probability

of mutation = 0.15.

VI. EXPERIMENTAL RESULTS

For the evaluation of the new involvement-contention model and the two proposed heuristics,

the experimental methodology proposed in [33] is employed. A large set of graphs is generated

and scheduled by algorithms under the different models to several target systems. Code is

generated from the produced schedules, using C and MPI, and executed on the real parallel

systems. The execution times of these codes directly show which algorithms and models produce

the best schedules.

The evaluation is divided into two parts: accuracy and execution time. In the following, only

the most important results are presented, but more experiments and details can be found in [30].

A. Improved accuracy

In [31], the accuracy of the classic and the contention model are examined using the mentioned

methodology. To evaluate the accuracy of the new involvement-contention model, the schedules
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produced in those experiments under classic and the contention model are rescheduled, but

now under the involvement-contention model. The two original heuristics are Cl-LS(bl) – list

scheduling with bottom-level order – as a classic model heuristic, and LS(dls) – list scheduling

with DLS’s node order [29] – as a contention model heuristic. This rescheduling allocates the

nodes to the same processors in the same local order as in the original schedule. Consequently,

the code generated for the schedule under the involvement-contention model would be identical

to the one generated for the original schedule, under the contention model. Hence the execution

time of that code would be identical to the execution time of the original code, which was

already obtained experimentally. By comparing this execution time with the prediction under the

involvement-contention model, the new model’s accuracy is determined.

Three target systems were employed in the experiments: a cluster (BOBCAT) of 16 PCs,

modelled as a switched network; a shared memory multiprocessor system Sun E3500 with 8

processors, modelled as a bus network; a massively parallel system Cray T3E-900 with a total

of 344 processors, modelled as a fully connected network.

Due to the lack of a profound insight into the target systems’ communication mechanisms

and their MPI implementations, 100% involvement is assumed, i.e. the source and destination

processors are involved during the entire communication time on the first and last link,

respectively: is(e, L1) = tf(e, L1)− ts(e, L1) and ir(e, Ll) = tf (e, Ll)− ts(e, Ll). The overhead

is intuitively set to an experimentally measured setup time: os(e, P ) = or(e, P ) = setup_time.

While it is clear that this definition of the overhead and the involvement is probably not an

accurate description of the target systems’ communication behaviour, it is very simple. The idea

is to demonstrate that accuracy and efficiency of scheduling can be improved even with a rough

but simple estimate of the overhead and involvement functions.

1) Results: Figure 5 visualises the average accuracy deviations ∆acc(S) with

∆acc(S) =





acc(S)− 1 if acc(S) ≥ 1

1/acc(S)− 1 if acc(S) < 1
, (19)

where acc(S) is the ratio of the execution time of the code produced for schedule S to its

schedule length sl(S).
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(a) BOBCAT (b) SUN E3500 (c) T3E-900

Fig. 5. Avg. accuracy deviation of Cl-LS(bl) (classic model) [top] and LS(dls) (contention model) [bottom] compared with
rescheduling under the involvement-contention model (invo-cont)

It is immediately apparent from Figure 5 that the accuracy profoundly improved under the

new involvement-contention model. While this improvement is already considerable for low

communication (CCR = 0.1), it is more significant for medium (CCR = 1) and especially so

for high communication (CCR = 10). The length of a schedule is now in a region, where it can

be seriously considered an estimation of the real execution time.

Generally, the difference between the reschedules from the classic model (Cl-LS(bl)) and the

contention model (LS(dls)) on the same system is small. This is desirable, as the origin of the

original schedule should not affect the accuracy under the involvement-contention model.

The scheduling accuracy under the involvement-contention model is still not perfect, especially

for low communication (CCR = 0.1). A possible explanation might be the blocking communic-

ation mechanisms used in MPI implementations [16], which does not match the assumption of

non-blocking communication made in the involvement contention model. Further, the employed

overhead and involvement functions are very rough estimates, a better approximation of these

functions might improve the accuracy. In any case, it is in the nature of any model that there is

a difference between prediction and reality. Under this perspective, the results obtained for the

T3E are very satisfying, which is probably due to the fact that the T3E-900, being a massively
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structure # nodes avg. in/out-degree δ̄ weights

random in-tree 175, 406, 233 (CCR = 0.1, 1, 10) ≈1.0 random

random out-tree 176, 648, 319 (CCR = 0.1, 1, 10) ≈1.0 random

random multiple fork-join 500 1.94 random

Gaussian elimination (e.g. [8]) 495 (n = 31) 1.88 regular

stencil (e.g. [23]) 400 (20 × 20) 2.76 unit

pipeline (e.g. [20]) 500 (25 × 20) 1.86 unit

random 600 ≈2.0 random

TABLE I

WORKLOAD DAGS

parallel system specifically designed for parallel processing, is the most predicatable among the

target systems.

B. Improved execution time

To determine if the new model also produces schedules, which lead to shorter execution times,

new experiments were performed using the mentioned methodology of [33]. As the intention here

is to compare scheduling models and not algorithms, the same heuristic is employed for each

model analysed.

Seven different graph types constitute the DAG workload, listed in Table I. The average in-

degree or the average out-degree (they are identical) of the nodes (δ̄), i.e. the average number of

incoming or outgoing edges, characterises the density of a graph. Three instances of each of the

seven DAGs are generated, one instance with a CCR of 0.1, one with a CCR of 1 and one with

a CCR of 10. To achieve the CCR values in the DAGs with regular weights, the node and edge

weights are scaled accordingly.

These graphs are scheduled by a list scheduling heuristic with the insertion technique, where

the nodes are ordered according to their bottom levels. This algorithm is applied under the classic,

the contention and the involvement-contention model, denoted by “classic”, “cont”, “invo-cont”,

respectively. Using the same algorithm for each model allows the impact of the model on the

quality of the produced schedules to be analysed and compared, without the influence of different

scheduling techniques. Further, in order to evaluate scheduling with a given processor allocation

under the involvement-contention model, the genetic algorithm “GICS” (Section V-D) is utilised.
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(on 8 processors) (on 16 processors)

Fig. 6. BOBCAT: avg. speedups under the three models (speedups are normalised to values under classic model)

(on 4 processors) (on 7 processors)

Fig. 7. Sun E3500: avg. normalised speedups under the three models (speedups are normalised to values under classic model)

Code is generated for the obtained schedules and executed on two different target systems: Sun

E3500 and BOBCAT (Cray T3E-900 was not used, as it simply was taken out of service at the

Edinburgh Parallel Computing Centre before the realisation of the experiments). Both systems

were modelled as in the previous experiments of Section VI-A.

1) Results: Figures 6 and 7 visualise the average normalised speedups of the three different

models on different configurations of the two target systems. Since GICS is based on a different

algorithm (not list scheduling), GICS is treated separately below. The speedup is defined as the

ratio of the sequential time seq(G) =
∑

n∈V w(n) (local communication has zero costs) to the

execution time of the code produced for schedule S.

Low communication (CCR = 0.1) – For a CCR of 0.1, communication is of low significance

compared to the computation costs. Nevertheless, the involvement-contention model noticeably

reduces the execution times – compared to the classic model – on BOBCAT with 16 processors

(average speedup is improved by 9%). With more processors, communication becomes more

important, because it is probable that more communications are performed remotely.
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Medium communication (CCR = 1) – The situation changes for DAGs with medium

communication. Schedules produced under the involvement-contention model have significantly

shorter execution times, with speedup improvements of up to 82% (Gauss elimination). Again,

the improvement increases with the number of the utilised processors.

High communication (CCR = 10) – The highest reduction in the execution time is apparent

in the results of the involvement-contention for DAGs with high communication. Unfortunately,

this reduction is irrelevant: the absolute speedup of the schedules of all models is below 1. Hence,

a parallelisation is meaningless and the sequential execution is indicated.

GICS – Figures 8 and 9 summarise the average normalised speedups of GICS compared to

invo-cont. Not regarding high communication, the execution times of the schedules by GICS are

almost identical to those by invo-cont. This is surprising, as at least a slight improvement was

expected, since one of GICS’s initial chromosomes is the processor allocation of the invo-cont

schedule (Section V-D). Yet, invo-cont and GICS differ in the way they schedule edges: invo-cont

employs the direct scheduling approach (V-A), which corresponds to the first alternative of the

edge scheduling approaches (Section V-B). In contrast, GICS uses the third alternative, which

apparently leads to no improvement by GICS. Hence, the first alternative should be preferred

over the third in scheduling under the involvement-contention model.

GICS’s good results for high communication are due to the fact that sequential processor

allocations are part of its initial population. Indeed, nearly all schedules by GICS for CCR = 10

are (almost) sequential, with an absolute speedup of 1. Thus, neither GICS is able to efficiently

parallelise the DAGs with CCR = 10. However, the accuracy of the involvement-contention

model allows GICS to know that.

2) Discussion: In the experiments conducted, the involvement-contention model clearly

demonstrated its ability to produce schedules with significantly reduced execution times.

Despite the very good results, the efficiency improvement lags behind the accuracy improve-

ment demonstrated in the previous subsection. A possible explanation lies in the employed

heuristic. List scheduling is a greedy algorithm, which tries to reduce the finish time of each

node to be scheduled. Thereby it does not consider the leaving communications of a node, which
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(on 8 processors) (on 16 processors)

Fig. 8. BOBCAT: avg. normalised speedups of cont-invo and GICS (speedups are normalised to values under classic model)

(on 4 processors) (on 7 processors)

Fig. 9. Sun E3500: avg. normalised speedups of cont-invo and GICS (speedups are normalised to values under classic model)

may impede an early start of following nodes. The high importance of communication under the

involvement-contention model seems to demand the research of more sophisticated algorithms

in order to exploit the full potential of this new model.

VII. CONCLUSIONS

This paper investigated the involvement of the processor in communication, its impact on task

scheduling and how to make task scheduling aware of it. First, the different types of processor

involvement and their characteristics were investigated. A new system model was proposed,

which extends the scheduling of the edges on the links to their scheduling on the processors.

This technique can reflect the three types of processor involvement and the distinction between

overhead and direct involvement. Scheduling the edges on the processors has an impact on the

operating techniques of scheduling heuristics. This challenge was investigated and two solutions

were proposed: provisional scheduling and using a given processor allocation. Based on these

solutions, two scheduling algorithms were proposed for the new involvement-contention model:

an adapted list scheduling and a genetic algorithm (GICS). Extensive experiments demonstrated
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that the involvement-contention model significantly improves the accuracy and the execution

time of the produced schedules. The improved accuracy now allows for a useful estimation of

the execution time. In order to achieve further improvements, research into algorithms that are

better at exploiting the new model is needed.
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