
UCLA
UCLA Previously Published Works

Title
Adaptive electrocardiogram feature extraction on distributed embedded systems

Permalink
https://escholarship.org/uc/item/562104xp

Journal
IEEE Transactions on Parallel and Distributed Systems, 17(8)

ISSN
1045-9219

Authors
Jafari, R
Noshadi, H
Ghiasi, S
et al.

Publication Date
2006-08-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/562104xp
https://escholarship.org/uc/item/562104xp#author
https://escholarship.org
http://www.cdlib.org/

Adaptive Electrocardiogram Feature Extraction
on Distributed Embedded Systems

Roozbeh Jafari, Student Member, IEEE, Hyduke Noshadi, Student Member, IEEE,

Soheil Ghiasi, Member, IEEE, and Majid Sarrafzadeh, Fellow, IEEE

Abstract—Tiny embedded systems have not been an ideal outfit for high performance computing due to their constrained resources.

Limitations in processing power, battery life, communication bandwidth, and memory constrain the applicability of existing complex

medical analysis algorithms such as the Electrocardiogram (ECG) analysis. Among various limitations, battery lifetime has been a

major key technological constraint. In this paper, we address the issue of partitioning such a complex algorithm while the energy

consumption due to wireless transmission is minimized. ECG analysis algorithms normally consist of preprocessing, pattern

recognition, and classification. Considering the orientation of the ECG leads, we devise a technique to perform preprocessing and

pattern recognition locally in small embedded systems attached to the leads. The features detected in the pattern recognition phase

are considered for the classification. Ideally, if the features detected for each heartbeat reside in a single processing node, the

transmission will be unnecessary. Otherwise, to perform classification, the features must be gathered on a local node and, thus, the

communication is inevitable. We perform such a feature grouping by modeling the problem as a hypergraph and applying partitioning

schemes which yield a significant power saving in wireless communications. Furthermore, we utilize dynamic reconfiguration by

software module migration. This technique, with respect to partitioning, enhances the overall power saving in such systems. Moreover,

it adaptively alters the system configuration in various environments and on different patients. We evaluate the effectiveness of our

proposed techniques on MIT/BIH benchmarks and, on average, achieve 70 percent energy saving.

Index Terms—Computational biology, ECG analysis, embedded systems, feature extraction.

�

1 INTRODUCTION

THE electrocardiogram (ECG) is the record of variation of
bioelectric potential with respect to time as the human

heart beats. Due to its ease of use and noninvasiveness, ECG
plays an important role in patient monitoring and diag-
nosis. Multichannel electrocardiogram (ECG) data provide
cardiologists with essential information to diagnose heart
disease in a patient. Our primary objective is to address the
feasibility verification of implementing an ambulatory ECG
analysis algorithm with real-time diagnosis functions for
wearable computers. ECG analysis algorithms have always
been very difficult tasks in the realization of computer-
aided ECG diagnosis. Implementation of such algorithms
becomes even harder for small and mobile embedded
systems that should meet the given latency requirements
while minimizing overall energy dissipation for the system.
Distributed embedded systems are successfully deployed in
various wearable computers. Distributed architectures have
been developed for cooperative detection, scalable data
transport, and other capabilities and services. However, the
complexity of algorithms running on these systems has
introduced a new set of challenges associated with resource

constrained devices and their energy concerns. These
obstacles may dramatically reduce the effectiveness of
embedded distributed algorithms. Thus, a new distributed,
embedded, computing attribute, dynamically reconfigur-
able, must be developed and provided to such systems. In
these systems, reconfiguration capability, in particular, may
be of great advantage. This capability can adaptively alter
the system configuration to accommodate the objectives
and meet the constraints for highly dynamic systems.

There have been exciting advances in the development of
pervasive computing technologies in the past few years.
Computation, storage, and communication are now more or
less woven into the fabric of our society with much of the
progress being due to the relentless march of Silicon-based
electronics technology as predicted by Moore’s Law. The
emerging field of flexible electronics, where electronic
components such as transistors and wires are built on a
thin flexible material, offers a similar opportunity to weave
computation, storage, and communication into the fabric of
the very clothing that we wear, thereby creating an
intelligent fabric (also called electronic textiles or e-textiles)
[1]. The implications of seamlessly integrating a large
number of communicating computation and storage re-
sources, mated with sensors and actuators, in close
proximity to the human body are quite exciting; for
example, one can imagine biomedical applications where
biometric and ambient sensors are woven into the garment
of a patient to trigger and modulate the delivery of a drug.
Realizing such novel applications is not just a matter of
developing innovative materials for flexible electronics,
along with accompanying sensors and actuators; the
characteristics of the flexible electronics technology and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006 797

. R. Jafari, H. Noshadi, and M. Sarafzadeh are with the Computer Science
Department, University of California, Los Angeles, Los Angeles, CA
90095. E-mail: {rjafari, hyduke, majid}@cs.ucla.edu.

. S. Ghiasi is with the Department of Electrical and Computer Engineering,
University of California, Davis, Davis, CA 95616.
E-mail: soheil@ece.ucdavis.edu.

Manuscript received 12 July 2005; revised 22 Feb. 2006; accepted 8 Mar.
2006; published online 26 June 2006.
Recommended for acceptance by N. Amato, S. Aluru, and D. Bader.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDSSI-0332-0705.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

the requirements of the applications enabled by it necessi-
tate radical innovation in system-level design. Electronic
components built of flexible materials have characteristics
that are very different from that of silicon and PCB-based
electronics. Further, the operating scenarios of these
systems involve environmental dynamics, physical cou-
pling, resource constraints, infrastructure support, and
robustness requirements that are distinct from those faced
by traditional systems. This unique combination requires
one to go beyond thinking of these systems as traditional
electronic systems in a different form factor. Instead,
rethinking and a complete overhaul of the system archi-
tecture and the design methodology for all layers of these
systems is required.

2 RELATED WORK

Several “wearable” technologies exist to continually moni-
tor a patient’s vital signs, utilizing low cost, well-established
disposable sensors such as blood oxygen finger clips and
electrocardiogram electrodes. The Smart Shirt from Sensa-
tex [2] is a wearable health monitoring device that
integrates a number of sensory devices onto the Wearable
Motherboard from Georgia Tech [3]. The Wearable Mother-
board is woven into an undershirt in the Smart Shirt design.
Their interconnect is a flexible data bus that can support a
wide array of sensory devices. These sensors can commu-
nicate via the data bus to a monitoring device located at the
base of the shirt. The monitoring device is integrated into a
single processing unit that also contains a transceiver.
Several other technologies have been introduced such as
MIThril from MIT [4], e-Textile from Carnegie Mellon
University [5], Wearable e-Textile from Virginia Tech [6],
and CustoMed and RFab-Vest from UCLA [7], [8]. The
Lifeguard project being conducted at Stanford University is
a physiological monitoring system comprised of physiolo-
gical sensors (ECG/Respiration electrodes, Pulse Oximeter,
Blood Pressure Monitor, Temperature probe), a wearable
device with built-in accelerometers (CPOD), and a base
station (Pocket PC). The CPOD acquires and logs the
physiological parameters measured by the sensors [9]. The
Assisted Cognition Project conducted at the University of
Washington’s Department of Computer Science explored
the use of AI systems to support and enhance the
independence and quality of life of Alzheimer’s patients.
Assisted Cognition systems use ubiquitous computing and
artificial intelligence technology to replace some of the
memory and problem-solving abilities that have been lost
by an Alzheimer’s patient [10]. Nevertheless, none of the
above projects/systems supports the concept of scalability
and adapting complex processing algorithms.

3 AUTOMATED FEATURE SET DETECTION

Given the goal of classifying objects based on their
attributes, the functionality of an automated pattern
recognition system can be divided into two basic tasks:
The description task generates attributes of an object using
feature extraction techniques, and the classification task
assigns a group label to the object based on the attributes
with a classifier.

There are two different approaches for implementing a
pattern recognition system: statistical and structural. Each

approach utilizes different schemes within the description
and classification tasks which incorporates a pattern
recognition system. Statistical pattern recognition [11], [12]
concludes from statistical decision theory to discriminate
among data from different groups based upon quantitative
features of the data. The quantitative nature of statistical
pattern recognition, however, makes it difficult to discrimi-
nate among groups based on the morphological (i.e., shape-
based or structural) subpatterns and their interrelationships
embedded within the data. This limitation provided the
impetus for development of structural approaches to
pattern recognition.

Structural pattern recognition [13], [14] relies on syntactic
grammars to discriminate among data from different
groups based upon the morphological interrelationships
(or interconnections) present within the data. Structural
pattern recognition systems are effective for image data as
well as time-series data.

We have investigated an accurate ECG processing algo-
rithm based on structural pattern recognition (as depicted in
Fig. 1) mapped onto our processing units (dot-motes) [15].
The algorithm consists of three stages: preprocessing, pattern
recognition, and classification. We perform preprocessing
and pattern recognition locally, i.e., within close proximity to
the ECG leads. The preprocessing includes filtering, while the
pattern recognition includes heartbeat detection (through the
QRS complex detection), segmentation, as well as feature
extraction. Once the features are extracted, they will be
processed for classification.

The filtering is performed by finite impulse response
(FIR) filters with cut-off frequencies of 5-150 Hz for a
sampling rate of 360 samples/sec. The heartbeat detection is
implemented with a QRS detector based on the algorithm of
Pan and Tompkins [16] with some improvements that
employ slope information. The scheme proposed by Laguna
et al. [17] is used to extract the fiducial points. All offset and
onset points are detected based on the location and
convexity of the R point. We detect each point onset by
locating the largest isoelectric region before the point. Then,
we search for the inflection point followed by largest
negative slope for convex R-wave or largest positive slope
for concave R-wave. We also detect the point offset by
searching for significant up slope following the end of the
last down slope for P, T, and S offsets in particular.
Consequently, features related to heartbeat intervals and
ECG morphology are calculated for each heartbeat. The list
of features is included in Table 1 and are based on [18] and
[19] with minor additions. In addition, a sample filtered
ECG signal which was automatically segmented by our tool
is depicted in Fig. 2.

We extract a total of 23 features from the ECG signals,
and each derives from one of the groups below:

RR Interval Features: We extract four features based on
RR Intervals. The RR interval is the interval between two
successive heartbeat fiducial points, obtained from the
maximum of the R-wave. The pre-RR interval is the RR-
interval between a detected heartbeat and the previous one.
The post-RR interval is the interval between a given
heartbeat and next detected one. The average-RR interval
is the average of all detected RR intervals, and the local
average-RR interval is the average of the 10 most recent RR-
intervals.

798 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

Heartbeat Interval Features: We extract five features
related to heartbeat intervals. QRS duration is the time
between QRS offset and QRS onset. T-wave duration is the
time between T-wave onset and T-wave offset. The PR, ST,
and QT duration are additions to the automated classifica-
tion system. ST duration is the time between S-wave offset
and T-wave onset. The PR duration is the time between P-
wave onset and R. The QT duration is the time between Q-
wave onset and T-wave offset. All of these features are
obtained by first determining the start and end point of
each interval, and then subtracting the end point from the
start point.

Geometric Points: We calculate the signal DC shift level
by taking the average base line of the previous five
successive detected heartbeats. The maximal positive and
the minimal negative peaks are detected by computing the
voltage difference between each sample in the heartbeat
and DC shift level. In addition, we extract the number of
samples in a 70-100 percent range of absolute peak value.
Finally, we compute the slope velocity of Q-onset-R as well
as R-S segments.

ECG Morphology Features: We extract eight features
based on ECG morphologies arranged into four groups.
Two groups consist of samples from heartbeat segments
and two groups consist of samples from fixed intervals.

Within each group, one feature consists of samples from the
original ECG signal, while the other feature is extracted
from the normalized ECG signal. The normalization is done
through scaling down the amplitude of samples by
standard deviation of the same heartbeat.

We extract samples from heartbeat segments in ECG
morphology 1 and 2 (see Fig. 3). In morphology 1, 10 samples
between QRS onset and offset are extracted, and in morphol-
ogy 2, nine samples between S-wave offset and T-wave offset
are obtained. The number of samples collected is also
contingent upon the sampling rate and scales with various
sampling rates accordingly (the aforementioned numbers are
for the original sampling rate of 360 samples per second).

We extract samples from a fixed interval in ECG
morphology 3 and 4 (see Fig. 4). In morphology 3,
10 samples between R� 50ms and Rþ 100ms are extracted,
and in morphology 4, eight samples between between Rþ
150ms and Rþ 500ms are acquired.

For all ECG morphologies, the elements that fall in
between two samples are estimated using linear polariza-
tion. We have repeated such feature extraction for three
input sampling rates of 360, 200, and 100 samples per
second. Three hundred and sixty samples/second is the
original sampling rate for the MIT/BIH [20] benchmarks

JAFARI ET AL.: ADAPTIVE ELECTROCARDIOGRAM FEATURE EXTRACTION ON DISTRIBUTED EMBEDDED SYSTEMS 799

Fig. 1. ECG analysis schematic.

and the sampling rates of 200 and 100 samples/second was
acquired by downsampling the input.

Despite our objective is to minimize the communication
among processing nodes before the classification phase, this
study does not investigate the problem of classification.
Therefore, we did not implement a classifier for our
platform. However, any classifier suitable for constrained
embedded systems may be deployed.

4 SOFTWARE PROFILING

To measure the execution delay of our heartbeat detection

and feature extraction program, we used Avrora [21], a

microcontroller simulator framework developed at the

University of California, Los Angeles. Avrora is a precise

and flexible simulator that preserves all timing and

behavior of the instrumented program, while allowing

800 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

TABLE 1
Features Categorized by Groups

Fig. 2. Automatic ECG segmentation performed on filtered signal.

user-defined profiling of application information. With
Avrora, users can easily profile application-specific infor-
mation such as branch frequency, maximum stack size, and
memory access by adding custom program monitors.

For our experiments, we implemented a program
monitor on Avrora that generates the control flow graph
(CFG) while measuring the execution frequency and delay
of each basic block. Since the CFG of our system is very
large, only the major processes are shown in Fig. 5. The CFG
is dynamically generated based upon our compiled and
assembled ECG program, while Avrora simulates the
program execution. Unlike static analysis, parts of a
program that are not executed during the simulation will
not be accounted for. Also, the generated graph will
accurately reflect compiler optimizations. Hardware inter-
rupts, which occur intermittently during execution, are
accounted for as well.

Delay analysis for each function is performed during CFG
generation for practicality since basic block information may
be too detailed. Function delay is measured as the duration
when execution enters a function to when execution exits.
Calls to other functions are accounted for, while interrupts are
not. Since execution delay may be inconsistent due to
functions containing different execution paths, the average
function delay is gathered from each execution instance.
However, for our purposes, the functions that extract features
from heartbeat signals all consist of a single execution path.
Therefore, we lost no precision in our analysis. The delays of
feature detection modules for sampling rate of 360 samples/
second are illustrated in Fig. 6.

5 TARGET ARCHITECTURE MODEL

Networked sensor nodes containing constrained, often
battery-powered, embedded computers can densely sample
phenomena that were previously difficult or costly to
observe. Sensor nodes can be placed anywhere on a
patients’ body. Due to the mobility of such systems,
wireless sensor networks are expected to be both autono-
mous and long-lived, surviving environmental hardships
while conserving energy as much as possible.

It is well-known that the amount of energy consumed for
a single wireless communication of one bit can be many
orders of magnitude greater than the energy required for a
single local computation [22]. Thus, we focus on the energy
used for wireless communication. In our model, since all
nodes are placed within close proximity of each other, we

assume they communicate directly and multihop commu-
nication is not required. Therefore, the total energy
consumed for in-network processing is:

"ðnÞ ¼ bðnÞ � eðnÞ; ð1Þ

where bðnÞ is the number of packets transmitted and eðnÞ is
the average amount of energy required to transmit one
packet. In our design, we consider the Collision Free Model
(CFM), which simplifies the programming by abstracting
out all of the details of low level channel contention and
packet collision from the algorithm designers. By abstract-
ing reliable communication as an atomic operation, pro-
gramming based on CFM bears a resemblance to existing
algorithm design in parallel and distributed computation.
CFM does not really capture the impact of packet collision
that distinguishes wireless communication from wired
communication, which makes performance analysis under
CFM not very accurate. However, for the sake of simplicity,
we consider CFM in our design.

6 DYNAMIC RECONFIGURATION

Sensor nodes are composed of embedded systems as well as
general-purpose software, introducing a tension between
resource and energy constraints and the layers of indirec-
tion required to support true general-purpose operating
systems. TinyOS [23], the state-of-the-art sensor operating
system, tends to prioritize embedded system constraints
over general-purpose OS functionality. TinyOS consists of a
collection of software components written in the NesC
language [24], ranging from low-level parts of the network
stack to application-level routing logic. Our target operating
system, SOS, is a new operating system for mote-class
sensor nodes that takes a more dynamic point on the design
spectrum [25]. SOS consists of dynamically-loaded modules
and a common kernel, which implements messaging,
dynamic memory, and module loading and unloading,
among other services. Dynamic reconfigurability is one of
our primary assumptions. In the domain of embedded
computing, reconfigurability is the ability to modify the
software on individual nodes of a network after the
network has been deployed and initialized. This provides
the ability to incrementally update the sensor network after
it is deployed, add new software modules, and remove
unused software modules when they are no longer needed.

JAFARI ET AL.: ADAPTIVE ELECTROCARDIOGRAM FEATURE EXTRACTION ON DISTRIBUTED EMBEDDED SYSTEMS 801

Fig. 3. The sampling intervals of ECG morphologies 1 and 2. Morphology 1
consists of samples extracted from QRS onset and offset. Morphology 2
consists of samples from S-wave offset and T-wave offset.

Fig. 4. The sampling intervals of ECG morphologies 3 and 4. Morphology 3

consists of samples between 50 ms before and after the fiducial point

(FP). Morphology 4 consists of samples between 150 ms and 500 ms after

the fiducial point.

The growing tensions between large, hard to update
networks and complex applications with incremental
patches has made reconfigurability an issue that can no
longer be ignored. SOS supports a mechanism that enables
over the air reprogramming of the sensor nodes. Using this
method, software modules may be modified, added, or
removed.

7 FEATURE SET PARTITIONING

A hypergraph is a generalization of a graph, where the set
of edges is replaced by a set of hyperedges. A hyperedge
extends the notion of an edge by allowing more than two
vertices to be connected by a hyperedge. Formally, a
hypergraph H ¼ ðV ;EhÞ is defined as a set of vertices V
and a set of hyperedges Eh, where each hyperedge is a
subset of the vertex set V [26], and the size a hyperedge is
the cardinality of this subset. Let wi denote the weight of
vertex vi 2 V . A K-way vertex partition � ¼ fV1; V2; . . . ; Vkg
of H is said to be balanced with an overall load imbalance
tolerance �� 1 if each Vi satisfies the following equation:

Wk �Wavgð1þ �Þ; for k ¼ 1; 2; . . . ; K; ð2Þ

where

Wk ¼
X
vi2Vk

wi ð3Þ

Wavg ¼
X
vi2V

wi

 !
=K: ð4Þ

In a partition of H, a hyperedge that has at least one
vertex in a partition is said to connect that partition.
Connectivity set �j of a hyperedge ej is defined as the set of

802 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

Fig. 5. Graph generated from profiling analysis containing only major blocks required for feature extraction.

Fig. 6. Delays corresponding to ECG feature detection modules

extracted in profiling phase.

partitions connected by ej. Connectivity �j ¼ j�jj of a

hyperedge ej denotes the number of partitions connected

by ej. A hyperedge hj is said to be cut (external) if it

connects more than one partition (i.e., �j > 1), and uncut

(internal) otherwise (i.e., �j ¼ 1). Therefore, the definition of

cut-size is as follows:

cutsizeð�Þ ¼
X
ej2Eh

ð�j � 1Þ: ð5Þ

Hence, the cutsize is equal to the number of cut nets. The
hypergraph partitioning is defined as dividing it into two or
more parts such that the cutsize is minimized, while a given
balance criterion among the partition weights is achieved.
The hypergraph partitioning problem is known to be NP-
hard [27].

During the software partitioning, it is quite important to be
able to divide the system specification into clusters so that the
intercluster (intermote) connections are minimized. Hyper-
graphs can be used to naturally represent feature extraction

JAFARI ET AL.: ADAPTIVE ELECTROCARDIOGRAM FEATURE EXTRACTION ON DISTRIBUTED EMBEDDED SYSTEMS 803

TABLE 2
Benchmark Statistics

algorithms. The vertices of the hypergraph are modeled as
features, their weights represent the computational time
required for features detection, and the hyperedges resemble
the number of times a set of features is triggered simulta-
neously. Partitioning the graph such that the cut-size is
minimized while the partitions are balanced can reduce the
communication that is required among various processing
units for classification phase. The vision is that all features
selected must be classified at a local node, thus, in the events
where selected features reside on distributed nodes, inter-
node communication is inevitable. A high quality hyper-
graph partitioning algorithm greatly affects the feasibility,
quality, and the cost of the resulting system.

We employed a hypergraph partitioning algorithm that
is based on the multilevel paradigm. In the multilevel
paradigm, a sequence of successively coarser hypergraphs
is constructed. A bisection of the smallest hypergraph is
computed and used to obtain a bisection of the original
hypergraph by successively projecting and refining the
bisection to the next level finer hypergraph. We have used

hMETIS, a program for partitioning hypergraphs imple-

mented for PCs [28]. The same algorithm can be easily

ported on a mobile computer such as a Pocket PC to

facilitate dynamic reconfiguration. The vision is that the

hypergraph information is collected real-time from the

processing nodes of the wearable computer. Subsequently,

the algorithm running on the motes are reconfigured. The

number of partitions is determined as described below:
The preprocessing tasks, as well as pattern recognition,

must be completed before the next heartbeat arrives. Let the

heartbeat be N beats per minute (bpm). Therefore, the

heartbeat rate period can be obtained from:

Theartbeat ¼ 60=N: ð6Þ

Let the time required for preprocessing and pattern

recognition be tpre and trecog, respectively.

tpre þ trecog < � � ðTheartbeatÞ; where � < 1: ð7Þ

804 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

TABLE 3
Number of Queries Exchanged among Processing Units:

Sampling Rate = 360 Sample/Sec

TABLE 4
Number of Queries Exchanged among Processing Units:

Sampling Rate = 200 Sample/Sec

The factor � is selected to be 0:9 to ensure a margin that
prevents overloading the processing units. Therefore, the
maximum CPU time that may be assigned to pattern
recognition is � � ðTheartbeatÞ � tpre, where tpre is fixed and
can be computed from the profiling stage. As described
earlier, the weight on vertices represents the required
computational time for each feature. In addition, Wk is
already outlined in (4). Therefore, the following objective
should be accommodated:

Minimize K
s:t:

Wk < trecog 8k ¼ 1::K:
ð8Þ

To determine the value of K, we consider the total time
required for pattern recognition on all features, Trecog
(extracted from profiling analysis). It is trivial that the
lowerbound on K can be obtained from the following
equation:

K ¼ Trecog=trecog: ð9Þ

Once partitioning is performed based on the value of K, the
solution may be imbalanced and violates the constraint
described in (8). In this case, K must be incremented and
the features are repartitioned until a feasible solution is
determined.

8 SIMULATION ANALYSIS

This section presents various simulation analysis performed
to exhibit the effectiveness of our technique. All experi-
ments were carried out with ECG signals from MIT-BIH
Arrhythmia database. The MIT-BIH Arrhythmia database
contains 48 half-hour excerpts of two-channel ambulatory
ECG recordings, obtained from 47 subjects studied by the
BIH Arrhythmia Laboratory between 1975 and 1979. The
recordings were digitized at 360 samples per second per
channel with 11-bit resolution over a 10 mV range. We used
all 48 complete records freely available from PhysioNet [29].
We also repeated the experiments by downsampling all the
benchmarks to 200 and 100 samples per second. As
illustrated in Table 2, each MIT-BIH record has the
recordings of two channels. Yet, we only used the first
channel. The second channel was not used for the sake of
simplicity. Originally, in MIT/BIH benchmarks, the electro-
des placed on the chest were selected due to their small
noise level.

We performed profiling analysis on the algorithm
described in Section 3 using Avrora to compute the
computational delay of feature detection modules. The
ECG algorithm was ported both for dot-motes (SOS) and
PCs. The algorithm for PC was written in C language. The
simulation for feature and hypergraph extraction was done
on PC due to a number of software instability that we
encountered in SOS. As for hypergraph partitioning, we
utilized hMETIS. The MIT/BIH benchmarks were used
with three sampling rates as illustrated in Tables 3, 4, and 5.
The original sampling rate was 360 samples/sec while 200
and 100 samples/sec were acquired by downsampling the
data. In Tables 3, 4, and 5, two scenarios for configuration
were considered. In one scenario, features were adaptively
assigned to processing units based on hypergraph parti-
tioning (adaptive partitioning). In the other scenario, the
optimized configuration was determined using hypergraph

partitioning on benchmark 100 and remained fixed
throughout our experiments (fixed configuration). The
number of partitions were obtained from (9) for each
benchmark. Table 3 figures the number of queries ex-
changed in both scenarios. Considering that the experi-
ments were carried out through simulations, we were
unable to measure the wireless power consumption.
However, given the number of features we examined—23,
each query may be incorporated in a wireless packet of dot-
motes (30 bytes). Therefore, taking into account (1), the
wireless power consumption is proportional to the number
of queries exchanged. On average, the communication
energy consumption was reduced by approximately 70 per-
cent in all sets of experiments. The wireless communication
overhead for partitioning was negligible due to the small
size, sparsity, and slowly changing nature of our hyper-
graphs. The reconfiguration was performed only once for
each benchmark. Therefore, its effect on the performance of
the system was negligible.

JAFARI ET AL.: ADAPTIVE ELECTROCARDIOGRAM FEATURE EXTRACTION ON DISTRIBUTED EMBEDDED SYSTEMS 805

TABLE 5
Number of Queries Exchanged among Processing Units:

Sampling Rate = 100 Sample/Sec

9 CONCLUSION

We proposed a technique for software partitioning in tiny

embedded systems. Our target application was an ECG

analysis algorithm which is generally classified as a

complex medical application. We addressed the problem

of mapping such an application onto resource constrained

embedded systems while extending the lifetime of the

system. This was achieved by reducing the energy

consumption due to the wireless communications. We

demonstrated the effectiveness of our technique on various

ECG excerpts from MIT/BIH benchmarks. On average, the

energy consumption rate was reduced by 70 percent.

REFERENCES

[1] D. Meoli and T. May-Plumlee, “Interactive Electronic Textile
Development: A Review of Technologies,” J. Textile and Apparel,
Technology and Management, vol. 2, no. 2, 2002.

[2] Sensatex, http://www.sensatex.com, 2006.
[3] S. Park, K. Mackenzie, and S. Jayaraman, “The Wearable Mother-

board: A Framework for Personalized Mobile Information
Processing (PMIP),” Proc. 39th Design Automation Conf., pp. 170-
174, 2002.

[4] R. DeVaul, J.G.M. Sung, and A. Pentland, “Mithril 2003:
Applications and Architecture,” Wearable Computers, Proc. Seventh
IEEE Int’l Symp., pp. 4-11, 2003.

[5] D. Marculescu, R. Marculescu, and P. Khosla, “Challenges and
Opportunities in Electronic Textiles Modeling and Optimization,”
Proc. 39th Design Automation Conf., pp. 175-180, 2002.

[6] T. Martin, M. Jones, J. Edmison, and R. Shenoy, “Towards a
Design Framework for Wearable Electronic Textiles,” Wearable
Computers, Proc. Seventh IEEE Int’l Symp., pp. 190-199, 2003.

[7] R. Jafari, A. Encarnacao, A. Zahoory, F. Dabiri, H. Noshadi, and
M. Sarrafzadeh, “Wireless Sensor Networks for Health Monitor-
ing,” MobiQuitous ’05: Proc. Second Ann. Int’l Conf. Mobile and
Ubiquitous Systems, 2005.

[8] R. Jafari, F. Dabiri, P. Brisk, and M. Sarrafzadeh, “Adaptive and
Fault Tolerant Medical Vest for Life-Critical Medical Monitoring,”
SAC ’05: Proc. 2005 ACM Symp. Applied Computing, pp. 272-279,
2005.

[9] Lifeguard Monitoring System, http://lifeguard.stanford.edu,
2006.

[10] H. Kautz, O. Etzioni, D. Fox, and D. Weld, “Foundations of
Assisted Cognition Systems,” technical report, Univ. of Wa-
shington, Computer Science Dept., 2003.

[11] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, second
ed., John Wiley and Sons, Inc., Jan. 2000.

[12] A.K. Jain, R.P.W. Duin, and J. Mao, “Statistical Pattern Recogni-
tion: A Review,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 1, pp. 4-37, 2000.

[13] A. Graps, “An Introduction to Wavelets,” IEEE Computational
Sciences and Eng., vol. 2, no. 2, pp. 50-61, 1995.

[14] T. Pavlidis, Structural Pattern Recognition, series in electrophysics,
Springer-Verlag, vol. 1, 1977.

[15] Crossbow Technology Inc., http://www.xbow.com, 2006.
[16] J. Pan and W.J. Tompkins, “A Real-Time QRS Detection

Algorithm,” IEEE Trans. Biomedical Eng., vol. 32, no. 3, pp. 230-
236, 1985.

[17] P. Laguna, R.G. Mark, A. Goldberger, and G.B. Moody, “A
Database for Evaluation of Algorithms for Measurement of QT
and Other Waveform Intervals in the ECG,” pp. 673-676, 1997.

[18] P. de Chazal, M. O’Dwyer, and R.B. Reilly, “Automatic
Classification of Heartbeats Using ECG Morphology and Heart-
beat Interval Features,” IEEE Trans. Biomedical Eng., vol. 51, no. 7,
pp. 1196-1206, 2004.

[19] I. Christov and G. Bortolan, “Ranking of Pattern Recognition
Parameters for Premature Ventricular Contractions Classification
by Neural Networks,” Physiological Measurement, vol. 25, no. 5,
pp. 1281-1290, 2004.

[20] G.B. Moody and R.G. Mark, “The MIT-BIH Arrhythmia Database
on CD-ROM and Software for Use with It,” Computers in
Cardiology, pp. 185-188, 1990.

[21] B.L. Titzer, D. Lee, and J. Palsberg, “Avrora: Scalable Sensor
Network Simulation with Precise Timing,” IPSN ’05, Proc. Fourth
Int’l Conf. Information Processing in Sensor Networks, 2005.

[22] V. Shnayder, M. Hempstead, B. Rong Chen, G.W. Allen, and M.
Welsh, “Simulating the Power Consumption of Large-Scale Sensor
Network Applications,” SenSys ’04: Proc. Second Int’l Conf.
Embedded Networked Sensor Systems, pp. 188-200, 2004.

[23] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E.
Brewer, and D. Culler, “The Emergence of Networking Abstrac-
tions and Techniques in Tiny OS,” Proc. First Symp. Networked
System Design and Implementation (NSDI ’04), pp. 1-14, 2004.

[24] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D.
Culler, “The NESC Language: A Holistic Approach to Networked
Embedded Systems,” PLDI ’03: Proc. ACM SIGPLAN 2003 Conf.
Programming Language Design and Implementation, pp. 1-11, 2003.

[25] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A
Dynamic Operating System for Sensor Nodes,” MobiSys ’05: Proc.
Third Int’l Conf. Mobile Systems, Applications, and Services, pp. 163-
176, 2005.

[26] S. Dutt and W. Deng, “A Probability-Based Approach to VLSI
Circuit Partitioning,” DAC ’96: Proc. 33rd Ann. Conf. Design
Automation, pp. 100-105, 1996.

[27] M.R. Garey and D.S. Johnson, Computers and Instractability: A
Guide to the Theory of NP-Completeness. San Francisco, Calif.: W.H.
Freeman, 1979.

[28] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
Hypergraph Partitioning: Application in VLSI Domain,” DAC ’97:
Proc. 34th Ann. Conf. Design Automation, pp. 526-529, 1997.

[29] “Physiobank—Physiologic Signal Archives for Biomedical Re-
search,” http://www.physionet.org/physiobank/, 2006.

Roozbeh Jafari received the BSc degree in
electrical engineering in 2000 from the Sharif
University of Technology, Tehran, Iran. He
received the MSc degree from the State
University of New York at Buffalo in electrical
engineering in 2002. He then joined the Uni-
versity of California, Los Angeles, where he
received the MS degree in computer science in
2004 and he is currently pursuing his PhD
degree in computer science. He is mainly

interested in embedded system design and analysis and medical and
biological applications. He is a student member of the IEEE.

Hyduke Noshadi received the BSc degree in
computer science from the University of Califor-
nia, Los Angeles (UCLA) in 2006. He is currently
working toward the MSc degree in computer
science. His research interest is in embedded
system design and analysis. He is a student
member of the IEEE.

806 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 8, AUGUST 2006

Soheil Ghiasi recieved the BS degree from the
Sharif University of Technology, Tehran, Iran, in
1998, and the MS and PhD degrees in computer
science from the University of California, Los
Angeles (UCLA) in 2002 and 2004, respectively.
He received the Harry M. Showman prize from
the UCLA College of Engineering in 2004.
Currently, he is an assistant professor in the
Department of Electrical and Computer Engi-
neering at the University of California, Davis. His

research interests include different aspects of embedded and reconfi-
gurable system design. He is a member of the IEEE.

Majid Sarrafzadeh (M’87, SM’92, F’96) (http://
www.cs.ucla.edu/majid) received the BS, MS,
and PhD degrees in 1982, 1984, and 1987,
respectively, from the University of Illinois at
Urbana-Champaign in electrical and computer
engineering. He joined Northwestern University
as an assistant professor in 1987. In 2000, he
joined the Computer Science Department at the
University of California at Los Angeles (UCLA).
His recent research interests lie in the area of

embedded and reconfigurable computing, VLSI CAD, and design and
analysis of algorithms. Dr. Sarrafzadeh is a fellow of the IEEE for his
contribution to “Theory and Practice of VLSI Design.” He is also a
member of the IEEE Computer Society. He received a US National
Science Foundation Engineering Initiation award, two distinguished
paper awards in ICCAD, and the best paper award in DAC. He has
served on the technical program committee of numerous conferences in
the area of VLSI Design and CAD, including ICCAD, DAC, EDAC, ISPD,
FPGA, and DesignCon. He has served as a committee chair of a
number of these conferences. He is on the executive committee/steering
committee of several conferences such as ICCAD, ISPD, and ISQED.
Professor Sarrafzadeh has published approximately 250 papers, is a
coeditor of the book Algorithmic Aspects of VLSI Layout (World
Scientific, 1994), and coauthor of the books An Introduction to VLSI
Physical Design (McGraw Hill, 1996) and Modern Placement Techni-
ques (Kluwer, 2003). Dr. Sarrafzadeh is on the editorial board of the
VLSI Design Journal, an associate editor of ACM Transactions on
Design Automation (TODAES), and an associate editor of the IEEE
Transactions on Computer-Aided Design (TCAD).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JAFARI ET AL.: ADAPTIVE ELECTROCARDIOGRAM FEATURE EXTRACTION ON DISTRIBUTED EMBEDDED SYSTEMS 807

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

