
Assisted Peer-to-Peer Search
with Partial Indexing

Rongmei Zhang, Member, IEEE, and Y. Charlie Hu, Senior Member, IEEE

Abstract—In the past few years, peer-to-peer (P2P) networks have become a promising paradigm for building a wide variety of
distributed systems and applications. The most popular P2P application till today is file sharing, e.g., Gnutella, Kazza, etc. These
systems are usually referred to as unstructured, and search in unstructured P2P networks usually involves flooding or random
walking. On the other hand, in structured P2P networks (DHTs), search is usually performed by looking up a distributed inverted
index. The efficiency of the search mechanism is the key to the scalability of a P2P content sharing system. So far, neither
unstructured nor structured P2P networks alone can solve the search problem in a satisfactory way. In this paper, we propose to
combine the strengths of both unstructured and structured P2P networks to achieve more efficient search. Specifically, we propose
to enhance search in unstructured P2P overlay networks by building a partial index of shared data using a structured P2P network.
The index maintains two types of information: the top interests of peers and globally unpopular data, both characterized by data
properties. The proposed search protocol, assisted search with partial indexing, makes use of the index to improve search in three
ways: First, the index assists peers to find other peers with similar interests and the unstructured search overlay is formed to reflect
peer interests. Second, the index also provides search hints for those data difficult to locate by exploring peer interest locality, and
these hints can be used for second-chance search. Third, the index helps to locate unpopular data items. Experiments based on a
P2P file sharing trace show that the assisted search with a lightweight partial indexing service can significantly improve the success
rate in locating data than Gnutella and a hit-rate-based protocol in unstructured P2P systems, while incurring low search latency and
overheads.

Index Terms—Distributed systems, information search and retrieval.

Ç

1 INTRODUCTION

IN the past few years, peer-to-peer (P2P) overlay networks
have become popular. The most prevalent P2P application

till today is file sharing. P2P file sharing systems have been
constantly evolving, for example, from the pioneer Napster to
Gnutella, to Kazza, etc. One major driving force behind this
evolution is to strive for better search mechanisms. The
earliest search (i.e., Napster) was performed by a centralized
server. This approach is obviously not scalable. The search
protocol widely in use today, e.g., in Gnutella and Kazza,
involves flooding the P2P network. Since there is no explicit
control over the network topology or data placement, this
type of P2P networks are usually referred to as “unstruc-
tured.” The unstructured network topology is highly robust
to failures or node transience. It is also relatively straightfor-
ward to implement multiple-keyword search or partial
match. On the down side, flooding causes high volumes of
network traffic overheads, and the search results are
nondeterministic. The performance of search in unstructured
P2P overlay networks can be improved by using smarter
search or data replication algorithms [7], [35], [40], [8]. Other
recent work [6], [33], [41], [4] exploits the inherent locality in
peer interests or the heterogeneity in peer capacity.

Meanwhile, a new class of P2P systems have been

proposed [24], [34], [30], [43]. This type of P2P systems

effectively implement Distributed Hash Tables (DHTs), and

are therefore called “structured.” In a structured P2P
overlay network, search is performed by looking up the
DHT. Compared with an unstructured overlay network,
routing in a DHT only involves a small number of nodes
and completes in a small number of overlay hops. A DHT
provides a natural platform for conducting exact-match
search: e.g., the hash value of the filename can be used to
index and to lookup a file. While it is not as straightforward
as in unstructured P2P networks, recently there have been
proposals for implementing multiple-keyword search [26]
or semantic-based search [37], [36], [17] using DHTs.

One major aspect to distinguish P2P search mechanisms
is whether indexing of shared data is employed. In the case
of unstructured P2P networks, the earliest system, Napster,
maintained a full index of shared files in a centralized
server. The now popular Gnutella-like networks do not
implement global indexing and instead search in these
networks relies on flooding. In P2P networks with super-
peers such as Kazza, more resourceful peers maintain an
index of the data at nearby peers. In structured P2P
systems, inverted lists of documents are published to the
DHT under single terms [26], [36] or term (semantic) vectors
[37]. Search is conducted by looking up the DHT-based
index. In summary, if indexing is used, the index contains
information of data items, and such information is directly
used for the purpose of resolving queries, or directing
queries toward where they are more likely to be resolved.

In this paper, we propose a DHT-based partial indexing
scheme. The index maintains the data sharing interests of
peers, which can be characterized by their representative
data items, as well as information of unpopular data items.
The partial index has three complementary purposes.

First, it helps peers to find others with the same interests,
and peers are connected to each other based on shared

1146 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

. The authors are with the School of Electrical and Computer Engineering,
Purdue University, 1285 Northwestern Ave., West Lafayette, IN 47907.
E-mail: {rongmei, ychu}@purdue.edu.

Manuscript received 3 Apr. 2005; revised 16 Mar. 2006; accepted 27 July
2006; published online 9 Jan. 2007.
Recommended for acceptance by J. Fortes.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0223-0405.
Digital Object Identifier no. 10.1109/TPDS.2007.1035.

1045-9219/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

interests to form an unstructured overlay where searching
is conducted. Due to the interest locality, a query is more
likely to be satisfied by nearby peers. Interest locality has
been exploited in previous work [6], [33], but only in an
implicit way. In [33], a peer discovers potential shared
interests with other peers by observing the query history:
those with the highest hit-rates are chosen as shortcuts for
future queries. A shortcut is only determined after a
significant number of queries are received and resolved
by the same peer. This passive way of discovering shared
interests is agnostic of the actual semantics of the data being
shared by peers. The discovery process based on the query
history is slow and usually unable to identify all the other
peers sharing the same interests that exist in the network. In
the assisted search protocol, instead of accumulating the
knowledge about other peers’ interests from incremental
search experience, peers can directly communicate through
the index. Specifically, peers register their major interests
(e.g., determined from data downloaded in the past) with
the index, and also query the index for other peers with the
same interests to select as neighbors.

Second, the index also provides search hints for those data
difficult to locate based on the interest-based overlay. We
expect that the majority of queries can be satisfied by looking
up the unstructured search overlay created based on peer
interests. For those queries that cannot be resolved, the index
can be queried for search hints. Specifically, the index returns
pointers to peers that have registered some of the properties
being searched for as their top interests. These possible
destinations are used for second-chance search.

Finally, the index helps to improve the chances of
finding unpopular data. The success of search is closely
related to data popularity. In existing unstructured P2P
overlays like Gnutella, a popular data item is more likely to
be located since there are more replicas in the network,
whereas an unpopular data item can not be found unless a
large number or all of the peers are searched, e.g., using
expanding ring search with increasing TTLs. In this paper,
we explicitly address data popularity. Specifically, peers
locally monitor the popularity of their own data, and
unpopular data, in the form of data properties, are also
registered with the index. During search, if the first attempt
fails to satisfy the query and the index is contacted for
search hints, popularity-based registrations are returned
together with interest-based registrations as possible loca-
tions for second-chance search.

In summary, the index only maintains information about
the top interests of peers and unpopular data. The
unstructured search overlay is formed in a way to reflect
peer interests through assistance from the index; the search
process also benefits directly from the index by retrieving
search hints for hard-to-locate data items. We call our
proposed search protocol assisted search with partial indexing.

Search inside the interest-based unstructured overlay can
be performed by flooding, as in the original Gnutella. It can
benefit from applying more sophisticated search techniques
[19], [40] or allowing caching [7] of search results at
intermediate nodes. However, we expect to achieve higher
success rate with equal (or even smaller) search scope (e.g.,
the same TTL value). If the first search attempt fails to locate
the data, we optionally resort to the index for search hints. If

the hints returned by the index are accurate enough, search
overhead can be significantly reduced because search with
larger scope, e.g., flooding with larger TTLs, is avoided.

Compared to search in pure structured P2P overlays, the
assisted search has inherent support for multiple-keyword
search or partial match. Peers query the index overlay only
using its few top interests and most queries can be resolved
inside the interest-based search overlay without further
involving the index. In contrast, in structured P2P overlays,
the index must be queried using at least one keyword for
each search.

The implementation of the indexing service is separate
from the unstructured search overlay. In this paper, the
index is maintained by a structured P2P overlay, so that the
index information can be retrieved quickly with small
overhead. The structured overlay can be constructed on top
of the same nodes from the unstructured overlay. Recent
studies [32], [20], [21] have shown that a structured overlay
can be designed to handle node churns observed in P2P file
sharing systems.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 presents the design of our
proposed assisted search protocol. Section 4 discusses the
design of our trace-driven experiments and the evaluation
results are presented in Section 5. Section 6 draws
conclusions.

2 RELATED WORK

In this section, we discuss previous work related to search
in P2P overlay networks.

2.1 Search in Unstructured P2P Overlays

Since the introduction of P2P file sharing systems, P2P
traffic on the Internet has grown rapidly. There have been
continuous efforts to improve the flooding-based search
algorithm. In the random walk algorithm [19], simulation
results show the random walk algorithm can significantly
reduce the search traffic with slightly increased search
latency, compared to the flooding method. Several strate-
gies aimed at improving search efficiency are studied in
[40], including expanding ring search and directed random
walks. In [5], hybrid search schemes that combines flooding
and random walks are studied. The assisted search
algorithm presented in this paper can also benefit from
applying these techniques. For example, queries can be
forwarded to a selected subset of neighbors only.

In [40], each node maintains an index over the data of all
nodes within a small number r hops of itself, so that it can
process queries on behalf of these nodes. In [8], each node
maintains an approximate index of the data available
through each neighbor, and such indices can direct queries
toward where they are more likely to be satisfied. In
contrast to these local indexing schemes, our proposed
assisted search protocol maintains a partial index using a
logically separate DHT overlay.

The locality embedded in human interests has been
recognized for its effectiveness in guiding search queries
[6], [33]. In [13], peers with large data repositories self-
organize into a cluster, where a query is first forwarded. In
addition, a peer also prefetches the indices of other peers that

ZHANG AND HU: ASSISTED PEER-TO-PEER SEARCH WITH PARTIAL INDEXING 1147

have the highest hit-rates for past queries, to be used to
resolve future queries locally. In the assisted search protocol,
instead of gradually learning from history, peers express their
interests explicitly and seek others with similar interests
actively via the intermediate index overlay. In [14], the
authors study the pattern and properties of file sharing
between peers with common interests using “data sharing
graphs.”

SON [9] exploits explicit data semantics and peer
interests: peers that are semantically related connect to
each other to form a semantic overlay network. However,
the semantic classification of data objects, peers and queries
is performed by specialized servers, based on a predefined
semantic classification hierarchy. The partial index pro-
posed in this paper is distributed and peer interests are
identified locally.

Peers are usually treated as equal entities. However,
significant heterogeneity may exist in many P2P systems.
This heterogeneity has been exploited to improve search
performance in terms of throughput and scalability [4]. In the
super-peer structure [41], peers of high capacity maintain an
index over the data of low-capacity peers called leaf nodes,
and resolve queries on behalf of these leaf nodes. In [31], a
percolation algorithm is proposed for search in random
networks with power-law and heavy-tailed degree distribu-
tion. By leveraging high-degree nodes in the network, the
percolation search algorithm can locate any content reliably
and quickly (in time Oðlog NÞ), while the total traffic scales
sublinearly with the network size. These efforts are orthogo-
nal to our main ideas and we do not elaborate on issues
regarding peer heterogeneity in this paper.

Search efficiency can be improved by explicitly controlling
the replication of data items based on their popularity [19],
[7]; the square-root replication is shown to be theoretically
optimal in minimizing the search traffic. Alternative data
placement approaches and their impacts on search perfor-
mance are also studied in [35]. In [23], the authors propose
transparent caching of query results at organization gate-
ways. In [39], query results are cached at selected nodes based
on hashing of the query; similarly, a query is forwarded to
selected nodes based on its hashing value. This selective
caching and adaptive search protocol is shown to signifi-
cantly reduce network search traffic. In this paper, we focus
on the search algorithm; the data is replicated by the querier
upon a successful search, and we do not assume any caching
strategies at intermediate nodes.

2.2 Search in Structured P2P Overlays

While much of the effort has been directed toward better
search algorithms in unstructured P2P overlays, various
applications and services have been built based on
structured P2P overlays, such as archival storage systems
[10], [29], [15], [22] and group communication mechanisms
[3], [45], [25], [42], [2]. The feasibility of providing full-text
Web search using P2P networks is studied in [16]. The
authors pointed out that the P2P network is not likely to
have the capacity of supporting full-text Web search by
using existing unstructured or structured search techni-
ques. The assisted search protocol proposed in this paper is
an effort toward more powerful algorithms that have the
potential of supporting large-scale content search. Only
recently, there have been proposals to implement more

sophisticated search capabilities such as multikeyword
search in structured overlays [26]. pSearch [38], [37]
implements full-text search based on CAN [24]: Both data
and queries are represented by term (semantic) vectors and
search is performed through matching in a multidimen-
sional Cartesian space. eSearch [36] proposes a hybrid
global-local indexing scheme for full-text search; documents
together with their full term lists are published only under
the top-ranking keywords. In Semantic Small World (SSW)
[17], peers self-organize into a small-world overlay network
based on the semantics of their local data, and peers sharing
similar data objects form clusters. Although the semantic
space is of a high dimension, like in pSearch, peers reside in
a one-dimensional space through dimension reduction. In
[44], the authors propose a super-peer based lookup
algorithm for heterogeneous structured P2P system. High-
capacity peers form a super-peer DHT as an enhancement
to the original DHT, and such super peers act as local
servers for less resourceful peers.

2.3 Search in Hybrid P2P Overlays

In Structella [1], the unstructured overlay in Gnutella is
replaced with a structured overlay. By taking advantage of
structure, this hybrid system eliminates redundant search
traffic from the flooding or random walk search algorithms.

In probabilistic location [27], a lossy distributed index
(i.e., implemented by attenuated Bloom filters) is used to
locate data close to the querier; the default DHT-based
algorithm is invoked if the probabilistic location fails. While
probabilistic location provides an enhancement to struc-
tured P2P search systems, our approach is opposite in that
search is performed in the unstructured P2P overlay with
the assistance from a structured index overlay.

In Yappers [12], both data and peers are mapped to a
small number of buckets, and each peer builds a small DHT
of nearby neighbors based on this mapping. Both publish-
ing and querying are guided by the mapping so that only
the peers that fall in the same bucket as the data are
involved. Such binning of data and peers is “blind” (by
hashing data/peer IDs) and does not consider data content.

Very recently, the work in [18] was brought to our
attention. In [18], the impact of data popularity on search
results is measured and a hybrid of unstructured and
structured search scheme is proposed. The assisted search
protocol approaches the problem of searching unpopular
data from two complementary directions: exploring locality
in peer interests through interest-based clustering and
selective indexing of unpopular data.

2.4 A Taxonomy of P2P Indexing Schemes

Indexing is a fundamental component in P2P search
schemes. To aid in the understanding of our assisted P2P
search protocol and the difference from other P2P search
mechanisms that have been proposed so far, we provide a
taxonomy of P2P search according to how indexing is
applied. In particular, we classify P2P indexing and search
schemes along two orthogonal dimensions. The first
dimension characterizes the scale at which indexing is
generated, i.e., whether indexing involves only nodes that
reside within a local neighborhood or all nodes in the
network. The second dimension characterizes the extent to
which indexing is performed, i.e., whether the index is
designed to encompass all data items in the network.

1148 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Table 1 summarizes representative work in each cate-

gory along these two dimensions. In super-peer networks,

including both unstructured [41] and structured [44] net-

works, the indexing is local-scale, but every data item in the

network is indexed; therefore, it is local-scale full indexing.

The probabilistic location approach [27] belongs to the same

category, although Bloom filters are used for indexing data

in local-area nodes. Routing indices summarize the amount

of data available through each neighbor within a small

number of hops; in addition, routing indices also include

the number of documents on selected topics. Hence, routing

indices provide local-scale coarse-grained partial indexing.

DHT-based indexing schemes that we have discussed in

this section [37], [36], [26] are global-scale full indexing. In

contrast to these indexing schemes, the partial index that we

propose in this paper maintains the top interests of

individual peers, as well as pointers to rare data items,

and it is implemented by a global-scale DHT. Therefore, it is

distinct from previously proposed indexing schemes as a

global-scale partial indexing scheme.

3 DESIGN

In this section, we discuss the design of the assisted search

protocol with partial indexing, including how the partial

index is maintained and how this partial index is utilized to

improve the search performance.

3.1 Definitions

Before describing the assisted search protocol with partial

indexing, we first introduce several key concepts used

throughout this paper.

Peers can uniquely identify the data items that they
possess, e.g., by file indices in Gnutella. A data item is also
associated with a number of properties (keywords), e.g., the
properties of a song may include the title, the singer, and
the musical genre, etc. These metadata are used in
specifying queries. Fig. 1 shows the data possessed by a
peer and the properties contained in each data item. By
defining “properties” as the top ranking keywords from a
document, the protocol presented here is also applicable to
content-based full-text search.

A peer’s local interests are with respect to the peer itself,
and defined as the most frequent properties contained in the
queries that it issues. A peer’s future interests are approxi-
mated with its past interests, which in turn are approximated
with the properties of the data that it currently possesses. In
other words, the interests of a peer are represented by the
dominant properties of its data possession. Fig. 2 shows the
local interests of the peer in Fig. 1.

An important factor affecting the success of search is the
popularity of data. Different from a peer’s local interests, the
popularity of a data item is with respect to all peers in the
search network, and is defined by its availability, i.e., the
more popular the data, the more replicas are available and
the easier it is to locate a replica. Under the assumption that
at least one of the query hits is replicated by the querier
after a successful search, the frequency at which the data
item is queried is a good estimation of its popularity. Since
queries are specified by properties of the data being
searched for, we consider the popularities of properties being
searched as opposed to the popularities of data items
themselves in the rest of this paper. Specifically, data

ZHANG AND HU: ASSISTED PEER-TO-PEER SEARCH WITH PARTIAL INDEXING 1149

TABLE 1
A Taxonomy of Indexing in P2P Search Mechanisms

Fig. 1. Data possessed by a peer. Each data item contains one or more

properties.

Fig. 2. Merged properties of local data items, sorted according to the

frequency of appearance. Top ranked properties (highlighted) become

the local interests of the peer.

popularity is observed by individual peers and those
properties of local data that are seen the least frequently
in passing queries are identified as “unpopular” (see Fig. 3).

3.2 Overview

This section gives an overview of the assisted P2P search
protocol with partial indexing. The P2P network consists of
two logical overlays. Search is performed in an unstruc-
tured overlay which forms the “search” overlay, and the

index is implemented as a structured overlay which forms
the “index” overlay. The distinction between the two
components is purely logical; in this paper, we assume that
each peer participates in both overlays. Fig. 4 shows an
example of five nodes A to E. The dashed circle represents
the structured index overlay and the solid lines represent

links between the five nodes in the unstructured search
overlay. The index overlay assists the search overlay to
improve its search performance in the following three ways.

First, peers communicate their interests via the index
overlay and the search overlay is constructed based on peer
interests. Specifically, each peer registers its own major
interests, i.e., the most representative properties of local
data, with the index overlay and also looks up other

existing peers sharing the same interests. In this way, a peer
always connects to those peers in the search overlay that
share common interests and as a result the propagation of a
query tends to first reach those that are more likely to
possess the data being searched for. Similar to [6], [33], this
approach exploits the locality in human interests. In Fig. 4,

each of nodes A, B, C, and D maintains registrations for at
least one property (shown within solid boxes). Each node is
connected to two other nodes in the search overlay, and
each link is labeled with the associated interest property
shared by the two end nodes.

Second, neighbors only reflect a peer’s top few interests
due to limited node degree, although peers are likely to have

more diverse interests which cannot be covered by those
registered to the index overlay. Thus, a small portion of
queries may not be resolved by searching the interest-based
overlay alone. In this case, the interest-based registries

maintained by the index overlay can be consulted for hints
about where to forward such a query for a second try.

Finally, peers also identify the properties from their local
data repository that are globally unpopular (from their own
observation of passing queries) and are not part of local
interests either. These properties represent those data that is
difficult to locate by exploring peer interests. They are
explicitly registered with the index overlay. Together with
interest-based registries, (un)popularity-induced registries
can also be returned as potential destinations when the
index overlay is queried for search hints. In Fig. 4, nodes B,
C, and E also maintain registrations of unpopular data
(shown in dashed boxes).

3.3 System Initialization

The bootstrap of the assisted P2P search network involves
initializing the search and index overlays. The index
overlay is constructed according to the bootstrap mechan-
ism of the corresponding structured P2P overlay. For
example, when Pastry [30] is used, the overlay is built as
each node joins the network following the joining protocol,
i.e., by routing a special message keyed with the new node’s
identifier. Since peers are supposed to join both overlays,
each of them serves as its own entry point into the index
overlay, i.e., each peer can access the index overlay directly.

After joining the index overlay, a new peer can obtain the
addresses of other peers with the same interests through
lookup(key) operations in the structured index overlay. For
example, a peer can look up “jazz” by setting the key of the
query message to be the hash value of “jazz.” This query
message is received by the index overlay node that
maintains pointers to other nodes that are also interested
in “jazz.” The new peer can choose from these nodes to
initialize its neighbor connections.

If a peer cannot determine its interests when first joining
the search overlay, it can query the index overlay using
random keys and, hence, is connected to the search overlay

1150 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Fig. 3. Merged properties of local data items, sorted according to the

frequency of appearance in received queries. Bottom ranked properties

(highlighted) that are not part of local interests become the locally-

observed unpopular properties.

Fig. 4. Example of an assisted search network. The dashed circle
represents the structured index overlay and the solid lines represent
links between the five nodes in the unstructured search overlay. Nodes
participate in both the index overlay and the search overlay. The search
overlay is formed based on shared interests between nodes. The solid
box and the dashed box next to each node contain registered interests
and unpopular properties (of remote nodes) in the index overlay,
respectively.

through randomly selected neighbors. The connections can
then be refined as the peer learns its interests over time.

3.4 Indexing Interest Properties

As a peer accumulates data items by issuing queries and
then downloading from other peers, its interests are
automatically reflected by its data repository. Top ranking
properties of local data are selected as representing interests
to be registered with the index overlay.

In ranking local data properties, the age of data items
(e.g., when the data items were downloaded) can also be
taken into account. For instance, the rank of a data property
can be weighted by the age of the corresponding data items
such that newly acquired data items contribute more to the
overall rank. An alternative is to only count data items
below a certain age. Considering the age factor of data
exploits the short-term interest locality, as opposed to the
long-term interest locality.

The number of registered data properties is determined
by peers locally. First the average number of data items per
property is computed at each peer, and then every data
property with larger than this average number of data items
is registered. In addition, the size of a peer’s data repository
can also be taken into account: If there are many properties
associated with large numbers of data items in a peer’s local
data repository, the peer can register more local properties
than others. However, this requires the availability of
global-scale information, e.g., the average number of data
items per property at each peer.

Peers register their top interests through insert (key, value)
operations in the structured index overlay. Peer interests
can be maintained as soft-state and updated periodically.
Alternatively, peers can update the index overlay only
when local interests are changed, i.e., by registering new
interests and unregistering lost interests, and rely on DHT
mapping to maintain the persistence of registered interests.
It is optional for peers to provide extra information such as
the local number of data items associated with the property,
or the local network connection speed.

3.5 Indexing Unpopular Properties

The assisted search protocol also benefits from the registra-
tion of rare properties to the index overlay. Like the
registration of interests, the decision of registering which
(unpopular) properties is made by peers locally. Property
popularity can be determined from observing passing traffic.
Each time a query message is received, it is searched against
the local data cache. Meanwhile, the peer also updates its local
record of the search frequency of each property in the query’s
search criteria. The higher the search frequency, the more
popular the property and the more likely that the associated
data is well replicated. In particular, first the peer computes
the average number of queries that have been received locally
for each property; if the number of received queries for a
property is below this average, that property can be selected
as unpopular. Moreover, the number of replies forwarded
back to the querier along the search path is also a good
indication of popularity.1

An unpopular property as observed locally by a peer is
registered only if the peer possesses data items with that
property and the property is not already registered as one

of local interests. Similar to peer interests, unpopular
properties can also be updated periodically or on-demand,
and the registries need only contain pointers to the data
providers (as opposed to individual data items at the
providers). There is a trade-off between the overhead of
maintaining unpopular data registries at the index overlay
and the ability to search unpopular data. This trade-off can
be controlled by the threshold of “unpopularity.” For
instance, to reduce the number of properties that are
registered with the partial index, we can reduce the
threshold for selecting unpopular properties by 20 percent.

Similarly as in the selection of peer interests, the
freshness of queries can also be taken into account when
selecting unpopular properties. For instance, we can
consider only queries that are received within a certain
time window in the past. Alternatively, queries can be
weighted by age so that the properties from recently
received queries are given higher priority during the
selection.

In order to improve the accuracy of local popularity
estimation, the index overly also provides feedbacks
regarding data popularity, since it has a global view by
accepting registrations from the entire search overlay. If the
index receives registrations for a purported unpopular
property from more than M peers, this property cannot be
counted as “unpopular.” Any peer that submits a registra-
tion of this property in the future is notified to stop
registering it. This allows peers to improve the accuracy of
their local popularity estimation and to avoid overloading
the index overlay with unnecessary registrations.

3.6 Search Overlay Maintenance

Peers also continuously update their neighbor connections
in the search overlay. Periodically, a peer queries the index
overlay for other peers sharing the same interests and
update their neighbors accordingly. This allows the search
overlay to adapt to changing peer interests.

Usually, the index returns more than one candidates for
each interest property. The peer can choose from the
candidates randomly, or select the best one based on some
performance metrics, e.g., the candidate with the largest
number of data items for the associated property, or the
candidate with the highest network connection speed. The
choice is also made according to the neighbor selection
scheme used by the peer (as described below).

Each peer determines independently the number of
(outgoing) neighbors, e.g., according to the local capacity.
The number of neighbors may be orthogonal to the number
of registered local interest properties. The association
between neighbor peers and local interests can vary. Each
neighbor can represent a distinct local interest property.
Alternatively, multiple neighbors can be selected to
represent the same property of strong local interest. On
the other hand, a neighbor can also be associated with more
than one local interest properties. For instance, a peer may
choose the candidates whose interest list overlaps the most
with the local interest list.

Different from Gnutella, the links in the search overlay
are uni-directional and each peer is given the maximum
flexibility in selecting its own outgoing neighbors. As
described above, peers determine independently the num-
ber and the selection of neighbors. By decoupling the

ZHANG AND HU: ASSISTED PEER-TO-PEER SEARCH WITH PARTIAL INDEXING 1151

1. In Gnutella, query hits are sent along the same paths traveled by the
query.

incoming and outgoing connections, peers have minimum
interference with each other in neighbor selection. Similarly,
each peer determines its own indegree independently.

The frequency of neighbor update should adjust to the
evolving speed of peer interests, which is partially reflected
by the query rate. Intuitively, the more queries issued, the
more downloads made by peers and, thus, the more quickly
peer interests change. There is a trade-off between the
responsiveness to peer interest changes and the overhead
from neighbor updates. In addition, a peer should avoid
unnecessary neighbor switches: existing neighbor connec-
tions should be preserved if they still satisfy the neighbor
selection criteria.

We assume that a peer presents its own interests to the
index overlay in an honest way. A malicious peer might
misguide other peers by registering false interests. Such
misdeed can be detected by monitoring the actual hit rate of
neighbors and dropping those connections that cannot
fulfill the expected performance.

3.7 Resolving Queries

A query is first issued to the search overlay. For example, if
controlled flooding such as the Gnutella search protocol is
used, the query is forwarded on to neighbors until the TTL
value reaches zero. If random walking is used, the query is
only forwarded to a random subset of neighbors at each
step. Alternatively, we can use biased walking by forward-
ing the query message to the neighbors whose interests
overlap the most with the query string. If the first try in the
search overlay yields no hits at all or the peer is not satisfied
with the results, e.g., not enough hits are generated, the peer
has a second chance by seeking search guidance from the
index overlay, i.e., the index overlay is queried for nodes
that are likely to satisfy the search. One or more properties
from the search criteria can be used. The destinations
returned by the index overlay include both the peers that
have strong interests in the corresponding properties and
the peers that have registered the properties as unpopular.
The querier then contacts these potential destinations
sequentially or concurrently in small batches until the
search requirement is fulfilled.

Since the index overlay only returns possible destina-
tions, resolving the query still involves searching these
destinations to match the entire search criteria, as in the first
search attempt. Therefore, although the query into the index
overlay for search hints is on a per-property basis, the
search itself still retains such appealing features as multi-
criterion and partial match.

It is optional for peers to select destinations for the
second search attempt based on some performance metrics
when extra information regarding the interests or the
capacities of the destinations are available. For example,
all qualified destinations can be ranked based on their
network connection speeds and the top candidates are
contacted first.

3.7.1 Alternative Search Algorithm

One variation for the search algorithm is to estimate the
possibility of success using the first search attempt (e.g.,
TTL-controlled flooding in the search overlay) before
issuing the query. If the query is unlikely to be resolved

by the first attempt, the index overlay can be consulted
directly. For instance, if all of the properties being searched
for have less than the local average number of data items
per property, the index overlay should be contacted for
search hints. If no search hints are returned, or the search
hints cannot satisfy the query, the peer can also be given a
second chance by resorting to the default TTL-controlled
flooding. Therefore, this alternative algorithm can achieve
the same success rate in resolving queries. However, how
the search latency and overhead are affected depends on
the accuracy of the estimation.

3.8 Scalability

Since each node participates in both the search overlay and
the index overlay, the size and capacity of the index overlay
naturally scales when more nodes join the network.
Assuming the same query rate and the same amount of
local data at each peer, the overhead for maintaining the
partial index and for resolving queries will remain at the
same level, even as more peers join the network. However,
as a peer issues queries and downloads from other peers,
the size of its local data repository can increase over time.
As a result, the number of interest properties that are
submitted to the index overlay can potentially increase over
time. To avoid this potential increase, we exploit the
observation that a peer’s current interests are more
accurately reflected by the recently issued queries and,
hence, recently downloaded data items. Therefore, when
we consider the age of local items in selecting interests
(discussed in Section 3.4), e.g., only those items whose age is
below some threshold are used in selecting interests, the
number of interest properties registered from each node
will not increase as the total amount of local data at each
peer increases. Similarly, when we consider the age of
passing queries in selecting unpopular properties and infer
the current popularity of data from queries that are received
recently at a node (discussed in Section 3.5), the number of
unpopular properties that are registered from each node
with the index overlay will not increase over time.

4 EXPERIMENTAL METHODOLOGY

We have evaluated the assisted search protocol using trace-
driven simulations. In this section, we discuss the design of
the experiments.

4.1 Query Workload

We use a trace collected from a real Gnutella file-sharing
system for our experiments. The trace was collected using
modified Gtk-Gnutella version 0.93, which is a Unix
Gnutella client software based on the GIMP Toolkit
(GTK+). Changes were made to record Query and QueryHit
messages, but the behavior of the client was not affected in
any way. Four clients were run in legacy mode, each with
minimum and maximum of 10 and 30 neighbors, respec-
tively. The trace was collected over a period of approxi-
mately two days (15 March-21 March, 2005). In this period,
all passing Query and QueryHit messages were recorded.

The collected data was then processed to extract all
queries issued by immediate neighbors of the collecting
clients, plus all the corresponding replies. The Gnutella

1152 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

protocol allows the trace collector to identify those queries
originated from the immediate neighbors from either the
TTL field or the Hops field in the Gnutella packet header.
Since many clients use nondefault TTL value, we used the
Hops field. We removed the queries without any replies
and Fig. 5 shows the Query message rate.

The IP addresses in the trace were anonymized, as well
as the Search Criteria field in the Query messages and the
filenames in the QueryHit messages. The anonymizing was
performed by uniquely mapping each word within the
query strings or filenames to its anonymized form. Files
(data items) are uniquely identified by their names and the
words appearing in a filename are treated as the properties
of the associated file. This allows us to simulate multiple
properties per data item. The processed trace consists of
1,703 peers, 518,909 files, and 129,363 words (keywords).
Fig. 6 shows that the majority (around 95 percent) of queries
and filenames contains 15 or fewer keywords.

Fig. 7 shows the frequency of keywords appearing in
filenames in the trace: about 57 percent keywords are seen
in only one filename and more than 80 percent in at most
five filenames. Therefore, a large number of keywords are
not likely to be selected as peer interests.

Fig. 8 and Fig. 9 depict the popularity of keywords in the
Gnutella trace. First, about 57 percent of keywords are
queried by only one peer and almost 75 percent by at most
two (Fig. 8). Second, the appearance frequency of keywords
in query messages follows a similar distribution (Fig. 9).
These statistics suggest that the popularity of keywords is

highly skewed in the Gnutella trace. For example, about
87 percent of keywords are accessed by five or fewer peers.

Before the simulation starts, each file is placed at the
node from where it is first seen in a QueryHit message.
Since each Query message may yield more than one
matching results, the querier randomly selects one file for
downloading. We assume that each file is available for
sharing from the moment of being replicated.

4.2 Protocol Configurations

In our experiments, we assume that each peer in the trace
participates in both the index overlay and the search overlay;
each overlay consists of 1,703 nodes. The index overlay is a
Pastry (FreePastry [11]) network and peers join it with
random node identifiers. We have developed a packet-level
simulator to evaluate the search protocols and configurations
are described in the following.2

The assisted search protocol is configured in several
ways in order to study the contributions of each
component of the protocol. In the first configuration, the
search network is constructed and maintained based on

ZHANG AND HU: ASSISTED PEER-TO-PEER SEARCH WITH PARTIAL INDEXING 1153

Fig. 5. Query rate: number of queries per second.

Fig. 6. CDF of query/filename length (number of keywords).

Fig. 7. CDF of keywords versus number of filenames containing the
keyword.

Fig. 8. CDF of keywords versus number of peers querying the keyword.

Fig. 9. CDF of keywords versus number of queries containing the

keyword.

2. The simulator is available from the authors.

peer interests (labeled “interest-based”). In the second
configuration, a query is given a second-chance if it
cannot be satisfied by the first search attempt in the
search overlay. The index overlay is contacted for search
hints, and the addresses of peers whose registered
interests match the search criteria are returned as the
potential destinations for the second try (labeled “interest-
based � 2”). In the the third configuration, pointers to
unpopular data properties are also returned by the index
overlay as equally possible locations for the second search
attempt (labeled “interestþ popularity� based� 2”).

In the search overlay, we assume uniform outgoing
connectivity for all peers. Each peer is connected to four
neighbors, which is close to the average degree of a
Gnutella network [28]. We do not consider heterogeneity
in peer capacity and do not bound peer indegree in our
experiments. Initially, peers are connected in a random
manner, i.e., neighbors are selected randomly. As the
simulation continues, each peer updates its neighbors based
on local interests, as described in Section 3.6. Specifically,
each of the four neighbors represents one distinct interest
property (keyword). The interval for selecting local interests
and unpopular data properties is set to be 10 minutes; in
this experiment, we use on-demand registration and the
index overlay is updated only when local selection of
interests or unpopular properties is changed during each
interval. The interval for updating neighbors based on local
interests is 30 minutes. The search overlay implements the
Gnutella protocol, e.g., a query is forwarded to all outgoing
neighbors except the one from which the query comes from.
The flooding of queries is controlled by a TTL. The default
TTL is set to be 4.

In the simulation, a property that has more than the
average number of local data items per property is
registered with the index overlay as part of local interests.
A property is considered unpopular if the number of
associated queries is less than the average number of locally
recorded queries per property. Such a property is only
registered if it corresponds to at least one data item in the
local data repository and does not overlap with registered
local interests. We do not consider aging of peer interests or
data popularity in our simulations. The index overlay also
provides feedbacks to the search overlay regarding data
unpopularity observations. Specifically, if an indexing node
sees 10 or more registrations for a particular property, it
labels this property not qualified as unpopular.

We compare the three versions of the assisted search
protocol with the Gnutella protocol (labeled “Gnutella”),
where the search overlay is formed randomly and flooding
is used for resolving queries. We also compare the “interest-
based” version with a “history-based” counterpart. The
“history-based” scheme only involves the search overlay
and updates neighbors in a way similar to how the
shortcuts are selected in [33]; it updates peer connections
based on learned history, instead of explicitly expressed
local interests. Specifically, each peer keeps track of the hit
rate of its queries at other peers and chooses the top ranking
peers as neighbors. The interval of updating neighbor
connections is set to be the same as in the “interest-based”
scheme.

4.3 Performance Metrics

We use the following metrics to compare and analyze the
performance of the evaluated search algorithms:

1. Success Rate: The success rate measures the effec-
tiveness of the search algorithm and is defined as the
average percentage of queries that are resolved
successfully. A query is resolved successfully if at
least one reply is received, either from the first or the
second search attempt. A file is considered a match
for a query only if the filename contains all the
keywords in the query string. We do not consider
partial match in our experiments.

2. Search Delay: The search delay is measured by the
average time elapsed until the first reply is received
at the querier and is only defined for successfully
resolved queries, e.g., queries that generate replies
matching all the query keywords.

3. Overhead: We measure the overhead of each search
algorithm using the average bandwidth consump-
tion at each node. For the assisted search scheme,
this includes the overhead from maintaining and
using the partial index. In addition, we also measure
the overhead at the index overlay using the average
number of registries maintained at each node.

4. Search Scope: The search scope is defined by the
fraction of peers contacted in resolving a query on
average. It characterizes the messaging overhead in
the search overlay.

5. Node Indegree: Node Indegree measures the impact of
the search algorithm on the overlay topology. The
distribution of incoming connections at the peers
reflects the degree of clustering by the interest-based
or history-based search algorithms.

5 EXPERIMENT RESULTS

This section presents the simulation results of evaluating
the performance of the assisted search protocol.

5.1 Success Rate

Fig. 10 shows the success rate of search using the Gnutella
trace. To better understand the potentials and limitations of
our proposed search protocol, we introduce the “optimal”
success rate, which is the success rate if queries are flooded
to the entire network. The optimal success rate is between
about 84-92 percent, as shown in Fig. 10. During processing
the Gnutella trace, we have observed that for some queries,
there exist a number of replies that do not match all the
keywords in the query string. This is probably because in
some Gnutella servants, other metadata than filenames are
used for matching during search. Although the network
size is fixed at 1,703 nodes throughout the simulation, the
result fluctuates slightly as the queries are issued and each
query may or may not be resolved successully.

The search success rate from the Gnutella protocol is
around 60 percent. The “history-based” scheme yields
slightly better (approximately 2 percent) result, while the
“interest-based” scheme achieves 5-7 percent higher
success rate than the Gnutella protocol. By giving a
second chance to those queries that cannot be fulfilled by
the first search attempts, the success rate of the “interest-
based” scheme can be further improved by 20 percent. In

1154 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

fact, the results from both the “interest-based � 2” and
“interestþ popularity� based� 2” are very close to the
optimal success rate.

5.2 Search Delay

The search delay over time is depicted in Fig. 11. Without
using second-chance search, the “interest-based” scheme
achieves similar latency to the Gnutella protocol or the
“history-based” scheme. When second-chance search is
enabled, the average delay to receive a successful reply
becomes (about 2.5 hops) higher. This is because the
queries satisfied by second search attempts experience
longer delay, which includes the timeout (2 � TTL) for
the first search attempt, the delay to retrieve search hints
from the index overlay, and the delay to finally resolve
the query through the second search attempt. As the
“interestþ popularity� based� 2” scheme resolves slightly
more queries than the “interest-based � 2” scheme
through second-chance search (Fig. 10), it also experiences
slightly higher search delay.

5.3 Overhead

Fig. 12 reports the bandwidth overhead of each search
algorithm, more specifically, the average bandwidth con-
sumption at each node. For Gnutella and the “history-
based” scheme, this overhead comes from the query and

query reply messages and, thus, varies with the query rate
(Fig. 5). For the assisted search scheme, the bandwidth
overhead also consists of the overhead from maintaining
and using the partial index: more precisely, the overhead
from registering/unregistering interests and unpopular
keywords, the overhead from sending popularity feedback
to the search overlay, and the overhead from looking up the
partial index. We can see that the overhead is highest at the
beginning of the experiments as interest and unpopular
keywords are first submitted to the index overlay and the
curve flattens out later on as only the differences in peer
interests or unpopular keywords are updated with the
index overlay. Maintaining peer interests at the partial
index incurs an average bandwidth overhead of about
20 Bps at the steady state and maintaining unpopular
keywords incurs an additional bandwidth overhead of
about 200 Bps at the beginning and about 10 Bps toward the
end of the simulation. Such overhead is a small price to pay
for achieving higher query success rate.

Fig. 13 shows the number of registries maintained by an
indexing node in terms of peer interests and unpopular
data, respectively. First, we can see that unpopular data
registries outnumber peer interest registries, and this can be
explained by the large number of rarely seen keywords in
the Gnutella trace. Second, the results remain largely fixed
throughout the simulation (the number of unpopular data
registries decreases slightly), although peers accumulate
data items through searching and downloading over the
simulation time. This shows that the algorithms used in our
experiments for selecting interest properties and for
estimating unpopular data properties is adaptable to peer
interests and data popularity dynamics.

5.4 Search Scope and Node Indegree

The search scope remains stable during the simulation, as
shown in Fig. 14. For the Gnutella search protocol, each
query is received by about 17 percent of all peers. The
search scope of the “interest-based” scheme and the
“history-based” is slightly lower at about 16 percent. Search
scope is closely tied to the topology of the search overlay.
Although the outdegrees of peers are uniform in our
experiments, their indegrees can vary. Fig. 14 implies that
the topological features of the search overlay, in terms of
node indegree distribution, remain largely unchanged
throughout the experiments. Fig. 15 confirms this observa-
tion by showing the CDF of node indegree at the end of the

ZHANG AND HU: ASSISTED PEER-TO-PEER SEARCH WITH PARTIAL INDEXING 1155

Fig. 10. Success rate of search. The “interest-based” scheme is more

effective than the “history-based” scheme. With second-chance search,

the assisted search protocol achieves close to optimal success rate.

Fig. 11. Search delay. The “interest-based” scheme incurs similar

search delay as the baseline scheme. Second-chance search requires

additional delay to resolve the query.

Fig. 12. Bandwidth overhead at each node. The partial index incurs

small bandwidth overhead.

simulation: Although the CDF of node indegree in the
search overlay has a small tail for the “interest-based” or
“history-based” scheme, the differences are insignificant
when compared with the random overlay topology from
the Gnutella search protocol. The maximum node indegree
is 13, 34, 63 for the Gnutella, “interest-based,” and “history-
based” schemes, respectively.

5.5 Discussions

The result shown in Fig. 10 suggests that selecting
neighbors based on peer interests alone (“interest-based”)
does not improve the search success rate significantly. This
can explained as follows: In our experiments, each peer has
four outgoing connections, and each neighbor represents a
distinct interest property. Furthermore, we do not consider
partial match and a query is considered successful only if all
the keywords in the query string are matched. Together,
these two factors contribute to the relatively small gain in
the search success rate of the “interest-based” scheme.
Nevertheless, the index overlay is very helpful in providing
search hints for second-chance search attempts.

From Fig. 10 and Figs. 12 and 13, we can see that although
search hints from the registries of unpopular data bring the
success rate closer to the optimal, the improvement comes at a
relatively considerable indexing overhead. This can be
explained by the fact that only a very small fraction of queries
are for unpopular data, as a high query frequency naturally
leads to a high replication degree for the data being searched

for. These queries for unpopular data are not likely to be
satisfied from the first search attempt in the interest-based
overlay or from the second search attempt based on peer
interests. Meanwhile, there exist a large number of unpopular
keywords (Figs. 8 and 9) in the trace, which result in a high
index maintenance cost. In fact, more than 50 percent of
keywords appear in only one query and such keywords are
selected as “unpopular” and registered with the partial index
although they do not contribute to the search success rate of
the “interestþ popularity� based� 2” scheme. Despite the
potential overhead, maintaining a partial index of unpopular
keywords makes it possible to quickly search for unpopular
data items without flooding the entire network. In our future
work, we will study how to reduce the indexing overhead for
unpopular data, e.g., through smarter selection mechanisms
for unpopular keywords.

We have also evaluated the effects of expanding the scope
of flooding for the Gnutella protocol. Fig. 16 and Fig. 17 show
the query success rate and corresponding bandwidth over-
head from using TTL ¼ 5 and TTL ¼ 6, compared with the
results from using TTL ¼ 4 and the assisted search scheme.
Increasing the TTL value by 1 improves the success rate but
the result is still below that of the assisted search protocol.
Increasing the TTL value by 2 (to TTL ¼ 6) can achieve close
to optimal success rate, but the bandwidth overhead is
significantly higher in the mean time, and the gap widens
over time.

1156 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

Fig. 13. Average index registries maintained per node. The unpopular

keyword registries decrease slightly over time.

Fig. 14. Search scope. The search scope from the “interest-based” and

“history-based” schemes are slightly lower than the random scheme.

Fig. 15. CDF of node indegree. The “clustering” effect from the “interest-

based” or “history-based” schemes is limited.

Fig. 16. Success rate of search with increased TTL value.

6 CONCLUSIONS

In this paper, we have presented a new protocol for P2P
search with the assistance from a partial indexing service
based on peer interests and data popularity. The assisted
search protocol leverages the advantages of both unstruc-
tured and structured P2P systems. The partial index is built
on top of a structured P2P overlay network, and it maintains
the top interests of peers and pointers to globally unpopular
data. Peers can locate others with similar interests through
quick lookup operations into the index overlay. The search
overlay has an unstructured topology and peers have the
flexibility to select their neighbors based on local interests.
The partial index also helps to search for data difficult to
locate by traversing the interest-based search overlay; search
hints in the form of pointers to likely locations can be
retrieved for second-chance search. In summary, the assisted
search protocol exploits the locality between individual peer
interests and meanwhile recognizes global data popularity.
With the assistance from the structured partial index, it
achieves higher search efficiency than a pure flooding-based
or history-based search scheme. At the same time it also
retains desirable features of search in unstructured overlays
such as versatileness and robustness. Experiments based on a
trace from a real P2P file sharing application show that the
assisted search with partial indexing is a promising solution
to the search problem in P2P content sharing systems.

ACKNOWLEDGMENTS

This work was supported in part by US National Science

Foundation (NSF) CAREER award grant ACI-0238379.

REFERENCES

[1] M. Castro, M. Costa, and A. Rowstron, “Should We Build Gnutella
on a Structured Overlay?” Proc. ACM HotNets, Nov. 2003.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, “SplitStream: High-Bandwidth Content Distribution
in Cooperative Environments,” Proc. ACM Symp. Operating
Systems Principles (SOSP), Oct. 2003.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
“Scribe: A Large-Scale and Decentralized Application-Level
Multicast Infrastructure,” IEEE J. Selected Areas in Comm., Oct.
2002.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S.
Shenker, “Making Gnutella-Like P2P Systems Scalable,” Proc.
ACM SIGCOMM, Aug. 2003.

[5] C. Gkantsidis, M. Mihail, and A. Saberi, “Hybrid Search Schemes
for Unstructured Peer-to-Peer Networks,” Proc. IEEE INFOCOM,
Mar. 2005.

[6] E. Cohen, A. Fiat, and H. Kaplan, “Associative Search in Peer-to-
Peer Networks: Harnessing Latent Semantics,” Proc. IEEE IN-
FOCOM, Apr. 2003.

[7] E. Cohen and S. Shenker, “Replication Strategies in Unstructured
Peer-to-Peer Networks,” Proc. ACM SIGCOMM, Aug. 2002.

[8] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-
Peer Systems,” Proc. IEEE Int’l Conf. Distributed Computing Systems
(ICDCS), July 2002.

[9] A. Crespo and H. Garcia-Molina, “Semantic Overlay Networks for
P2P Systems,” technical report, Computer Science Dept., Stanford
Univ., Oct. 2002.

[10] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-Area Cooperative Storage with CFS,” Proc. ACM Symp.
Operating Systems Principles (SOSP), Oct. 2001.

[11] FreePastry, http://www.cs.rice.edu/CS/Systems/Pastry/Free
Pastry/, 2001.

[12] P. Ganesan, Q. Sun, and H. Garcia-Molina, “YAPPERS: A Peer-to-
Peer Lookup Service over Arbitrary Topology,” Proc. IEEE
INFOCOM, Apr. 2003.

[13] L. Guo, S. Jiang, L. Xiao, and X. Zhang, “Exploiting Content
Localities for Efficient Search in P2P Systems,” Proc. 18th Ann.
Conf. Distributed Computing (DISC), Oct. 2004.

[14] A. Iamnitchi, M. Ripeanu, and I. Foster, “Small-World File-
Sharing Communities,” Proc. IEEE INFOCOM, Mar. 2004.

[15] J. Kubiatowicz et al., “OceanStore: An Architecture for Global-
Scale Persistent Storage,” Proc. ACM Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Nov. 2000.

[16] J. Li, B.T. Loo, J. Hellerstein, F. Kaashoek, D.R. Karger, and R.
Morris, “On the Feasibility of Peer-to-Peer Web Indexing and
Search,” Proc. Second Int’l Workshop Peer-to-Peer Systems (IPTPS),
Feb. 2003.

[17] M. Li, W.-C. Lee, and A. Sivasubramaniam, “Semantic Small
World: An Overlay Network for Peer-to-Peer Search,” Proc. 12th
IEEE Int’l Conf. Network Protocols (ICNP), Oct. 2004.

[18] B.T. Loo, R. Huebsch, I. Stoica, and J. Hellerstein, “The Case for a
Hybrid P2P Search Infrastructure,” Proc. Int’l Workshop Peer-to-
Peer Systems (IPTPS), Feb. 2004.

[19] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. ACM
Int’l Conf. Supercomputing (ICS), June 2002.

[20] R. Mahajan, M. Castro, and A. Rowstron, “Controlling the Cost of
Reliability in Peer-to-Peer Overlays,” Proc. Int’l Workshop Peer-to-
Peer Systems (IPTPS ’03), Feb. 2003.

[21] M. Castro, M. Costa, and A. Rowstron, “Debunking Some Myths
about Structured and Unstructured Overlays,” Proc. USENIX
Symp. Networked Systems Design and Implementation (NSDI), May
2005.

[22] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, “Ivy: A Read/
Write Peer-to-Peer File System,” Proc. USENIX Symp. Operating
Systems Design and Implementation (OSDI), Dec. 2002.

[23] S. Patro and Y.C. Hu, “Transparent Query Caching in Peer-to-Peer
Overlay Networks,” Proc. 17th Int’l Parallel and Distributed
Processing Symp. (IPDPS), Apr. 2003.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker,
“A Scalable Content-Addressable Network,” Proc. ACM SIG-
COMM, Aug. 2001.

[25] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-
Level Multicast Using Content-Addressable Networks,” Proc.
Third Int’l Workshop Networked Group Comm. (NGC), Nov. 2001.

[26] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching,” Proc. ACM/IFIP/USENIX Middleware, June 2003.

[27] S.C. Rhea and J. Kubiatowicz, “Probabilistic Routing and Loca-
tion,” Proc. IEEE INFOCOM, June 2002.

[28] M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping the Gnutella
Network: Properties of Large-Scale Peer-to-Peer Systems and
Implications for System,” IEEE Internet Computing J., vol. 6, no. 1,
2002.

[29] A. Rowstron and P. Druschel, “PAST: A Large-Scale, Persistent
Peer-to-Peer Storage Utility,” Proc. ACM Symp. Operating Systems
Principles (SOSP), Oct. 2001.

[30] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
ACM/IFIP/USENIX Middleware, Nov. 2001.

ZHANG AND HU: ASSISTED PEER-TO-PEER SEARCH WITH PARTIAL INDEXING 1157

Fig. 17. Bandwidth overhead at each node with increased TTL value.

[31] N. Sarshar, P.O. Boykin, and V.P. Roychowdhury, “Scalable
Percolation Search in Power Law Networks,” Proc. IEEE Fourth
Int’l Conf. Peer-to-Peer Computing (P2P), Aug. 2004.

[32] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling Churn
in a DHT,” Proc. USENIX Ann. Technical Conf. (ATC), June 2004.

[33] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient Content
Location Using Interest-Based Locality in Peer-to-Peer Systems,”
Proc. IEEE INFOCOM, Apr. 2003.

[34] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrish-
nan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM, Aug. 2001.

[35] Q. Sun and H. Garcia-Molina, “Partial Lookup Services,” Proc.
23rd IEEE Int’l Conf. Distributed Computing Systems (ICDCS), May
2003.

[36] C. Tang and S. Dwarkadas, “Hybrid Global-Local Indexing for
Efficient Peer-to-Peer Information Retrieval,” Proc. USENIX Symp.
Networked Systems Design and Implementation (NSDI), Mar. 2004.

[37] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-Peer Information
Retrieval Using Self-Organizing Semantic Overlay Networks,”
Proc. ACM SIGCOMM, Aug. 2003.

[38] C. Tang, Z. Xu, and M. Mahalingam, “pSearch: Information
Retrieval in Structured Overlays,” Proc. ACM HotNets, Oct. 2002.

[39] C. Wang, L. Xiao, Y. Liu, and P. Zheng, “Distributed Caching and
Adaptive Search in Multilayer P2P Networks,” Proc. IEEE 24th
Int’l Conf. Distributed Computing Systems (ICDCS), Mar. 2004.

[40] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer
Systems,” Proc. IEEE 22nd Int’l Conf. Distributed Computing Systems
(ICDCS), July 2002.

[41] B. Yang and H. Garcia-Molina, “Designing a Super-Peer Net-
work,” Proc. IEEE Int’l Conf. Data Eng. (ICDE), Mar. 2003.

[42] R. Zhang and Y.C. Hu, “Borg: A Hybrid Protocol for Scalable
Application-Level Multicast in Peer-to-Peer Systems,” Proc. ACM
Int’l Workshop Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV), June 2003.

[43] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, “Tapestry: An
Infrastructure for Fault-Resilient Wide-Area Location and Rout-
ing,” Technical Report UCB//CSD-01-1141, Univ. of California
Berkeley, Apr. 2001.

[44] Y. Zhu, H. Wang, and Y. Hu, “A Super-Peer Based Lookup in
Highly Structured Peer-to-Peer Networks,” Proc. Int’l Conf. Parallel
and Distributed Computing Systems (PDCS), Aug. 2003.

[45] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, and J.
Kubiatowicz, “Bayeux: An Architecture for Scalable and Fault-
Tolerant Wide-Area Data Dissemination,” Proc. ACM Int’l Work-
shop Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV), June 2001.

Rongmei Zhang received the BS degree in
1998 and the MS degree in 2000 from Tsinghua
University, Beijing China, both in electrical
engineering. She is currently a PhD candidate
in computer engineering at Purdue University.
Her research interests lie broadly in distributed
systems and networking. In particular, she has
worked on network measurement, Internet con-
tent distribution, multimedia systems and net-
working, peer-to-peer systems, and distributed

computing. She is a member of the ACM and the IEEE.

Y. Charlie Hu (S ’90, M ’03, SM ’07) received the
MS and MPhil degrees from Yale University in
1992 and the PhD degree in computer science
from Harvard University in 1997. He is an
associate professor of electrical and computer
engineering and computer science at Purdue
University. From 1997 to 2001, he was a research
scientist at Rice University. Dr. Hu’s research
interests include operating systems, distributed
systems, networking, and parallel computing. He

has published more than 100 papers in these areas. Dr. Hu received the
Honda Initiation Grant Award in 2002 and the US National Science
Foundation (NSF) CAREER Award in 2003. He served as a TPC vice
chair for the International Conference on Parallel Processing in 2004 and
IEEE ICDCS in 2007, and a cofounder and TPC cochair for the
International Workshop on Mobile Peer-to-Peer Computing. Dr. Hu is a
member of USENIX and the ACM, and a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1158 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 8, AUGUST 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

