240 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

uCast: Unified Connectionless Multicast for
Energy Efficient Content Distribution in
Sensor Networks

Qing Cao, Student Member, IEEE, Tian He, Member, IEEE, and Tarek Abdelzaher, Member, IEEE

Abstract—In this paper, we present uCast, a novel multicast protocol for energy efficient content distribution in sensor networks. We
design uCast to support a large number of multicast sessions, especially when the number of destinations in a session is small. In
uCast, we do not keep any state information relevant to ongoing multicast deliveries at intermediate nodes. Rather, we directly encode
the multicast information in the packet headers and parse these headers at intermediate nodes using a scoreboard algorithm proposed
in this paper. We demonstrate that 1) uCast is powerful enough to support multiple addressing and unicast routing schemes and

2) uCast is robust, efficient, and scalable in the face of changes in network topology, such as those introduced by energy conservation
protocols. We systematically evaluate the performance of uCast through simulations, compare it with other state-of-the-art protocols,
and collect preliminary data from a running system based on the Berkeley motes platform.

Index Terms—Sensor networks, multicast, content distribution.

1 INTRODUCTION

RECENT work has articulated the unique challenges of
sensor networks that stem from their resource limita-
tions. In this paper, we study the implications of such
limitations on multicast protocols. In particular, we address
the problem of designing protocols to support a large
number of small multicast groups, where the number of
destinations in a single session is limited.

There are many applications of small-group multicast in
sensor networks. For example, in a typical directory service,
such as the protocol described in [16], each node periodically
updates a small set of other nodes (named directory servers in
[16]) with its location. Therefore, one node needs to multicast
information to several destination nodes, which form a small
group. Furthermore, when multiple nodes use the directory
service, they will generate many small-group multicast
sessions. Another common example involves data-centric
storage (DCS) [21], [24]. One key component of some DCS
protocols is the use of Geographic Hash Tables (GHT). GHT
hashes keys, usually the names of data or events, into
geographic coordinates. It then stores the values at the node
that is geographically nearest to the hash value of the key.
Usually, the data storage protocol suggests that the key-value
pairs should be stored at multiple locations for robustness.
Therefore, such protocols naturally require a small-group

o Q. Cao and T. Abdelzaher are with the Department of Computer Science,
University of lllinois at Urbana-Champaign, 201 North Goodwin Avenue,
Urbana, IL 61801. E-mail: {gcao2, zaher}@cs.uiuc.edu.

e T. He is with the Department of Computer Science and Engineering,
University of Minnesota, 200 Union Street SE, Minneapolis, MN 55455.
E-mail: tianhe@cs.umn.edu.

Manuscript received 6 Apr. 2005; revised 9 Oct. 2005; accepted 3 Jan. 2006;
published online 27 Dec. 2006.

Recommended for acceptance by G. Lee.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0227-0405.

1045-9219/07/$25.00 © 2007 IEEE

multicast session for each storage operation, and many
multicast sessions for storing a large amount of data.

Providing a small-group multicast service in sensor
networks is complicated by several unique challenges.
One challenge is that sensor nodes are extremely energy-
constrained. Consequently, sensor networks generally
employ energy conservation protocols, which usually allow
individual nodes to switch between sleep and wake states.
Therefore, the topology of sensor networks changes
dynamically at a high rate, which poses unique require-
ments on the multicast service. Any protocol that relies on
certain multicast structures to keep state information, such
as multicast tree routing tables, must adapt these structures
to topology changes. This performance issue has been
largely overlooked in the design of current multicast
protocols.

Another challenge in multicast design is that there are
many unicast routing protocols to interface with in sensor
networks. In fact, there is no consensus on which one is the
best. The choice of unicast protocol usually depends on the
particular application. For example, when geographic
location information is readily available for each node,
several well-known routing protocols that take advantage
of geographic information are appropriate [4], [12], [14]. On
the other hand, when there is no geographic information
available, protocols based on certain topology encodings are
preferred [5], [20], [18]. Because of the wide range of unicast
choices, it is undesirable to design multicast protocols that
make assumptions regarding the particular unicast service
since that will limit the applicability of the multicast. On the
other hand, it is also not useful for the multicast to provide
a routing service from scratch since doing so will lead to
considerable functional overlap with unicast protocols.

To address these two challenges, we present a multicast
protocol that is both general (supports multiple unicast
protocols by using a unified interface) and robust (tolerant to

Published by the IEEE Computer Society

CAO ET AL.: UCAST: UNIFIED CONNECTIONLESS MULTICAST FOR ENERGY EFFICIENT CONTENT DISTRIBUTION IN SENSOR NETWORKS 241

topological changes by providing a connectionless service).
We call this protocol unified connectionless multicast, or
uCast. To the best of our knowledge, uCast is the first
protocol specifically optimized for small-group multicast
sessions in sensor networks. We now give a more detailed
explanation of the two features of uCast.

The first feature is that uCast can support multiple unicast
routing protocols through a unified interface. In this sense,
uCast is a modular extension to the underlying unicast layer.
In fact, it can extend any unicast routing protocol as long as
this unicast can export a common comparison interface,
which allows a comparison operation between two next-hop
nodes for the same destination to determine which one is
better (in terms of some notion of cost). We implemented
uCast on top of three unicast routing protocols with different
addressing schemes to prove our point.

The second feature is that uCast is tolerant to topology
changes caused by energy saving protocols. To achieve this,
uCast does not keep any multicast-specific state at inter-
mediate nodes. Instead, uCast dynamically decides the
multicast delivery path at each intermediate node based
only on local topology information and the comparison
interface as discussed earlier. Since local information is
much easier to reconstruct upon topological changes than a
superimposed global multicast overlay, uCast is much more
adaptable to unpredictable changes in network connectivity
than previous multicast protocols.

The rest of the paper is organized as follows: We outline
related work in Section 2. We discuss the details of uCast in
Section 3. In Sections 4 and 5, we report simulations-based
and real platform-based results. At last, we provide further
discussions and conclusions in Section 6.

2 REeLATED WORK

2.1 Multicast

Multicast is a classical topic in networking. Interestingly, we
find only a few multicast protocols designed for sensor
networks. Multicast protocols developed for ad-hoc net-
works and for the Internet cannot be easily applied in the
sensor networks domain. In the following, we survey three
different types of multicast, namely, multicast protocols for
sensor networks, ad-hoc networks, and the Internet.

One category of sensor network multicast is called
geocast. It considers the scenario where multicast destina-
tions are located within a bounded geographical area.
Representative work includes [13], [17]. Another multicast
category is called spatiotemporal multicast or mobicast [10].
Mobicast features a moving zone of multicast destinations.
The goal is to deliver packets just in time to this zone for
tracking purposes. Another category [1] studies multicast
for data caching and placement. It focuses on using
multicast trees for asynchronously updated data deliveries.
Yet another is called TTDD [30], which is optimized for
mobile sinks. It uses a grid structure, coupled with localized
flooding to track mobile sinks. These protocols do not
consider the effect of topology changes introduced by
energy conservation protocols nor are they designed to
handle the small-group multicast scenarios. Further, none
of these protocols takes into account the compatibility issue

with unicast protocols. Therefore, they are usually imple-
mented in isolation from the unicast routing protocols that
are already available and often provide unicast as a special
case [13], [17]. This redundancy is not desirable. Since the
memory size of current sensor network nodes is extremely
limited (4K bytes on Mica2/MicaZ), it is not useful to have
functional redundancy between different routing services.
From this viewpoint, these previous multicast protocols are
different from uCast in their lack of compatibility with
multiple unicast routing protocols. Therefore, we do not
compare uCast with them in this paper.

Many multicast protocols are developed for ad hoc
networks. Representative approaches include multicast-
tree-based (Multicast AODV [22]), mesh-based (CAMP
[7]), and group-based (ODMRP [15]) protocols. However,
these protocols cannot be easily applied to sensor networks
because they all rely on preestablished overlays. These
overlays are associated with considerable signaling costs.
Therefore, they are usually too expensive to reconstruct in
the face of frequent topology changes, such as those
introduced by energy conservation protocols in sensor
networks. Further, since they are usually designed for
mobile nodes, such as laptops, that are much more
powerful than sensor nodes, they are usually too heavy-
weight to implement in sensor networks.

At last, we also find many multicast protocols for IP
networks in Internet literature. Representative protocols
include IGMP [6], Xcast [3], [2], [25], and DVMRP [23].
Among these protocols, Xcast [3], [2], [25] is the most
relevant to our work in that, similarly to ours, it encodes the
destination list into packet headers. Our work is different
from Xcast in two aspects. First, Xcast relies on routing
tables at intermediate hops to decide the packet flow. In
contrast, we do not assume any particular routing structure,
such as a routing table. Second, Xcast can only work with a
single unicast routing protocol. Therefore, if the underlying
routing protocol modifies the structure of the routing table,
Xcast has to be modified as well. Thus, it is impractical to
build a multicast layer for wireless sensor networks using
Xcast. We overcome this problem by designing uCast on top
of the common comparison interface exported by any
underlying unicast layer. This design choice essentially
decouples uCast from the underlying unicast routing
details and leads to a generalized and flexible service that
is significantly different from Xcast.

Based on this survey, we consider uCast as a necessary
complement to previous protocols. Primarily, our work is
targeted at the small group multicast scenarios. Concep-
tually, the application domain of uCast is shown in Fig. 1."

As shown in Fig. 1, as the number of members for a
particular multicast session increases or the traffic per session
increases, the average cost per member decreases for
connection-based protocols because the signaling cost be-
comes less significant. This implies that connection-based
protocols are more suitable for long-term large-scale multi-
cast. However, when the number of members is small and the
traffic is low, the corresponding application domain can be
characterized by spontaneous, short-term content delivery

1. The curve shown is only conceptual and helps the understanding of
the application domain of uCast. It does not reflect any quantitative results.

242

A
Cost per
Member

Cost Threshold
(Conceptual)

Applicable Domain Connection-based Multicast
, ofuCast
< >

3

»
More Members/Heavy Traffic
per Session

Fewer Members/Light
Traffic per Session

Fig. 1. Application domain of uCast.

requests within small groups. The expected cost per member
will increase due to the signaling cost of connection-based
multicast. When the cost per member is higher than a certain
threshold, uCast becomes more efficient and preferable.

2.2 Unicast

We briefly survey different unicast protocols in this section.
Later, we shall explain how uCast extends each of them. We
discuss unicast protocols according to their addressing
schemes (i.e., models for addressing individual nodes in
the routing structure). We classify current addressing
schemes in sensor networks into three broad domains:
identifier-based, geographical location-based, and network
encoding-based.

Identifier-based addressing is inherited from general
ad hoc networks. In this scheme, nodes are addressed by
their identifiers. Representative routing protocols of this
type include those designed for ad hoc networks, such as
DSR [11] and AODV [22]. One commonality of this type is
that since identifiers essentially provide no information
regarding topology, protocols in this type often require a
flooding stage to find routes. Another commonality is that
nodes need to keep routing tables. The next hop for data
delivery is usually decided by a table look-up operation.

Geographical location-based addressing is another
scheme primarily used for sensor networks. In this scheme,
individual nodes are assumed to be location aware either
through GPS or through some localization algorithm [8].
Geographical locations can be directly used for routing
purposes since they approximate the relative topology of
sensor network nodes. Representative protocols include
GFG [4], GPSR [12], GEDIR [26], LAR [14], etc. These
protocols no longer need flooding to find routes. Usually
only local neighborhood information is needed to make
routing decisions.

Several recently proposed protocols fall into a new
(third) category we call network-encoding-based addres-
sing. The key idea is to encode topology information into
node identifiers. Such identifiers can be directly used for
routing, thereby avoiding the expensive flooding process.
Several network encoding schemes have been proposed,
such as virtual location-based geographical routing [20],
relative logical coordinate-based routing (LCR) [5], and
graph embedding-based routing (GEM) [18]. Since proto-
cols based on network encodings do not require physical
location information, they are good complements for the
first two types of protocols.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

3 UNIFIED CONNECTIONLESS MULTICAST (UCAST)

We first present our assumptions. As discussed earlier, we
design uCast to support multiple unicast routing protocols.
Therefore, we only make minimal assumptions regarding
the unicast routing layer. Specifically, we do not assume
any distance information or particular configuration of the
routing table. On the other hand, in order to avoid
functional overlap with the unicast layer, we introduce an
interface that we expect the underlying unicast to export.
We demonstrate that this is feasible in practice and requires
minimal or no changes to the existing unicast routing
protocols. As examples, we implement such an interface for
three different unicast routing protocols in Section 5.

The interface is defined as a pairwise comparison in the
following manner:

Function: Compare (NODE N1, NODE N2, NODE DESC)
Return Type: NODE (N1 or N2)

In this interface, N1 and N2 are candidate nodes that
lead to node DESC. The interface compares these two nodes
and returns the better candidate. In the following, we say
the returned node is “closer” to the destination. Of course,
“closer” is used only metaphorically. We do not make any
assumptions on semantics of distance or on the way the
comparison interface is implemented in the unicast layer.

3.1 Design

We now describe the design of uCast. The core of the protocol
is the scoreboard algorithm, which is executed at each
intermediate node along the content delivery path. The
algorithm takes the list of destinations and all the neighbors of
the current node as input and outputs the multicast task
allocation, which is the list of next hop nodes that should
receive and forward the multicast packet. Using this output,
the current node generates one or more packets as required
and forwards these packets to the next-hop neighbors. This
process continues until all destinations receive the multicast.

So, how does the algorithm work internally? The
detailed pseudocode of the scoreboard algorithm is shown
in Fig. 2. As the first step, the algorithm considers the
destinations one by one. For each destination, it applies the
comparison interface to determine which neighbors are
“closer” than the current node. Those neighbors are said to
cover this destination and get one score point. When all
destinations are considered, the neighbor node that has the
highest score is chosen as a forwarding candidate. When
multiple neighbor nodes share the same score, the algo-
rithm breaks the tie either by randomly choosing one node
or by using node ID. Next, the algorithm records and
removes the neighbor with the highest score, as well as
those destinations that have been covered by this node,
from the next round of comparisons. This comparison-
select-removal process continues until all destinations are
covered. At this point, the preliminary neighbor selection is
complete. The result set of candidate neighbors is called the
forwarding candidate set.

Next, the algorithm begins to further optimize the
candidate set. For each destination, it compares every pair
of nodes in the forwarding candidate set to determine the
closest node. This node is assigned the corresponding

CAO ET AL.: UCAST: UNIFIED CONNECTIONLESS MULTICAST FOR ENERGY EFFICIENT CONTENT DISTRIBUTION IN SENSOR NETWORKS 243

uCast Scoreboard Algorithm

Comment: We assume the compare interface is
Compare(Node1,Node2,Destination). Each neighbor node has
a state of being selected or unselected.

Inputs: Destination node set DS, neighbor node set NS, current node S.
Outputs: The selected neighbor set SN. For each node in SN,
the algorithm outputs a subset of DS, called SD, that forms its task.

Main Algorithm:

0 Initialization of data structures.
1 For each neighbor node in NS, set it to be unselected.

Comment: First consider three special cases in steps 2,3 and 4.

2 For each node in NS, if it is in DS, set it to be selected. Remove this
node from DS and insert it into Covered Set (CS) (destination nodes
in CS are assumed to be covered by a certain neighbor node).

3 For each node in DS, if there is only one neighbor in NS that is closer
than S according to the Compare Interface, remove it from DS and
insert it into CS. Set the status of the corresponding neighbor in NS to
be selected.

4 For each node in DS, if there is no neighbor in NS that is closer to it
than S using the Compare Interface, insert it into LocalMaximum
Set (LS). Remove it from DS.

5 For each selected neighbor, find all destinations for which it is closer
compared to S. Insert these destinations into CS remove from DS.

While (DS is not empty)

~ 6 For each node in DS, find all nodes in NS that are unselected.
Set each node with a score of 0. Assign one node one more
score if this node is closer than S to a particular destination in
DS based on the Compare Interface.

7 Select the highest score among unselected nodes in NS. In case
of tie, randomly select one or break the tie using node IDs.
Suppose the node selected is K and set it to be selected.

8 Among nodes in DS, find those nodes for which K is closer than
the current node S and insert them into CS. Remove them from

\. Ds.

A

Comment: DS is empty after the loop.

Comment: Following is the optimization stage.

9 Insert all selected nodes in NS into set SN.

10 For each destination in Covered Set, choose among nodes in SN the
best node (snode) using the Compare Interface. Add this
destination to the corresponding SD for snode.

11 Remove those nodes in SN with an empty SD. For remaining nodes,
form individual delivery tasks based on its SD.

12 If LS is not empty, switch to the underlying unicast protocol and
use the corresponding local maximum handling approach to deliver
packets to destinations in LS.

Fig. 2. The scoreboard algorithm.

destination node. Note that this node may not be the one
that initially covered the destination. After this step, some
nodes in the forwarding set may not be assigned any
destination. They are removed from the forwarding
candidate set. The remaining nodes form the optimized
candidate set, and each node in this set gets a list of
assigned destinations. The resulting set and the destination
assignment constitute the final output of the algorithm.

3.2 Design Discussion

We now discuss several trade-offs in the algorithm. First,
we discuss the performance implications of the scoreboard
algorithm. Since it is greedy by nature, it remains unclear
how close to optimal it is. We provide an analysis on this

topic. Second, uCast uses packet headers to enumerate
destinations. Therefore, there is a limit on the maximum
number of destinations that one packet can address. We
describe several possible solutions to this problem and
discuss their effects on our protocol.

3.2.1 Analysis on the Greedy Neighbor Selection

In this section, we show by simulations that our scoreboard
algorithm is very efficient at minimizing the number of
branches in the multicast tree, hence reducing its cost.
Recall that we always select the node with the highest score
in the neighbor table until all destinations are covered. We
now show that this approach is approximately as good as
finding a minimal cover of destinations at each hop. Since
choosing the minimal cover is the well-known set cover
(SC) problem which is NP-Complete; solutions to it do not
scale with the neighbor table size. General greedy selection
approaches for SC problems guarantee an approximation
ratio of 1 + In(maximal subset size) [19] (here, approxima-
tion ratio refers to the ratio between the size of the subset
selected by the greedy algorithm to the size of the subset
selected by the locally optimal minimal cover algorithm). In
practice, we show that the scoreboard algorithm is much
closer to the optimal case than what is guaranteed by the
general approximation bound.

Note, however, that although we use the minimal cover
technique as the comparison baseline, this technique is not
globally optimal. In fact, finding the globally optimal tree is
another NP-complete problem, namely, the Steiner tree
generation in graph theory. Because of the large number of
nodes, the globally optimal tree structure cannot be
generated in a reasonable period of time. There are, of
course, various heuristic techniques to construct approx-
imate Steiner trees. However, constructing these trees is not
practical in real implementations either because this process
requires global topology information. In real sensor net-
works, each node only has local topology information.
Therefore, we compare our scoreboard algorithm with the
minimal set cover algorithm because both of them only
require local topology information.

In simulations, we deploy nodes with a communication
range of 50 m in a region of 500 m x 500 m. We place the
source node at (250, 250) and multicast packets to six nodes
located at the boundary of the region within a maximum
angle of 60 degrees. The packets need to be relayed at least
six hops, thereby ensuring that different neighbor selection
approaches will have an effect. The density of the network
increases from 18 to 26 nodes per communication range. We
deliberately choose a relatively high density so that the size
of neighbor tables is large, thereby emphasizing the effects
of different neighbor selection strategies. Each scenario is
tested for 100 rounds. We ensure that exactly the same
topology is replayed for the minimal cover selection and the
greedy selection (the scoreboard algorithm), respectively.
The results are shown in Fig. 3.

In this figure, we use the average number of packets sent
in one round, plotted on the Y axis, to compare the
performances of different neighbor selection strategies. We
observe that the difference between the minimal cover and
the scoreboard algorithms can be neglected. In fact, since

244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

45 T T T T T T T

40 3
35 | 3
30 F 3
25 | 3
20 b 3

15 P S

Scoreboard Neighbor Choice —+—

Minimal Cover Neighbor Choice ---x--- 7
Uni<|:ast i

Number of Packets Sent

10 |

5 1 1 1 1
18 19 20 21 22 23 24 25 26

Node Density

Fig. 3. Algorithm optimality analysis.

the minimal cover neighbor selection at each hop is not
globally optimal, we find that the scoreboard algorithm
sometimes performs better (globally) that the local opti-
mum. Therefore, we conclude through these simulations
that the scoreboard algorithm is at least as good as the
minimal cover neighbor selection strategy.

A further implication of this neighbor selection strategy
is that, when the destinations are clustered, usually only
one node or two will be selected as the next hop, since they
are expected to get the most scores. Therefore, uCast has the
tendency to minimize branches and reduce potential for
congestion. Moreover, since uCast does not incur state
reconstruction overhead when topology changes, it further
decreases network load. Hence, uCast reduces potential for
network congestion (although it does not explicitly perform
any type of congestion control).

3.2.2 Discussion on the Effects of Destination Encoding

In our design, we list all multicast destinations in packet
headers. This design choice poses a limit on the maximum
number of destinations a single packet can address. In this
section, we discuss three possible trade-offs to mitigate the
scalability problem introduced by this design choice.

First, as the ratio on sensor nodes becomes more
powerful (for example, from CC1000 on Mica nodes to
CC2420 on MicaZ nodes), it is likely that nodes will send
longer packets in the next-generation sensor networks.
Further, new sensors such as video cameras naturally
require long packets to transmit images. In such cases, it
will not be a problem to encode all destinations into the
packet headers. Second, instead of enumerating all destina-
tions, we can compress the destination list before storing it.
This approach exchanges computation time for storage
space. In the case where the space limit is severe, the
designer may switch to this approach for better perfor-
mance. At last, nodes can employ in-network aggregation
techniques to further reduce the effects of destination
enumeration. More specifically, after one node sends out a
packet containing all destinations, it can follow up with a
train of pure data packets which do not contain any
destination information. To achieve this, certain synchroni-
zation and retransmission mechanisms may be employed to
guarantee correctness. This train of packets that share the
same destination list can be viewed as a single large packet
at the receiver side.

Having said that, we emphasize that uCast is designed
for small-group multicast. We expect the number of

Region A P Region B
Destinations Destinations
@ @
® @
O)
O @ Source
Source
@
O]
(@) @

Fig. 4. Different deployment impact.

destinations to be small. Therefore, encoding all destina-
tions into packet headers will not be a problem.

4 PERFORMANCE EVALUATION OF UCAST

We now present the performance evaluation of uCast. We
are primarily interested in three aspects: the energy
efficiency of uCast, its interaction with energy conservation
protocols, and its integration with different unicast routing
protocols. We observe that the performance of uCast is
considerably affected by the positions of the destination
nodes (how clustered the destinations are and how far away
they are from the source node). Therefore, we first present a
parameterized destination placement model to control the
above attributes. We then evaluate the performance of
uCast using this model.

To demonstrate the performance advantage of uCast, we
compare it to connection-based protocols. The baselines
include Shortest Path Tree (SPT), Greedy Incremental Tree
(GIT), and plain unicast. In SPT, we assume that the source
node sends packets along the shortest paths to all
destinations and aggregates common paths to form a tree
structure. We select SPT because it is the backbone tree
structure used in several representative connection-based
multicast protocols [22]. GIT is another selected baseline.
The construction process of GIT is centralized and requires
full knowledge of the topology. It proceeds as follows: First,
we connect the source node with the nearest destination via
a shortest path. This path forms a partially completed tree
structure. Then, we find the nearest destination node to the
existing tree and connect this node to the closest node in the
structure. We iteratively find the next nearest node in the
remaining destinations and connect it until all destinations
are connected. Clearly, each step requires global topology
information, and the construction process is quite compu-
tationally intensive. Therefore, GIT is not applicable for
sensor networks. However, previous literature has pointed
out that a GIT tree is usually very compact, implying that if
we deliver packets along such a tree, we may distribute
data in fewer hops compared to other tree structures.
Therefore, we use the GIT structure as a best-case baseline
for comparison.

4.1 The Destination Placement Model

We describe the destination placement model in this
section. We first give an intuitive explanation on why this
model is important for the performance evaluation of uCast.
Consider the two scenarios in Fig. 4. Intuitively, using
multicast in region A saves more energy than in region B
compared with using unicast because the destinations are
more clustered in region A. Our model is designed to
characterize such differences. It presents four parameters of

CAO ET AL.: UCAST: UNIFIED CONNECTIONLESS MULTICAST FOR ENERGY EFFICIENT CONTENT DISTRIBUTION IN SENSOR NETWORKS 245

Polar Angle
(Degree of Dispersion),

Origin(Source Radius(Range)
Node)

Fig. 5. Destination placement model.

destination placement that have effects on the performance
of multicast. These parameters model a minimal pie-shaped
region that contains the destinations and the source, as
shown in Fig. 5. The parameters are the angle of dispersion
(AOD); the radius, which corresponds to the farthest
distance that one destination can be positioned from the
source node, the density, i.e., the number of nodes within a
communication range, and the number of destination
nodes. We note that if we set AOD as 27 and the range
large enough, our model defaults to a random placement
model. In the following simulations, once the polar angle is
set, the distances of nodes from the source conform to a
uniform distribution.

Unless otherwise stated, the default parameters are as
follows: The communication range is 50 m, the area is
500 m x 500 m, the density is 20 nodes per communication
range, AOD is 90 degrees, the number of destinations is 10,
and the radius of the pie shaped area is 250 m. A total of
636 nodes are deployed by default. The data rate is 6 packets
per minute, except in Section 4.3, where multiple data rates
are tested. In Section 4.2, we simulated for 100 packets (about
16 minutes). In Section 4.3, we simulated for 120 minutes. We
selected different time lengths because the evaluation
purposes are different. We assume that each node has the
same transmission power level. The simulations are done in
the Glomosim [28] environment.

4.2 Energy Efficiency

In this section, we compare the energy efficiency aspect of
uCast with other multicast protocols. To accurately estimate
energy consumption, we use the parameters of MicaZ
nodes (one of the most advanced sensor network nodes
currently available) in energy consumption simulations.
More specifically, energy is consumed on both sending and
receiving packets. According to the data sheet of the
CC2420 radio on MicaZ [27], sending and receiving have
current levels of 17.4 mA and 18.8 mA, respectively. The
voltage supply is assumed to be 3 V, and the data rate is
250 kbps. Packets are assumed to have a payload of 20 bytes,
and each destination requires 4 bytes in the header. We do
not consider the signaling cost of connection-based proto-
cols since the impact of this cost depends on how the
specific protocol is implemented and how frequently the
topology changes. The key metric we use is the total energy
consumption, in joules, for sending 100 packets to all
destinations from the source.

S Unicast —— 7

PT ---¢---
05 GIT ---%---
uCast 8-~

Total Energy Consumption (Joule)

0 1 1 1 1 1 |
30 60 90 120 150 180 210 240 270 300 330 360

Angle of Dispersion (degrees)

Fig. 6. Impact of AOD on energy consumption.

We begin with a static network topology. Observe that
this is not the scenario uCast is optimized for. The main
advantage of uCast lies in its robustness to topological
dynamics. Hence, our objective from using a static topology
is to show that we do not degrade the performance by
removing multicast state when the network is static. Later,
we shall present the key advantages of uCast by consider-
ing topology changes.

In the following simulations, uCast is integrated with
geographical forwarding, a commonly employed unicast
protocol in sensor networks. The common comparison
interface is implemented by returning the node that is
geographically nearer to the destination. When a local
minimum is reached, uCast leverages the GPSR [12]
traversing technique to handle nodes in the LocalMinimum
set. Since there are no state transitions in this experiment,
no routing layer route repairs are needed.

Figs. 6,7, 8, and 9 show the impact of the four destination
placement parameters on multicast performance. Based on
these results, we have several observations. First, observe
that uCast performs better than SPT in these figures, except
Fig. 9, where the traversing technique of GPSR significantly
increases the path length. Also observe that, as we expected,
GIT performs better than uCast. We note that the
prohibitive construction cost of GIT makes it unsuitable
for sensor networks and, hence, it is not a contender in
practice.

Fig. 9 is especially interesting. In this case, both uCast
and unicast increasingly turn to the GPSR traversing
technique to deliver packets around voids, which degrades
their performance. Considering that practical sensor net-
works are usually deployed with a sufficiently high density
to ensure coverage, topology voids are not common.
Furthermore, the designer may decide to incorporate

Total Energy Consumption (Joule)

o 1 1 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10 11 12
Number of Destinations

13 14 15

Fig. 7. Impact of number of destinations on energy consumption.

246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

Total Energy Consumption (Joule)

0
200 250 300 350 400 450 500 550 600 650 700

Range of Multicast

Fig. 8. Impact of range on energy consumption.

adaptive features into multicast, where the applications
have the option of switching from uCast to SPT when the
density becomes extremely low. Therefore, we conclude
that our stateless multicast generally does not incur a
performance penalty compared to stateful approaches even
when the network is static.

Figs. 10 and 11 show the comparison results of the
average path length. Due to the effect of path aggregation,
we observe that uCast and GIT deliver packets along longer
routes compared with SPT and unicast. This is intuitive
since SPT and unicast typically find near-optimal paths. The
increase in the path length means that uCast may have a
slightly higher end-to-end delay. Since the main constraint
in sensor networks is the limited energy supply, we believe
that increasing path lengths to save total energy consump-
tion is an acceptable compromise. An operator would
welcome a slightly longer latency for each packet in
exchange for a significantly extended network lifetime.

4.3 Impact of Topological Changes

In this section, we evaluate uCast in the presence of
topological changes. Such changes are introduced by energy
saving protocols that turn nodes into and out of sleep states.
We expect that, in this case, the advantages of uCast should
dominate.

We use three parameters of energy conserving protocols
to evaluate the multicast performance:

e Toggle Cycle: Toggle Cycle is the time interval
between consecutive transitions into the sleep state
by individual nodes. This parameter reflects the
frequency at which the state information kept by

Total Energy Consumption (Joule)

R K KKK KKK KKK

o 2 e
0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1
8 9 1011121314151617 181920 21 2223 24 25
Density of Nodes

Fig. 9. Impact of density on energy consumption.

6

5 o g

£ | o e e e e

2,

o4T

-

£ L —

=

a3 q

()

(=]

8

22
Unicast ——

1 SPT —-
GIT —
uCast —

30 60 90 120 150 180 210 240 270 300 330 360
Angle of Dispersion(degrees)

Fig. 10. Impact of AOD on path length.

intermediate nodes becomes invalid. As the fre-
quency goes higher, the performance of state-based
multicast protocols should drop accordingly.

e Scale: Scale refers to the size of the multicast area. As
the size scales up, the impact of topological changes
becomes more significant and the reconstruction cost
goes higher. As a result, we expect that the
performance of state-based multicast protocols will
drop with a larger scale.

e Packet Delivery Rate: Another parameter that we
change is the packet delivery rate. We use two such
rates in our experiments, 6 packets per minute and
12 packets per minute, respectively. Observe that
these are source packets. If a multicast is sent to
10 destinations and there are four hops on the way to
each, up to 480 packets are generated per minute in
the network, which is acceptable for sensor network
applications. We do not choose higher rates because
we observed a higher level of radio congestion,
which would typically be avoided in a practical
scenario.

In the simulation setting, we place the source node at (0, 0)
and let it periodically deliver packets to 10 destinations with
an AOD of 90 degrees. The total simulated time is 120 minutes.
Other settings are left at the default.

The energy conservation model we use is random sleep
scheduling. For example, in Fig. 12, 10 percent sleep
scheduling with a 10 seconds toggle period means that
one node sleeps for one second in every 10 seconds. Each
node has the same toggle period. We assume that there is no
coordination between nodes since this is the model that can

T 7T T T

' U'nic:'slst LA,
SPT

— e

Average Path Length

0 1 1 1 1 1 1 1 1 1 1 1
8 9 10111213141516 1718192021 222324 25
Node Density

Fig. 11. Impact of density on path length.

CAO ET AL.: UCAST: UNIFIED CONNECTIONLESS MULTICAST FOR ENERGY EFFICIENT CONTENT DISTRIBUTION IN SENSOR NETWORKS 247

1= ——F—=
AT
08 s
T
° .
gosf 7
> _
[
2
804
10% uCast ——
0.2 10% SPT —-
20% uCast —-
20% SPT —=—

0 n L L s s L L s L
10 20 30 40 50 60 70 80 90 100 110 120
Toggle Period(second)

Fig. 12. Impact of toggle period on delivery ratio.

be most easily implemented in sensor networks. It is also
the foundation of a variety of other more complex sleep
scheduling protocols [9], [29].

We compare uCast with SPT in this section. We do not
include GIT because it is computed in a centralized manner
and it has a prohibitively high computational cost in the
presence of topological changes.

Figs. 12 and 13 show the performance evaluation results.
These two experiments are carried out for a data rate of
6 packets per minute. The comparison results demonstrate
the superiority of stateless multicast in the presence of node
state transitions. More specifically, we have the following
observations.

First, as the toggle periods become shorter, we observe that
the delivery ratio for SPT multicast degrades considerably.
For example, when nodes use a toggle cycle of 10 seconds and
sleep 20 percent of the time, only around half of all packets
successfully arrive at the destinations using the SPT tree for
multicast. On the other hand, we observe that uCast achieves
a delivery ratio of around 96 percent, enough for common
multicast purposes. We attribute the superior performance of
uCast to its statelessness.

Second, we observe from Fig. 13 that connection-based
multicast are less scalable compared with uCast. This is
quite intuitive in that, as the multicast range scales up, it is
more likely for one node on the tree to a enter sleeping state
for energy conservation purposes. Therefore, there is a
higher probability for a packet delivery session to encounter
a state loss.

One tentative solution to fix the state loss problem for
state-based protocols is to let the last node that has
successfully received the packet locally reconstruct the

L
3 o6f]
el
2
T 04rf]
a
02 10% uCast —+—]
- 10% SPT ---x---
20% uCast ---*---
20%] SPT B

0 1 1
150 200 250 300 350 400 450 500
Multicast Range

Fig. 13. Impact of scale on delivery ratio.

10000
=10% Sleep
9000 20% Sleep

8000

7000

@

® 6000

[5}

& 5000

£ 4000

5

3 3000
2000
1000

10 20 30 40 50 60 70 80 90 100 110 120
Toggle Cycle (second)

Fig. 14. Control packets of SPT multicast with range of 250 m.

SPT, once it detects that the next hop has entered a sleeping
mode. This approach will guarantee that the SPT achieves a
100 percent delivery ratio. However, this approach is quite
expensive. We implemented this tentative patch for SPT
and recorded how many control packets are sent out to
reconstruct the SPT structure. The results are plotted for
two different multicast ranges, 250 m and 500 m, respec-
tively, as shown in Fig. 14 and 15.

Figs. 14 and 15 demonstrate that, even with only
100 packets sent from the source, there are usually
thousands of control packets required to locally rebuild
the tree. The reason is that, when a state transition occurs
for a node that was initially in the SPT tree structure, it can
no longer forward packets from its upstream nodes.
Therefore, the upstream node must initiate a flooding
process to try to locate the next downstream node available.
In our simulation, we find that this upstream nodes usually
needs to flood packets to two-hop neighbors, while, in rare
cases, three-hop neighbors are needed. Therefore, even if
the tree structure is only partially broken, the flooding
process generates a considerable amount of traffic. Of
course, other modification possibilities also exist, such as
enforcing that nodes should not go to sleep when they are
in multicast sessions. However, doing so incurs nontrivial
reductions in energy savings. On the other hand, uCast has
a significantly smaller overhead because it does not need
any control packets to handle individual node state
transitions. We acknowledge that uCast does have addi-
tional overhead in the form of destination lists in the packet
headers. This overhead, however, is usually quite small
when only a few destinations need to be enumerated. We

18000
17000
16000
15000
14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

H10% Sleep
220% Sleep

Control Packets

10 20 30 40 50 60 70 80 90 100 110 120
Toggle Cycle (second)

Fig. 15. Control packets of SPT multicast with range of 500 m.

248 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18,

! e e it T S G G
P
0.8 [*X% - ¥
(] » P =
w oo 3
e o6 _a—aE]
5 —— o
T 04]
o
02rp 10% uCast —+—]
- 10% SPT ---x---
20% uCast ---*---
o,
0 1 I 1 L \ I20A:ISPTI

10 20 30 40 50 60 70 80 90 100 110 120
Toggle Period (second)

Fig. 16. Impact of toggle period on delivery ratio with a higher data rate.

shall consider this overhead in the experiments based on a
realistic testbed in Section 5 and show that it does not have
a significant effect on the efficiency of uCast.

Fig. 16 studies the effect of the increased data rate in
which we change the data rate to 12 packets per minute. We
can observe a slight decrease in the delivery ratio,
compared with Fig. 12. As expected, the advantages of
uCast still dominate.

4.4 Integration of uCast with Unicast Protocols

Another goal of uCast is to interface with different unicast
protocols. We implemented uCast on top of three unicast
protocols: geographical forwarding, logical coordinate-
based routing, and graph embedding-based routing. In
each of them, we made no changes to the existing unicast
protocols other than extending them to provide the
common comparison interface. In this section, we first
describe how we implemented the common comparison
interface, followed by performance comparisons based on
simulations.

For the geographic forwarding routing protocol, we
implemented the comparison interface based on physical
distance comparisons. More specifically, the interface
returns the node that is nearer to the destination. The
second routing protocol we use is the logical coordinate
based routing protocol (LCR) [5]. LCR uses hop counts to a
few landmarks from each node as its logical coordinate
vector. Based on these vectors, LCR also provides a
definition of logical distances. In the comparison interface,
we simply compare the logical distances from nodes N1
and N2 to node DEST, and the node with the smaller
distance is returned by the interface.

The way we implemented the compare interface in Graph
Embedding-based Routing (GEM) [18] is a little more
complex. In GEM, one node is chosen as the root. GEM then
constructs a tree structure and assigns a (level, angle)
combination to each node based on its topological position.
The assigned combination forms a unique identifier for each
node. GEM then delivers packets using this tree structure
based on considerations of both the level and the angle of each
node. Interestingly, GEM has no definition of distance.
Therefore, we used both the level and the angle information
to implement the comparison interface. More specifically,
when comparing twonodes, we followed the same procedure
as the routing process in GEM: If one node is the parent or the
offspring of the destination node in the tree structure and if
the other node is not, then the parent/offspring node is
returned by the interface; if both nodes are parent/offspring

NO. 2, FEBRUARY 2007

Number of Packets Sent

uCast/Geographical Forwarding —+—
SFE uCast/Logical Coordinates ---%--- 7
| uCast/Graph Embedding Routing ---%--

30 60 90 120 150 180 210 240 270 300 330 360
Angle of Dispersion (degrees)

Fig. 17. Impact of addressing schemes on traffic.

nodes, then the node with a level nearer to the destination is
returned; if both nodes are not parent/offspring nodes, then
the node with a nearer angle range is returned. Theoretically,
this approach guarantees 100 percent delivery ratio if all
nodes in the same level are perfectly aligned.

Fig. 17 shows the performance evaluation results of
running uCast on the three aforementioned unicast proto-
cols. We observe that both geographic forwarding-based
and logical coordinates-based routing appear quite similar
in their performances. However, uCast based on GEM
shows quite different performance characteristics. We
attribute such differences to the more convoluted delivery
paths in GEM, which increase path lengths considerably.
Another way to explain the differences is that both logical
coordinates and physical coordinates are based on Carte-
sian-like coordinate frameworks, which are considerably
different from GEM, whose identifiers are more like polar
coordinates.

We did not implement uCast on identifer-based unicast
routing protocols like DSR. In such protocols, a look-up
operation is used to return the next node on the path to the
destinations. The implementation of the compare interface
is therefore very straightforward: It simply returns the next
hop node for a given destination from the look-up table and
this node will always percolate to the top and be chosen as
the best candidate node.

5 IMPLEMENTATION ON SENSOR PLATFORM

To investigate the performance of the uCast protocol in a
running system, we implemented it on the MICA2 platform.
The code size is 992 bytes. As shown in Fig. 18, we bridge the
uCast protocol with the underlying unicast routing protocol
(Geographic Forwarding) using the uCast2uniCast interface
(the NesC definition of this interface is shown in Fig. 19). In
this interface definition, the compare() command is the
mandatory part of the interface for node comparison. The
getNeighborTable() command is optionally provided.

In the experiment, we used a testbed of 25 MICA2 motes
(5 by 5). Fig. 20 shows the experimental setting and data
delivery traces. We conducted three sets of experiments,
with 3 or 5 destination nodes selected in each set. We plot
the multicast traces and unicast traces in this figure. All
data are gathered from real tests. For multicast traces, we
use forking points to represent the positions where data are
sent to multiple receivers.

We now compare the energy consumption of uCast and
unicast. We use the parameters of MICA2 motes: The
sending current is 21.5 mA, the receive current is 7.4 mA,

CAO ET AL.: UCAST: UNIFIED CONNECTIONLESS MULTICAST FOR ENERGY EFFICIENT CONTENT DISTRIBUTION IN SENSOR NETWORKS 249

Application Layer

I

Multicast Interface

Unified Connectionless
Multicast Implemenation

1L

uCast2uniCast
Interface

uniCast Interface

uniCast (Geographical Forwarding)
Implementation

1L

Fig. 18. Implementation of uCast protocol.

Mac Layer

interface uCast2uniCast
{
I* For comparing distances of two neighboring nodes */
command result_t compare(uint16_t 1D1, uint16_t ID2, uint16_t destination);
I* Optional: get neighbor information */
command result_t getNeighborTable(uint16_t *IDs, uint8_t *count, uint8_t MAX_COUNT);

Fig. 19. uCast interface in NesC definition.

e - O C e e - ® C e O O e e e
A A A A P A Vd
® o ¢ F od o ¢ g o o o b e
| 7 | 1,7 I /
<E> o/@ o O <i> o/@;—@—»o o O /Q%—e—»o
o Z 0 ® © o Z o ® o o

' 7/

7/

o o o
/s
/ Vi /
¢-c-o--c>0 &--0-c>e & 0 0 0 O

Scenario 1 one sender
and three destinations.

Scenario 3 one sender
and five destinations

Scenario 2 one sender
and five destinations.

- O

‘ Legend uCast Trace uniCast Trace uCast Forking Point @ Source/EndNoda‘

Fig. 20. The prototype experiment traces.

the bandwidth is 19.2 Kbps, each node has a 3 V' supply,
and each packet contains a 12 byte payload. We then
calculate energy consumption of different data distribution
approaches using these parameters and plot the results in
Fig. 21. Observe that, in these three settings, uCast
significantly decreases energy consumption compared to
unicast. Furthermore, if we compare Scenario 1 and
Scenario 2, we notice that, as the number of destinations
increases, uCast saves more energy. The same observation
also holds when the destinations become more clustered, as
from Scenario 2 to Scenario 3. These observations are
consistent with our analysis in Section 4.

At last, we study a more generalized scenario. In this
experiment, the source node 0 delivers data packets periodi-
cally to three randomly selected destinations. We compare
the total number of packet transmissions in uCast to unicast.
Again, we use geographic forwarding as the basic unicast
routing protocol. A total of 300 packets are delivered and the
recorded data load for each node is plotted in Fig. 22. We
observe a considerably reduced data load for uCast. In fact,
uCast reduces the total number of data transmissions by
45.7 percent compared to unicast. Therefore, we conclude
that uCast exhibits a very satisfactory energy efficiency for
content delivery in realistic experiments.

30

25

uniCast C——1 '
uCast m==m

uniCast C——
uCast m==m

20 | A

Energy Consumption (mJ)
=
T
)
Number of Packets in one round

1 2 3 1 2 3
Scenario Setting Index Scenario Setting Index

Fig. 21. The performance comparison.
350
uniCast me—
uCast s
300 .
250 .
200 .

Number of Packets sent in Experiment

01234567 89101112131415161718192021222324
Node Index

Fig. 22. Experimental comparison between uCast and uniCast.

6 CONCLUSIONS

In this paper, we presented uCast, a unified connectionless
multicast protocol for sensor networks. The design of uCast is
motivated by the problem that state-based protocols cannot
adapt efficiently to the network dynamics introduced by
energy conservation protocols. We designed and implemen-
ted uCast on top of three different unicast routing protocols to
show that it is generic. Several conclusions are drawn from
our evaluation and comparisons. First, uCast is generally as
efficient as connection-based multicast protocols, even when
the network is static. Second, the connectionless nature of
uCast makes it more robust in the face of network dynamics.
Finally, uCast can be easily implemented on different unicast
routing protocols. The implementation of uCast on a real
testbed also supports our conclusions.

ACKNOWLEDGMENTS

The work reported in this paper is funded in part by US
National Science Foundation grants EHS-0208769 and EHS-
0509233.

REFERENCES

[1] S. Bhattacharya, H. Kim, S. Prabh, and T. Abdelzaher, “Energy-
Conserving Data Placement and Asynchronous Multicast in
Wireless Sensor Networks,” Proc. ACM MobiSys, 2003.

[2] R.Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, O. Paridaens,
and E. Muramoto, Internet Draft, draft-ooms-xcast-basic-spec-
09.txt, 2005.

250

(3]

(4

(5]

o]
[

(8]

]

(10]

(1]

[12]

(13]

(14]

[15]

[1o]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(23]

[26]

[27]

(28]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 18, NO. 2, FEBRUARY 2007

R. Boivie, N. Feldman, and C. Metz, “On the Wire—Small Group
Multicast: A New Solution for Multicasting on the Internet,” IEEE
Internet Computing, vol. 4, pp. 75-79, 2000.

P. Bose, P. Morin, 1. Stojmenovic, and J. Urrutia, “Routing with
Guaranteed Delivery in Ad Hoc Wireless Networks,” ACM/Baltzer
Wireless Networks, 2001.

Q. Cao and T. Abdelzaher, “A Scalable Logical Coordinates
Framework for Routing in Wireless Sensor Networks,” Proc. IEEE
Real-Time Systems Symp. (RTSS), 2004.

W. Fenner, “Internet Group Management Protocol, Version 2,”
IETF RFC 2236, Nov. 1997.

J. Garcia-Luna-Aceves and E.L. Madruga, “The Core-Assisted
Mesh Protocol,” IEEE]. Selected Areas in Comm., special issue on
ad hoc networks, Aug. 1998.

T. He, C.D. Huang, B. Blum, J.A. Stankovic, and T. Abdelzaher,
“Range-Free Localization and Its Impact on Large Scale Sensor
Networks,” Proc. ACM MobiCom, Sept. 2003.

T. He, S. Krishnamurthy, L. Luo, T. Yan, B. Krogh, L. Gu, R.
Stoleru, G. Zhou, Q. Cao, P. Vicaire, J.A. Stankovic, T.F.
Abdelzaher, and J. Hui, “Vigilnet: An Integrated Sensor Network
System for Energy-Efficient Surveillance,” ACM Trans. Sensor
Networks, 2006.

Q.F. Huang, C.Y. Lu, and C.C. Roman, “Spatio-Temporal Multi-
cast in Sensor Networks,” Proc. ACM Conf. Embedded Networked
Sensor Systems (SenSys), Nov. 2003.

D. Johnson and D. Maltz, “Dynamic Source Routing in Ad Hoc
Wireless Networks,” Mobile Computing, chapter 5, pp. 195-206,
1996.

B. Karp and H.T. Kung, “Greedy Perimeter Stateless Routing for
Wireless Networks,” Proc. ACM MobiCom, Aug. 2000.

Y. Ko and N. Vaidya, “Geocasting in Mobile Ad Hoc Networks:
Location-Based Multicast Algorithms,” Proc. IEEE Workshop
Mobile Computing Systems and Applications (WMCSA), Feb. 1999.
Y.B. Ko and N.H. Vaidya, “Location-Aided Routing (LAR) in
Mobile Ad Hoc Networks,” Proc. ACM MobiCom, 1998.

S.J. Lee, M. Gerla, and C.C. Chiang, “On-Demand Multicast
Routing Protocol,” Proc. IEEE Wireless Comm. and Networking Conf.
(WCNC "99), Sept. 1999.

J.Y. Li,]J. Jonnotti, D.D. Couto, D.R. Karger, and R. Morris, “A
Scalable Location Service for Geographic Ad Hoc Routing,” Proc.
ACM MobiCom, 2000.

J.C. Navas and T. Imielinski, “Geocast, Geographic Addressing
and Routing,” Proc. ACM MobiCom, 1997.

J. Newsome and D. Song, “Gem: Graph Embedding for Routing
and Data-Centric Storage in Sensor Networks without Geographic
Information,” Proc. ACM Conf. Embedded Networked Sensor Systems
(SenSys), 2003.

V.T. Paschos, “A Survey of Approximately Optimal Solutions to
Some Covering and Packing Problems,” ACM Computing Surveys,
June 1997.

A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic Routing without Location Information,” Proc. ACM
MobiCom, 2003.

S. Ratnasamy et al., “Data-Centric Storage in Sensornets with
GHT, A Geographic Hash Table,” Mobile Networks and Applications
(MONET), special issue on wireless sensor networks, 2003.

E. Royer and C.E. Perkins, “Multicast Operation of Ad-Hoc, On-
Demand Distance Vector Routing Protocol,” Proc. ACM MobiCom,
1999.

S. Deering and D. Cheriton, “Multicast Routing in Datagram
Internetworks and Extended Lans,” ACM Trans. Computer Systems,
1990.

S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin,
“Data-Centric Storage in Sensornets,” Proc. ACM SIGCOMM
HotNets, 2002.

M. Shin, K.S. Park, Y.J. Kim, and S.H. Kim, “Explicit Multicast
Extension (xcast+) for Efficient Multicast Packet Delivery,”
ETRI], vol. 23, no. 4, pp. 202-204, 2001.

L. Stojmenovic and X. Lin, “Gedir: Loop-Free Location Based
Routing in Wireless Networks,” Proc. Int'l Conf. Parallel and
Distributed Computing and Systems, Nov. 1999.

The CC2420 Datasheet from Chipcon Company, http://
www.chipcon.com, 2003.

The Glomosim Project, 2006, http://pcl.cs.ucla.edu/projects/
glomosim/.

[29] T. Yan, T. He, and J. Stankovic, “Differentiated Surveillance for
Sensor Networks,” Proc. ACM Conf. Embedded Networked Sensor
Systems (SenSys), 2003.

[30] F. Ye, H.Y. Luo, J. Cheng, SW. Lu, and L.X. Zhang, “A Two-Tier
Data Dissemination Model for Large-Scale Wireless Sensor Net-
works,” Proc. ACM MobiCom, 2002.

Qing Cao received the MS degree from the
University of Virginia in 2004 and the BS degree
from Fudan University, Shanghai, China, in
2002, both in computer science. He is currently
a PhD student in the Department of Computer
Science at the University of lllinois, Urbana-
Champaign. His research interests include wire-
less sensor networks, real-time, embedded
systems, and networking systems. He is a
student member of the IEEE.

Tian He received the BS degree from the
Nanjing University of Science and Technology,
Nanijing, China, in 1996, the MS degree from the
Institute of Computing Technology, Chinese
Academy of Sciences, China, in 2000, and the
PhD degree under Professor John A. Stankovic
from the University of Virginia in 2004. He is
currently an assistant professor in the Depart-
ment of Computer Science and Engineering at
University of Minnesota-Twin Cities. Dr. He is
the author or coauthor of more than 30 refereed publications in
international conferences and journals. His research interests include
wireless sensor networks, real-time embedded systems, and distributed
systems. He is a member of the ACM and the IEEE.

Tarek Abdelzaher received the BSc and MSc
degrees in electrical and computer engineering
from Ain Shams University, Cairo, Egypt, in 1990
and 1994, respectively. He received the PhD
degree from the University of Michigan in 1999 on
quality of service adaptation in real-time systems.
He was an assistant professor at the University of
Y Virginia until his promotion with tenure in 2005,
Sy where he founded the Software Predictability
A Group. He is currently an associate professor in
the Depar‘(ment of Computer Science, the University of lllinois at Urbana-
Champaign. He has authored/coauthored three book chapters and more
than 60 refereed publications in leading conferences and journals in
several fields including real-time computing, distributed systems, sensor
networks, and control. He is an associate editor of the IEEE Transactions
on Mobile Computing, the Journal of Real-Time Systems, the Interna-
tional Journal of Embedded Systems, and the Ad Hoc Networks Journal,
as well as the editor of the ACM SIGBED Review. He was a guest editor
for the Journal of Computer Communications and the Journal of Real-
Time Systems, and is a coeditor of IEEE Distributed Systems Online. He
has served on numerous technical program committees in real-time
computing, networking, quality of service, distributed systems, sensor
networks, multimedia, and mobile computing, among others. He also held
several conference organization positions including program chair of
RTAS ’04, demo chair of MobiSys '05, poster chair of ICDCS '03, sensor
networks vice chair of RTSS ’05, and general chair of RTAS ’05. His
research interests lie broadly in understanding and controlling the
temporal properties of software systems in the face of increasing
complexity, distribution, and degree of embedding in an external physical
environment. He is a member of the IEEE and the ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

