Prediction-based Power-Performance Adaptation of
Multithreaded Scientific Codes

Matthew Curtis-Maury, Christos D. Antonopoulos, Filip Blgevic, and Dimitrios S. Nikolopoulos

Abstract— Computing is currently at an inflection point, with dissipation is now a major consideration for system soféwar
the degree of on-chip thread-level parallelism doubling esry optimization on parallel architectures [10]-[13]. Theraduction
one to two years. The number of cores has become one ofgf many simple cores on a microprocessor has been largely
the most important architectural parameters that characteize motivated by the poor power-efficiency of microarchiteatur

performance and power-efficiency of a modern microprocessp .
and a computer system in general. Concurrency lends itself components that attempt to improve performance at the cost

naturally to allowing a program to trade some of its perfor- Of ha.rdware complexity. _and reliability [3]. Concurrency tno
mance for power savings, by regulating the number of active only improves power efficiency, but also helps system sattwa
cores. Unfortunately, in several computing domains, usersre steer power and performance simultaneously. The conveltio
unwilling to sacrifice performance to save power. Futhermoe, the wisdom holds that when concurrency is increased, perfocaém

opportunities for saving power via other means, such as vailge jmnroved, but with an associated increase in power consompt

and frequency scaling, may be limited in heavily optimized . .
applications. In this paper, we present a prediction model dr Conversely, when concurrency is decreased, power consampt

identifying energy-efficient operating points of concurrecy in IS reduced, at a cost for performance. .
well-tuned multithreaded scientific applications, and a runtime While there are many situations where it is desirable toerad

system which uses live analysis of hardware event rates thugh performance for reduced power consumption, in the domain of
the prediction model, to optimize applications dynamicaly. The high-performance scientific computing, performance remahe
runtime system throttles concurrency so that power consumiion primary target and energy may be a second tier concern for end
can be reduced and performance can be set at the knee of the . o Applications written for high-end computing systemreate

scalability curve of each parallel execution phase. We prest a hall f ¢ ftw hich ds t
dynamic, phase-aware performance prediction model (DPAPR a challenge for energy-awareé system software, which negds

which combines multivariate regression techniques with ratime ~ identify opportunities to reduce power consumption withaan
analysis of data collected from hardware event counters, ttocate Nnegative impact on performance. In well-tuned, heavilyrojted
optimal operating points of concurrency. DPAPP is hardware scientific applications, idle periods or long memory laiesctwo
aware, in the sense that it takes into account the dimensions known opportunities for performance-aware power reductia
of parallelism in the architecture, using distinct predictors and dynamic voltage and frequency scaling [23], [29], may nigeas

hardware events for each dimension. It is also phase-awarbsing .
DPAPP, we develop a prediction-driven runtime optimizatin frequently, or not be as long as needed to enable substpotizlr

scheme, which drastically reduces the overhead of searchn réduction. Programmers will usually do their best to eliater
the optimization space for power-performance efficiency, wile idling and minimize memory access latency via load balancin
achieving near-optimal performance and power savings in ral and extensive data caching optimizations respectively.

parallel applications. On the other hand, there are certain cases where inherent
Index Terms— Modeling and prediction, Application-aware Program characteristics —such as limited algorithmic corency,
adaptation, Energy-aware systems fine computational granularity, and frequent synchromirat and

architectural properties —such as capacity limitationssiofred
resources— limit the scalability and the maximum degree of
exploitable concurrency in an application, resulting iroéaserved
Microprocessors are currently at an inflection point, wherperformanceloss through the use ofnore parallelism. In these
clock rates and instruction-level parallelism have be@faeed by cases, power and performance can be simultaneously ingbrove
the number of execution cores, as the key metric that cheriaes by throttling concurrency.
the performance and drives the marketability of a computer To motivate the work presented in this paper, Figure 1
system. Moore’s law is now interpreted as “the number of gorghows a breakdown of the parallel execution time of three
on a microprocessor is expected to double every one to twipplications from the NAS Benchmarks Suite [18] into phases
years”, and hardware vendors race for the most cores that Cetie breakdowns were obtained during execution of the bench-
be packaged on a single chip [21], [25]. marks on a quad-processor server with Intel Xeon proces-
In the new landscape of highly parallel microprocessors amsgrs using Hyperthreading technology. Each chart depiots t
system architectures, system software appears to be yaogel (processors, Hyperthreads/processor) configuration that mini-
prepared for the transition. The programming effort regdifor mizes the execution time of each phase. The fastest conigura
parallelizing and optimizing code practically remains amred is identified experimentally, by executing each target phasall
solved issue, even among research communities that have bpessible hardware configurations of the system. LU-HP-BASP
investigating this problem for decades. At the same tim&ygso and MG-B execute optimally with at least one Hyperthread per
processor deactivated, thus saving power while simultasigo
_Matthew Curtis-Maury, Filip Blagojevic, and Dimitrios Sikélopoulos are improving performance, during 95%, 84% and 81% of their
with the Center for High End Computing Systems at VirginiaiTe . . .
Christos D. Antonopoulos is with the Department of Compéegineering Parallel execution times respectively. LU-HP-B and SP-Aane
and Communications at the University of Thessaly. with at least one entire processor deactivated during 40%are

I. INTRODUCTION

NAS LU-HP Class B NAS SP Class A NAS MG Class B

opportunities for power savings opportunities for power savings opportunities for power savings
hardware configuration for min. execution time B hardware configuration for min. execution time B hardware configuration for min. execution time ===

“2) “2) “2)

&Y 1y 1

(32) (R @2 @2

for min. phase execution time
for min. phase execution time

for min. phase execution time

e8] 1) e8]

@2 @2 @2

@y @y @y

w2 w2 w2

wy wy wy

o 02 04 06 08 1 o 02 04 06 08 1 o 02 04 06 08 1

ratio of execution time ratio of execution time ratio of execution time

Fig. 1. Breakdown of parallel execution time of three apglions from the NAS Benchmarks Suite [18], on a four-prooessrver with Intel Hyperthreading
processors. Each phase is represented with a gray paga#ieio The length of the phase and the hardware configurafimmogessors, #hyperthreads/processor)
that minimize the execution time of the phase corresponteamidth and height of each parallelogram respectivelyhtljgshaded areas illustrate opportunities
for concurrency throttling.

of the optimal execution time. Concurrency throttling h&e t parallelism, to account for the presence of multidimensiqaral-
advantage that it can be applied to well-tuned, computnsite lelism and variance in the impact of sharing of resources/éen
phases of an application, that otherwise provide limitegasp parallel processing units within and across chip boundange
tunities for power optimization. Concurrency throttlingnds to use the DPAPP model to steer a runtime concurrency controlle
drastically reduce power consumption. Whenever it alsaced which succeeds in identifying phases where power consoempti
execution time, it achieves a multiplicative reduction be total can be conserved while sustaining or improving performakide
expended energy. demonstrate the effectiveness of our controller using tHeNFAS
Despite its appeal, concurrency throttling is an oppotiuni Benchmarks suite, on a shared-memory multiprocessor csetbo

which may present itself to varying degrees across difereRf SMT processors.

programs, across different phases of the same program,esr ev Thg rest of this paper is organized as foIIow_s. In S_ection I,
across different inputs fed to the same program. IdengfyinVe discuss background and related work. Section Il intoegu

concurrency throttling opportunities statically is hatgcause it Our model for dynamic, phase-aware performance prediation
requires fine-grain analysis of the dynamic behavior of fzra paralle! applications. Section IV presents our controlesoh for
code across and within parallel execution phases. Bestes fynamic, power-aware and performance-aware concurretiag-a
problem of identification and quantification of the oppoities, tation of multithreaded codes. We present a detailed discosf
applying concurrency throttling directly in applicationequires ©Ur experimental methodology and results in Section V. Iipa
exposure of the programmer to architectural details, suctha We conclude this paper in Section VI.
number and physical layout of processors. This tactic iselyid
considered as one of the factors that make parallel progiagim [l. RELATED WORK
exceptionally difficult [9]. Given the complexity along Withe nych previous research has been performed on optimizing
inherent drawbacks of d_elegatlng.concurrency throttliegisions ihe execution of programs using feedback from hardware teven
to the user or to a static analysis tool, runtime systems &pp@ounters (HECs), however it has predominantly been offline,
to be ideal candld_ates for the _|Qent|f|cat|on and explatatof profile-guided in nature. For example, NUMA multiprocessor
concurrency throttling opportunities. page placement using hardware assistance [31], CPO (Qoutn
This paper presents a dynamic program concurrency coatrollProgram Optimization) from IBM which includes management
which seeks the optimal operating point of concurrency ifl-muof variable page-size systems [4], and case studies of fapeci
tithreaded programs, at the granularity of program phas®s. applications [2]. In contrast, little work has been done ontime
contrast to concurrency control schemes based on live @apir optimization utilizing hardware counters as the prograreceies.
search of operating points, our controller relies on a dyioam Existing examples include HEC-based SMT job scheduler} [32
phase-aware performance prediction (DPAPP) model. Theemodnd the ADORE runtime optimization system [30]. Our work<fal
predicts the optimal operating point of concurrency oneddht into the category of online dynamic optimization with feadk
configurations of processors, cores, and threads, herefeme@ from hardware counters, however it targets energy consompt
to simply ashardware configurationsThe key contribution of in addition to performance.
the DPAPP model is that it enables drastic reduction of the Performance prediction of parallel programs has beenetiidi
overhead associated with searching the optimization space great depth, however the majority of research is targetedflaie
concurrency throttling, henceforth facilitating rapiddaefficient prediction. Due to space limitations, we cannot here ful§cdss
program adaptation. DPAPP uses live input from hardwarateveprevious work in this mature area. Work most similar to ours i
counters, collected while executing program phases onatipgr cludes offline research on partial execution-based priedi¢87]
points of maximal concurrency. We use a multivariate regjes and statistical simulation of superscalar processorsgusfC
process for selecting the critical hardware events that freslict predictions based on very short code samples [8]. Miningizia-
performance, and for training the DPAPP model in assessiag sign space evaluation time for processor development hasesp
scaling effects that changing hardware configurations h@ve much research on predicting the performance effects of-alte
overall program throughput. The DPAPP training proces$veer ing various microarchitectural parameters, includingresgion-
distinct predictors for thread-level, core-level and mesor-level based [26] and machine learning-based approaches [16],T&9

our knowledge, no prior work has considered online predictd we hereafter refer to asghase- across varying configurations of
parallel execution performance on shared-memory ardhites, the processing units on a parallel architecture [5]. We hedédrm
using runtime input on IPC and hardware event counts. processing unit@s an umbrella term covering hardware threads,
High-performance, power-aware computing has recently bgealar or superscalar processor cores, and single- or piailti
come an important topic of research. Efforts range from pewechip uni- or multi-processors. As a base hardware substvate
scalable and power-efficient clusters [10], [11] to runtisystems consider shared-memory multiprocessors with three distipes
providing support for dynamic frequency and voltage sepfior of processing units, namely multi-core processors, corgkimw
parallel applications [12], [23]. Our work is most closeblated multi-core processors and threads within multi-threaded@s. We
to the latter, as both attempt to identify opportunities wattime refer to each of these types of processing units dsreension of
to achieve power savings without sacrificing performancer Oparallelismin the system. More formally, we defineddmension
work differs in that we target shared-memory rather than disf parallelismas a set of homogeneous processing units that share
tributed memory multiprocessors. Additionally, DVFS Isfdces a given level of the memory hierarchy, which is also shared by
hard technological contraints before being applied pegatl in processing units nested in lower dimensions of parallelsmnot
multicore chips [27], while concurrency throttling is imdiately shared by processing units in higher dimensions of paistfel
deployable on all forms of emerging processors composed lofprinciple, each dimension of parallelism shares a distaet of
multiple cores and hardware threads. Finally, it should d@ted execution and memory resources, and therefore exhibitsclis
out that DVFS and concurrency throttling are not necessaitil scalability properties. The dimensions of parallelismt thee
odds with each other as they may be applied in a synergistionsider are representative of current commercial multes-
fashion to achieve still greater energy-efficiency [28]. sors [21], [25]. Our DPAPP technique considers phases tieat a
Concurrency control has been previously applied for oani identified as parallel loops, as these structures encdpsthe
tion of multithreaded codes on shared memory multiproasssobulk of parallel code in real scientific applications.
Specifically, concurrency control can enable adaptive exec Our DPAPP model works by predicting the cumulativeeful
in multiprogramming environments [1], [35], [38]. Furthestan- Instructions Per Cycleuf PC)) of multithreaded phaseslPC is
dalone programs can benefit from concurrency control aatdss defined as the sum of IPCs of the threads used to execute g phase
ferent phases with potentially different execution andiaulity excluding instructions and cycles expended for synchaiiin
characteristics [15], [39]. In most cases, concurrencytrobris and parallelization. Ignoring parallelization and syrarfization
applied in a given phase by the programmer, the runtime systeoverheads makesI PC inversely proportional to the execution
or the compiler. Compiler-based control is generally perfed time of a fixed number of instructions on a given hardware
using a simple threshold-based strategy and the paralidé caonfiguration. Note that althoughl PC ignores instructions for
region is either sequentialized or run with a programmezesfjied triggering and synchronizing threads, it still considdre effects
fixed number of threads [15], [20], [36]. Programmmers hargl of interference between threads on shared hardware resourc
had the ability to manually specify concurrency levels, begr during concurrent execution. The objective of DPAPP is to
few runtime systems provide the functionality to autonaaitic identify phases where concurrency can be reduced during the
manage these decisions from within. Our work provides sucheaecution of useful application computation, with a nogatee
system, offering fully autonomic concurrency control themn impact on performance. The use @f PC as a prediction target
performance predictions of each configuration. focuses the optimization process on lengthy, computersive
Recent work has considered applying concurrency contrdl aparts of applications, where power optimization oppotiesimay
DVFS on single chip multiprocessors, with decisions utiig be limited with means other than concurrency throttling.
search algorithms of the configuration space [28]. Thisaede
shares many motivations with our work, mainly maintaining.. DPAPP Outline
performance while reducing power consumption, however the
suggested solutions to the problem differ significantlys&iwe
do not explore the potential of DVFS, but we rather introdace
solution that works on architectures independently ofrteepport
for DVFS functionality. Second, our approach is implementa
a real system, rather than simulated, verifying that ouhégue

works in practice with all overheads considered. Third, wikze DPAPP takes input from live samples of hardware event

performance prediction rather than empirical searchek®ftbn- counters. HECs are sampled at the beginning and end of each
figuration space to reduce the number of test executionsssane
il

rf q . Furth h hat th head phase, while the phase is executed on the configuration that
to pehotr)m ad aptarl]tlc_)n. UE_ ?;' Wehs Oert at the o¥e_r eal tivates all processing units at dimensibriThe set of hardware
search base techniques hinders the pe ormance or ‘!Eﬂt' events sampled are specific doand are selected using a formal
codes, particularly when compared to prediction. Addiiby

h i h heinethb statistical process, according to their contributionuttPC. We
our approach targets multiprocessor systems where theinethb ofq 14 these events asitical events Samples of critical event

energy co_nsumption of the processors plays a mUCh_ larger MPates are fed to a model that estimatesPC per phase, per
than in uniprocessor systems such as that evaluated in [28]. configuration, for all feasible configurations of procegsimits at
dimensiond. Intuitively, DPAPP attempts to predict how the rate
l1l. DYNAMIC PHASE-AWARE PERFORMANCEPREDICTION of retirement of useful instructions, PC, will change in a phase
The goal of dynamic phase-aware performance predictiovhen the number of processing units used to execute the phase
(DPAPP for short) is to predict the performance of a multichanges. To make this prediction, DPAPP uses a multivariate
threaded, compute-intensive region of code in a programickwh regression model, which correlates observed event rates on

DPAPP makes distinct predictions on the optimal number of
processing units to use at each dimension of parallelisnhén t
system. For ease of presentation, we first describe the tipera
of DPAPP for a given dimension of parallelissh We defer

the discussion of how DPAPP predicts across dimensions of
parallelism until Section IlI-E.

sample configuration and observedPC values on all feasible

hardware configurations during training runs. The modepots n

a set of scaling factors far/ PC and the critical hardware events, «(t,e1(s),...,en(s)) = Z(mi(t) cei(s)+yi()+ 208 (2

for each feasible hardware configuration. These outputsisee i=1

as constant coefficients during production runs, to preafitimal The linear model of event rates stems from the empirical

operating points of concurrency for each phase in the code. Whservation that a change in the configuration used to eseut

describe the model in more detail in Section III-B and thecpES program phase will result in changes — either upwards or down

for training the model in Section I1I-C. The process for ity \yards — of critical hardware event rates, reflecting the eotin

critical events is discussed in Section II-D. _ or effective hardware utilization at each level of paradiel. These
The objective of DPAPP is to produce performance predistioRyent rates are linearly related — positively or negativelyith

and adapt the code dynamically, as the program executes. Rgs,; pc. This relation is captured in Equation 2 with positive

call that a primary motivation behind DPAPP is the avoidancg negative event coefficients respectively. Our modehats to

of the overhead of experimentally searching through haréwaggiimate these coefficients using multivariate regressiseussed

configurations to find optimal operating points for phasesh® f,iner in Section 1I-C.

program. To minimize the prediction overhead and to aChieveCombining equations 1 and 2, the estimat@®C for a target

effective code adaptation as early as possible during é¢xecu configurationt can be calculated as:

DPAPP samples HECs for a minimal number of phase traversals.

Following phase traversals used for sampling hardware teven n

rates, the runtime system selects the predicted optimabtpg 5~ _) A)

point of concurrency for each phase. To further tame ove*heédpc(t) = ulPO(s) ;(Il(t) ¢i(®)) +ulPO(s) 7)) +6(0)

DPAPP models performance as a linear function of event,rates (3)

as to produce rapid predictions across a potentially largaber where~(t) is defined a$ "), (y;(t)) + 2(t). Accurate estimation

of hardware configurations. By contrast, an exhaustive cbeaiof wTPC for a target configuratiort is thus dependent on the

algorithm would have to tesf]_, ps phase traversals, whereproper approximation of the coefficients; (t), v(t) and the

pa is the number of processing units in dimensioand D the residualj(t). Note that the coefficients scale both the event rates

number of dimensions of parallelism. A heuristic searcloatgm andwIPC of the sampled configuration

would also have [;_, pq worst-case complexity. uIPC(t) values for all possible configurations are used di-
rectly for prediction of the optimal operating concurrenfoyr
B. «IPC Prediction Model each phase, at the given dimension of parallelism. We ttenca

The DPAPP predictor estimates thg PC of a phase on a ulPC predictions that exceed the cumulative maximum capacity
target configuration: (denoted asuIPC(t)) using input from (u/PCmas) of all processing units at the given dimension of
execution of the phase on a sampled test configuratiofihe Parallelism, toul PCraz, Which is derived experimentally for any
input from the sampled execution includes the actuaPC of the given processor using microbenchmarks. Furthermore, wenas
sampled configurationu{ PC(s)) and a set of. hardware event that there is no superlinear speedup across configuratibras o
per cycle ratese{ (s), ..., en(s)). Each event rate;(s),i = 1...n Phase, although this case does appear in real codes. Incpract
is the number of occurrences of evendivided by the number phases with superlinear speedup have their optimal operati
of elapsed clock cycles during the execution of the phasesh tPoint of concurrency at the maximum number of processingsuni
configurations. and offer no opportunity for concurrency throttling.

Although in theory, the DPAPP predictor can use any feasible
configuration as a sample configuration, we heuristicallpseh
to use the configuration where all processing units at thergiv
dimension of parallelism are active. Intuitively/PC and the We use multivariate linear regression on the multithreaded
critical event rates sampled in this configuration encagisul phases of a set of training benchmarks to determine the vaitie
the cumulative impact of hardware components on scaling, tak coefficients in Equation 1. Although more advanced nrachi
maximum system capacity at the given dimension of paraffeli learning techniques could be deployed for prediction, tinainer

We modeluIPC(t) of the target configuration, as a linearof cycles invested in making predictions at runtime is a jpmyn
function of uI PC(s) of the source configuration, as: concern for DPAPP, therefore we opt for the simplest linear

prediction model. Specifically, training benchmarks areceted
— == under all feasible hardware configurations, at all dimemsiof
ulPO(t) = ulPC(s) - alt, e1(s), - en(s)) + B(¢) @ parallelism, while recording per-ghaae[PC and the critical
for a set ofrn critical hardware events, which may function eithehardware events used for prediction (see Section IlI-D)e Th
as enhancers, or as impediments of scalability. The sefeofithe training benchmarks are selected empirically so as to delu
events in this set is discussed further in Section IlI-D.ibdothat phases with variance in three characteristics: scalghitihging
both the scaling factor and the residugb of the linear function from poor to perfect; granularity of parallel computatioanging
are specific to and dependent on the target hardware cortfigura from fine to coarse; and ratio of computation to memory acgss
t. In other words, each target configuratioexerts its own scaling ranging from low to high. In our experimental evaluation, uwse
impact onul PC(s), which can be positive or negative. To gaugéwo parallel benchmarks (MM5, a mesoscale weather modeling
how individual critical events affect scalability, the diar scaling code and the Unstructured Adaptive application from the NAS
factor is in turn modeled as a linear combination of hardwafenchmarks) with 119 phases in total. In this work, we define
event rates observed during the sampled configuration phases to be OpenMP parallel regions enclosing paraliElize

C. Offline Training and Estimation of Coefficients

loops. The training benchmarks achieve excellent covefge and all phases in the training runs, and rank the events in

diverse phase characteristics. descending order of contribution. The actual number of &ven
Our multivariate regression analysis uses the eventsatetle selected for predictionnl) is processor-dependent. We setio be

under the selected sample configuratiamultiplied by theu/PC the maximum number of events that the hardware performance

of the sampled configuration, i.e;(s) - ul PC(s), and the actual monitor of the processor can count simultaneously, withivoe-

uI PC alone @IPC(s)) as independent variablesto predict multiplexing of event registers. This selection criterimmimizes

the uI PC(t) of each target configuratiom as the dependent the overhead of monitoring hardware events for predictidate

variable We use the product of; and u/PC of the sampled that on architectures where dependencies between evewvsnpr

configuration for coefficient derivation because our modetsu simultaneous monitoring of specific sets of events, sonteai

multiplicative effects of events on the observedPC rather contributing events may still be left out of the predictoredio

than additive ones, in accordance with Equation 3. Thisgssc conflicts with other, more heavily contributing events.

estimates the necessary coefficients for each event inifunct

o(t). Regression analyS'S IS performed separate_ly t(.) predieC’ E. Prediction on Architectures with Multiple DimensionsRair-

for each target configuration, therefore we derive mdependenta”elism

sets of coefficients and independent scaling factors fan &aget

configuration. For a system witp, units in dimensiond of On architectures with multiple dimensions of parallelisre;
parallelism, 1,..., D, multivariate regression analysis derives &ource sharing varies considerably across dimensions.ekor
total of Zf’zlpd sets of coefficients. ample, physical processors in an SMP share only the off-chip

interconnection network and DRAM. Cores within a processor
D. Rigorous Event Set Selection fof PC' Prediction typically share an on-chip interconnection network and dbe

ermost levels of the on-chip cache. Threads on a single core
Share most resources of the execution core, including ipip=|
branch predictors, TLB and L1 cache. Contention for theseesh
resources is largely responsible for performance and kitigja

To capture the implications of multidimensional parafiei
DPAPP uses a distinct set of critical events and derivestadis
set of scaling factors for each dimension of parallelismhe t
system. DPAPP repeats the processes outlined in Sectidh I
and Section IlI-D, to obtain prediction event sets and coieffits
for each dimension of parallelism. At actuation time, DPAPP

makes predictions along each of the dimensions of parsitedind

Modern processors generally provide very large sets OfteVer?:ombines these predictions to yield a power-efficient cameicy
that can be recorded. Furthermore, a microprocessor cacatiyp oPerating point for each phase in the program

record multiple events at the same time. For example, Inte
Pentium 4’s provide 40 events which can be further diffaetat
by specifying bitmasks to each event, and up to 18 events danPredictor Optimization
be recorded at once. The IBM Power5 provides 500 events andrpe accuracy of DPAPP is significantly improved by clas-
permits up to 6 to be recorded simultaneously. The number Qi‘ying code phases according to their observad”C' during
legal sets of events that can be recorded simultaneouslies®t ihe execution of the sample configuration. The justification
architectures is far too large for it to be feasible to exti@aly g,ch an extension is twofold. First, grouping phases based o
test each set of events as input for prediction. Moreoveilevh, ;o allows training and prediction to occur separately for
the most effective prediction possible would likely resatim the - phases with different scalability slopes. As such, the sitivi
use of all (or at least most) available events, there is anita© petween buckets is selected such that it divides differegtaes
tural limit on how many events can be recorded simultangoushy scalability. Second, it is intuitive that the effects okats will
and often there are fur.ther restrictions on which events loan vary depending on the original instruction throughput otfea
recorded at the same time. phase. Dividing the phases into buckets and creating sepaiis
Rather than exhaustively looking at each possible comibinat 5¢4jing functions for each class of phases gives the poedice
of events, our predictor training tool independently lo@sthe opnortunity to make more fine-grain and accurate predistion
contribution of each event ta/PC. To gauge each events z¢ ryntime, the observed:IPC on the sample configuration
significance, we initially use multivariate regression @tadfrom §etermines which set of coefficients will be used for prédict

the set of training benchmarks to prediatPC'(t) for each target e yse this optimization in our implementation of DPAPP.
configuration, using all events that are available for mairig

on the processor. We modell PC as in Equation 3, with the
exception that we use a set df events whereV >> n.

Following the initial w/PC modeling phase, we prune all
events that have zero or negligible occurrence rates. We the In this section we present our phase-aware concurrencyatont
consider the contribution of each event to the resultidg?C(¢) algorithm for a 2-layer shared-memory multiprocessorhsas a
prediction, as a percentage @f PC(t). The contribution of each multi-chip multi-processor with multi-core processorse\When
event is calculated by multiplying the event rate by its fiorint discuss the power and energy reduction potential of therithgo
and byuI PC(s) and dividing the result by./ PC(t). We average and extensions to the algorithm that take account for ipterse
the contributions of each event across all feasible cordigums interference.

The accuracy of DPAPP is heavily dependent upon the setect
of an effective set of critical events for predicting perfance and
scalability along each dimension of parallelism. The evehiould
accurately reflect, in a statistical sense, performance saadh-
bility bottlenecks in the system. We have previously coassd
empirical selection of events that represent known peréome-
critical components of microprocessors [5]. In this papse
present a rigorous statistical technique, which automaies
event selection process and makes it reproducible and ajgner
applicable to any target architecture.

IV. CONCURRENCYCONTROL FORPERFORMANCE AND
POWER OPTIMIZATION

1: {Input: phase identifier, sampling rgte
2: {Output: predicted optimal operating concurren@ysqs }
3: {Assume=-dimensional multiprocessor withy- P, processors.

temporary variable.
Once predictions for a phase are obtained, all subsequzetrir

4: {Each tuple{po, p1} represents a hardware configuratipn. sals of a phase are executed at the predicted optimal apgrati
5. S « sampling_rate; cmaz < {Po, P1}; ul PCrax — 0; point of concurrency, which is set by the controller. The BFA
6: for all 4,1 <i < S do concurrency control algorithm has two parameters, the fiamp
70 Cmazi — {Po, 5 Pi); rate and the dimension of parallelism along which the ihitia

8: sampleul PC(¢maaz,i);
9: sample event rates @f,,qx,:;
10: ulPChaz,i — uIPC(Cmaz,i);

samples are taken. The second parameter is fixed at thengaini
phase of the DPAPP predictor, during which all possible onds

11: forall j,1<j< P do of dimensions of parallelism can be tested. The sampling Sat

12: ce{j, & P} is chosen so as to control the overhead of sampling. The &agnpl

13: predict ul PC(c); rate corresponds to the number of times each phase needs to be
14: if uIPC(c) > uIPCpaq,: then executed before deriving a prediction for the optimal opeg

15: UIPCraz,i — uIPC(C); cmax,i < ¢ point. Our choice,S = 2, provides the minimum number of

16: end if samples needed to capture the effects of using more than one
17: end for core or thread on a multi-core or multi-threaded processor.

18: if (uPCmaz,i > ulPCrmag) then Certain assumptions are necessary to implement our concur-

19: Cmaz “— Cmaz,i; W PCmas — W PChaq,i;

20- end if ’ ’ rency controller, and we outline those in the following. SEjrwe

21: end for rely on the capability of the runtime system to change thelyem
of threads used to execute a phase of parallel code at runfinie

Fig. 2. DPAPP-driven concurrency controller algorithm for architecture capability is available in OpenMP, at the granularity of gk

with 2-dimensional parallelism. loops and parallel regions. However, changing the number of
threads at runtime may not be possible in some applicatioes d
to data initialization which depends on the number of thsead

A. DPAPP Concurrency Controller used. This pattern is uncommon and is trivial to modify. $&;o

Scientific codes are dominated by iterative execution ospha the phases of an application must be executed at eéstes, to
and DPAPP exploits this property to sample hardware eveftow for sampling. Finally, the execution properties otkeahase
rates in the first few phase traversals and set the concyrranc Petween executions must remain relatively stable. In mecthis
each phase to the predicted optimal operating point, earlipng 'S the case in both regular and irregular codes.
execution of the program. The live search of the optimizatio
space for operating points of concurrency can also be padfdr B. Energy Savings Possibilities

by timing phases at different configurations and runningdea Ener . : . :
. A . gy savings using adaptive concurrency throttling come
heuristics such as greedy hill-climbing [6], [28] or simid through two avenues. First, by reducing execution time, be-

anngalmg. [24]'. However, as the.number. of feasible hardwaéguse the energy consumed is reduced proportionally. Secon
configurations increases with the introduction of more saxad through the deactivation of processing units, which reduymmwer

tr]lrer?ds Per processor, d'rT.Ct seatt)rch_melthode_ may s&ehnd n&%ﬂsumption. The power consumption of a processing unit is
of the execution time sampling suboptimal configuratioasher dependent upon its level of utilization, as clock-gatingits the

than optimizing the program. This disadvantage manifesedfi power dissipation of functional units when they are idlettRer,

n fcode.s whelrs doq}lr(;gnt multlthrﬁadedhpgases are t(;a;/enzcdl. a processor can be transitioned to a lower power mode when it
a few times. Even It direct search methoas are used for pé-li ;- being used. For example, on Intel Pentium 4 processors

auto-tu.nlng by repetitive e.xe.cutpns of the entire progr@h the hit instruction transitions the processor to a low power mode,
sear_chlng the_ program optlmlzathn space for any input N A} here power consumption is reduced from approximately 9W
feasible configuration of processing units may be pro_lvbl_u when idle to 2W when halted. While we do not manually control

DPAPP prunes the search space for concurrency optimiz&diony, . transitioning between power states of the processam fr

a constant number of samples. within the runtime system, the operating system does so when

_ Figure 2 illustrates a DPAPP-driven concurrency contrgbal yhe processor remains inactive for some time period. We have
rithm for a multiprocessor with two dimensions of paraBefi. oy nerimentally verified that in Linux 2.6 kemels, procasso

The DPAPP concurrency controller estimates optimal op&gat . actually transitioned to the halted state by the opegati
points of concurrency, using samples of critical hardwarené gystem during 90% of the time during which they have been left
rates from live executions of program phases. The contradle ijje Manually transitioning processors would result innimial
dynamic, in the sense that it adapts the program as it @®Culgygitional power savings, so we do not consider this diecti
with no prior knowledge of program characteristics. The DA fither in this work. Moreover, instructions that transfére

technique is used by the controller so that predictions 0 rocessor to the halted state are usually privileged andbean
concurrency points are derived from a small number of samplgyected only by the operating system.

of hardware event rates. The number of samples is a tunable

parameter of the control algorithm. In our prototype, we use o)

a sample rate of5 = 2 taken along the innermost dimensiorC: Cross-Phase Decision Making

of parallelism, i.e. threads within a processor. The atgari in The processes of prediction, decision making, and adaptati
Figure 2 generalizes to more than two dimensions by repgatiare not performed at whole-program granularity, ratheighea
the loop in lines (11)—(17) for each dimension beyond th@seéc phase of an application is analyzed independently. Thizwall
while saving the current predicted optimal configurationan phases with different execution properties in the sameicgiin

to execute with their own, locally optimal hardware configutarge number of iterations (BT, LU, LU-HP, SP, UA, MM5),
rations. Since many programs have behavior that variessacravhere search strategies stand to have their search overbettdr
phases [34], overall performance can be improved comparedamortized. Results for FT are not included for class size B,
using a single configuration for the entire program. Howgeer because its working set does not fit in the available memory of
non-negligable performance penalty may be paid as a re$ultaur hardware platform.
changing the hardware configuration across adjacent phatses Table | lists the benchmarks along with some pertinent infor
runtime. This performance penalty stems primarily from raig mation about their structure. The number of iterations splsaand
tion of working sets of threads between caches [22]. To avopkrcentage of time spent in parallel regions shown are fasscl
negative inter-phase interference, we consider variafiteun size A. The table also outlines the percentage of executina t
adaption scheme that are aware of this interference. during which at least one processor can be deactivated with n
We have developed two schemes for cross-phase predictiorgative impact on performance (i.e. the program runs aptym
The first of these schemes simply finds the configuration thatwith at most 3 processors) and percentage of execution time
best for the majority of the application’s phases, and a&spihis during which one Hyperthread per processor can be deastivat
to all phases, regardless of their locally optimal confitora with non-negative impact on performance (i.e. the program r
This scheme avoids cache interference entirely, at the nsepe optimally with at most one Hyperthread per processor), ayed
of using a single configuration for all phases and missing-finever all three class sizes. This information is taken fro@tist
grain optimization opportunities. The second approach ns @&xecutions on all feasible hardware configurations.
extension to the first, where phases are allowed to tempprari

replace the global optimal configuration with their locatiopal B. Performance Prediction Evaluation
configuration, only if IPC improvement beyond a preset thotrs In order to evaluate our performance prediction model, we

is predicted by using the local decision. Using this techejq selected two benchmarks for training, specifically UA (cet
interference will only be tolerated when the phase in goesis to class size A) and MM5. These ’benchmarks were selected
expected to ”.‘a"e up for it. in performance gain through the UB&cause the phases they contain have widely varying erecuti
of an alternative configuration. properties, including IPC, scalability, and locality. Fher, they
contain enough phases to serve as a standalone traininthese
V. EVALUATION applications were used in the event selection process dsawel

In this section we perform an evaluation of both the perfothe predictor training. Predictions were made for the retingj
mance prediction model and the adaptive concurrency dontRgnchmarks, i.e. all remaining NAS benchmarks with clasessi
technique presented in previous sections. In the next stibse W A, and B.
we present the experimental setup that we used in our ei@iuat 1) Event Selection:Selection of an effective set of events
Following, we present the results of event selection fodjation 0 use for performance prediction requires data for all a# th
and the resulting accuracy of the predictor. Finally, we pane available hardware counters on each of the test configmsatio
the power and performance results of Performance Prediction- for all of the training benchmark phases. Further, thePC
based Adaptive Concurrency ControlldPPACC) with those values of all phases on each hardware configuration are seges
attained by runtime auto-tuning techniques based on ecapiri @S well. There are 40 events on Pentium 4 processors that

search and by off-line auto-tuning techniques based oricst#t@n be recorded using only a single register each, with durth
execution with no concurrency control. differentiation within each event through the use of bitknas

parameters specifying, for example, to record L2 cache agiss
hits, or accesses. There is also an event to count memorgsese
which requires two counter registers. We select one bitnfask
We performed all of our experimental evaluations on a De#lach event representing the hardware parameter most ltkely
PowerEdge 6650 server composed of four Intel Hyperthreadheve the largest effect on performance, leaving 41 events to
Xeon processors with 1GB of main memory. Each processor isansider. Of these, 13 had rates near zero, and were thuyeemo
1.4 GHz, 2-way SMT equipped with an 8-KB L1 data cache, as described in section IlI-D. The performance monitorimit u
12-KB trace cache, a 256-KB L2 cache, and a 512-KB L3 cachaf. the Pentium 4 with Hyperthreading technology shares e 1
The Linux kernel used was version 2.6.15. counter registers between the two co-executing threadsijnig
Experiments were performed with 10 benchmarks that agecounters available for each thread. The 28 events thaivedrv
representative of scientific and engineering applicatigpgcally pruning provide a total of 99,372 possible architecturddigal
requiring high performance. Nine of the benchmarks originasets of events that can be recorded on the 9 performanceerount
from the OpenMP version of the NAS Parallel Benchmarksegisters per thread.
suite, version 3.1 [18]. We use three different problem size Regression analysis was performed on the data from eacle phas
available in the NAS distribution (W, A, B). MM5 is an OpenMPto find the events that contributed the most to the resulti@ |
implementation of a mesoscale weather prediction mode]. [14rediction. Table Il displays the set of events that wascsetkfor
The benchmarks include a wide variety of program properéied each prediction on our platform. In this discussion, configion
in particular, widely varyingul PC scalability across execution (nproc, nthr/proc) denotes a configuration withproc proces-
phases. Therefore, they are challenging targets for pfedic sors andnthr/proc threads per processor. It should be pointed
The benchmark suite includes several benchmarks with al snalit that events with large contributions have been exclutdies
number of iterations (CG, FT, IS, MG), in which empirical sga to conflicts with more dominant events. That is, the inclosid
strategies may suffer due to a large percentage of totalueec one highly contributing event often eliminates other citmniing
time being spent in exploration, as well as benchmarks witheaents that interfere with it. All that can be done in thessesa

A. Experimental Setup

Benchmark BT [CG | FT IS LU [LU-HP [MG | SP [|UA |MM5
Iterations 200 [15 | 6 10 [250 | 250 4 1400 [[200 | 180
Phases 5 5 5 1 3 11 6 9 49 70

% Time in Phases [99.5[91.6 [91.2 [79.7 |99.9 | 99.7 [86.399.6 {[99.8 | 95.5
% Time Disable CPU| 1.9 {33.3| 0.1 [100.0| 0.0 15.1 | 6.0 |35.11((59.3| 7.7
% Time Disable SMT|99.1 [66.6 [93.0 {100.0 | 0.0 50.8 |53.5(32.9(|33.1|70.0

TABLE |
THE SET OF BENCHMARKS WE USED TO EVALUATE ONLINE PERFORMANCEREDICTORS FOR POWERPERFORMANCE ADAPTATION ALONG WITH THEIR
MAIN PHASE CHARACTERISTICS

is to select the event with the largest contribution and iignoto Hyperthreading cannot be approximated as a linear fomaif
the conflicting events. Specifically, three of the top fiverageon the number of processors and threads used. However, wedshoul
this architecture cannot be included because they confitbttve also note that the litmus test for our predictor is notPC
top two events. This suggests that on architectures wheme thprediction accuracy but configuration prediction accurdsylong
are reduced or no dependencies between events, our poedicds the predictor correctly predicts the optimal configamtfor

approach will likely achieve higher accuracy. each phase, a potentially higli PC prediction error can be
_ disregarded.

Predictor (4’2)_’(*’2.) (4’1)_’(*’1_) As discussed in Section llI-F, we utilize phase classifarati
Evento Cyc'es Acilve Cyc'es Acilve before making predictions. Specifically, we divided phasds
Eventl L2 Cache Misses L2 Cache Misses . 9p - 9P Y, P
Event2 Branches Retired Branches Retired buckets_ withul PC' greater t_han or equal _to 10 z_and_those_ less than
Event3 UOP Queue Writes | TC Deliver Mode 1.0 during the sample configuration. This division is notitzaaipy,
Event4 Memory Cancels Memory Cancels rather, it provides an approximate value to separate phaghs
Event5 Packed SP UOPs | Packed DP UOPs low scalability characteristics versus those that scald, vie
Eventé | Memory Accesses (1) ~Machine Clears general, on this architecture. During prediction, eachsphases
Event7 | Memory Accesses (2 Stall Cycles the coefficients derived from thel PC' bucket corresponding to
Event8 Instructions Retired | Instructions Retired

its observedu! PC during the sample configuration.
TABLE I

The I PC prediction accuracy can be seen in the leftmost
graph of Figure 3. This graph gives the cumulative distrdout
function of prediction error, that is, the percent of phasiest
experience error below each threshold with threshold sesnpl
taken every 5%. The overall average absolute predictioorerr
is 18.6%. We note that 24% of all predictions have less than
2) Prediction Accuracy:We perform our evaluation of the 5% error and 43% of all predictions have less than 10% error.

accuracy of the online performance predictor using eighowf On the other hand, only 4% of the predlct|ons_ S.hOW error
ten benchmarks, excluding the two benchmarks used foritigain !arger than 50%'_ Although our _performance prediction quel
the predictor. We consider the absolute prediction errat e IS purpogefully simple to minimize the overr_lead of applying
configuration prediction error for each benchmark. We daleu it at. rgnnme, 't§ results compare favorably with other nepd

the absolute prediction error &8I PC),.eq—ul PCpg|/ul PCpps, statistical technlque.s .for predicting !PC [71.])

whereul PC,,, is the observed IPC of useful instructions. On our In terms of prediction of the optimal configuration for each
experimental platform, there are six predictions made fache Phase, the middle chart of Figure 3 shows the percent of phase
phase. Specifically, we predict for configurations with omel a for which each possible ranking of configuration was seticte
two Hyperthreads per processor on one, two, and three [Boces This value is calculated by Sorting the Conﬁgurations by IPC
The average prediction error for each phase is taken acliass-a for each phase and identifying which entry was selected by
get configuration predictions. Configuration predictiorcracy the predictor. For example, a value of 1 indicates that thet be
compares the predicted Opt|ma| Configuration for each me Configuration was selected and 2 indicates that the secosid be
the local static optimal configurationThe local static optimal configuration was selected, etc. This graph shows that in 68%
configuration is obtained as follows: We execute the bencksna cases the single best configuration is identified by the predi
with each of the eight possible hardware configurationscstdy, An additional 19% of phases have the second best possible
i.e. with no concurrency control between phases. For eaesgph configuration selected.

we designate as optimal the one configuration out of the eightAs a result of the high configuration prediction accuracg th
possible that minimizes the execution time of the phaseeNgterformance loss in mispredicted regions is usually qoite The
that this definition of optimal configuration ignores infgrase rightmost chart of Figure 3 shows the weighted performanss |
interference and that a local static optimal configuratioaym observed for each benchmark during mispredicted phasds. Th
or may not be the global, program-wide static optimal configsalue is calculated agfvjl w; - D;, where Ng is the number
uration. Configuration prediction accuracy illustratesvhoften of mispredicted regions in benchmamk, w; is the weight of
the predictor identifies the local static optimal configioat It each mispredicted region expressed as the percentage wftéhe
should be noted thatl PC prediction is particularly challenging parallel execution time ofB that the specific region accounts
on our experimental platform, because oftefi?C changes due for, and D; is the absolute performance penalty suffered by the

THE INTEL PENTIUM 4 HARDWARE EVENTS SELECTED FOR EACH
PREDICTION TYPE THE SECOND AND THIRD COLUMNS SHOW THE
EVENTS FOR PREDICTING THE OPTIMAL CONFIGURATION WITH AND 1
HYPERTHREADS ACTIVATED PER PROCESSOR RESPECTIVELY

Absolute Prediction Accuracy Configuration Prediction Accuracy Performance Loss due to Misprediction
100 70

90
60
80 i
70 50
60 - 2
3
50 4 s
T
40 4 &
30 20
20
10
o 0 BT CG FT s L L6@P MG SP AVG

0 10 20 30 40 50 60 70 8 90 100 1 2 3 4 5 6 7 8 -1
Prediction Error (%) Rank of Selected Configuration Benchmark

o

o

IS

w

% Phases

)

-

Performance Loss (%)

o

Fig. 3. The left chart illustrates the CDF of prediction errdhe middle chart illustrates the percent of phases forclvigach rank of configuration was
selected. The rank of the selected configuration is takem fife list of configurations sorted by their IPCs on staticcexiens of each phase, a value of 1
indicates that the optimal configuration was selected. Tdte chart shows the performance lossQ) or gain 0) resulting from configuration misprediction.

mispredicted region. The average penalty across benchmarks The reader may note that the observed scalability bottlenec
is only 1.2%. The explanation for the negative performamss | are an artifact of hardware bottlenecks, such as limited amgm
(performance gain) of LU-HP is that by not changing configusandwidth. While this statement is correct, it also refleats
rations to the optimal in all cases, the cache effects ofiafie property of a large number of real systems, including stéithe-
configurations are reduced. These results show that our Imodd platforms that outdate our experimental system. Fomge,

is capable of identifying the optimal configuration most bét we performed experiments with the NAS benchmarks on a newly
time, and when it does not it still manages to find a competitiveleased quad-core Intel Xeion processor (QX 6700) whiake ha
configuration to use, with minimal performance penalty.Nittat shown that applications still tend not to scale well on eves t
in some cases, a misprediction may derive a more energyeeific latest hardware. In particular, several of the benchmaakistd
hardware configuration for a phase, where power may be reduczale beyond two cores, with maximum speedups saturatifig we

with negligible impact on execution time. below 2 (see Figure 5). As a result, opportunities for corenoy
throttling still exist even in the newest hardware platferm
C. Adaptive Concurrency Control Evaluation As further evidence of the importance of phase-level adap-

. tion, Figure 6 displays the IPCs for each phase of the LU-
To measure the power consumption of the benchmarks un
benchmark at class size B under each static configuration

various hardware configurations we utilize a power measargm normalized by the IPC of (1,1). It is evident from the chaaitth

methodology based on hardware event counters [17] that has L .) : .
proven to be highly accurate. This methodology works by firstIngle application can have optimal configurations vangngtly

partitioning the processor into components and then détérm sbetween phases. LU-HP in particular experiences five ifier

the maximum power consumption of each component basedﬁ?lt'maI configurations across different phases, spedyi¢dll),

the die area it consumes. The runtime power consumptionalf e 2), (3,2), (4,1), and .(4’2)' Thergfore, using a tgchelqu
. - . e execute each phase at its local optimal operating poindstém
component is the maximum power adjusted by an activity facto . . .
. . . - Improve performance. In cases where the optimal configumati

The latter is estimated by looking at corresponding hardwar : :
occurs on fewer than the available number of processingesiéesn

event counters. This amount is added to a non-gated clockmpow . . .
. : - jpower savings can occur during the execution of these ph@kes
associated with each component that grows non-linearljn wi

activity. Finally, the power consumptions of all comporseare goal of our adaptation approach is to exploit these propewith

summed along with a constant base idle power. It should be & priori knowledge of the codes and achieve both power and

noted that we focus only on processor power consumption. F%errformance benefits.
the well-tuned scientific applications we consider in thapgr, ~ Before discussing the online adaptive strategies and tkeir
processor power is the dominant portion of the total systewep Sults, we focus on two offline approaches to adaptation. The
consumption [33]. first of these static optima) uses the single program-wide static
1) Motivating ExamplesFigure 4 depicts the execution timesconfiguration that results in the lowest execution time. $taic
and energy consumption of each benchmark under class siz&€@imal configuration for an entire program differs in gealer
for each static configuration. Static configurations usermlsi from the static optimal configurations of phases in a program
configuration for the entire execution. These graphs shawdh 1he second approach ghase optimaland uses the local static
our experimental platform, very little additional perfaamce gain OPtimal configuration, not considering cross-phase effeets
is seen through adding additional processors once two gsoce defined earlier. Due to interference occurring by changing t
are active. Particularly interesting is the IS benchmarkic sees Cconfigurations inphase optimalthe mean execution time of the
its best performance using a single thread on only one psoces benchmarks is 1.0% higher thatatic optimal For this reason,
Further, sometimes there is a large gain through using tbense W€ Iim_it our following evaluation to comparing adaptiveagtrgies
execution context on each processor, and sometimes a stiistat0 Static optimal
loss. For these reasons, adaptation of the number of parsess The two offline approaches that we consider have the disad-
and execution contexts stands to improve both executiom éind vantage that the optimal configuration may change with aifie
power consumption. It can be observed that while performanmput sizes. For example, IS executes statically optimaity
levels out, the energy consumption increases at rathep sédes (3,1) for class size W, but (1,1) and (2,1) for class sizes A an
with more processors. B respectively. For individual phases, the optimal configion

10

BT Class A CG Class A FT Class A IS Class A
450 25000 16 700 35 3000 16 1400
400 14 14
& 380 20000 5 = 600 2® 2500 _ . 1200
2 300 8 g 12 500 & EES 2000 & H 1000 &
3 5§10 3 H 3 510 2
8 250 15000 & 8 400 3 8 20 3 8 800 3
3 N 8 8 2 3 1500 2 3§ 8 =
$ 0 10000 & S 6 300 3 21s EY e 600 2
5 v S 5 s
2 150 g g 20 & 20 1000 5 g, 400 2
F 100 5000 1 5 & = 00 = Y
50 2 100 5 S 2 200
0 0 0 0 0 0 0
=] 1D 12 1) 22) 31 B2) G @2 = (L) (12 @1 (2 GD G2 @) (¢2) =D 12 @D @2 GY () 41 ¢2) WD) 12 2D 22 GD (2 @) (¢2)
—4—Enengy | Configuration (CPUs, Thr/CPU) —o—Energy. Configuration (CPUs, Thr/CPU) —e—Energy Configuration (CPUs, Thr/CPU) —o—Energy Configuration (CPUs, Thr/CPU)
LU Class A LU-HP Class A MG Class A SP Class A
600 30000 600 35000 20 900 400 25000
1
_ 500 25000 _| | _ 500 30000 _ || 12 ?gg |30 20000 —
m ARG 7 0 7 @ 300 z
2 400 20000 = | | 2 400 25000 2 Tu 600 < 2 250 2z
g 3]s 20000 3 § 12 00 3 s 15000 3
2 300 15000 2| | & 300 Zz g 10 2> & 200 2
2 a0 |2 15000 3 23 400 3| | 2 >
@ S| e e o 8 = v 150 10000 &
200 10000 200 5 300 § 5
g g E 10000 2 E 6 200 & E 100 g
= Gl |F E oy Gl |# 5000
100 5000 100 5000 : fpos 50
0 0 4 0 0 0 0
=D 12 1) (22 (1) (2 “41) 42 =D (12 1) 22 B G2 41 (42) =D 12 @1 @2 G G2 @1 @2 =D 12 @) 22 G 62 41 (42
oty Configuration (CPUs, Thr/CPU) ——ney Configuration (CPUs, Thr/CPU) oy Configuration (CPUs, Thr/CPU) oy Configuration (CPUs, Thr/CPU)

Fig. 4. The execution times and energy consumption of eaatft stonfiguration.

IS Class B LU Class B MG Class B SP Class B

10
20

8
15

6

4

5

2
100 200 300 400

Execution time (secs)
Execution time (secs)
0 100 200 300 400 500 600
Execution time (secs)
10
Execution time (secs)

0
0
0

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Cores Active Cores Active Cores Active Cores Active

Fig. 5. Scalability characteristics of 4 of the NAS benchiksaon a state-of-the-art quad-core Intel processor.

50 IPC per Phase in LUHP (Class B) Occasionally, the power consumption actuallpcreases
|I(1,1) B(12) O(21) B(22) 031 EE2) O@1) -(4.2)|) .) - i
o through the use of adaptation. This result is counterintiit
B since adaptation is always expected to either keep the nuafbe

processors and Hyperthreads used constant, or reducecllRe
that our starting assumption for adaptation is that deatitig
threads inside a processor reduces power. This is actuabyit
the majority of phases, specifically 79% of all phases. Harev
SRR B R in certain cases, the use of Hyperthreading introduces stal
times in the processor, due to contention for shared ressuend
Fig. 6. IPCs for each phase of the LU-HP benchmark under etmtic s therefore long periods of processor inactivity, during erhpower
configuration, normalized by the IPC on (1,1). consumption is low. By contrast, deactivating Hyperthiegdn
these situations, reduces stall times, increases pracetiisation
and therefore increases the average power consumptioneow
varies by problem size as well. Specifically, only 52.5% dfhe increase in power consumption does not translate into an
the program phases in our benchmarks experience the sangsease in overall energy, due to the reduction in exenutiime
optimal configuration regardless of input size. This medra t experienced in these cases. Therefore, the overall respiisitive
use of these static techniques requires offline analysit itha for the applications where the anomaly with Hyperthreading
specific to the application and the input size. By contrasg, tOcCcurs.
online adaptive approaches adapt autonomically at rurfiamine The average execution time of all benchmarks over all prable
current application execution and require no applicatignit-size sizes using exhaustive search was reduced by 10.9% comigared
specific offline analysis. statically using all available processors and executionteds
2) Empirical Search-based Strategie5pr purposes of com- on the system. Power is reduced by 9.7% as well, resulting in
parison, we have implemented two alternative dynamic adimpt a 19.5% reduction in total energy consumption. Howevess thi
strategies based on empirical search of the configuratianespt approach incurs high overhead in the exploration phasetalite
runtime. The first of these is the most straightforward forfn desting of each configuration. Exhaustive search needsetouéx
adaptation, exhaustive search, where each possible craifigu 8 iterations of each phase to reach a decision. This overhead
is tested and the one that provides the lowest execution tifpeows up when the results are compared to using the optimal
is selected for each phase. Figure 7 illustrates the nazewli Static number of threads for the entire program executidmere
arithmetic means of three metrics: execution time, avepayeer exhaustive search is outperformed by 16.1% overall and b§981
consumption during execution, and energy consumptions@hdn benchmarks with a small number of iterations (MG, CG, FT,
metrics are derived for each benchmark under differentwetime 1S). However, for applications with many iterations (BT,,SP
strategies. Each metric is first normalized to the corredjjan LU, LU-HP), exhaustive search is able to come within 1.1%
metric of the (4,2) configuration for the specific benchmavkich ~of the static optimal in terms of performance, while redgcin
exploits all available execution contexts on our experitaeplat- power consumption by 3.3%, because the search overheadecan b
form. We then calculate the arithmetic means of the norradlizamortized over a large number of iterations.
metrics, for each benchmark. The second empirical search technique that we implemested i

Normalized IPC

11

BT CcG FT

Time Power Energy Time Power Energy Time Power Energy
Evaluation Metric Evaluation Metric Evaluation Metric

IS LU LU-HP

W Exhaustive Search D Hill Climbing BIPPACC B Static Optimal

Time Power Energy Time Power Energy Time Power Energy
Evaluation Metric Evaluation Metric Evaluation Metric

MG sP Average

Time Power Energy Time Power Energy Time Power Energy
Evaluation Metric Evaluation Metric Evaluation Metric

Fig. 7. Performance of the adaptation strategies in termsxe€ution time (first group of bars), power (second groupash and energy (third group of
bars) normalized with respect to the (4,2) static configonafor each benchmark, averaged over all class sizes.

a heuristic search algorithm, which we have previously sk 100 Average

to reduce the overhead of exhaustive search [6]. This dhgori | [mPhase-local OCross-Phase BCross-Phase (15% tolerence)
works by applying a hill-climbing heuristic search to findeth
optimal number of processing elements to use at each diorensi

of parallelism, one dimension at a time. The algorithm bedin goss
executing the phase on all available processors with alledyp 080 1
threads active. Then, the number of processors is sucedssiv 075]
reduced until an increase in execution time is observed. The 070
lowest number of processors that results in a decrease qugéae Time el e Energy

time is used for the corresponding phase. This process is the
repeated on the decided upon number of processors to dagermyig. 8. Execution time, power, and energy effects of utiligithe three

the number of Hyperthreads to use on each processor. different prediction based adaptation strategies, witmainbers normalized
with respect to the (4,2) execution.

Using hill climbing reduces the number of required testater
tions for each phase to 5 in the worst case for our experirhenta
platform, and only 3 in the best case, since our platform ha§mbing is able to reach good configuration decisions, &hil
two layers of parallelism. This overhead reduction allotws hill requiring fewer exploration iterations, thus introducihgwer
climbing algorithm to achieve improved performance corepao overhead. However, the search overhead is still clearlyctoffa
exhaustive search because a larger percentage of théoiteratill for applications with few iterations.
be executed with the decided upon optimal configuratiomerat 3) Performance Prediction-based Adaptatiofhrough the use
than testing additional suboptimal configurations. Spesilify, of performance prediction, the number of iterations reegifor
compared to exhaustive search, hill climbing achieves #@61. adaptation can be further reduced using the algorithm ptedén
improvement in execution time overall and a 3.9% improveimefection 1V, to only two iterations in the case of our experrirad:
for applications with few iterations, with a minor 0.5% iease platform, thereby minimizing overhead. Further, perfonoa pre-
in execution time for the applications with many iteratiofifie diction reduces the effects due to changing configuratiamsg
slight performance drop in applications with many iteraticcan the exploration process that can lead to suboptimal detssiy
be attributed to occasionally, but infrequently, selegtslightly the direct-search strategies. On the downside?C predictions
worse configurations than exhaustive search. Power cortsamp need significantly more processor cycles than direct coispas
is reduced by 1.7% and energy consumption by 3.6% on averagéthe execution times of phases.
compared to exhaustive search. Comparedtétic optimal hill We first compare a strategy whereby the predicted optimal
climbing reduces the performance loss to 26.5% for apptinat configuration for each phase is used blindly, to stratedied t
with a small number of iterations, and to 13.9% overall. Theonsider cross-phase analysis to make decisions. Thettststgy
energy consumption is also reduced by 22.4% compared tg usia selected for use with PPACC, and is compared to the offline
all available execution contexts. These results show tliht hand direct-search approaches already presented. Firgyalgate

12

our approaches to minimize the harming effects of usingaball however it can be explained by the fact that the static optima
optimal configuration for each phase, which occur if chaniges uses only a single configuration for the entire program etiecu
the configuration of adjacent phases result in redistdoutdf rather than further decreasing the number of active pracedsr
working sets between caches [22]. We compare the resultseto individual phases below the global optimal level.
greedy local optimal approach to find the best predictiokeda PPACC also sees a 1.1% reduction and a 0.8% increase in
adaptation approach. Our experimental results, showngar€i8, power consumption compared to exhaustive search and inilbel
indicate that simply attempting to avoid cache interfeeeiscnot ing respectively. Further tracing of this result shows tRRACC
inherently effective. Using an approach whereby the cordiion executes the benchmarks with an average of 3.13 processors,
selected as the best for the majority of execution time the. while exhaustive search executes with 3.20 and hill-climghith
dominant configuration) is enforced for all phases produaes3.02 processors. However, PPACC reduces total energy ognsu
slowdown of 1.5% compared to the local optimal approachh wition by 10.2% and 6.3% because of its performance advantages
an additional 0.9% energy consumption. This happens becaubhese results indicate that prediction-based adaptasi@ble to
in many cases, the benefits of executing a phase with its loeahke effective decisions, both in terms of improving exmeut
optimal configuration outweigh the performance loss seffeas time and in terms of reducing energy consumption.
a result of cross-phase interference. Overall, prediction-based adaptation outperforms or hesc
Given the advantage of local adaptation over global enforcthe performance of direct-search based adaptation onaitdsr
ment of the dominant configuration, along with the fact thaidditionally, it does not require the application/inputes specific
changing configurations too liberally hurts performance, ae- offline analysis, while still achieving results very close dtatic
veloped an intermediate adaptation scheme that uses al gladgatimal for performance and surprisingly, but justifiabbetter
dominant policy for most phases, with the exception of phaseesults for power and energy. Performance prediction-daskp-
expected to experience substantial performance gainsiby its tation as utilized in PPACC thus proves to be a highly effecti
own local optimal configuration. In particular, using thjgpaoach, strategy for improving the performance and energy consiampt
the global decision is enforced unless a given phase expéctof parallel applications.
least a 15% performance gain, which we experimentally etifi
to be enough to outweigh the cache effects of changing config-
urations. When compared to phase-local adaptation, gioase

decision making with exceptions attains an 1.3% averagi®per The performance and power characteristics of applications
mance improvement. An increase in power consumption of 2%ﬁ§nning on emerging computing systems composed of multiple
also observed, however the energy consumption is unchanggitithreaded and multicore processors demand considerat
making cross-phase with exceptions the best predictiseda throttling concurrency when scalability bottienecks teso no
adaptation strategy. These results show that concurrémeftling performance gain, or a performance loss, from using additio
modules must consider the effects of Changing Conﬁguratiﬂn processors. In this paper, we have presented an approach to
adjacent phases in conjunction with the local predictimissich adaptive concurrency control that uses information cedecat
phase, when making decisions. runtime to predict the performance of an application across

Using cross-phase decisions while allowing exceptiorsylte various hardware configurations. Hardware event countegs a
in an average 17.9% performance improvement over staticabiollected to provide insight into the interaction of the dvar
using all available execution contexts, further improvipgrfor- ware and software, allowing the predictor to characterize t
mance upon exhaustive search by 8.3% and upon hill climbjng performance and scalability of a given program phase. Over a
6.8%. Additionally, the average performance loss comptodte range of benchmarks with a variety of execution charadtesis
statically optimal configuration is reduced to only 2.5% mae the accuracy of the predictor in terms of locating the optima
and 1.3% for applications with many iterations, showingt tha configuration to execute benchmarks, on a per-phase baass, w
flexible cross-phase decision policy is able to make perdmwe- shown to be high.
effective decisions. More importantly, the results for kgzp We have presented an autonomic runtime system that employs
tions with a small number of iterations are within 3.7% of thehe described performance predictor and have shown thatiaea
statically optimal configuration, compared to 31.6% and26. concurrency control can be performed with performance- and
for exhaustive search and hill climbing respectively, heseaof energy-effective decisions being made, while keeping ther-o
the significantly reduced exploration overhead. Our expental head at manageable levels. We improve upon an approach that
platform has only 8 feasible hardware configurations and tRelects the optimal predicted configuration for each phggaak-
performance advantage of PPACC over the empirical seargly the predictor aware of the decisions made for other ghase
approaches is expected to grow in the future as the availalereby allowing it to consider cross-phase cache effettthé
number of processors, cores, and threads in a system rises. decisions for each phase, resulting in improved perforraaiibe

The power-related results for PPACC are just as substantifdscribed system is shown to outperform adaptation stesteg
as those for performance. Energy consumption is the proofuctbased on empirical searches of the configuration space due to
power consumption and execution time, and concurrencyra@ontreduced exploration overhead and a decision process thuitis
attempts to reduce both, decreasing energy consumption bynilead by effects resulting from changes in configuratidunsng
still larger margin. We observe 10.8% and 26.7% reductions the training process, as are the search strategies. Firthly
power and energy consumption, respectively, compared itgusapproach is shown to be significantly more effective tharpgim
all execution contexts. When compared to using the statimap using all available execution contexts for all phases, imgeof
configuration, a 2.9% average reduction in power is seen apdrformance, power, and energy consumption. It yieldsgperf
a 0.9% reduction in energy. This result may seem surprisingiance results comparable to offline-derived applicatipi-size

VI. CONCLUSIONS

13

specific decisions, and improvements in power and enerdgi- wi[19] P. Joseph, K. Vaswani, and M. Thazhuthaveetil. EffityeExploring
out requiring additional application/input-size specHicalysis.

ACKNOWLEDGMENT

[20]

This research is supported by the National Science Fowdati
(Grant CCR-0346867), the U.S. Department of Energy (Grafi]
DE-FG02-06ER25751) and Virginia Tech.

REFERENCES

[22]

[1] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scledu [23]

(2]

(3]

(4

(5]

(6]

(7]

(8]

El

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Activations: Effective Kernel Support for the User-Levelahgement
of Parallelism. ACM Transactions on Computer Systerh®(1):53-79,
February 1992.

U. Andersoon and P. Mucci. Analysis and Optimization @feYBench
using Hardware Performance Counters. Rroc. of the ParCo 2005
Conference Malaga, Spain, September 2005.

Shekhar Y. Borkar. Designing Reliable Systems from Uabde
Components: The Challenges of Transistor Variability aredjiadation.
IEEE Micro, 25(6):10-16, September 2005.

C. Cascaval, E. Duesterwald, P. Sweeney, and R. Wiskiewultiple
Page Size Modeling and Optimization. Pmoc. of the 14th International
Conference on Parallel Architectures and Compilation Teéghes pages
339-349, Saint Louis, MO, September 2005.

M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Ni&poulos.
Online Power-Performance Adaptation of MultithreadedgPams using
Hardware Event-Based Prediction. Rroc. of the 20th ACM Inter-
national Conference on SupercomputinQueensland, Australia, June
2006.

M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Ni#poulos.
Online Strategies for High-Performance Power-Aware Ttiiégecution
on Emerging Multiprocessors. Froc. of the Second Workshop on High-
Performance Power-Aware Computjnighodes, Greece, April 2006.
L. Eeckhout and K. De Bosschere. Statistical SimulatbiSuperscalar
Architectures using Commercial Workloads. Rroc. of the Fourth
Workshop on Computer Architecture Evaluation using Cororaker
Workloads Monterrey, Mexico, January 2001.

L. Eeckhout, S. Nussbaum, J. Smith, and K. De Bosschetatistical
Simulation: Adding Efficiency to the Computer Designer'solfmx.
IEEE Micro, 23(5):26—-38, September 2003.

Krste Asanovic et at. The landscape of parallel compgutiasearch:
A view from berkeley. Technical report ucb/eecs-2006-1&ECS
Department, University of California at Berkeley, DecemB606.

N. Adiga et.al. An Overview of the BlueGene/L Supercargs. InProc.
of the IEEE/ACM Supercomputing’2002: High Performancendeking
and Computing Conferenc®altimore, MD, November 2002.

W. Feng and C. Hsu. The Origin and Evolution of Green Dgstin
Proc. of IEEE Cool Chips VII: An International Symposium oowL
Power and High Speed Chip¥okohama, Japan, April 2004.

V. Freeh, D. Lowenthal, F. Pan, and N. Kappiah. Using tiglé Energy
Gears in MPI Programs on a Power-Scalable ClusterProceedings
of the 2005 ACM SIGPLAN Symposium on Principles and Practife
Parallel Programming (PPoPP’05)June 2005.

R. Ge, X. Feng, and K. Cameron. Improvement of PowefeP@ance
Efficiency for High-End Computing. Ifroc. of the 19th International
Parallel and Distributed Processing Symposjulenver, CO, April
2005.

G. A. Grell, J. Dudhia, and D. R. Stauffer. A Descripti@f the
Fifth-Generation Penn State/NCAR Mesoscale Model (MM5CAR
Technical Note NCAR/TN-398 + STR, National Center For Atiplosric
Research (NCAR), June 1995.

M. Hall and M. Martonosi. Adaptive Parallelism in Cortgsi
Parallelized Code. Stanford, California, August 1997.

E. Ipek, S. McKee, B. de Supinski, M. Schulz, and R. CaauaEffi-
ciently Exploring Architectural Design Spaces via Pred&tModeling.
In Proc. of the 12th International Conference on ArchitectuBapport
for Programming Languages and Operating Systedusie 2006.

C. Isci and M. Martonosi. Runtime Power Monitoring in ghEnd
Processors: Methodology and Empirical Data. Rroc. of the 26th
ACM/IEEE Annual International Symposium on Microarchitee, San
Diego, CA, November 2003.

H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementatid NAS
Parallel Benchmarks and its Performance. Technical remest99-011,
NASA Ames Research Center, October 1999.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

[39]

Architectural Design Spaces via Predictive Modeling. Aroc. of the
39th International Symposium on Microarchitectui@ecember 2006.
C. Jung, D. Lim, J. Lee, and S. Han. Adaptive Executiochfégues
for SMT Multiprocessor Architectures. IRroc. of the Tenth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pamgming
Chicago, IL, June 2005.

R. Kalla, B. Sinharoy, and J. Tendler. IBM POWERS5 Chipb#aal-Core
Multithreaded ProcessotEEE Micro, 24(2):40-47, March 2004.

M. Kandemir, W. Zhang, and M. Karakoy. Runtime Code Relization
on Chip Multiprocessors. IRroc. of the 2003 Design, Automation, and
Test in Europe Conferencg@ages 510-515, Munich, Germany, March
2003.

N. Kappiah, V. Freeh, and D. Lowenthal. Just In Time Dyia\Voltage
Scaling: Exploiting Inter-Node Slack to Save Energy in MPbdtams.
In Proc. of IEEE/ACM Supercomputing’2005: High Performanaarc
puting, Networking Storage, and Analysis ConferenBeattle, WA,
November 2005.

S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimizatidsy Simulated
Annealing. Science 220(4598):671-680, 1983.

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: R-B®/ay
Multithreaded Sparc ProcesstEEE MICRQ 25(2):21-29, March/April
2005.

B. Lee and D. Brooks. Accurate and Efficient Regressioaddling
for Microarchitectural Performance and Power Predictiom Proc.
of the 12th International Conference on Architectural Sagppfor
Programming Languages and Operating Systedume 2006.

J. Li and J. Martinez. Power-performance implicasionf thread-level
parallelism on chip multiprocessors. Rroc. of the 2005 International
Symposium on Performance Analysis of Systems and Soft8&%&S3S)
Austin, TX, March 2005.

J. Li and J. Martinez. Dynamic Power-Performance Adapn of
Parallel Computation on Chip Multiprocessors. Mmoc. of the 12th
International Symposium on High-Performance Computehitecture
Austin, TX, February 2006.

C. Liu, A. Sivasubramaniam, M. Kandemir, and M. Irwinxgoiting
Barriers to Optimize Power Consumption on CMPsPhoc. of the 19th
International Parallel and Distributed Processing SymipgsDenver,
CO, April 2005.

J. Lu, H. Chen, P. Yew, and W. Hsu. Design and Implemantabf a
Lightweight Dynamic Optimization SystenThe Journal of Instruction-
Level Parallelism 6:1-24, 2004.

J. Marathe and F. Mueller. Hardwware Profile-Guided dknatic Page
Placement for ccNUMA Systems. Rroc. of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programgnpages
90-99, New York, NY, March 2006.

A. Settle, J. Kihm, A. Janiszewski, and D. Connors. Atettural
Support for Enhanced SMT Job Scheduling. Pmoc. of the 13th
International Conference on Parallel Architectures and n@mlation
Techniques (PACT'04)pages 63—73, Antibes, France, September 2004.
S. Sharma, C. Hsu, and W. Feng. Making a Case for a Gréehis@ In
Proc. of the Workshop on High-Performance, Power-Aware @gdmg
Rhodes, Greece, April 2006.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. ofustically
Characterizing Large Scale Program Behavior. Aroc. of the 12th
International Conference on Architectural Support for Bramming
Languages and Operating Systerxtober 2002.

A. Tucker and A. Gupta. Process Control and Schedulsgués for
Multiprogrammed Shared-Memory Multiprocessors.Piroc. of the 12th
ACM Symposium on Operating Systems Principles (SOSPi&®es
159-166, Litchfield Park, Arizona, December 1989.

M. Voss and R. Eigenmann. Reducing Parallel Overhe&adsugh
Dynamic Serialization. InProc. of the 13th International Parallel
Processing Symposium and Symposium on Parallel and Disdb
Processing (IPPS/SPDPpages 88-92, San Juan, Puerto Rico, April
1999.

L. Yang, X. Ma, and F. Mueller. Cross-Platform Perfomma Prediction
of Parallel Applications using Partial Execution. Rroc. of the
IEEE/ACM Supercomputing’2005: High Performance Netwagkand
Computing Conferen¢eSeattle, WA, November 2005.

K. Yue and D. Lilla. An Effective Processor Allocationtr&tegy for
Multiprogrammed Shared-Memory MultiprocessolEEE Transactions
on Parallel and Distributed System®(12):1246—-1258, December 1997.
Y. Zhang and M. Voss. Runtime Empirical Selection of pdgchedulers
on Hyperthreaded SMPs. IRroc. of the IEEE International Parallel
and Distributed Processing SymposiuBenver, CO, April 2005.

