
1

Prediction-based Power-Performance Adaptation of
Multithreaded Scientific Codes

Matthew Curtis-Maury, Christos D. Antonopoulos, Filip Blagojevic, and Dimitrios S. Nikolopoulos

Abstract— Computing is currently at an inflection point, with
the degree of on-chip thread-level parallelism doubling every
one to two years. The number of cores has become one of
the most important architectural parameters that characterize
performance and power-efficiency of a modern microprocessor,
and a computer system in general. Concurrency lends itself
naturally to allowing a program to trade some of its perfor-
mance for power savings, by regulating the number of active
cores. Unfortunately, in several computing domains, usersare
unwilling to sacrifice performance to save power. Futhermore, the
opportunities for saving power via other means, such as voltage
and frequency scaling, may be limited in heavily optimized
applications. In this paper, we present a prediction model for
identifying energy-efficient operating points of concurrency in
well-tuned multithreaded scientific applications, and a runtime
system which uses live analysis of hardware event rates through
the prediction model, to optimize applications dynamically. The
runtime system throttles concurrency so that power consumption
can be reduced and performance can be set at the knee of the
scalability curve of each parallel execution phase. We present a
dynamic, phase-aware performance prediction model (DPAPP),
which combines multivariate regression techniques with runtime
analysis of data collected from hardware event counters, tolocate
optimal operating points of concurrency. DPAPP is hardware-
aware, in the sense that it takes into account the dimensions
of parallelism in the architecture, using distinct predictors and
hardware events for each dimension. It is also phase-aware.Using
DPAPP, we develop a prediction-driven runtime optimization
scheme, which drastically reduces the overhead of searching
the optimization space for power-performance efficiency, while
achieving near-optimal performance and power savings in real
parallel applications.

Index Terms— Modeling and prediction, Application-aware
adaptation, Energy-aware systems

I. I NTRODUCTION

Microprocessors are currently at an inflection point, where
clock rates and instruction-level parallelism have been replaced by
the number of execution cores, as the key metric that characterizes
the performance and drives the marketability of a computer
system. Moore’s law is now interpreted as “the number of cores
on a microprocessor is expected to double every one to two
years”, and hardware vendors race for the most cores that can
be packaged on a single chip [21], [25].

In the new landscape of highly parallel microprocessors and
system architectures, system software appears to be largely un-
prepared for the transition. The programming effort required for
parallelizing and optimizing code practically remains an unre-
solved issue, even among research communities that have been
investigating this problem for decades. At the same time, power

Matthew Curtis-Maury, Filip Blagojevic, and Dimitrios S. Nikolopoulos are
with the Center for High End Computing Systems at Virginia Tech.

Christos D. Antonopoulos is with the Department of ComputerEngineering
and Communications at the University of Thessaly.

dissipation is now a major consideration for system software
optimization on parallel architectures [10]–[13]. The introduction
of many simple cores on a microprocessor has been largely
motivated by the poor power-efficiency of microarchitectural
components that attempt to improve performance at the cost
of hardware complexity and reliability [3]. Concurrency not
only improves power efficiency, but also helps system software
steer power and performance simultaneously. The conventional
wisdom holds that when concurrency is increased, performance is
improved, but with an associated increase in power consumption.
Conversely, when concurrency is decreased, power consumption
is reduced, at a cost for performance.

While there are many situations where it is desirable to trade
performance for reduced power consumption, in the domain of
high-performance scientific computing, performance remains the
primary target and energy may be a second tier concern for end
users. Applications written for high-end computing systems create
a challenge for energy-aware system software, which needs to
identify opportunities to reduce power consumption with a non-
negative impact on performance. In well-tuned, heavily optimized
scientific applications, idle periods or long memory latencies, two
known opportunities for performance-aware power reduction via
dynamic voltage and frequency scaling [23], [29], may not arise as
frequently, or not be as long as needed to enable substantialpower
reduction. Programmers will usually do their best to eliminate
idling and minimize memory access latency via load balancing
and extensive data caching optimizations respectively.

On the other hand, there are certain cases where inherent
program characteristics –such as limited algorithmic concurrency,
fine computational granularity, and frequent synchronization– and
architectural properties –such as capacity limitations ofshared
resources– limit the scalability and the maximum degree of
exploitable concurrency in an application, resulting in anobserved
performanceloss through the use ofmore parallelism. In these
cases, power and performance can be simultaneously improved
by throttling concurrency.

To motivate the work presented in this paper, Figure 1
shows a breakdown of the parallel execution time of three
applications from the NAS Benchmarks Suite [18] into phases.
The breakdowns were obtained during execution of the bench-
marks on a quad-processor server with Intel Xeon proces-
sors using Hyperthreading technology. Each chart depicts the
(processors,Hyperthreads/processor) configuration that mini-
mizes the execution time of each phase. The fastest configuration
is identified experimentally, by executing each target phase in all
possible hardware configurations of the system. LU-HP-B, SP-A
and MG-B execute optimally with at least one Hyperthread per
processor deactivated, thus saving power while simultaneously
improving performance, during 95%, 84% and 81% of their
parallel execution times respectively. LU-HP-B and SP-A execute
with at least one entire processor deactivated during 40% ormore

2

(4,2)

(4,1)

(3,2)

(3,1)

(2,2)

(2,1)

(1,2)

(1,1)

 0 0.2 0.4 0.6 0.8 1

(p
ro

ce
ss

or
s,

th
re

ad
s)

 fo
r

m
in

. p
ha

se
 e

xe
cu

tio
n

tim
e

ratio of execution time

NAS LU-HP Class B

opportunities for power savings
hardware configuration for min. execution time

(4,2)

(4,1)

(3,2)

(3,1)

(2,2)

(2,1)

(1,2)

(1,1)

 0 0.2 0.4 0.6 0.8 1

(p
ro

ce
ss

or
s,

th
re

ad
s)

 fo
r

m
in

. p
ha

se
 e

xe
cu

tio
n

tim
e

ratio of execution time

NAS SP Class A

opportunities for power savings
hardware configuration for min. execution time

(4,2)

(4,1)

(3,2)

(3,1)

(2,2)

(2,1)

(1,2)

(1,1)

 0 0.2 0.4 0.6 0.8 1

(p
ro

ce
ss

or
s,

th
re

ad
s)

 fo
r

m
in

. p
ha

se
 e

xe
cu

tio
n

tim
e

ratio of execution time

NAS MG Class B

opportunities for power savings
hardware configuration for min. execution time

Fig. 1. Breakdown of parallel execution time of three applications from the NAS Benchmarks Suite [18], on a four-processor server with Intel Hyperthreading
processors. Each phase is represented with a gray parallelogram. The length of the phase and the hardware configuration (#processors, #hyperthreads/processor)
that minimize the execution time of the phase correspond to the width and height of each parallelogram respectively. Lightly shaded areas illustrate opportunities
for concurrency throttling.

of the optimal execution time. Concurrency throttling has the
advantage that it can be applied to well-tuned, compute-intensive
phases of an application, that otherwise provide limited oppor-
tunities for power optimization. Concurrency throttling tends to
drastically reduce power consumption. Whenever it also reduces
execution time, it achieves a multiplicative reduction on the total
expended energy.

Despite its appeal, concurrency throttling is an opportunity
which may present itself to varying degrees across different
programs, across different phases of the same program, or even
across different inputs fed to the same program. Identifying
concurrency throttling opportunities statically is hard,because it
requires fine-grain analysis of the dynamic behavior of parallel
code across and within parallel execution phases. Besides the
problem of identification and quantification of the opportunities,
applying concurrency throttling directly in applicationsrequires
exposure of the programmer to architectural details, such as the
number and physical layout of processors. This tactic is widely
considered as one of the factors that make parallel programming
exceptionally difficult [9]. Given the complexity along with the
inherent drawbacks of delegating concurrency throttling decisions
to the user or to a static analysis tool, runtime systems appear
to be ideal candidates for the identification and exploitation of
concurrency throttling opportunities.

This paper presents a dynamic program concurrency controller,
which seeks the optimal operating point of concurrency in mul-
tithreaded programs, at the granularity of program phases.In
contrast to concurrency control schemes based on live empirical
search of operating points, our controller relies on a dynamic,
phase-aware performance prediction (DPAPP) model. The model
predicts the optimal operating point of concurrency on different
configurations of processors, cores, and threads, here on referred
to simply ashardware configurations. The key contribution of
the DPAPP model is that it enables drastic reduction of the
overhead associated with searching the optimization spacefor
concurrency throttling, henceforth facilitating rapid and efficient
program adaptation. DPAPP uses live input from hardware event
counters, collected while executing program phases on operating
points of maximal concurrency. We use a multivariate regression
process for selecting the critical hardware events that best predict
performance, and for training the DPAPP model in assessing the
scaling effects that changing hardware configurations haveon
overall program throughput. The DPAPP training process derives
distinct predictors for thread-level, core-level and processor-level

parallelism, to account for the presence of multidimensional paral-
lelism and variance in the impact of sharing of resources between
parallel processing units within and across chip boundaries. We
use the DPAPP model to steer a runtime concurrency controller,
which succeeds in identifying phases where power consumption
can be conserved while sustaining or improving performance. We
demonstrate the effectiveness of our controller using the full NAS
Benchmarks suite, on a shared-memory multiprocessor composed
of SMT processors.

The rest of this paper is organized as follows. In Section II,
we discuss background and related work. Section III introduces
our model for dynamic, phase-aware performance predictionof
parallel applications. Section IV presents our control scheme for
dynamic, power-aware and performance-aware concurrency adap-
tation of multithreaded codes. We present a detailed discussion of
our experimental methodology and results in Section V. Finally,
we conclude this paper in Section VI.

II. RELATED WORK

Much previous research has been performed on optimizing
the execution of programs using feedback from hardware event
counters (HECs), however it has predominantly been offline,
profile-guided in nature. For example, NUMA multiprocessor
page placement using hardware assistance [31], CPO (Continuous
Program Optimization) from IBM which includes management
of variable page-size systems [4], and case studies of specific
applications [2]. In contrast, little work has been done on runtime
optimization utilizing hardware counters as the program executes.
Existing examples include HEC-based SMT job schedulers [32]
and the ADORE runtime optimization system [30]. Our work falls
into the category of online dynamic optimization with feedback
from hardware counters, however it targets energy consumption,
in addition to performance.

Performance prediction of parallel programs has been studied in
great depth, however the majority of research is targeted atoffline
prediction. Due to space limitations, we cannot here fully discuss
previous work in this mature area. Work most similar to ours in-
cludes offline research on partial execution-based prediction [37]
and statistical simulation of superscalar processors using IPC
predictions based on very short code samples [8]. Minimizing de-
sign space evaluation time for processor development has spurred
much research on predicting the performance effects of alter-
ing various microarchitectural parameters, including regression-
based [26] and machine learning-based approaches [16], [19]. To

3

our knowledge, no prior work has considered online predictors of
parallel execution performance on shared-memory architectures,
using runtime input on IPC and hardware event counts.

High-performance, power-aware computing has recently be-
come an important topic of research. Efforts range from power-
scalable and power-efficient clusters [10], [11] to runtimesystems
providing support for dynamic frequency and voltage scaling for
parallel applications [12], [23]. Our work is most closely related
to the latter, as both attempt to identify opportunities at runtime
to achieve power savings without sacrificing performance. Our
work differs in that we target shared-memory rather than dis-
tributed memory multiprocessors. Additionally, DVFS still faces
hard technological contraints before being applied per-thread in
multicore chips [27], while concurrency throttling is immediately
deployable on all forms of emerging processors composed of
multiple cores and hardware threads. Finally, it should be pointed
out that DVFS and concurrency throttling are not necessarily at
odds with each other as they may be applied in a synergistic
fashion to achieve still greater energy-efficiency [28].

Concurrency control has been previously applied for optimiza-
tion of multithreaded codes on shared memory multiprocessors.
Specifically, concurrency control can enable adaptive execution
in multiprogramming environments [1], [35], [38]. Further, stan-
dalone programs can benefit from concurrency control acrossdif-
ferent phases with potentially different execution and scalability
characteristics [15], [39]. In most cases, concurrency control is
applied in a given phase by the programmer, the runtime system,
or the compiler. Compiler-based control is generally performed
using a simple threshold-based strategy and the parallel code
region is either sequentialized or run with a programmer-specified
fixed number of threads [15], [20], [36]. Programmmers have long
had the ability to manually specify concurrency levels, however
few runtime systems provide the functionality to autonomically
manage these decisions from within. Our work provides such a
system, offering fully autonomic concurrency control based on
performance predictions of each configuration.

Recent work has considered applying concurrency control and
DVFS on single chip multiprocessors, with decisions utilizing
search algorithms of the configuration space [28]. This research
shares many motivations with our work, mainly maintaining
performance while reducing power consumption, however the
suggested solutions to the problem differ significantly. First, we
do not explore the potential of DVFS, but we rather introducea
solution that works on architectures independently of their support
for DVFS functionality. Second, our approach is implemented on
a real system, rather than simulated, verifying that our technique
works in practice with all overheads considered. Third, we utilize
performance prediction rather than empirical searches of the con-
figuration space to reduce the number of test executions necessary
to perform adaptation. Further, we show that the overhead of
search based techniques hinders the performance of short-lived
codes, particularly when compared to prediction. Additionally,
our approach targets multiprocessor systems where the combined
energy consumption of the processors plays a much larger role
than in uniprocessor systems such as that evaluated in [28].

III. D YNAMIC PHASE-AWARE PERFORMANCEPREDICTION

The goal of dynamic phase-aware performance prediction
(DPAPP for short) is to predict the performance of a multi-
threaded, compute-intensive region of code in a program –which

we hereafter refer to as aphase– across varying configurations of
the processing units on a parallel architecture [5]. We use the term
processing unitsas an umbrella term covering hardware threads,
scalar or superscalar processor cores, and single- or multiple-
chip uni- or multi-processors. As a base hardware substrate, we
consider shared-memory multiprocessors with three distinct types
of processing units, namely multi-core processors, cores within
multi-core processors and threads within multi-threaded cores. We
refer to each of these types of processing units as adimension of
parallelism in the system. More formally, we define adimension
of parallelismas a set of homogeneous processing units that share
a given level of the memory hierarchy, which is also shared by
processing units nested in lower dimensions of parallelism, but not
shared by processing units in higher dimensions of parallelism.
In principle, each dimension of parallelism shares a distinct set of
execution and memory resources, and therefore exhibits distinct
scalability properties. The dimensions of parallelism that we
consider are representative of current commercial multiproces-
sors [21], [25]. Our DPAPP technique considers phases that are
identified as parallel loops, as these structures encapsulate the
bulk of parallel code in real scientific applications.

Our DPAPP model works by predicting the cumulativeuseful
Instructions Per Cycle (uIPC) of multithreaded phases.uIPC is
defined as the sum of IPCs of the threads used to execute a phase,
excluding instructions and cycles expended for synchronization
and parallelization. Ignoring parallelization and synchronization
overheads makesuIPC inversely proportional to the execution
time of a fixed number of instructions on a given hardware
configuration. Note that althoughuIPC ignores instructions for
triggering and synchronizing threads, it still considers the effects
of interference between threads on shared hardware resources
during concurrent execution. The objective of DPAPP is to
identify phases where concurrency can be reduced during the
execution of useful application computation, with a non-negative
impact on performance. The use ofuIPC as a prediction target
focuses the optimization process on lengthy, compute-intensive
parts of applications, where power optimization opportunities may
be limited with means other than concurrency throttling.

A. DPAPP Outline

DPAPP makes distinct predictions on the optimal number of
processing units to use at each dimension of parallelism in the
system. For ease of presentation, we first describe the operation
of DPAPP for a given dimension of parallelismd. We defer
the discussion of how DPAPP predicts across dimensions of
parallelism until Section III-E.

DPAPP takes input from live samples of hardware event
counters. HECs are sampled at the beginning and end of each
phase, while the phase is executed on the configuration that
activates all processing units at dimensiond. The set of hardware
events sampled are specific tod and are selected using a formal
statistical process, according to their contribution touIPC. We
refer to these events ascritical events. Samples of critical event
rates are fed to a model that estimatesuIPC per phase, per
configuration, for all feasible configurations of processing units at
dimensiond. Intuitively, DPAPP attempts to predict how the rate
of retirement of useful instructions,uIPC, will change in a phase
when the number of processing units used to execute the phase
changes. To make this prediction, DPAPP uses a multivariate
regression model, which correlates observed event rates ona

4

sample configuration and observeduIPC values on all feasible
hardware configurations during training runs. The model outputs
a set of scaling factors foruIPC and the critical hardware events,
for each feasible hardware configuration. These outputs areused
as constant coefficients during production runs, to predictoptimal
operating points of concurrency for each phase in the code. We
describe the model in more detail in Section III-B and the process
for training the model in Section III-C. The process for selecting
critical events is discussed in Section III-D.

The objective of DPAPP is to produce performance predictions
and adapt the code dynamically, as the program executes. Re-
call that a primary motivation behind DPAPP is the avoidance
of the overhead of experimentally searching through hardware
configurations to find optimal operating points for phases inthe
program. To minimize the prediction overhead and to achieve
effective code adaptation as early as possible during execution,
DPAPP samples HECs for a minimal number of phase traversals.
Following phase traversals used for sampling hardware event
rates, the runtime system selects the predicted optimal operating
point of concurrency for each phase. To further tame overhead,
DPAPP models performance as a linear function of event rates, so
as to produce rapid predictions across a potentially large number
of hardware configurations. By contrast, an exhaustive search
algorithm would have to test

∏D

d=1
pd phase traversals, where

pd is the number of processing units in dimensiond and D the
number of dimensions of parallelism. A heuristic search algorithm
would also have

∏D

d=1
pd worst-case complexity.

B. uIPC Prediction Model

The DPAPP predictor estimates theuIPC of a phase on a
target configurationt (denoted asuIPC(t)) using input from
execution of the phase on a sampled test configurations. The
input from the sampled execution includes the actualuIPC of the
sampled configuration (uIPC(s)) and a set ofn hardware event
per cycle rates, (e1(s), ..., en(s)). Each event rateei(s), i = 1 . . . n

is the number of occurrences of eventi divided by the number
of elapsed clock cycles during the execution of the phase in test
configurations.

Although in theory, the DPAPP predictor can use any feasible
configuration as a sample configuration, we heuristically chose
to use the configuration where all processing units at the given
dimension of parallelism are active. Intuitively,uIPC and the
critical event rates sampled in this configuration encapsulate
the cumulative impact of hardware components on scaling, at
maximum system capacity at the given dimension of parallelism.

We model uIPC(t) of the target configuration, as a linear
function of uIPC(s) of the source configuration, as:

uIPC(t) = uIPC(s) · α(t, e1(s), ..., en(s)) + β(t) (1)

for a set ofn critical hardware events, which may function either
as enhancers, or as impediments of scalability. The selection of the
events in this set is discussed further in Section III-D. Notice that
both the scaling factorα and the residualβ of the linear function
are specific to and dependent on the target hardware configuration
t. In other words, each target configurationt exerts its own scaling
impact onuIPC(s), which can be positive or negative. To gauge
how individual critical events affect scalability, the linear scaling
factor is in turn modeled as a linear combination of hardware
event rates observed during the sampled configurations:

α(t, e1(s), ..., en(s)) =

n∑

i=1

(xi(t) · ei(s) + yi(t)) + z(t) (2)

The linear model of event rates stems from the empirical
observation that a change in the configuration used to execute a
program phase will result in changes – either upwards or down-
wards – of critical hardware event rates, reflecting the contention
or effective hardware utilization at each level of parallelism. These
event rates are linearly related – positively or negatively– with
the uIPC. This relation is captured in Equation 2 with positive
or negative event coefficients respectively. Our model attempts to
estimate these coefficients using multivariate regression, discussed
further in Section III-C.

Combining equations 1 and 2, the estimateduIPC for a target
configurationt can be calculated as:

uIPC(t) = uIPC(s) ·

n∑

i=1

(xi(t) · ei(s)) + uIPC(s) · γ(t) + β(t)

(3)
whereγ(t) is defined as

∑n

i=1
(yi(t))+z(t). Accurate estimation

of uIPC for a target configurationt is thus dependent on the
proper approximation of the coefficientsxi(t), γ(t) and the
residualβ(t). Note that the coefficients scale both the event rates
anduIPC of the sampled configurations.

uIPC(t) values for all possible configurations are used di-
rectly for prediction of the optimal operating concurrencyfor
each phase, at the given dimension of parallelism. We truncate
uIPC predictions that exceed the cumulative maximum capacity
(uIPCmax) of all processing units at the given dimension of
parallelism, touIPCmax, which is derived experimentally for any
given processor using microbenchmarks. Furthermore, we assume
that there is no superlinear speedup across configurations of a
phase, although this case does appear in real codes. In practice,
phases with superlinear speedup have their optimal operating
point of concurrency at the maximum number of processing units
and offer no opportunity for concurrency throttling.

C. Offline Training and Estimation of Coefficients

We use multivariate linear regression on the multithreaded
phases of a set of training benchmarks to determine the values of
the coefficients in Equation 1. Although more advanced machine
learning techniques could be deployed for prediction, the number
of cycles invested in making predictions at runtime is a primary
concern for DPAPP, therefore we opt for the simplest linear
prediction model. Specifically, training benchmarks are executed
under all feasible hardware configurations, at all dimensions of
parallelism, while recording per-phaseuIPC and the critical
hardware events used for prediction (see Section III-D). The
training benchmarks are selected empirically so as to include
phases with variance in three characteristics: scalability ranging
from poor to perfect; granularity of parallel computation,ranging
from fine to coarse; and ratio of computation to memory accesses,
ranging from low to high. In our experimental evaluation, weuse
two parallel benchmarks (MM5, a mesoscale weather modeling
code and the Unstructured Adaptive application from the NAS
Benchmarks) with 119 phases in total. In this work, we define
phases to be OpenMP parallel regions enclosing parallelized

5

loops. The training benchmarks achieve excellent coverageof
diverse phase characteristics.

Our multivariate regression analysis uses the events collected
under the selected sample configurations multiplied by theuIPC

of the sampled configuration, i.e.ei(s) · uIPC(s), and the actual
uIPC alone (uIPC(s)) as independent variables, to predict
the uIPC(t) of each target configurationt as the dependent
variable. We use the product ofei and uIPC of the sampled
configuration for coefficient derivation because our model uses
multiplicative effects of events on the observeduIPC rather
than additive ones, in accordance with Equation 3. This process
estimates the necessary coefficients for each event in function
α(t). Regression analysis is performed separately to predictuIPC

for each target configurationt, therefore we derive independent
sets of coefficients and independent scaling factors for each target
configuration. For a system withpd units in dimensiond of
parallelism,1, . . . , D, multivariate regression analysis derives a
total of

∑D

i=1
pd sets of coefficients.

D. Rigorous Event Set Selection foruIPC Prediction

The accuracy of DPAPP is heavily dependent upon the selection
of an effective set of critical events for predicting performance and
scalability along each dimension of parallelism. The events should
accurately reflect, in a statistical sense, performance andscala-
bility bottlenecks in the system. We have previously considered
empirical selection of events that represent known performance-
critical components of microprocessors [5]. In this paper,we
present a rigorous statistical technique, which automatesthe
event selection process and makes it reproducible and generally
applicable to any target architecture.

Modern processors generally provide very large sets of events
that can be recorded. Furthermore, a microprocessor can typically
record multiple events at the same time. For example, Intel
Pentium 4’s provide 40 events which can be further differentiated
by specifying bitmasks to each event, and up to 18 events can
be recorded at once. The IBM Power5 provides 500 events and
permits up to 6 to be recorded simultaneously. The number of
legal sets of events that can be recorded simultaneously on these
architectures is far too large for it to be feasible to exhaustively
test each set of events as input for prediction. Moreover, while
the most effective prediction possible would likely resultfrom the
use of all (or at least most) available events, there is an architec-
tural limit on how many events can be recorded simultaneously,
and often there are further restrictions on which events canbe
recorded at the same time.

Rather than exhaustively looking at each possible combination
of events, our predictor training tool independently looksat the
contribution of each event touIPC. To gauge each event’s
significance, we initially use multivariate regression on data from
the set of training benchmarks to predictuIPC(t) for each target
configuration, using all events that are available for monitoring
on the processor. We modeluIPC as in Equation 3, with the
exception that we use a set ofN events whereN >> n.

Following the initial uIPC modeling phase, we prune all
events that have zero or negligible occurrence rates. We then
consider the contribution of each event to the resultinguIPC(t)

prediction, as a percentage ofuIPC(t). The contribution of each
event is calculated by multiplying the event rate by its coefficient
and byuIPC(s) and dividing the result byuIPC(t). We average
the contributions of each event across all feasible configurations

and all phases in the training runs, and rank the events in
descending order of contribution. The actual number of events
selected for prediction (n) is processor-dependent. We setn to be
the maximum number of events that the hardware performance
monitor of the processor can count simultaneously, withouttime-
multiplexing of event registers. This selection criterionminimizes
the overhead of monitoring hardware events for prediction.Note
that on architectures where dependencies between events prevent
simultaneous monitoring of specific sets of events, some critical
contributing events may still be left out of the predictor due to
conflicts with other, more heavily contributing events.

E. Prediction on Architectures with Multiple Dimensions ofPar-
allelism

On architectures with multiple dimensions of parallelism,re-
source sharing varies considerably across dimensions. Forex-
ample, physical processors in an SMP share only the off-chip
interconnection network and DRAM. Cores within a processor
typically share an on-chip interconnection network and theout-
ermost levels of the on-chip cache. Threads on a single core
share most resources of the execution core, including pipelines,
branch predictors, TLB and L1 cache. Contention for these shared
resources is largely responsible for performance and scalability.

To capture the implications of multidimensional parallelism,
DPAPP uses a distinct set of critical events and derives a distinct
set of scaling factors for each dimension of parallelism in the
system. DPAPP repeats the processes outlined in Section III-B
and Section III-D, to obtain prediction event sets and coefficients
for each dimension of parallelism. At actuation time, DPAPP
makes predictions along each of the dimensions of parallelism and
combines these predictions to yield a power-efficient concurrency
operating point for each phase in the program.

F. Predictor Optimization

The accuracy of DPAPP is significantly improved by clas-
sifying code phases according to their observeduIPC during
the execution of the sample configuration. The justificationfor
such an extension is twofold. First, grouping phases based on
uIPC allows training and prediction to occur separately for
phases with different scalability slopes. As such, the division
between buckets is selected such that it divides different degrees
of scalability. Second, it is intuitive that the effects of events will
vary depending on the original instruction throughput of each
phase. Dividing the phases into buckets and creating separate α(t)

scaling functions for each class of phases gives the predictor the
opportunity to make more fine-grain and accurate predictions.
At runtime, the observeduIPC on the sample configuration
determines which set of coefficients will be used for prediction.
We use this optimization in our implementation of DPAPP.

IV. CONCURRENCYCONTROL FORPERFORMANCE AND

POWER OPTIMIZATION

In this section we present our phase-aware concurrency control
algorithm for a 2-layer shared-memory multiprocessor, such as a
multi-chip multi-processor with multi-core processors. We then
discuss the power and energy reduction potential of the algorithm
and extensions to the algorithm that take account for inter-phase
interference.

6

1: {Input : phase identifier, sampling rate}
2: {Output : predicted optimal operating concurrency,cmax}
3: {Assumes2-dimensional multiprocessor withP0·P1 processors.}
4: {Each tuple{p0, p1} represents a hardware configuration.}
5: S ← sampling rate; cmax ← {P0, P1}; uIPCmax ← 0;
6: for all i, 1 ≤ i ≤ S do
7: cmax,i ← {P0,

i

S
· P1};

8: sampleuIPC(cmax,i);
9: sample event rates ofcmax,i;

10: uIPCmax,i ← uIPC(cmax,i);
11: for all j, 1 ≤ j ≤ P0 do
12: c← {j, i

S
· P1};

13: predictuIPC(c);
14: if uIPC(c) > uIPCmax,i then
15: uIPCmax,i ← uIPC(c); cmax,i ← c;
16: end if
17: end for
18: if (uIPCmax,i > uIPCmax) then
19: cmax ← cmax,i; uIPCmax ← uIPCmax,i;
20: end if
21: end for

Fig. 2. DPAPP-driven concurrency controller algorithm foran architecture
with 2-dimensional parallelism.

A. DPAPP Concurrency Controller

Scientific codes are dominated by iterative execution of phases,
and DPAPP exploits this property to sample hardware event
rates in the first few phase traversals and set the concurrency of
each phase to the predicted optimal operating point, early during
execution of the program. The live search of the optimization
space for operating points of concurrency can also be performed
by timing phases at different configurations and running search
heuristics such as greedy hill-climbing [6], [28] or simulated
annealing [24]. However, as the number of feasible hardware
configurations increases with the introduction of more cores and
threads per processor, direct search methods may spend most
of the execution time sampling suboptimal configurations, rather
than optimizing the program. This disadvantage manifests itself
in codes where dominant multithreaded phases are traversedonly
a few times. Even if direct search methods are used for off-line
auto-tuning by repetitive executions of the entire program[9],
searching the program optimization space for any input on any
feasible configuration of processing units may be prohibitive.
DPAPP prunes the search space for concurrency optimizationto
a constant number of samples.

Figure 2 illustrates a DPAPP-driven concurrency control algo-
rithm for a multiprocessor with two dimensions of parallelism.
The DPAPP concurrency controller estimates optimal operating
points of concurrency, using samples of critical hardware event
rates from live executions of program phases. The controller is
dynamic, in the sense that it adapts the program as it executes,
with no prior knowledge of program characteristics. The DPAPP
technique is used by the controller so that predictions of optimal
concurrency points are derived from a small number of samples
of hardware event rates. The number of samples is a tunable
parameter of the control algorithm. In our prototype, we use
a sample rate ofS = 2 taken along the innermost dimension
of parallelism, i.e. threads within a processor. The algorithm in
Figure 2 generalizes to more than two dimensions by repeating
the loop in lines (11)–(17) for each dimension beyond the second,
while saving the current predicted optimal configuration ina

temporary variable.
Once predictions for a phase are obtained, all subsequent traver-

sals of a phase are executed at the predicted optimal operating
point of concurrency, which is set by the controller. The DPAPP
concurrency control algorithm has two parameters, the sampling
rate and the dimension of parallelism along which the initial
samples are taken. The second parameter is fixed at the training
phase of the DPAPP predictor, during which all possible orderings
of dimensions of parallelism can be tested. The sampling rate S

is chosen so as to control the overhead of sampling. The sampling
rate corresponds to the number of times each phase needs to be
executed before deriving a prediction for the optimal operating
point. Our choice,S = 2, provides the minimum number of
samples needed to capture the effects of using more than one
core or thread on a multi-core or multi-threaded processor.

Certain assumptions are necessary to implement our concur-
rency controller, and we outline those in the following. First, we
rely on the capability of the runtime system to change the number
of threads used to execute a phase of parallel code at runtime. This
capability is available in OpenMP, at the granularity of parallel
loops and parallel regions. However, changing the number of
threads at runtime may not be possible in some applications due
to data initialization which depends on the number of threads
used. This pattern is uncommon and is trivial to modify. Second,
the phases of an application must be executed at leastS times, to
allow for sampling. Finally, the execution properties of each phase
between executions must remain relatively stable. In practice, this
is the case in both regular and irregular codes.

B. Energy Savings Possibilities

Energy savings using adaptive concurrency throttling come
through two avenues. First, by reducing execution time, be-
cause the energy consumed is reduced proportionally. Second,
through the deactivation of processing units, which reduces power
consumption. The power consumption of a processing unit is
dependent upon its level of utilization, as clock-gating limits the
power dissipation of functional units when they are idle. Further,
a processor can be transitioned to a lower power mode when it
is not being used. For example, on Intel Pentium 4 processors,
the hlt instruction transitions the processor to a low power mode,
where power consumption is reduced from approximately 9W
when idle to 2W when halted. While we do not manually control
the transitioning between power states of the processors from
within the runtime system, the operating system does so when
the processor remains inactive for some time period. We have
experimentally verified that in Linux 2.6 kernels, processors
are actually transitioned to the halted state by the operating
system during 90% of the time during which they have been left
idle. Manually transitioning processors would result in minimal
additional power savings, so we do not consider this direction
further in this work. Moreover, instructions that transferthe
processor to the halted state are usually privileged and canbe
executed only by the operating system.

C. Cross-Phase Decision Making

The processes of prediction, decision making, and adaptation
are not performed at whole-program granularity, rather, each
phase of an application is analyzed independently. This allows
phases with different execution properties in the same application

7

to execute with their own, locally optimal hardware configu-
rations. Since many programs have behavior that varies across
phases [34], overall performance can be improved compared to
using a single configuration for the entire program. However, a
non-negligable performance penalty may be paid as a result of
changing the hardware configuration across adjacent phasesat
runtime. This performance penalty stems primarily from migra-
tion of working sets of threads between caches [22]. To avoid
negative inter-phase interference, we consider variants of our
adaption scheme that are aware of this interference.

We have developed two schemes for cross-phase prediction.
The first of these schemes simply finds the configuration that is
best for the majority of the application’s phases, and applies this
to all phases, regardless of their locally optimal configuration.
This scheme avoids cache interference entirely, at the expense
of using a single configuration for all phases and missing fine-
grain optimization opportunities. The second approach is an
extension to the first, where phases are allowed to temporarily
replace the global optimal configuration with their local optimal
configuration, only if IPC improvement beyond a preset threshold
is predicted by using the local decision. Using this technique,
interference will only be tolerated when the phase in question is
expected to make up for it in performance gain through the use
of an alternative configuration.

V. EVALUATION

In this section we perform an evaluation of both the perfor-
mance prediction model and the adaptive concurrency control
technique presented in previous sections. In the next subsection
we present the experimental setup that we used in our evaluation.
Following, we present the results of event selection for prediction
and the resulting accuracy of the predictor. Finally, we compare
the power and performance results of thePerformance Prediction-
based Adaptive Concurrency Controller(PPACC) with those
attained by runtime auto-tuning techniques based on empirical
search and by off-line auto-tuning techniques based on static
execution with no concurrency control.

A. Experimental Setup

We performed all of our experimental evaluations on a Dell
PowerEdge 6650 server composed of four Intel Hyperthreaded
Xeon processors with 1GB of main memory. Each processor is a
1.4 GHz, 2-way SMT equipped with an 8-KB L1 data cache, a
12-KB trace cache, a 256-KB L2 cache, and a 512-KB L3 cache.
The Linux kernel used was version 2.6.15.

Experiments were performed with 10 benchmarks that are
representative of scientific and engineering applicationstypically
requiring high performance. Nine of the benchmarks originate
from the OpenMP version of the NAS Parallel Benchmarks
suite, version 3.1 [18]. We use three different problem sizes,
available in the NAS distribution (W, A, B). MM5 is an OpenMP
implementation of a mesoscale weather prediction model [14].
The benchmarks include a wide variety of program properties, and
in particular, widely varyinguIPC scalability across execution
phases. Therefore, they are challenging targets for prediction.
The benchmark suite includes several benchmarks with a small
number of iterations (CG, FT, IS, MG), in which empirical search
strategies may suffer due to a large percentage of total execution
time being spent in exploration, as well as benchmarks with a

large number of iterations (BT, LU, LU-HP, SP, UA, MM5),
where search strategies stand to have their search overheads better
amortized. Results for FT are not included for class size B,
because its working set does not fit in the available memory of
our hardware platform.

Table I lists the benchmarks along with some pertinent infor-
mation about their structure. The number of iterations, phases, and
percentage of time spent in parallel regions shown are for class
size A. The table also outlines the percentage of execution time
during which at least one processor can be deactivated with non-
negative impact on performance (i.e. the program runs optimally
with at most 3 processors) and percentage of execution time
during which one Hyperthread per processor can be deactivated
with non-negative impact on performance (i.e. the program run
optimally with at most one Hyperthread per processor), averaged
over all three class sizes. This information is taken from static
executions on all feasible hardware configurations.

B. Performance Prediction Evaluation

In order to evaluate our performance prediction model, we
selected two benchmarks for training, specifically UA (compiled
to class size A) and MM5. These benchmarks were selected
because the phases they contain have widely varying execution
properties, including IPC, scalability, and locality. Further, they
contain enough phases to serve as a standalone training set.These
applications were used in the event selection process as well as
the predictor training. Predictions were made for the remaining
benchmarks, i.e. all remaining NAS benchmarks with class sizes
W, A, and B.

1) Event Selection:Selection of an effective set of events
to use for performance prediction requires data for all of the
available hardware counters on each of the test configurations
for all of the training benchmark phases. Further, theuIPC

values of all phases on each hardware configuration are necessary
as well. There are 40 events on Pentium 4 processors that
can be recorded using only a single register each, with further
differentiation within each event through the use of bitmask
parameters specifying, for example, to record L2 cache misses,
hits, or accesses. There is also an event to count memory accesses
which requires two counter registers. We select one bitmaskfor
each event representing the hardware parameter most likelyto
have the largest effect on performance, leaving 41 events to
consider. Of these, 13 had rates near zero, and were thus removed
as described in section III-D. The performance monitoring unit
of the Pentium 4 with Hyperthreading technology shares the 18
counter registers between the two co-executing threads, leaving
9 counters available for each thread. The 28 events that survived
pruning provide a total of 99,372 possible architecturallylegal
sets of events that can be recorded on the 9 performance counter
registers per thread.

Regression analysis was performed on the data from each phase
to find the events that contributed the most to the resulting IPC
prediction. Table II displays the set of events that was selected for
each prediction on our platform. In this discussion, configuration
(nproc, nthr/proc) denotes a configuration withnproc proces-
sors andnthr/proc threads per processor. It should be pointed
out that events with large contributions have been excludeddue
to conflicts with more dominant events. That is, the inclusion of
one highly contributing event often eliminates other contributing
events that interfere with it. All that can be done in these cases

8

Benchmark BT CG FT IS LU LU-HP MG SP UA MM5
Iterations 200 15 6 10 250 250 4 400 200 180
Phases 5 5 5 1 3 11 6 9 49 70

% Time in Phases 99.5 91.6 91.2 79.7 99.9 99.7 86.3 99.6 99.8 95.5
% Time Disable CPU 1.9 33.3 0.1 100.0 0.0 15.1 6.0 35.1 59.3 7.7
% Time Disable SMT 99.1 66.6 93.0 100.0 0.0 50.8 53.5 32.9 33.1 70.0

TABLE I

THE SET OF BENCHMARKS WE USED TO EVALUATE ONLINE PERFORMANCE PREDICTORS FOR POWER-PERFORMANCE ADAPTATION, ALONG WITH THEIR

MAIN PHASE CHARACTERISTICS.

is to select the event with the largest contribution and ignore
the conflicting events. Specifically, three of the top five events on
this architecture cannot be included because they conflict with the
top two events. This suggests that on architectures where there
are reduced or no dependencies between events, our prediction
approach will likely achieve higher accuracy.

Predictor (4,2)→(*,2) (4,1)→(*,1)
Event0 Cycles Active Cycles Active
Event1 L2 Cache Misses L2 Cache Misses
Event2 Branches Retired Branches Retired
Event3 UOP Queue Writes TC Deliver Mode
Event4 Memory Cancels Memory Cancels
Event5 Packed SP UOPs Packed DP UOPs
Event6 Memory Accesses (1) Machine Clears
Event7 Memory Accesses (2) Stall Cycles
Event8 Instructions Retired Instructions Retired

TABLE II

THE INTEL PENTIUM 4 HARDWARE EVENTS SELECTED FOR EACH

PREDICTION TYPE. THE SECOND AND THIRD COLUMNS SHOW THE

EVENTS FOR PREDICTING THE OPTIMAL CONFIGURATION WITH2 AND 1

HYPERTHREADS ACTIVATED PER PROCESSOR RESPECTIVELY.

2) Prediction Accuracy:We perform our evaluation of the
accuracy of the online performance predictor using eight ofour
ten benchmarks, excluding the two benchmarks used for training
the predictor. We consider the absolute prediction error and the
configuration prediction error for each benchmark. We calculate
the absolute prediction error as|uIPCpred−uIPCobs|/uIPCobs,
whereuIPCobs is the observed IPC of useful instructions. On our
experimental platform, there are six predictions made for each
phase. Specifically, we predict for configurations with one and
two Hyperthreads per processor on one, two, and three processors.
The average prediction error for each phase is taken across all tar-
get configuration predictions. Configuration prediction accuracy
compares the predicted optimal configuration for each phasewith
the local static optimal configuration. The local static optimal
configuration is obtained as follows: We execute the benchmarks
with each of the eight possible hardware configurations statically,
i.e. with no concurrency control between phases. For each phase,
we designate as optimal the one configuration out of the eight
possible that minimizes the execution time of the phase. Note
that this definition of optimal configuration ignores inter-phase
interference and that a local static optimal configuration may
or may not be the global, program-wide static optimal config-
uration. Configuration prediction accuracy illustrates how often
the predictor identifies the local static optimal configuration. It
should be noted thatuIPC prediction is particularly challenging
on our experimental platform, because often,uIPC changes due

to Hyperthreading cannot be approximated as a linear function of
the number of processors and threads used. However, we should
also note that the litmus test for our predictor is notuIPC

prediction accuracy but configuration prediction accuracy. As long
as the predictor correctly predicts the optimal configuration for
each phase, a potentially highuIPC prediction error can be
disregarded.

As discussed in Section III-F, we utilize phase classification
before making predictions. Specifically, we divided phasesinto
buckets withuIPC greater than or equal to 1.0 and those less than
1.0 during the sample configuration. This division is not arbitrary,
rather, it provides an approximate value to separate phaseswith
low scalability characteristics versus those that scale well, in
general, on this architecture. During prediction, each phase uses
the coefficients derived from theuIPC bucket corresponding to
its observeduIPC during the sample configuration.

The uIPC prediction accuracy can be seen in the leftmost
graph of Figure 3. This graph gives the cumulative distribution
function of prediction error, that is, the percent of phasesthat
experience error below each threshold with threshold samples
taken every 5%. The overall average absolute prediction error
is 18.6%. We note that 24% of all predictions have less than
5% error and 43% of all predictions have less than 10% error.
On the other hand, only 4% of the predictions show error
larger than 50%. Although our performance prediction model
is purposefully simple to minimize the overhead of applying
it at runtime, its results compare favorably with other reported
statistical techniques for predicting IPC [7].

In terms of prediction of the optimal configuration for each
phase, the middle chart of Figure 3 shows the percent of phases
for which each possible ranking of configuration was selected.
This value is calculated by sorting the configurations by IPC
for each phase and identifying which entry was selected by
the predictor. For example, a value of 1 indicates that the best
configuration was selected and 2 indicates that the second best
configuration was selected, etc. This graph shows that in 64%of
cases the single best configuration is identified by the predictor.
An additional 19% of phases have the second best possible
configuration selected.

As a result of the high configuration prediction accuracy, the
performance loss in mispredicted regions is usually quite low. The
rightmost chart of Figure 3 shows the weighted performance loss
observed for each benchmark during mispredicted phases. This
value is calculated as

∑NB

i=1
wi · Di, whereNB is the number

of mispredicted regions in benchmarkB, wi is the weight of
each mispredicted region expressed as the percentage of thetotal
parallel execution time ofB that the specific region accounts
for, andDi is the absolute performance penalty suffered by the

9

Absolute Prediction Accuracy

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Prediction Error (%)

%
 P

h
as

es

Configuration Prediction Accuracy

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8
Rank of Selected Configuration

%
 P

h
as

es

Performance Loss due to Misprediction

-1

0

1

2

3

4

5

6

BT CG FT IS LU LU-HP MG SP AVG

Benchmark

P
er

fo
rm

an
ce

 L
o

ss
 (

%
)

Fig. 3. The left chart illustrates the CDF of prediction error. The middle chart illustrates the percent of phases for which each rank of configuration was
selected. The rank of the selected configuration is taken from the list of configurations sorted by their IPCs on static executions of each phase, a value of 1
indicates that the optimal configuration was selected. The right chart shows the performance loss (>0) or gain (<0) resulting from configuration misprediction.

mispredicted regioni. The average penalty across benchmarks
is only 1.2%. The explanation for the negative performance loss
(performance gain) of LU-HP is that by not changing configu-
rations to the optimal in all cases, the cache effects of altering
configurations are reduced. These results show that our model
is capable of identifying the optimal configuration most of the
time, and when it does not it still manages to find a competitive
configuration to use, with minimal performance penalty. Note that
in some cases, a misprediction may derive a more energy-efficient
hardware configuration for a phase, where power may be reduced
with negligible impact on execution time.

C. Adaptive Concurrency Control Evaluation

To measure the power consumption of the benchmarks under
various hardware configurations we utilize a power measurement
methodology based on hardware event counters [17] that has
proven to be highly accurate. This methodology works by first
partitioning the processor into components and then determining
the maximum power consumption of each component based on
the die area it consumes. The runtime power consumption of each
component is the maximum power adjusted by an activity factor.
The latter is estimated by looking at corresponding hardware
event counters. This amount is added to a non-gated clock power
associated with each component that grows non-linearly with
activity. Finally, the power consumptions of all components are
summed along with a constant base idle power. It should be
noted that we focus only on processor power consumption. For
the well-tuned scientific applications we consider in this paper,
processor power is the dominant portion of the total system power
consumption [33].

1) Motivating Examples:Figure 4 depicts the execution times
and energy consumption of each benchmark under class size A
for each static configuration. Static configurations use a single
configuration for the entire execution. These graphs show that on
our experimental platform, very little additional performance gain
is seen through adding additional processors once two processors
are active. Particularly interesting is the IS benchmark, which sees
its best performance using a single thread on only one processor.
Further, sometimes there is a large gain through using the second
execution context on each processor, and sometimes a substantial
loss. For these reasons, adaptation of the number of processors
and execution contexts stands to improve both execution time and
power consumption. It can be observed that while performance
levels out, the energy consumption increases at rather steep rates
with more processors.

The reader may note that the observed scalability bottlenecks
are an artifact of hardware bottlenecks, such as limited memory
bandwidth. While this statement is correct, it also reflectsa
property of a large number of real systems, including state-of-the-
art platforms that outdate our experimental system. For example,
we performed experiments with the NAS benchmarks on a newly
released quad-core Intel Xeion processor (QX 6700) which have
shown that applications still tend not to scale well on even the
latest hardware. In particular, several of the benchmarks fail to
scale beyond two cores, with maximum speedups saturating well
below 2 (see Figure 5). As a result, opportunities for concurrency
throttling still exist even in the newest hardware platforms.

As further evidence of the importance of phase-level adap-
tation, Figure 6 displays the IPCs for each phase of the LU-
HP benchmark at class size B under each static configuration
normalized by the IPC of (1,1). It is evident from the chart that a
single application can have optimal configurations varyinggreatly
between phases. LU-HP in particular experiences five different
optimal configurations across different phases, specifically (2,1),
(2,2), (3,2), (4,1), and (4,2). Therefore, using a technique to
execute each phase at its local optimal operating point stands to
improve performance. In cases where the optimal configuration
occurs on fewer than the available number of processing elements,
power savings can occur during the execution of these phases. The
goal of our adaptation approach is to exploit these properties with
no a priori knowledge of the codes and achieve both power and
performance benefits.

Before discussing the online adaptive strategies and theirre-
sults, we focus on two offline approaches to adaptation. The
first of these,static optimal, uses the single program-wide static
configuration that results in the lowest execution time. Thestatic
optimal configuration for an entire program differs in general
from the static optimal configurations of phases in a program.
The second approach isphase optimaland uses the local static
optimal configuration, not considering cross-phase effects, as
defined earlier. Due to interference occurring by changing the
configurations inphase optimal, the mean execution time of the
benchmarks is 1.0% higher thanstatic optimal. For this reason,
we limit our following evaluation to comparing adaptive strategies
to static optimal.

The two offline approaches that we consider have the disad-
vantage that the optimal configuration may change with different
input sizes. For example, IS executes statically optimallyon
(3,1) for class size W, but (1,1) and (2,1) for class sizes A and
B respectively. For individual phases, the optimal configuration

10

BT Class A

0
50

100
150
200
250
300
350
400
450

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

5000

10000

15000

20000

25000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

CG Class A

0

2

4

6

8

10

12

14

16

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

100

200

300

400

500

600

700

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

FT Class A

0

5

10

15

20

25

30

35

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

500

1000

1500

2000

2500

3000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

IS Class A

0

2

4

6

8

10

12

14

16

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

200

400

600

800

1000

1200

1400

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

LU Class A

0

100

200

300

400

500

600

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

5000

10000

15000

20000

25000

30000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

LU-HP Class A

0

100

200

300

400

500

600

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)
0

5000

10000

15000

20000

25000

30000

35000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

MG Class A

0
2
4
6
8

10
12
14
16
18
20

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0
100
200
300
400
500
600
700
800
900

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

SP Class A

0

50

100

150

200

250

300

350

400

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Configuration (CPUs, Thr/CPU)

T
im

e
(S

ec
o

n
d

s)

0

5000

10000

15000

20000

25000

E
n

er
g

y
(J

o
u

le
s)

Time

Energy

Fig. 4. The execution times and energy consumption of each static configuration.

IS Class B

0
2

4
6

8
10

1 2 3 4
Cores Active

E
xe

cu
tio

n
tim

e
(s

ec
s)

LU Class B

0
10

0
20

0
30

0
40

0
50

0
60

0

1 2 3 4
Cores Active

E
xe

cu
tio

n
tim

e
(s

ec
s)

MG Class B

0
5

10
15

20

1 2 3 4
Cores Active

E
xe

cu
tio

n
tim

e
(s

ec
s)

SP Class B

0
10

0
20

0
30

0
40

0

1 2 3 4
Cores Active

E
xe

cu
tio

n
tim

e
(s

ec
s)

Fig. 5. Scalability characteristics of 4 of the NAS benchmarks on a state-of-the-art quad-core Intel processor.

IPC per Phase in LU-HP (Class B)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1 2 3 4 5 6 7 8 9 10 11
Region Number

N
o

rm
al

iz
ed

 IP
C

(1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Fig. 6. IPCs for each phase of the LU-HP benchmark under each static
configuration, normalized by the IPC on (1,1).

varies by problem size as well. Specifically, only 52.5% of
the program phases in our benchmarks experience the same
optimal configuration regardless of input size. This means that
use of these static techniques requires offline analysis that is
specific to the application and the input size. By contrast, the
online adaptive approaches adapt autonomically at runtimefor the
current application execution and require no application/input-size
specific offline analysis.

2) Empirical Search-based Strategies:For purposes of com-
parison, we have implemented two alternative dynamic adaptation
strategies based on empirical search of the configuration space at
runtime. The first of these is the most straightforward form of
adaptation, exhaustive search, where each possible configuration
is tested and the one that provides the lowest execution time
is selected for each phase. Figure 7 illustrates the normalized
arithmetic means of three metrics: execution time, averagepower
consumption during execution, and energy consumption. These
metrics are derived for each benchmark under different execution
strategies. Each metric is first normalized to the corresponding
metric of the (4,2) configuration for the specific benchmark,which
exploits all available execution contexts on our experimental plat-
form. We then calculate the arithmetic means of the normalized
metrics, for each benchmark.

Occasionally, the power consumption actuallyincreases
through the use of adaptation. This result is counterintuitive
since adaptation is always expected to either keep the number of
processors and Hyperthreads used constant, or reduce it. Recall
that our starting assumption for adaptation is that deactivating
threads inside a processor reduces power. This is actually true in
the majority of phases, specifically 79% of all phases. However,
in certain cases, the use of Hyperthreading introduces longstall
times in the processor, due to contention for shared resources, and
therefore long periods of processor inactivity, during which power
consumption is low. By contrast, deactivating Hyperthreading in
these situations, reduces stall times, increases processor utilization
and therefore increases the average power consumption. However,
the increase in power consumption does not translate into an
increase in overall energy, due to the reduction in execution time
experienced in these cases. Therefore, the overall result is positive
for the applications where the anomaly with Hyperthreading
occurs.

The average execution time of all benchmarks over all problem
sizes using exhaustive search was reduced by 10.9% comparedto
statically using all available processors and execution contexts
on the system. Power is reduced by 9.7% as well, resulting in
a 19.5% reduction in total energy consumption. However, this
approach incurs high overhead in the exploration phase, dueto its
testing of each configuration. Exhaustive search needs to execute
8 iterations of each phase to reach a decision. This overhead
shows up when the results are compared to using the optimal
static number of threads for the entire program execution, where
exhaustive search is outperformed by 16.1% overall and by 31.6%
in benchmarks with a small number of iterations (MG, CG, FT,
IS). However, for applications with many iterations (BT, SP,
LU, LU-HP), exhaustive search is able to come within 1.1%
of the static optimal in terms of performance, while reducing
power consumption by 3.3%, because the search overhead can be
amortized over a large number of iterations.

The second empirical search technique that we implemented is

11

BT

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

CG

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

FT

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

IS

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

LU

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

Exhaustive Search Hill Climbing PPACC Static Optimal

LU-HP

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

MG

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

SP

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

Average

0

0.2

0.4

0.6

0.8

1

1.2

Time Power Energy
Evaluation Metric

R
at

io

Fig. 7. Performance of the adaptation strategies in terms ofexecution time (first group of bars), power (second group of bars), and energy (third group of
bars) normalized with respect to the (4,2) static configuration for each benchmark, averaged over all class sizes.

a heuristic search algorithm, which we have previously devised
to reduce the overhead of exhaustive search [6]. This algorithm
works by applying a hill-climbing heuristic search to find the
optimal number of processing elements to use at each dimension
of parallelism, one dimension at a time. The algorithm begins by
executing the phase on all available processors with all Hyper-
threads active. Then, the number of processors is successively
reduced until an increase in execution time is observed. The
lowest number of processors that results in a decrease in execution
time is used for the corresponding phase. This process is then
repeated on the decided upon number of processors to determine
the number of Hyperthreads to use on each processor.

Using hill climbing reduces the number of required test itera-
tions for each phase to 5 in the worst case for our experimental
platform, and only 3 in the best case, since our platform has
two layers of parallelism. This overhead reduction allows the hill
climbing algorithm to achieve improved performance compared to
exhaustive search because a larger percentage of the iterations will
be executed with the decided upon optimal configuration, rather
than testing additional suboptimal configurations. Specifically,
compared to exhaustive search, hill climbing achieves an 1.6%
improvement in execution time overall and a 3.9% improvement
for applications with few iterations, with a minor 0.5% increase
in execution time for the applications with many iterations. The
slight performance drop in applications with many iterations can
be attributed to occasionally, but infrequently, selecting slightly
worse configurations than exhaustive search. Power consumption
is reduced by 1.7% and energy consumption by 3.6% on average,
compared to exhaustive search. Compared tostatic optimal, hill
climbing reduces the performance loss to 26.5% for applications
with a small number of iterations, and to 13.9% overall. The
energy consumption is also reduced by 22.4% compared to using
all available execution contexts. These results show that hill

Average

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time Power Energy
Evaluation Metric

R
at

io

Phase-Local Cross-Phase Cross-Phase (15% tolerence)

Fig. 8. Execution time, power, and energy effects of utilizing the three
different prediction based adaptation strategies, with all numbers normalized
with respect to the (4,2) execution.

climbing is able to reach good configuration decisions, while
requiring fewer exploration iterations, thus introducinglower
overhead. However, the search overhead is still clearly a factor
for applications with few iterations.

3) Performance Prediction-based Adaptation:Through the use
of performance prediction, the number of iterations required for
adaptation can be further reduced using the algorithm presented in
Section IV, to only two iterations in the case of our experimental
platform, thereby minimizing overhead. Further, performance pre-
diction reduces the effects due to changing configurations during
the exploration process that can lead to suboptimal decisions by
the direct-search strategies. On the downside,uIPC predictions
need significantly more processor cycles than direct comparisons
of the execution times of phases.

We first compare a strategy whereby the predicted optimal
configuration for each phase is used blindly, to strategies that
consider cross-phase analysis to make decisions. The best strategy
is selected for use with PPACC, and is compared to the offline
and direct-search approaches already presented. First, weevaluate

12

our approaches to minimize the harming effects of using the local
optimal configuration for each phase, which occur if changesin
the configuration of adjacent phases result in redistribution of
working sets between caches [22]. We compare the results to the
greedy local optimal approach to find the best prediction-based
adaptation approach. Our experimental results, shown in Figure 8,
indicate that simply attempting to avoid cache interference is not
inherently effective. Using an approach whereby the configuration
selected as the best for the majority of execution time (i.e.the
dominant configuration) is enforced for all phases producesa
slowdown of 1.5% compared to the local optimal approach, with
an additional 0.9% energy consumption. This happens because,
in many cases, the benefits of executing a phase with its local
optimal configuration outweigh the performance loss suffered as
a result of cross-phase interference.

Given the advantage of local adaptation over global enforce-
ment of the dominant configuration, along with the fact that
changing configurations too liberally hurts performance, we de-
veloped an intermediate adaptation scheme that uses a global
dominant policy for most phases, with the exception of phases
expected to experience substantial performance gains by using its
own local optimal configuration. In particular, using this approach,
the global decision is enforced unless a given phase expectsat
least a 15% performance gain, which we experimentally verified
to be enough to outweigh the cache effects of changing config-
urations. When compared to phase-local adaptation, cross-phase
decision making with exceptions attains an 1.3% average perfor-
mance improvement. An increase in power consumption of 2% is
also observed, however the energy consumption is unchanged,
making cross-phase with exceptions the best prediction-based
adaptation strategy. These results show that concurrency throttling
modules must consider the effects of changing configurations in
adjacent phases in conjunction with the local predictions for each
phase, when making decisions.

Using cross-phase decisions while allowing exceptions, results
in an average 17.9% performance improvement over statically
using all available execution contexts, further improvingperfor-
mance upon exhaustive search by 8.3% and upon hill climbing by
6.8%. Additionally, the average performance loss comparedto the
statically optimal configuration is reduced to only 2.5% overall
and 1.3% for applications with many iterations, showing that a
flexible cross-phase decision policy is able to make performance-
effective decisions. More importantly, the results for applica-
tions with a small number of iterations are within 3.7% of the
statically optimal configuration, compared to 31.6% and 26.5%
for exhaustive search and hill climbing respectively, because of
the significantly reduced exploration overhead. Our experimental
platform has only 8 feasible hardware configurations and the
performance advantage of PPACC over the empirical search
approaches is expected to grow in the future as the available
number of processors, cores, and threads in a system rises.

The power-related results for PPACC are just as substantial
as those for performance. Energy consumption is the productof
power consumption and execution time, and concurrency control
attempts to reduce both, decreasing energy consumption by a
still larger margin. We observe 10.8% and 26.7% reductions in
power and energy consumption, respectively, compared to using
all execution contexts. When compared to using the static optimal
configuration, a 2.9% average reduction in power is seen and
a 0.9% reduction in energy. This result may seem surprising,

however it can be explained by the fact that the static optimal
uses only a single configuration for the entire program execution,
rather than further decreasing the number of active processors for
individual phases below the global optimal level.

PPACC also sees a 1.1% reduction and a 0.8% increase in
power consumption compared to exhaustive search and hill climb-
ing respectively. Further tracing of this result shows thatPPACC
executes the benchmarks with an average of 3.13 processors,
while exhaustive search executes with 3.20 and hill-climbing with
3.02 processors. However, PPACC reduces total energy consump-
tion by 10.2% and 6.3% because of its performance advantages.
These results indicate that prediction-based adaptation is able to
make effective decisions, both in terms of improving execution
time and in terms of reducing energy consumption.

Overall, prediction-based adaptation outperforms or matches
the performance of direct-search based adaptation on all fronts.
Additionally, it does not require the application/input-size specific
offline analysis, while still achieving results very close to static
optimal for performance and surprisingly, but justifiably,better
results for power and energy. Performance prediction-based adap-
tation as utilized in PPACC thus proves to be a highly effective
strategy for improving the performance and energy consumption
of parallel applications.

VI. CONCLUSIONS

The performance and power characteristics of applications
running on emerging computing systems composed of multiple
multithreaded and multicore processors demand consideration of
throttling concurrency when scalability bottlenecks result in no
performance gain, or a performance loss, from using additional
processors. In this paper, we have presented an approach to
adaptive concurrency control that uses information collected at
runtime to predict the performance of an application across
various hardware configurations. Hardware event counters are
collected to provide insight into the interaction of the hard-
ware and software, allowing the predictor to characterize the
performance and scalability of a given program phase. Over a
range of benchmarks with a variety of execution characteristics,
the accuracy of the predictor in terms of locating the optimal
configuration to execute benchmarks, on a per-phase basis, was
shown to be high.

We have presented an autonomic runtime system that employs
the described performance predictor and have shown that adaptive
concurrency control can be performed with performance- and
energy-effective decisions being made, while keeping the over-
head at manageable levels. We improve upon an approach that
selects the optimal predicted configuration for each phase by mak-
ing the predictor aware of the decisions made for other phases,
thereby allowing it to consider cross-phase cache effects in the
decisions for each phase, resulting in improved performance. The
described system is shown to outperform adaptation strategies
based on empirical searches of the configuration space due to
reduced exploration overhead and a decision process that isnot
mislead by effects resulting from changes in configurationsduring
the training process, as are the search strategies. Finally, the
approach is shown to be significantly more effective than simply
using all available execution contexts for all phases, in terms of
performance, power, and energy consumption. It yields perfor-
mance results comparable to offline-derived application/input-size

13

specific decisions, and improvements in power and energy, with-
out requiring additional application/input-size specificanalysis.

ACKNOWLEDGMENT

This research is supported by the National Science Foundation
(Grant CCR-0346867), the U.S. Department of Energy (Grant
DE-FG02-06ER25751) and Virginia Tech.

REFERENCES

[1] T. Anderson, B. Bershad, E. Lazowska, and H. Levy. Scheduler
Activations: Effective Kernel Support for the User-Level Management
of Parallelism. ACM Transactions on Computer Systems, 10(1):53–79,
February 1992.

[2] U. Andersoon and P. Mucci. Analysis and Optimization of Yee Bench
using Hardware Performance Counters. InProc. of the ParCo 2005
Conference, Malaga, Spain, September 2005.

[3] Shekhar Y. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and Degradation.
IEEE Micro, 25(6):10–16, September 2005.

[4] C. Cascaval, E. Duesterwald, P. Sweeney, and R. Wisniewski. Multiple
Page Size Modeling and Optimization. InProc. of the 14th International
Conference on Parallel Architectures and Compilation Techniques, pages
339–349, Saint Louis, MO, September 2005.

[5] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Nikolopoulos.
Online Power-Performance Adaptation of Multithreaded Programs using
Hardware Event-Based Prediction. InProc. of the 20th ACM Inter-
national Conference on Supercomputing, Queensland, Australia, June
2006.

[6] M. Curtis-Maury, J. Dzierwa, C. Antonopoulos, and D. Nikolopoulos.
Online Strategies for High-Performance Power-Aware Thread Execution
on Emerging Multiprocessors. InProc. of the Second Workshop on High-
Performance Power-Aware Computing, Rhodes, Greece, April 2006.

[7] L. Eeckhout and K. De Bosschere. Statistical Simulationof Superscalar
Architectures using Commercial Workloads. InProc. of the Fourth
Workshop on Computer Architecture Evaluation using Commercial
Workloads, Monterrey, Mexico, January 2001.

[8] L. Eeckhout, S. Nussbaum, J. Smith, and K. De Bosschere. Statistical
Simulation: Adding Efficiency to the Computer Designer’s Toolbox.
IEEE Micro, 23(5):26–38, September 2003.

[9] Krste Asanovic et at. The landscape of parallel computing research:
A view from berkeley. Technical report ucb/eecs-2006-183,EECS
Department, University of California at Berkeley, December 2006.

[10] N. Adiga et.al. An Overview of the BlueGene/L Supercomputer. InProc.
of the IEEE/ACM Supercomputing’2002: High Performance Networking
and Computing Conference, Baltimore, MD, November 2002.

[11] W. Feng and C. Hsu. The Origin and Evolution of Green Destiny. In
Proc. of IEEE Cool Chips VII: An International Symposium on Low
Power and High Speed Chips, Yokohama, Japan, April 2004.

[12] V. Freeh, D. Lowenthal, F. Pan, and N. Kappiah. Using Multiple Energy
Gears in MPI Programs on a Power-Scalable Cluster. InProceedings
of the 2005 ACM SIGPLAN Symposium on Principles and Practices of
Parallel Programming (PPoPP’05), June 2005.

[13] R. Ge, X. Feng, and K. Cameron. Improvement of Power-Performance
Efficiency for High-End Computing. InProc. of the 19th International
Parallel and Distributed Processing Symposium, Denver, CO, April
2005.

[14] G. A. Grell, J. Dudhia, and D. R. Stauffer. A Descriptionof the
Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR
Technical Note NCAR/TN-398 + STR, National Center For Atmospheric
Research (NCAR), June 1995.

[15] M. Hall and M. Martonosi. Adaptive Parallelism in Compiler-
Parallelized Code. Stanford, California, August 1997.

[16] E. Ipek, S. McKee, B. de Supinski, M. Schulz, and R. Caruana. Effi-
ciently Exploring Architectural Design Spaces via Predictive Modeling.
In Proc. of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems, June 2006.

[17] C. Isci and M. Martonosi. Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data. InProc. of the 26th
ACM/IEEE Annual International Symposium on Microarchitecture, San
Diego, CA, November 2003.

[18] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS
Parallel Benchmarks and its Performance. Technical reportnas-99-011,
NASA Ames Research Center, October 1999.

[19] P. Joseph, K. Vaswani, and M. Thazhuthaveetil. Efficiently Exploring
Architectural Design Spaces via Predictive Modeling. InProc. of the
39th International Symposium on Microarchitecture, December 2006.

[20] C. Jung, D. Lim, J. Lee, and S. Han. Adaptive Execution Techniques
for SMT Multiprocessor Architectures. InProc. of the Tenth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
Chicago, IL, June 2005.

[21] R. Kalla, B. Sinharoy, and J. Tendler. IBM POWER5 Chip: ADual-Core
Multithreaded Processor.IEEE Micro, 24(2):40–47, March 2004.

[22] M. Kandemir, W. Zhang, and M. Karakoy. Runtime Code Parallelization
on Chip Multiprocessors. InProc. of the 2003 Design, Automation, and
Test in Europe Conference, pages 510–515, Munich, Germany, March
2003.

[23] N. Kappiah, V. Freeh, and D. Lowenthal. Just In Time Dynamic Voltage
Scaling: Exploiting Inter-Node Slack to Save Energy in MPI Programs.
In Proc. of IEEE/ACM Supercomputing’2005: High Performance Com-
puting, Networking Storage, and Analysis Conference, Seattle, WA,
November 2005.

[24] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimizationby Simulated
Annealing. Science, 220(4598):671–680, 1983.

[25] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way
Multithreaded Sparc Processor.IEEE MICRO, 25(2):21–29, March/April
2005.

[26] B. Lee and D. Brooks. Accurate and Efficient Regression Modelling
for Microarchitectural Performance and Power Prediction.In Proc.
of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, June 2006.

[27] J. Li and J. Martı́nez. Power-performance implications of thread-level
parallelism on chip multiprocessors. InProc. of the 2005 International
Symposium on Performance Analysis of Systems and Software (ISPASS),
Austin, TX, March 2005.

[28] J. Li and J. Martı́nez. Dynamic Power-Performance Adaptation of
Parallel Computation on Chip Multiprocessors. InProc. of the 12th
International Symposium on High-Performance Computer Architecture,
Austin, TX, February 2006.

[29] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. Irwin. Exploiting
Barriers to Optimize Power Consumption on CMPs. InProc. of the 19th
International Parallel and Distributed Processing Symposim, Denver,
CO, April 2005.

[30] J. Lu, H. Chen, P. Yew, and W. Hsu. Design and Implementation of a
Lightweight Dynamic Optimization System.The Journal of Instruction-
Level Parallelism, 6:1–24, 2004.

[31] J. Marathe and F. Mueller. Hardwware Profile-Guided Automatic Page
Placement for ccNUMA Systems. InProc. of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
90–99, New York, NY, March 2006.

[32] A. Settle, J. Kihm, A. Janiszewski, and D. Connors. Architectural
Support for Enhanced SMT Job Scheduling. InProc. of the 13th
International Conference on Parallel Architectures and Compilation
Techniques (PACT’04), pages 63–73, Antibes, France, September 2004.

[33] S. Sharma, C. Hsu, and W. Feng. Making a Case for a Green500 List. In
Proc. of the Workshop on High-Performance, Power-Aware Computing,
Rhodes, Greece, April 2006.

[34] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Large Scale Program Behavior. InProc. of the 12th
International Conference on Architectural Support for Programming
Languages and Operating Systems, October 2002.

[35] A. Tucker and A. Gupta. Process Control and Scheduling Issues for
Multiprogrammed Shared-Memory Multiprocessors. InProc. of the 12th
ACM Symposium on Operating Systems Principles (SOSP’89), pages
159–166, Litchfield Park, Arizona, December 1989.

[36] M. Voss and R. Eigenmann. Reducing Parallel Overheads through
Dynamic Serialization. InProc. of the 13th International Parallel
Processing Symposium and Symposium on Parallel and Distributed
Processing (IPPS/SPDP), pages 88–92, San Juan, Puerto Rico, April
1999.

[37] L. Yang, X. Ma, and F. Mueller. Cross-Platform Performance Prediction
of Parallel Applications using Partial Execution. InProc. of the
IEEE/ACM Supercomputing’2005: High Performance Networking and
Computing Conference, Seattle, WA, November 2005.

[38] K. Yue and D. Lilja. An Effective Processor Allocation Strategy for
Multiprogrammed Shared-Memory Multiprocessors.IEEE Transactions
on Parallel and Distributed Systems, 8(12):1246–1258, December 1997.

[39] Y. Zhang and M. Voss. Runtime Empirical Selection of Loop Schedulers
on Hyperthreaded SMPs. InProc. of the IEEE International Parallel
and Distributed Processing Symposium, Denver, CO, April 2005.

