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Abstract— Tracing IP packets back to their origins is an
important step in defending the Internet against denial-of-service
(DoS) attacks. Two kinds of IP traceback techniques have been
proposed as packet marking and packet logging approaches.
In packet marking, routers probabilistically write their identi-
fication information into the forwarded packets. This approach
incurs little overhead but requires a large flow of packets to
collect the complete path information. In packet logging, routers
record the digests of the forwarded packets. This approach makes
it possible to trace even a single packet and, hence, is considered
more powerful. At routers forwarding a large volume of traffic,
however, the high storage overhead and access time requirement
for recording packet digests introduce practicality problems.

In this paper, we present a novel scheme to improve the
practicality of log-based IP traceback by reducing its overhead on
routers. Our approach makes an intelligent use of packet marking
to help improve the scalability of log-based IP traceback. We use
mathematical analysis and simulations to evaluate our approach.
Our evaluation results show that, compared to the state-of-the-art
log-based approach called Source Path Isolation Engine (SPIE),
our approach maintains the ability to trace a single IP packet
while reducing the storage overhead by half and the access time
overhead by a factor of the number of neighboring routers.

Index Terms— Internet security, denial-of-service (DoS) attack,
IP traceback, packet logging, packet marking.

I. I NTRODUCTION

Denial-of-service (DoS) attacks have been threatening the
utility of the Internet severely [1]. In 2002, a coordinated
attack on the Internet name service infrastructure showed the
possibility and potential impact of such dedicated attacks [2].
More recently, it was reported that DoS attacks have been used
as a means of extortion and become the subject of lawsuits [3].
Defending against DoS attacks requires not only measures for
mitigating the effects of the attacks but also mechanisms for
identifying the entities accountable for such attacks.

DoS attacks can be classified intoflooding attacksand
software exploits[4]. Flooding attacks work by flooding a
victim with large amounts of packets while software exploits
attack a victim by sending as few as a single packet. Note that
software exploits cover a wide spectrum of attacks where the
attacker can use weaknesses of a service running on a victim
machine or can exploit vulnerabilities emerging from the
semantics of a networking protocol, e.g., TCP’s vulnerability
to connection reset attacks. In addition, an attacker can place
an arbitrary IP address into the source address field of an IP
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packet (known asIP spoofing) to hide the attack origin. IP
spoofing makes it harder to defend against DoS attacks.

Tracing the paths of IP packets back to their origin, known
as IP traceback, is an important step in defending against
DoS attacks employing IP spoofing. IP traceback facilitates
holding attackers accountable and improving the efficacy of
mitigation measures. Most of the recently publicized attack
incidents have been flooding based DoS attacks. Accordingly,
most of the work in IP traceback has focused on building
efficient approaches to trace back flooding based DoS attacks
(see Section II-D). On the other hand, an IP packet is the
smallest unit of communication in the Internet. The existence
of protocols/services that are vulnerable to packet injection
attacks necessitates an ability to trace a single packet back
to its origin. Therefore, it is desirable for an IP traceback
approach to be able to trace the path of a single IP packet.
Single packet traceability helps in identifying the origin of
both flooding and software exploit based DoS attacks.

The existing approaches for IP traceback can be grouped in
two orthogonal dimensions: packet marking [5] and packet
logging [6]. The main idea behind packet marking is to
record network path information in packets. In mark-based
IP traceback, routers write their identification information
(e.g., IP addresses) into a header field (hereinafter termed
“marking field”) of forwarded packets. The destination node
then retrieves the marking information from the received
packets and determines the network path. Due to the limited
space of the marking field, routers probabilistically decide to
mark packets so that each marked packet carries only a partial
path information. The network path can be constructed by
combining the marking information collected from a number
of received packets. This approach is also known as proba-
bilistic packet marking (PPM) [7]. PPM incurs little overhead
at routers. However, it requires a flow of marked packets to
construct the network path toward their origin.

The basic idea in packet logging is to record the path
information at routers. In log-based IP traceback, packets are
logged by the routers on the path toward the destination. The
network path is then derived based on the logged information
at the routers. Compared to mark-based IP traceback, the
log-based approach is more powerful as it can trace attacks
that use a single packet, i.e., software exploit attacks, along
with flooding attacks [8]. Historically, packet logging was
thought impractical due to the enormous storage space re-
quired for packet logs. Snoerenet al. [9] proposed a hash-
based IP traceback approach, called Source Path Isolation
Engine (SPIE), to realize log-based IP traceback in practice.
Their approach reduces the storage overhead significantly
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through recording packet digests in a space-efficient data
structure, a Bloom filter [10]. SPIE has made a significant
improvement on the practicality of log-based IP traceback.
However, its deployment at high speed networks has still been
a challenging task due to the high storage overhead and access
time requirement for recording packet digests. Considering the
effectiveness of log-based IP traceback in tracing both flooding
and software exploit attacks, there is a need to develop more
scalable solutions to facilitate its deployment at high speed
networks.

In this paper, we present a novel hybrid IP traceback ap-
proach based on both packet logging and packet marking. Our
main design goal is to maintain the single-packet traceback
ability of hash-based approach and, at the same time, alleviate
the storage overhead and access time requirement for recording
packet digests at routers. From this perspective, the main
contribution of our work is to improve the practicability of
single-packet IP traceback by decreasing its overhead. This
paper builds on our previous work published as a conference
paper [11]. In the current version, we extend the basic idea to
design a complete system and provide a detailed discussion
on various architectural and operational components. We also
significantly extend the scope of the performance analysis and
conduct simulations to back up our analytic results.

The key idea of our approach is to record network path
information partially at routers and partially in packets. While
a packet is traversing the network, the most recent portion of
the network path is recorded in the packet, and the upstream
portion of the path is recorded at some intermediate routers.
In our approach, depending on the availability of free space
in the marking field of the forwarded packets, routers decide
where to record network path information. If there is free space
available in the marking field, routers write their identification
information into the packets; otherwise, routers compute and
record the packet digests (the path information stored in the
marking field is also encoded into the digests), and then clear
the marking field. Based on this idea, we develop a concrete
single-packet IP traceback approach. Compared to SPIE, our
approach (1) reduces the storage overhead of packet digests
to one half and (2) reduces the access time requirement for
recording packet digests by a factor of2n, wheren stands for
the number of neighboring routers.

We evaluate our approach by comparing it to the existing
single-packet traceback and hybrid traceback approaches. For
the former comparisons, we use both analysis and experimen-
tation. For the analytical part, we develop a mathematical
model to show the packet logging overhead and traceback
process overhead. We also study the traceback accuracy by
mathematically formulating the false positive rate and discuss
potential ways to compensate for inaccuracies. For the experi-
mental part, we use simulations to supplement our analysis in
measuring the storage, access time, and traceback overhead.
For the hybrid IP traceback comparisons, we use analysis
to compare our approach with two recently proposed hybrid
traceback approaches [12] based on their capabilities and
overhead. Our evaluation results indicate the superiority of
our approach over the existing approaches in both categories.

The rest of this paper is organized as follows. Section II

presents the background information and related work. Sec-
tion III describes our IP traceback approach in detail. Sec-
tion IV evaluates the performance of our approach through
mathematical analysis and simulation. Section V discusses
deployment issues. Finally, Section VI summarizes the paper.

II. BACKGROUND AND RELATED WORK

A. Background

In this paper, we refer to a router with high speed links
as ahigh-speed router. We also term a packet of interest an
attack packet. Similarly, the source and destination of an attack
packet is anattackerand avictim, respectively. The sequence
of routers traversed by an attack packet on its way from source
to destination make up anattack path. The attack path from
the attacker to the victim is represented as an ordered list
of routers (R1, R2, . . . , Rm). The objective of IP traceback
is to figure out this ordered list of routers. The process of
constructing attack paths is calledtraceback process.

Based on the vulnerability that is exploited, DoS attacks can
be classified intoflooding attacksand software exploits[4].
Flooding attacks (e.g., smurf, SYN flood) work by flooding
victims with large amounts of traffic. Flooding attacks con-
sume some limited resource (e.g., link bandwidth or computing
resource) at victims to prevent legitimate users from accessing
that resource. Software exploits (e.g., teardrop, ping-of-death)
work by sending victims a single or a few malformed packets
to abuse some feature or implementation bug of operating
systems or applications to disable the service.

Reckoning with the current Internet environment, we prefer
an IP traceback approach with the following features:

1) Ability to trace a single packet. This very feature enables
the IP traceback approach to trace both flooding and
software-exploit DoS attacks.

2) Robustness against attacks. Attackers may be aware
of and try to compromise the IP traceback approach.
Robustness against such attacks is desirable.

3) Backward compatibility. IP packets may undergo valid
transformation (e.g., fragmentation, tunneling) while tra-
versing the network. The IP traceback approach should
operate in the presence of such transformations.

4) Financial motivation. Internet Service Providers (ISP)
prefer value-added services which can create new rev-
enue streams. The IP traceback approach should be
suitable to be deployed as a revenue-generating service.

5) Low overhead on routers. The overhead imposed on the
deploying routers should be acceptable.

B. Hash-based IP Traceback (SPIE)

In SPIE, routers compute and store digest for each for-
warded packet. Packet digests are stored into a time-stamped
digest table which is implemented with a space-efficient data
structure, a Bloom filter [10]. When becoming saturated, the
digest table is swapped out for an empty table and is archived
for some period of time for potential traceback process.1.

1Depending on the implementation, the archived digest tables may be stored
at local routers [9] or transferred to remote traceback servers [13].
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Fig. 1. Traceback process in SPIE. Solid arrows represent the attack path;
dashed arrows represent traceback queries.

Each digest table is annotated with the time interval which
the table covers and the hash functions used for computing
packet digests during that interval.

A traceback server (or multiple servers in hierarchy)
equipped with network topology information is responsible
for conducting the traceback process. The traceback server
constructs the attack path by querying routers hop-by-hop,
starting from the last-hop router (the router next to the victim)
toward the source.2. In each step, based on the responses
from the routers, the traceback server identifies one router
on the attack path and decides the neighboring routers to be
queried in the next step. The traceback server queries routers
by sending query messages including the attack packet and
the time when the attack packet arrived at the downstream
router on the attack path (for the last-hop router, it is the time
when the victim received the attack packet). The router being
queried computes the packet digest and examines local digest
tables of the relevant time period. If the packet digest is found
in a digest table, the router is considered to be on the attack
path, and the packet arriving time is estimated as the latest
possible time in the time interval covered by the digest table.
Fig. 1 illustrates the hash-based IP traceback process.

SPIE has the following advantages. First, it can determine
the network path of a single packet. Second, it is robust
against attacks. In SPIE, the network path information is
stored at routers in the form of packet digests. It is not
easy to compromise routers to garble packet digests or to
induce routers to produce specific digests. Third, SPIE does
not interfere with the current version of the IP protocol and can
trace packets undergoing transformation. Last, SPIE appeals to
ISPs. In SPIE, the traceback process is requested by end hosts
and accomplished by ISPs who can offer IP traceback as a
revenue-generating service.

The increasing amount of traffic load at the backbone
networks introduces practicality problems for SPIE. First, a

2In the case that digest tables are archived at traceback servers, the traceback
server examines the digest tables from different routers in the order as if the
tables were archived at routers.

huge amount of memory is required to store packet digests
at high-speed routers. The high storage requirement limits
the time duration for which packet digests can be kept at
routers and therefore the window of time in which attack
packets can be traced successfully. Second, packet digests must
be recorded into digest tables at a rate commensurate with
packet arriving rate. In practice, the access time requirement
places limits on the memory type of digest tables. High-speed
routers require SRAM digest tables which are 8 to 16 times as
expensive as DRAM. The current technology limits the size
of SRAM digest table to be smaller than that of DRAM table.
Hence a SRAM digest table records a shorter time period
of traffic. This implies that high-speed routers may need to
examine more digest tables to check whether it has forwarded
an attack packet within an indicated time period. The more
digest tables examined, the greater the possibility to get false
positive results.

C. Probabilistic Packet Marking (PPM)

Compared to SPIE, the PPM approach has been studied
widely [7], [14], [15], [16], [17], [18]. In PPM, a router marks
packets with its identification information as they pass through
that router. The marking value overloads a rarely used field in
IP header, i.e., 16-bit IP identification field. Since the marking
field is too small to record the entire path, routers mark packets
with a probability so that each marked packet carries a partial
path information. The whole network path can be constructed
by combining a number of such packets.

PPM does not incur any storage overhead at routers and
the marking procedure (a write and checksum update) can be
easily executed at current routers. However, due to its proba-
bilistic nature, the PPM approach inherently needs multiple
packets originated from an attacker to construct the attack
path. For example, the current state-of-the-art PPM approach,
FIT, requires tens of packets to identify an attack path with
high probability [18]. This feature renders PPM approaches
suitable for tracing flooding DoS attacks only. Furthermore,
due to probabilistic marking, attack packets may arrive at
victims without having been marked by any of the intermediate
routers. Wily attackers can confuse the victim by sending
packets with carefully forged marking values to mislead the
traceback process. Because the IP identification field desig-
nated for IP fragmentation is reused for marking information,
the PPM approach collides with fragmented IP traffic. When
a packet undergoes a transformation (e.g., tunneling), the
marking information in the packet header will be lost. Finally,
in PPM approaches, it is the end systems that use the collected
marks to build an attack path. Hence, it is difficult for ISPs to
come up with a business model to sell PPM-based IP traceback
as a value-added service to their customers [19].

D. Related Work

Most existing work on IP traceback is in the direction
of PPM [7],[14]-[18]. These studies can be characterized as
improvements on the scalability and efficiency of mark-based
IP traceback. On the other hand, the amount of the literature
on single-packet IP traceback has surprisingly been limited.
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From this perspective, the work presented in this paper makes
an important contribution to improve the state of the art in
single-packet IP traceback.

Leeet al. [20] presented an approach to reduce the overhead
of the hash-based approach. They proposed to digest packet
aggregation units (packet flows or source-destination sets)
instead of individual packets. Recording the digests of packet
aggregation units reduces the digest table storage overhead.
However, tracing an individual packet is accomplished by
tracing the packet aggregation to which the packet belongs.
Moreover, depending on the implementation, either the writing
or reading rate of digest table should be commensurate with
packet arriving rate. Thus, this approach does not alleviate the
access time requirement.

Li et al. [21] proposed probabilistic packet logging where
routers probabilistically select a small percentage of forwarded
packets to record their digests. This method reduces both the
storage overhead and access time requirement for recording
packet digests at routers. But the tradeoff is the loss of the
ability to trace individual packets since the probability that all
routers on an attack path record a specific packet is tiny.

Recently, Al-Duwairi et al. [12] proposed two hybrid IP
traceback approaches,distributed link-list traceback(DLLT)
andprobabilistic pipelined packet marking(PPPM). The main
design goal in these approaches is to reduce the number of
packets required for constructing attack paths in the PPM
approach through utilizing packet logging. In comparison, our
work is to make use of packet marking to reduce the overhead
of log-based IP traceback in tracing a single packet.

The basic idea in both DLLT and PPPM approaches is to
preserve the marking information carried by the packet before
marking a packet. When a router probabilistically decides to
mark a packet, the router records the marking value carried by
the packet before writing a new value into the packet. In DLLT,
the preserved marking information is stored at routers and
victims query routers during the traceback process. In PPPM,
routers transfer those marking information to the original
destinations via writing them into other packets to the same
destinations. Given the common hybrid feature in both our
work and the work in [12], we compare these two approaches
with our approach in detail in Section IV-B.

III. H YBRID SINGLE-PACKET IP TRACEBACK

In this paper, we propose a hybrid single-packet IP trace-
back approach based on both packet marking and logging. Our
approach remains the same single-packet traceback capability
as SPIE, but incurs less overhead at routers through utilizing
packet marking. Our approach has a similar architecture as
SPIE. In this architecture, routers create audit trails on network
traffic, and traceback servers construct attack paths through
examining those audit trails. The differences are at audit trails
as well as the approach to creating and examining audit trails.

A. Main Idea

In hybrid single-packet IP traceback, each traceback-
enabled router could commit both packet marking and packet
logging operations. The marking operation on a packet is

to append router identification information into the marking
field of the packet. The logging operation on a packet is to
compute and record the packet digest. When forwarding a
packet, routers decide to mark or log the packet depending
on whether there is free space available in the marking field
of the packet. If so, routers mark the packet; otherwise, routers
log the packet and clear the marking field.

Suppose that the identification information ofk routers can
fit into the marking field of one packet. When a router logs
a packet, the marking value carried by the packet, which
indicatesk routers that the packet has traversed most recently,
is also encoded into the packet digest. In this way, logging
a packet at a router records not only the current router but
also thek upstream routers on the network path. While a
packet is traversing the network, logging the packet at every
(k+1)th router is enough to record the complete network path.
During the traceback process, the attack path is constructed
one portion by one portion. The marking value of the attack
packet received by a victim indicates the most recent portion
(≤ k routers) of the attack path. And querying the router
having logged the attack packet identifies an upstream portion
(k +1 routers) of the path. We depict the main idea of hybrid
single-packet IP traceback with an example in Fig. 2.

In hybrid single-packet IP traceback, packets are logged at
every (k + 1)th router enroute from source to destination.
Reckoning with the network traffic,1/(k + 1) of packets
forwarded by a router, on average, need to be logged at that
router. Compared to SPIE, the storage overhead and access
time requirement for recording packet digests are decreased
by a factor ofk+1. In addition, the packets arriving at a router
can be categorized based on their marking values and recorded
into different digest tables simultaneously. That reduces the
access time requirement further.

Based on the above-mentioned idea and current Internet
environment, we consider a basic case of hybrid single-packet
IP traceback and develop a concrete IP traceback approach
termed as Hybrid IP Traceback (HIT). In HIT, the marking
field of packet accommodates the identification information
of a single router. While a packet is traversing the network,
the routers on the path mark the packet deterministically but
log the packet alternately. Note that a more carefully designed
marking approach could be used to increase the inter-logging
distance between routers (i.e., have more than one consecutive
routers to mark a packet). However, in this paper, we only
consider the simplest case to serve as a proof-of-concept. In
the following, we present HIT from the below aspects:

1) Router operation: how to mark packets with the com-
plete identification information of a router and how to
compute packet digests?

2) Digest table: how to categorize packet digests so as to
record them into different digest tables simultaneously?

3) Traceback process: how to decrypt the marking infor-
mation encoded into packet digests?

4) Compatibility and transformation: how to achieve back-
ward compatibility and how to trace packets undergoing
transformation?
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B. Router Operation

In HIT, each traceback-enabled router is assigned a 15-bit
ID number. ID numbers are used to differentiate neighboring
routers of a router. Thus, the same ID number can be assigned
to any two routers as long as they do not have a common
neighbor. Muthuprasannaet al. [22] study unique ID number
assignment problem for Internet routers. Based on an analysis
on several Internet topology measurement data sets, they report
that a 12-bit ID field is sufficient for unique ID number
assignment within two-hop neighborhood. Therefore, 15-bit
IDs are more than enough for assigning a unique ID number
to all neighboring routers of each router within a network.
Like most PPM approaches, the marking values are encoded
in the 16-bit identification field of IP header. The leftmost bit
is termedlogging flag bit. It is set to 1 if the current router
commits logging operation on the packet, otherwise set to 0.
The remaining 15 bits are used to store a router ID number.
Fig. 3-a depicts the encoding scheme.

HIT computes packet digests in a similar way as in SPIE. A
router uses an appropriate-length prefix of IP packet as input
to digest functions. In SPIE, the packet prefix is the 20-byte IP
header excluding 3 variant fields (TOS, TTL, and checksum)
plus the first 8 bytes of payload. HIT uses almost the same
packet prefix except that the logging flag bit is also excluded.
Fig. 3-b shows the packet prefixes used in two approaches.

In this encoding, the ID number of upstream routers is
encoded into packet digests. If a packet is logged at a router,
the fact that the packet digest is stored at the router indicates
that the router is on the network path. Moreover, the packet
digest includes the information of the upstream router on the
network path. Therefore, the logging operation on a packet
records the current and the upstream routers on the path.

When forwarding a packetp, the router decides its operation
on p depending on the value ofp’s logging flag bit. If the
logging flag is 0 (the upstream router did not logp), the router
chooses to commit both logging and marking operation; if the
logging flag is 1 (the upstream router loggedp), the router
chooses to commit only marking operation.

When a packet transfers from a sender host to the first
router on its network path, the logging flag is unset and
therefore meaningless. The first router on the path needs
additional mechanisms to decide its operation. We propose two
improvements to the above-mentioned algorithm. The first one
is optional, the second one is compulsory:

1) If an input port of a router is connected with only end
hosts, we upgrade the input port to amarking input port.
The marking input port is assigned an ID number as if
the port were a neighbor of its router. When a packet
arrives at the marking input port, the port marks the
packet with its ID number and resets the logging flag.

2) Each router maintains aneighbor list. This list includes
the ID numbers of its neighboring routers and marking
input ports. For a given routerR, if the router ID number
i carried by a packet equals to an entry of the neighbor
list at R, theni is regarded asvalid at R.

When forwarding a packetp, the router first checks whether
the router ID numberi carried byp is valid. If i is valid,
the router makes decision based on the logging flag inp. If
i is not valid, that meansp comes directly from the sender
host or an attacker which sends packets with forged marking
values. In this case, the router chooses to commit only marking
operation. Fig. 4 describes the full algorithm.

While a packet traverses the network, the routers on the
path mark the packet deterministically but log it alternately.
Depending on the setup of the router and the arriving port,
the packet may or may not be logged at the first router on the
path. The reason of deterministic marking is to facilitate the
traceback process (see Section III-D).

C. Digest Table

Similar to SPIE, HIT stores packet digests in digest tables
which are implemented with Bloom filters. However, in the
HIT approach, routers may maintain multiple digest tables to
record multiple packet digests at the same time. Each digest
table is associated with one or more router ID numbers. The
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let d be the ID number of the current router
FOR each packetp

IF p.router ID number is valid at the current routerTHEN
IF p.logging flag = 0 THEN

compute and store the digest ofp
p.router ID number :=d
p.logging flag := 1

ELSE
p.router ID number :=d
p.logging flag := 0

ELSE
p.router ID number :=d
p.logging flag := 0

Fig. 4. Logging and marking procedure at routers.
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digest of a packet is stored into a digest table only if the digest
table is associated with the router ID number carried by the
packet.

In particular, a router may maintain a different digest table
for each of its neighboring routers. That is, each digest table
is associated with the ID number of one neighboring router.
When the router decides to log a packet, it examines the
router ID number carried by the packet, then stores the packet
digest into the corresponding digest table. In this way, packets
coming from different neighboring routers can be digested and
recorded into different digest tables simultaneously as long as
each table has its own read/write hardware. Hence, the digest
table access time is not required to be commensurate with the
overall packet arriving rate, but the maximum packet arriving
rate from different neighboring routers.

At a low-speed router where the overall packet arriving rate
is not higher than the cycle time of DRAM, the access time
of digest table is not a concern. The low-speed router has
another option to maintain one DRAM digest table which is
associated with the ID numbers of all its neighboring routers.
Packets coming from all the neighboring routers are digested
and recorded into the same digest table. Fig. 5 illustrates the
two extreme cases of the organization of digest tables.

After storing a certain number of packet digests which is
dependent on its configuration, a digest table is regarded as
saturated. When becoming saturated, digest tables are paged
out and archived for some period of time. The length of the
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Fig. 6. Checking whether an attack packet is recorded into a digest table.

time period depends on the resource constraints of routers and
the requirements of the IP traceback scheme. In addition, each
digest table is annotated with its associated router ID numbers.
The storage space for these router ID numbers is negligible.

D. Traceback Process

Similar to SPIE, the traceback process in HIT is managed
by traceback servers equipped with network topology infor-
mation. However, HIT utilizes the marking information stored
in packets and digested at routers to facilitate the traceback
process.

The victim under DoS attack dispatches a traceback request
to the traceback server, providing an attack packet and the time
of receiving the attack packet. Given a victim and an attack
packet, the traceback server can pinpoint the last hop router
based on the location of the victim and the router ID number
carried by the packet. From the value of the logging flag
bit in the packet, the traceback server can further determine
whether the last hop router logged the packet. If the last hop
router logged the packet, the traceback server queries that
router; otherwise, the traceback server dispatches queries to
the neighboring routers of the last hop router.

When a router receives a query from the traceback server,
the router examines all digest tables of the relevant time period
for the attack packet. In order to check whether an attack
packet is recorded into a digest table, the router embeds the
router ID number associated with the digest table into the
packet, computes the packet digest, and consults the digest
table. If an entry exists for the packet, the current router is
believed to be on the attack path, and the router indicated
by the router ID number is considered as the upstream router
on the attack path. Fig. 6 illustrates the process of checking
whether an attack packet is recorded into a digest table.

If a router commits logging operation on an attack packet,
querying that router will find out two routers (i.e., this router
and its upstream router) on the attack path. Upon receipt of re-
sponses from queried routers, the traceback server determines
two routers on the attack path, and then dispatches queries
to the neighboring routers of the furthest router having been
identified. Fig. 7 illustrates the traceback process in HIT.
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Fig. 7. Traceback process in HIT. Solid arrows represent the attack path;
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decisions made from marking information. Among the routers on the attack
path,R3 andR9 logged the attack packet; the others did not.

E. Compatibility and Transformation

With some improvements, HIT is able to achieve backward
compatibility and trace packets undergoing transformation.
The main idea of the improvements is that (1) routers do not
mark but log IP fragments, and (2) routers both mark and log
packets undergoing transformation.

Besides the ordinary digest tables described in Section III-C,
each router maintains a special digest table, calledfragmenta-
tion and transformation digest table, or FTDT. FTDT is only
for storing the digests of IP fragments and the digests of IP
packets having been transformed at the current router. Packet
digests stored in FTDT are computed in the same manner as
in SPIE. The approach to managing and examining FTDT is
also the same as SPIE.

Each router also maintains atransform lookup table, or TLT,
corresponding to FTDT. TLT records packet transformation
information and is indexed by packet digests. The implemen-
tation of TLT is presented in [9]. Given a packet, consulting
TLT can find out whether the packet was transformed, and if
so, the original packet (or the original packet prefix used for
computing packet digest) can be reconstructed.

The router processes each forwarded packetp as follows:
1) If p is an IP fragment and transformed at the current

router, the router records transformation information into
TLT and stores the digest ofp into FTDT.

2) If p is an IP fragment and not transformed at the current
router, the digest ofp is stored into FTDT.

3) If p is a non-fragmented packet and transformed at
the current router, the router records transformation
information into TLT, stores the digest ofp into FTDT,
marksp with its ID number, and sets the logging flag
of p to 1.

4) Otherwise, the router follows the algorithm in Fig. 4.
After receiving a query about an attack packetp, the router

examines digest tables as follows:
1) If p is an IP fragment, the router examine FTDTs of the

relevant time period.

2) Otherwise, the router examine all digest tables (includ-
ing FTDTs) of the relevant time period.

At the same time, the router also consults TLTs for the same
time intervals. Ifp was transformed at the router, the router
inverts p to its original form p′. If p′ is a non-fragmented
packet, the router can further determine its upstream router
and whether the upstream router loggedp′, from the marking
information inp′.

The traceback server traces an attack packetp as follows:

1) If p is an IP fragment, the traceback process is the same
as in SPIE. That is, the traceback server queries routers
in the hop-by-hop manner.

2) If p is a non-fragmented packet, the traceback process
is similar to the one presented in Section III-D. The
only difference is on querying routers where packetp
underwent transformation. To illustrate, ifp undergoes
transformation at a routerRj , Rj will log p, no matter
whether its upstream router, sayRi, has loggedp′,
the original form ofp. During the traceback process,
based on the response fromRj , the traceback server
can find out the original packetp′, the upstream router
Ri, and whetherRi loggedp′, then takes proper action
as follows:

a) If p′ is an IP fragment, go to step 1.
b) Otherwise, ifRi loggedp′, queryRi.
c) Otherwise, query the neighboring routers ofRi.

HIT uses the same amount of resources as SPIE in recording
the digests of IP fragments and the packet transformation
information.

IV. PERFORMANCEEVALUATIONS

We evaluate HIT by comparing it to the state-of-the-art
approaches in (1) single-packet and (2) hybrid IP traceback.

A. Comparison to Single-Packet IP Traceback Approach

We use mathematical analysis and simulation to compare
HIT with the original single-packet IP traceback approach,
i.e., SPIE [9]. The performance metrics include:

1) Packet logging overhead:

• Digest table storage (DTS): the memory used to
store packet digests at a router for a period of time.

• Digest table access time requirement (DTA): the
number of packet digests written into a digest table
per unit time.

2) Traceback process overhead:

• The number of queried routers (NR): the number of
routers queried by the traceback server during the
traceback process.

• The number of examined digest tables (ND): the
number of digest tables examined at a queried router
during the traceback process.

3) Traceback accuracy:

• The number of false positive branches (NF): the
number of spurious branches grafted onto the attack
path during the traceback process.
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TABLE I

PERCENTAGES OF DIFFERENT TYPES OFIP PACKETS.

Packet Type Percentage

1. IP fragments α

2. non-fragmented packets to be logged at this
router (includes 2(a) & 2(b) below)

(1− α)Y

2(a). non-fragmented packets not logged at the
upstream routers

(1− α)(1− Y )

2(b). non-fragmented packets logged at the up-
stream routers and transformed at this router

(1− α)Y β

From the perspective of ISPs, the packet logging overhead
is more crucial than the traceback process overhead and
traceback accuracy. Routers keep recording packet digests no
matter whether DoS attacks are reported or not. In general,
the traceback process is not a frequent operation and ISPs can
charge for traceback processes. Additional mechanisms may
be employed to refine traceback results.

1) Packet Logging Overhead:In HIT, packets logged at a
router include

1) IP fragments,
2) non-fragmented packets which need to be logged at the

router, which include:

a) non-fragmented packets which have not been
logged at the upstream routers,

b) non-fragmented packets logged at the upstream
routers and transformed at the current router.

Let us consider all packets forwarded by a router. We use
Pl to denote the percentage of packets which need to be
logged at the router. We also assume the percentage of IP
fragments isα, and the percentage of IP packets undergoing
transformation at the router isβ. Furthermore, let us consider
all non-fragmented packets forwarded by a router. We useY
to denote the percentage of packets which need to be logged
at the router out of the non-fragmented packets. Then, the
percentages of different types of IP packets in all packets
forwarded by a router can be expressed as in Table I.

IP packets to be logged at a router include the packets of
types 1 and 2 as listed in Table I. Thus we have

Pl = α + (1− α)Y . (1)

ExpressingY in terms ofPl, we have

Y =
Pl − α

1− α
. (2)

Type 2 includes 2(a) and 2(b), thus

Pl = α + (1− α)(1− Y ) + (1− α)Y β . (3)

We use (2) to substitute forY in (3). The result is

Pl =
1 + α− αβ

2− β
. (4)

Because0 ≤ α ≤ 1 and 0 ≤ β ≤ 1, we know0 ≤ αβ ≤ 1
and0 ≤ α−αβ ≤ 1. Applying these inequalities to (4) yields

1
2
≤ Pl ≤ 1 + α

2− β
. (5)

Measurement studies showα ≤ 0.25% [23] and β ≤
3% [24]. Thus we have

0.50 ≤ Pl ≤ 0.51 . (6)

That means, in HIT, about 50% of packets forwarded by a
router need to be logged at that router.

In SPIE, all packets forwarded by a router need to be logged.
Therefore, the digest table storage and access time requirement
in HIT are roughly one half of those in SPIE. LetDTSy and
DTSa denote the digest table storage in HIT and in SPIE,
respectively, then

DTSy = Pl ×DTSa
∼= 1

2
×DTSa . (7)

In addition, in HIT, a router can keep separate digest table
for each neighboring router and packets coming from different
neighboring routers can be recorded in corresponding digest
tables in parallel. Hence the digest table access rate can be
reduced further by a factor of the number of neighboring
routers. Suppose a router hasn neighboring routers. In the
best case, the traffic arrives at the router equally from each of
its neighbors, then

DTAy = Pl × 1
n
×DTAa

∼= 1
2n

×DTAa , (8)

whereDTAy andDTAa represent the digest table access time
requirement in the HIT and SPIE, respectively. In the worst
case, all arriving traffic is from one neighbor, then

DTAy = Pl ×DTAa
∼= 1

2
×DTAa . (9)

2) Traceback Process Overhead:During the traceback
process, the traceback server queries routers in the network and
routers being queried examine local digest tables. The number
of queried routers reflects the overhead on the traceback server
and the number of examined digest tables reflects the overhead
on the queried routers.

For a given attack path(R1, R2, . . . , Rm), the traceback
process is to construct the attack path backward, fromRm

to R1, through iteratively querying the neighboring routers of
the furthest router having been identified. In HIT, a packet
traversing the network is generally logged at every other
router on the path. Suppose routerRi on the attack path
logged the attack packet. Querying routerRi can identify two
routers on the attack path, namely,Ri andRi−1. Suppose an
attack path hash hops and each router on the attack path
hasn neighboring routers on average. During the traceback
process, the traceback server needs to dispatchh/2 rounds of
queries, queryingn − 1 routers in each round (excluding the
downstream router on the attack path), totally(n− 1)× h/2
routers.

In SPIE, a packet traversing the network is logged at every
router on the network path and querying a router on the
attack path can only identify that router itself. With the same
assumption above, during the traceback process, the traceback
server needs to dispatchh rounds of queries, queryingn− 1
routers in each round, totally(n− 1)×h routers. UsingNRy
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andNRa to denote the number of routers queried during the
traceback process in HIT and in SPIE respectively, we have

NRy =
1
2
×NRa . (10)

The traceback server queries routers through sending query
messages. The query message includes an attack packetp and
the timet when the attack packet arrived at the downstream
router on the attack path. Based on timet and transmission
delay between routers, the queried router is supposed to infer
the time when packetp was digested at the current router
and then examine relevant digest tables. However, because of
timing uncertainties (e.g., varying transmission delay and time
asynchronization between routers), the queried router can only
estimates aquery time period∆t which covers the time when
the packet was digested. The router then examines all cached
digest tables whose time intervals overlap∆t.

If the size of a digest table iss bits and its memory
efficiency factor3 is set to ber, that digest table can store
s × r packet digests. Suppose the number of packet digests
written into the digest table per unit time isu, then the time
interval covered by the digest table can be computed as

t =
s× r

u
. (11)

In general, the time interval covered by a digest table in
HIT is longer than that in SPIE due to the following reasons:

1) HIT stores fewer packet digests at routers. In HIT,
routers need to log roughly one half forwarded packets
while SPIE requires routers to log every forwarded
packet.

2) HIT distributes packet digests into multiple digest tables.
In HIT, the router maintains a different digest table for
each neighboring router. Packets coming from different
neighbors are recorded into different digest tables in
parallel. In SPIE, packets from different neighbors are
recorded into the same digest table.

3) It may be the case that HIT uses digest tables of larger
size. SPIE requires a higher rate to write packet digests
into digest tables. At some high-speed routers, it is
possible that DRAM digest tables are suitable for HIT
but not for SPIE. SPIE requires SRAM digest tables
instead. The current technology limits the size of SRAM
digest table to be smaller than that of DRAM table.

Consider a router withn neighboring routers. LetPl be the
percentage of packets to be logged at the router. We have

uy =
Pl

n
× ua , (12)

whereuy andua denote the average packet digest writing rate
of digest tables in HIT and in SPIE, respectively. Letsy and
sa be the digest table size in HIT and in SPIE, respectively.
We assume the ratio of the digest table size in HIT to that in
SPIE isc (c ≥ 1). Thus, we obtain

sy = c× sa . (13)

3See Section IV-A.3 for the definition of memory efficiency factor.

We apply (12) and (13) to (11). Then the relationship between
the average time intervals covered by digest tables in both
approaches can be expressed as

ty =
c× n

Pl
× ta , (14)

wherety and ta denote the average time interval covered by
a digest table in HIT and in SPIE, respectively.

At a given time, there aren digest tables recording traffic
in HIT, whereas there is only one in SPIE. For a query time
period∆t, let NDy andNDa denote the average number of di-
gest tables being examined in the HIT and SPIE, respectively.
We can write

NDy = n×
⌈

∆t

ty

⌉
, (15)

NDa =
⌈

∆t

ta

⌉
=

⌈
n× c

Pl
× ∆t

ty

⌉
. (16)

From Theorem 1 in the Appendix, we have




NDy ≤ NDa , when∆t ≥ Pl

c−Pl
× ty ;

NDy ≥ NDa , when∆t ≤ Pl

c × ty .

(17)

From (6), we can assumePl = 0.5, then we havec/Pl ≥ 2.
Therefore, by Theorem 2 in the Appendix, we obtain a more
precise conclusion:





NDy ≤ NDa , when∆t ≥ 1
2c × ty ;

NDy ≥ NDa , when∆t ≤ 1
2c × ty .

(18)

That means the number of digest tables being examined is
dependent on the time interval covered by digest tables. At
high-speed routers where digest tables store short periods of
traffic data, HIT examines fewer digest tables than SPIE. And
at other routers, SPIE performs better.

3) Traceback Accuracy:Bloom filter is a space-efficient
data structure to represent a set and check for the membership
of an element in the set. When checking membership, Bloom
filters never yield a false negative but may produce false
positives. The false positive rate of a Bloom filter is dependent
on the size of the Bloom filter and the size of the set stored.
Suppose a Bloom filter is ofs bits and storese elements, the
false positive rate is exponentially dependent on the value of
e/s [25], which is calledmemory efficiency factor[9]. Hence,
the false positive rate of a Bloom filter can be controlled by
carefully choosing its memory efficiency factor.

If a router examinesd digest tables for a packet digest and
the false positive rate of each table isf , then the probability
to get false positive results is

Pf,d = 1− (1− f)d. (19)

During the traceback process, queried routers may return
false positive responses, introducing spurious branches arising
from the attack path. We refer to those spurious branches
as false positive branches, or FPB. In HIT, FPBs may be
generated in two cases, as illustrated in Fig. 8. One case is
that FPBs arise from logging routers, the other case is that
FPBs arise from marking routers. Suppose, in Fig. 8, router
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Fig. 8. False positive branches generated during the traceback process in
HIT. Solid arrows represent the attack path; dashed arrows represent false
positive branches. Among the routers on the attack path,R5 andR9 logged
the attack packet, the others did not.

R8 is the furthest router having been identified so far on the
attack path.R8 did not log but marked the attack packet. The
traceback server queries the neighboring routers ofR8.

1) The queried router is on the attack path (e.g.,R5). The
router logged the attack packet. For each neighbor in
turn, the router embeds the ID number of that router
into the attack packet, computes the packet digest, and
examines relevant digest tables. The false positive results
of examining those tables will graft that neighbor router
(e.g.,R2) onto the attack path, introducing a FPB.

2) The queried router is not on the attack path (e.g.,R6).
The false positives resulting from examining the digest
tables at the router will graft that router itself onto the
attack path, introducing a FPB.

Suppose, on average, each router in the network hasn
neighboring routers and examinesNDy digest tables when
being queried. In case 1 above, the probability of a FPB is

Pb1 = 1− (1− f)NDy/n. (20)

In case 2 above, the probability of a FPB is

Pb2 = 1− (1− f)NDy . (21)

Consider the scenario where the traceback server queries the
neighboring routers of a router, sayRj , on the attack path. The
traceback server queries totallyn − 1 routers. Among them,
one router is the upstream router on the attack path, sayRi;
the othern−2 routers are not on the attack path.Ri examines
digest tables to check which one of itsn− 1 neighbors is on
the attack path. Let random variablesA andB represent the
number of FPBs generated when queryingRi and the other
n−2 routers, respectively. BothA andB follow the binomial
distribution. A is with parametersn − 2 and Pb1 , and B is
with parametersn− 2 andPb2 .

In HIT, a packet traversing the network is generally logged
at every other router on the path. LetNFy denote the average
number of FPBs generated during the traceback process in
HIT. For a given attack path ofh hops, we have

NFy =
h

2
× (E [A] + E [B ])

=
h

2
× ((n− 2)× Pb1 + (n− 2)× Pb2)

=
h

2
× (n− 2)× (Pb1 + Pb2) . (22)

If we assume that each router ensuresPb2 ≤ q, becausePb1 ≤
Pb2 , then we can get an upper bound onNFy as

NFy ≤ h× n× q . (23)

In SPIE, FPBs may be generated only when querying
routers not on the attack path. Suppose, on average, each router
hasn neighbor and examinesNDa digest tables when queried.
Then the probability of a FPB is

Pb′ = 1− (1− f)NDa . (24)

Let NFa denote the average number of FPBs generated during
the traceback process in SPIE. Since a packet traversing the
network is logged at every router on the path, for a given
attack path ofh hops, we have

NFa = h× (n− 2)× Pb′ . (25)

Suppose each router ensuresPb′ ≤ q, then we can get the
same upper bound onNFa as onNFy :

NFa ≤ h× n× q . (26)

If each queried router could limit the possibility of reporting
FPBs by the same value in both HIT and SPIE, these two
approaches will have the same upper bound on the average
number of FPBs.

FPBs result in inaccurate traceback results. However, some
mechanisms may be used to prune FPBs, thereby compensat-
ing for the inaccuracy to some extent. One is to stick with
the longest path and remove other shorter branches. Another
is to utilize routing information to detect and prune FPBs. For
example, if a routerRi is considered having forwarded the
attack packet to another routerRj , we should be able to find
the corresponding entry (i.e., the packets destined to the victim
will be forwarded toRj) in the routing table atRi.

4) Simulations: We conduct simulations to supplement
some of the analytic results. We focus on packet logging
overhead and traceback process overhead characteristics.

For the packet logging overhead, we design simulations to
study the probability that packets are logged at routers in HIT.
The simulations are based on two network topologies: The
first one is a synthetic transit-stub topology with one transit
and 48 stub networks. The transit network includes 16 nodes
which we refer to as core routers. The overall topology has
256 nodes and 353 links. The second topology is AT&T POP-
level topology collected by Rocketfuel [26], which includes
115 nodes and 148 links. 19 out of 115 nodes have more than
2 neighbors. We refer to these 19 nodes as core routers.

We conduct simulations on Network Simulator (ns-2) [27].
We assume each router is connected directly with an end host.
Each end host sends a packet to all other hosts. None of the
packets are fragmented or transformed while traversing the
network. In the simulations, we consider two scenarios. In
scenario 1, all packets are logged at the first router on their
paths; in scenario 2, all packets are not logged at the first router
on their paths. For each scenario, we collect the number of
packets logged and the number of packets forwarded by each
router, calculate the probability that packets are logged at each
router, and compute the cumulative distribution function of
those logging probabilities.
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Fig. 9. The cumulative distribution function of logging probability. (Transit-
stub topology. Packets are logged at the first router on the path.)
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Fig. 10. The cumulative distribution function of logging probability. (Transit-
stub topology. Packets are not logged at the first router on the path.)

Figs. 9 and 10 show the results on the transit-stub topology,
in scenario 1 and 2, respectively. In both scenarios, the logging
probabilities at core routers fall in the range of 45% to 55%.
When considering the logging probabilities at all routers,
we notice that the logging probabilities vary remarkably in
different scenarios. In scenario 1, around 30% routers has a
logging probability less than 50%; in scenario 2, around 70%
routers has a logging probability less than 50%.

This is because the logging probabilities at the routers at or
near the network edge depend significantly on whether the first
router on the path logs packets or not. Consider routerR1 in
Fig. 11. All traffic throughR1 is originated from or destined
to H1. In scenario 1, all ingress packets are logged atR1, and
generally half of egress packets are logged atR1. This results
in a logging probability of about 75%. In scenario 2, only
around half of egress packets are logged atR1, resulting in a
logging probability of about 25%. A complementary situation
applies to routerR2 in Fig. 11. Most traffic throughR2 is
originated from or destined to end hosts 2 hops away (i.e.,
H3,H4, . . . , Hn). In scenario 1, only a small portion of ingress
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Fig. 11. Routers at or near the edge of network.
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Fig. 12. The cumulative distribution function of logging probability. (AT&T
topology. Packets are logged at the first router on the path.)
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Fig. 13. The cumulative distribution function of logging probability. (AT&T
topology. Packets are not logged at the first router on the path.)

packets and around half of egress packets are logged atR2,
resulting in a low logging probability. In scenario 2, most of
ingress packets, around half of egress packets, and all packets
between hosts ofH3,H4, . . . ,Hn are logged atR2, resulting
in a high logging probability.

Figs. 12 and 13 show the results on AT&T topology, in
scenario 1 and 2, respectively. In scenario 1, around 75% of
core routers and 15% of all routers have a logging probability
less than 50%. In scenario 2, around 25% of core routers
and 85% of all routers have a logging probability less than
50%. We think the reason is the topology of AT&T’s network.
AT&T’s network topology includes hubs in major cities and
spokes that fan out to smaller cities. These hubs (we call them
core routers in the simulations) are like routerR2 in Fig. 11,
and the spokes are like routerR1 in Fig. 11. That explains
why the hubs and spokes have the logging probabilities being
kind of complementary to each other.

The simulation results demonstrate that 45% to 55% percent
forwarded packets need to be logged at the backbone routers
of a network. This confirms the analytic results of the digest
table storage and access time overhead. The simulation results
also show that, at the routers at or near the edge of a network,
the percentage of packets which need to be logged depends
on whether the first router on the network path logs packets
or not. ISPs may attain a better performance through properly
setting up the behavior of the edge routers.

For the traceback process overhead, we simulate the number
of routers being queried during the process of tracing an attack
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Fig. 14. The number of routers being queried during traceback process.

path of various length. The degree of each router on the path
is determined randomly according to the degree distribution
of a router-level topology from CAIDA (ITDK0304 skitter
data) [28]. We conduct 1000 test runs for each path length.
The simulation results in Fig. 14 show that HIT queries around
one half as many routers as SPIE.

B. Comparison to Hybrid IP Traceback Approaches

In this section, we compare HIT with DLLT and PPPM
approaches [12] based on several performance metrics.

1) Number of Packets Required for Traceback:HIT needs
only one packet to construct an attack path. In general,
both DLLT and PPPM need multiple packets to construct an
attack path. The number of packets depends on the marking
probabilityq at routers and the length of the attack path. In an
extreme case whereq = 1, DLLT can trace a single packet.

2) Marking Overhead on Packets:IP protocol header does
not have a field provisioned for storing packet marking infor-
mation. It is widely accepted in PPM approaches to overload
the 16-bit IP identification field, with the price of backward
incompatibility with fragmented IP traffic [7]. Although the
13-bit fragment offset field becomes meaningless when the IP
identification field is overloaded, it is a challenging task to
overload the fragment offset field. Since receivers regard the
IP packets with non-zero fragment offset values as IP frag-
ments [29], overloading the fragment offset field will collide
with all the IP traffic in the Internet both non-fragmented and
fragmented. Additional mechanisms must be in place when
the fragment offset field is reused for packet marking [19].

In HIT, the marking value is stored in the 16-bit IP iden-
tification field. As mentioned in Section III-E, HIT does not
mark IP fragments, thereby is backward compatible. In DLLT,
the size of marking field is 34 bits and in PPPM it is 57 bits.

3) Storage Overhead:In HIT and DLLT, when logging
a packet, the router records both the packet digest and the
marking information carried by the packet for potential trace-
back process. Hence, in HIT and DLLT, the storage overhead
at a router is proportionally dependent on (1) the logging
probability (the percentage of the packets logged at the router),
(2) total incoming link capacity, and (3) the time period for
which the packet logging information are kept at the router.

In both approaches, packet digests are stored into the digest
table implemented with a Bloom filter. The difference is at

the storage of the marking information. In HIT, the marking
information is encoded into the packet digest and does not
incur additional storage overhead; while in DLLT, the 34-
bit marking information is stored into a separate marking
information table (MIT). For a digest table ofs bits, the
corresponding MIT table is of34× s bits. If we assume that
both approaches maintain the digest tables of the same size and
of the same memory efficiency factorr, the storage overhead
for DLLT is 34 times higher than HIT.

We consider a router with a total link capacity ofb packets
per unit time and with a memory efficiency factor of digest
table r. As shown in Section IV, the logging probability in
HIT, Pl, is around 50% on average. In DLLT, the logging
probability is the same as the marking probability, so we useq
to represent both probabilities in DLLT. LetSh andSd denote
the storage overhead of per unit time in the HIT and DLLT
approach, respectively. We can write

Sh = Pl × b× 1
r

=
b

2r
, (27)

Sd = q × b× 1
r
× (1 + 34) =

35× q × b

r
. (28)

Whenq > 1
70 , we haveSd > Sh . The authors in [12] propose

an optimization in terms of sharing an MIT table among
multiple digest tables to reduce the storage overhead of DLLT.
With this sharing, they try to utilize the unused entries in the
MIT table. The perfect utilization of the MIT table requires
collision free mapping between the digest tables and the MIT
table. In such a best case scenario, the storage overhead of
DLLT becomes

Sd = q × b× (
1
r

+ 34) . (29)

If we user = 0.2 (from [9]), the relation betweenSh andSd

becomesSd > Sh for q > 0.064.
In PPPM, routers store the marking information in a per

destination buffer. Routers also employ a Bloom filter to
improve the lookup speed of the marking buffer. Thus, the
storage overhead at a router is fixed and it includes the Bloom
filter and a storage space of size57×232 bits for the marking
buffer. The authors in [12] make an observation that the
number of destinations seen by a router during a small window
of time is limited. They use this observation to reduce the size
of the marking buffer from232 entries to2a entries wherea
represents the size of the IP destination address suffix used
to index the buffer. Under this assumption, which may cause
traceback inaccuracies due to possible suffix collisions, the
storage overhead of PPPM is given by the sum of the storage
space for a Bloom filter,s, and the storage space of size57×2a

bits for the marking buffer.
4) Router Processing Overhead:IP traceback schemes

introduce processing overhead onto the routers in two phases
(1) while creating audit trails on network traffic and (2) while
conducting traceback to find out an attack path. During a peace
time, routers spend processing power for the first phase and
during an attack they spend processing power for the second
phase. Recall that packet marking is inexpensive as it can be
done in hardware. On the other hand, packet logging incurs
more processing overhead on the routers.
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First, we compare the three approaches based on the average
overhead per router during the first phase. In HIT, a router
marks 100% and logs 50% of the traffic. In both DLLT and
PPPM, the percentage of the traffic being marked and logged
at a router is indicated by the the marking/logging probability
q, with a typical value ofq ∈ [0.05, 0.3] [12].

Next, we compare the three approaches based on the over-
head per traceback process. In HIT, the processing overhead
depends on (1) the number of routers and (2) number of
neighbors of each router on the attack path. If an attack path
has h routers, each of which hasn neighbors on average,
the number of routers involved during a traceback operation
is given by(n − 1) × h/2 for HIT. In DLLT, the processing
overhead depends on the number of routers on the attack path.
Finally, PPPM does not introduce any processing overhead on
the routers as the traceback process is conducted locally at the
victim. Recall that the additional processing overhead incurred
in HIT is required to traceback a single packet which is not
possible in DLLT (unlessq = 100%) and PPPM approaches.

V. D ISCUSSION

A. Deployment

The effectiveness of log-based IP traceback increases
greatly with the widespread deployment of traceback-enabled
routers in the network. Similar to SPIE, it is likely that
hybrid single-packet IP traceback does not require all routers
to be traceback-enabled. All traceback-enabled routers within
a network can be regarded as an overlay network. If the
traceback server has the topology knowledge of that overlay
network and each traceback-enabled router knows its overlay
neighbors, the hybrid approach still works.

Tracing a packet which has traversed multiple autonomous
systems (ASes) requires cooperation and trustworthiness
among those ASes. Moriarty [30] proposed an inter-AS com-
munication protocol to facilitate the cooperation among ASes
during the inter-AS traceback process. Any modification of
routers cannot be deployed simultaneously, or be finished in
short term throughout the Internet. It is unrealistic to expect all
ASes begin to deploy IP traceback services at the same time.
The traceback process may halt prematurely because of the
lack of support from some AS on the attack path. Korkmaz
et al. [31] proposed a scheme for conducting the traceback
process under the environment where hash-based IP traceback
is partially deployed at AS-level. Because of the similarity
between the hash-based approach and the hybrid approach,
similar results apply to the effectiveness of the hybrid approach
in AS-level partial deployment scenario.

B. Security Concerns

Attackers may write a forged marking value into attack
packets. This only helps the attacker to prefix a false router
to the attack path. Since a packet is marked by each and
logged by every other router, the attacker cannot introduce
an arbitrary attack path. In order to successfully exploit this
vulnerability, (1) attackers have to know the ID numbers of
the neighboring routers of the first router on the path and
(2) attack packets need to enter the network at a router port

which is not (or cannot be) upgraded to mark packets as
described in Section III-B. We think that it is not easy to
exploit this vulnerability. Even succeeding in that, attackers
can prefix at most one router to the attack path. To deal with
this vulnerability, the traceback server may refer to routing
information for the authenticity of the furthest router on the
attack path.

Attackers may flood the victim with IP fragments for the
purpose of consuming more storage space and reducing the
time duration for which packet digests are kept at routers. At
low-speed routers where the storage space is not a concern,
routers can dedicate more storage space for the digests of
IP fragments. At high-speed routers where the storage space
is a concern, attack traffic consumes only a small fraction
of the bandwidth. Hence, the increased storage overhead at
high-speed routers is trivial compared to the total amount of
memory dedicated for packet digests.

VI. CONCLUSION

Tracing a single IP packet back to its origin is the ultimate
goal of IP traceback. SPIE illustrates the feasibility of tracing
individual packets with packet logging. However, the storage
overhead and access time requirement for recording packet
digests are fairly high at high-speed routers. On the other hand,
the traceback approach based on packet marking incurs little
overhead at routers, though it can only trace large packet flows.

In this paper, we have proposed a hybrid single-packet IP
traceback approach based on both packet logging and packet
marking. The main idea is to accumulate the information of
multiple routers on the network path through packet marking,
and log these accumulated path information at some of the
routers on the path. Based on this idea and the current Internet
environment, we have developed a concrete IP traceback
approach. Our approach has the same single-packet traceback
ability as SPIE, but incurs less overhead at routers. Specifi-
cally, our approach (1) reduces the storage overhead to one
half, and (2) reduces the access time requirement by a factor
of the number of neighboring routers.
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APPENDIX

Theorem 1:Let f(x) = ndxe and g(x) = dnbxe, where
n ∈ N andn ≥ 1; b ∈ R andb > 1; x ∈ R andx > 0. Then,

{
f(x) ≤ g(x) , whenx ≥ 1

b−1 ;
f(x) ≥ g(x) , whenx ≤ 1

b .
Proof: (1) Whenx ≥ 1

b−1 , we have

(b− 1)x ≥ 1 ⇒ n(b− 1)x ≥ n ⇒
nbx− nx ≥ n ⇒ nbx ≥ n(x + 1) .

Becausef(x) = ndxe < n(x + 1) andg(x) = dnbxe ≥ nbx ,
so f(x) ≤ g(x) .
(2) Whenx ≤ 1

b , becauseb > 1, so 0 < x < 1. Thus

f(x) = ndxe = n .

On the other hand,nbx ≤ nb1
b = n. Thus

g(x) = dnbxe ≤ dne = n .

Therefore,f(x) ≥ g(x) . ¥
Theorem 2:Let f(x) = ndxe and g(x) = dnbxe, where

n ∈ N andn ≥ 1; b ∈ R andb ≥ 2; x ∈ R andx > 0. Then,
{

f(x) ≤ g(x) , whenx ≥ 1
b ;

f(x) ≥ g(x) , whenx ≤ 1
b .

Proof: (1) Whenx ≥ 1
b , there are three cases to consider:

Case 1:x ∈ [ 1b , 1). In this case,dxe = 1 andnbx ≥ n. Thus,

f(x) = ndxe = n ,

g(x) = dnbxe ≥ dne = n .

Case 2:x = m (m ∈ N andm ≥ 1). In this case,dxe = m
andbx = bm ≥ 2m > m. Thus,

f(x) = ndxe = nm ,

g(x) = dnbxe = dnbme ≥ dnme = nm .

Case 3:x = m + y (m ∈ N andm ≥ 1; y ∈ (0, 1)). In this
case,dxe = m + 1 andbx > bm ≥ 2m ≥ m + 1. Thus,

f(x) = ndxe = n(m + 1) ,

g(x) = dnbxe ≥ dnbme ≥ dn(m + 1)e = n(m + 1) .

Putting together the 3 cases above, we havef(x) ≤ g(x) .
(2) Whenx ≤ 1

b , by Theorem 1, we havef(x) ≥ g(x) . ¥
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