
Dynamic Resource Management in Energy
Constrained Heterogeneous Computing

Systems Using Voltage Scaling
Jong-Kook Kim, Member, IEEE, Howard Jay Siegel, Fellow, IEEE,

Anthony A. Maciejewski, Fellow, IEEE, and Rudolf Eigenmann, Senior Member, IEEE

Abstract—An ad hoc grid is a wireless heterogeneous computing environment without a fixed infrastructure. This study considers

wireless devices that have different capabilities, have limited battery capacity, support dynamic voltage scaling, and are expected to

be used for eight hours at a time and then recharged. To maximize the performance of the system, it is essential to assign resources

to tasks (match) and order the execution of tasks on each resource (schedule) in a manner that exploits the heterogeneity of the

resources and tasks while considering the energy constraints of the devices. In the single-hop ad hoc grid heterogeneous environment

considered in this study, tasks arrive unpredictably, are independent (i.e., no precedent constraints for tasks) and have priorities and

deadlines. The problem is to map (match and schedule) tasks onto devices such that the number of highest priority tasks completed

by their deadlines during eight hours is maximized while efficiently utilizing the overall system energy. A model for dynamically

mapping tasks onto wireless devices is introduced. Seven dynamic mapping heuristics for this environment are designed and

compared to each other and to a mathematical bound.

Index Terms—Ad hoc, distributed heterogeneous computing, dynamic resource allocation/management, dynamic voltage scaling,

energy-aware computing, task priorities and deadlines.

Ç

1 INTRODUCTION

AN ad hoc grid is a heterogeneous computing (HC) environ-
ment consisting of mobile battery-powered computing

devices that communicate using wireless connections. Ad
hoc grid (ad hoc networked) environments enable users to
communicate and share computational load and results with
other users in the system to coordinate efforts to accomplish a
mission. Examples of applications of ad hoc grids include
wildfire fighting, disaster management, and military situa-
tions [31]. HC is the coordinated use of various resources with
different capabilities to satisfy the requirements of varying
task/application mixtures. When the resources are wireless
and mobile, the limited battery capacity becomes a constraint
and power or energy management becomes a critical issue.
As devices are heterogeneous, battery capacity may also be
heterogeneous. The heterogeneity of the resources and

tasks in an HC system is exploited to maximize the
performance or the cost-effectiveness of the system (e.g., [9],
[14], [18], and [30]). An important research problem is how to
assign resources to the tasks (match) and to order the tasks for
execution on the resources (schedule) to maximize some
performance criterion of an HC system. This procedure is
called mapping or resource allocation. A resource management
system (RMS) takes care of allocating resources of a certain
system. The power management aspect further complicates
this problem.

Two different types of mapping are static and dynamic.
Static mapping is performed when tasks are mapped in an
offline planning phase, e.g., planning the schedule for a set
of production jobs. Dynamic mapping is performed when the
tasks are mapped in an online fashion, e.g., when tasks
arrive at unpredictable intervals and are mapped as they
arrive (workload is not known a priori). In both cases, the
mapping problem has been shown, in general, to be
NP-complete (e.g., [12], [15], and [22]). Thus, the develop-
ment of heuristic techniques to find near-optimal solutions
for the problem is an active research area (e.g., [7], [8], [9],
[10], [14], [16], [17], [26], [29], [33], [40], and [44]).

In this research, the dynamic mapping of tasks onto devices
is studied. Simulation is used for the evaluation and
comparison of the heuristics developed in this paper. As
described in [29], dynamic mapping heuristics can be
grouped into two categories, immediate and batch mode.
Each time a mapping is performed, immediate mode heuristics
only consider the new task for mapping, whereas batch mode
may consider the new task and tasks awaiting execution,
thus having more information about the task mixture before
mapping. Both approaches are attempted in this paper.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008 1445

. J.-K. Kim is with the School of Electrical Engineering, Korea University,
Anam-Dong, Sungbuk-Gu, Seoul 136-701, South Korea.
E-mail: jongkook@korea.ac.kr.

. H.J. Siegel is with the Department of Electrical and Computer Engineering
and the Department of Computer Science, Colorado State University, Fort
Collins, CO 80523. E-mail: hj@colostate.edu.

. A.A. Maciejewski is with the Department of Electrical and Computer
Engineering, Colorado State University, Fort Collins, CO 80523.
E-mail: aam@colostate.edu.

. R. Eigenmann is with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907-1285.
E-mail: eigenman@ecn.purdue.edu.

Manuscript received 16 Oct. 2007; revised 3 Apr. 2008; accepted 10 June
2008; published online 20 July 2008.
Recommended for acceptance by I. Ahmad, K.W. Cameron, and R. Melhem.
For information on obtaining reprints of this article, please send e-mail
to: tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2007-10-0380.
Digital Object Identifier no. 10.1109/TPDS.2008.113.

1045-9219/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

The power management is accomplished by using
dynamic voltage scaling (DVS) [39]. DVS is based on
exploiting the relationship between the CPU supply voltage
of a device and the power usage (e.g., Crusoe [11] and
ARM7D [5]). The relationship between power and energy is
that energy consumed is power multiplied by the amount of
time that power is used. The relationship of power to voltage
is a strictly increasing convex function, represented by a
polynomial of at least second degree [21]. Most processors
that support DVS use discrete levels. The DVS technique
allows the reduction of a CPU’s energy usage (through CPU
voltage (clock frequency) reduction) at the expense of
increasing the task execution time. The DVS mechanism in
this research will be managed by the system administrator
or the resource manager and is transparent to the user.

In the environment for this research, the devices are
wireless and can communicate with each other (e.g., peer to
peer communication). An example scenario can be a
wildfire-fighting situation in a remote area (e.g., controlling
a forest fire), where the firefighters are equipped with
mobile devices that will form an ad hoc network with no
base station. For scenarios such as these, devices in this
research are assumed to be close enough to allow a single-
hop ad hoc network. The batteries for these devices are
assumed to be recharged after a certain amount of time
(e.g., recharged after an eight hour shift or work day). For
example, in the fire-fighting scenario, it is typical for
firefighters to have a scheduled break for food and rest
after a shift and so can recharge their batteries at that time.
Using a device, a user can request a program (task) to be
executed, receive data, and send data. A device performing
a computation may receive input data from other devices or
external sources. The resulting output will be sent back to
the task requester.

For the efficient use of the overall system energy available,
it may be best for certain tasks to be executed on a remote,
rather than the local, device. The reasons are 1) limited
energy remaining on the local device, 2) a remote device can
execute the task using less energy, and 3) a remote device can
complete the task by its deadline. An RMS makes this
decision of locating a “suitable” device.

Tasks can have different priority levels (i.e., high,
medium, or low) and a deadline. The primary goal of this
research is to complete as many high-priority tasks by their
deadlines as possible during a given interval of time (i.e.,
eight hours). The secondary performance goal is to
maximize the sum of the weighted priorities of medium-
and low-priority tasks completed by their deadlines during
that interval of time. This sum builds on our FISC measure
in [25]. The motivation of using these two performance
metrics instead of makespan is that the number of tasks
introduced to the system can be huge, and therefore, not all
tasks can be completed. The important objective of an RMS
is to complete as many tasks as possible while taking the
system level energy into consideration. The reason for the
primary goal is because, in this environment, high-priority
level tasks are considered to be infinitely more important
than medium- and low-priority tasks and need to be
completed. For the secondary goal, it is still beneficial to
complete as many tasks as possible but because tasks have
different priorities (value) the goal considers this difference.

We want to design resource management heuristics that
will generate robust resource allocations [2]. Consider the
three robustness questions from that in [3] for this
environment. The first question is: what behavior of the
system makes it robust? Here, we say the system is
operating in a robust way if it can execute all of the high-
priority tasks. The second question is: what uncertainty is
the system robust against? In this study, it is the uncertainty
of which, when, and how quickly tasks of different
priorities will arrive. The third question is: quantitatively,
how robust is the system? If we strictly enforce the
robustness requirement of completing all of the high-
priority tasks, then the robustness metric that can be used
to compare two different resource allocations that complete
all the high-priority tasks is the value of the medium and
low-priority tasks it can complete in addition to the
high0priority tasks. If neither resource allocation can
complete all of the high-priority tasks, neither meets the
strict requirement, but the one that completes a greater
percentage of the high-priority tasks is better. Alternatively,
in the situation where the system is so oversubscribed that
none of the heuristics employed can complete all of the
high-priority tasks, the robust requirement can be relaxed to
be that a given prespecified percentage (less than 100) of the
high-priority tasks complete.

The contributions of this research include 1) the model-
ing of dynamically mapping tasks onto wireless devices
while managing power using the DVS method, 2) the
design, analysis, and comparison of seven resource alloca-
tion methods for this environment, and 3) the mathematical
bound derivations on the heuristics performance.

Section 2 discusses the heterogeneous ad hoc environ-
ment followed by a summary of the literature related to this
work. In Section 4, the heuristics studied in this research are
presented. Section 5 describes the simulation setup. The
results are examined in Section 6, and the last section gives
a brief summary of this research.

2 ENERGY CONSTRAINED ENVIRONMENT

The ad hoc grid environment is controlled by a resource
management system (RMS). The RMS performs matching,
scheduling, and power management to maximize the goal
stated earlier. In this environment, the wireless devices
have limited battery capacity (energy). The users are
allowed one battery for the operation of a given device for
an interval of time. The batteries are recharged after eight
hours, and the battery capacity is different for different
devices. The devices employ DVS for power management.
The number and value of the discrete voltage levels may
vary among the devices.

The users send task requests to the RMS. Once a task
request is received, the RMS locates a “suitable” device and
sends a task execution command (Fig. 1). If an input data is
required, the data is communicated directly to the executing
device from the source. A source could be other wireless
devices or outside sources (e.g., a weather station). The
result of the task execution (e.g., a wind direction estimate)
is sent back to the task requester device, if the task was not
executed on that device. The tasks discussed here have a
priority level (e.g., high, medium, or low) and a deadline. If
the task cannot complete by its deadline, it has no value.

1446 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

The communication of inputs and results is assumed to be
done directly from device to device (i.e., single-hop ad hoc
network) using the IEEE 802.11b standard (a popular
wireless standard). In this research, only one device receives
or sends data at any instant in time. This scheme is desirable
when a certain quality of service must be met for the tasks. If
other communications are allowed while a task is still
communicating, then the communication time for that task is
no longer guaranteed, which complicates the quantifications
of the communication time. A time division multiplexed
communication scheme may be considered in future work.

In this environment, it is assumed that the types of
devices that may connect to the system are known. In
addition, there is a predetermined set of tasks that a user
can request. However, it is not known a priori exactly which
tasks will be requested and when they will be requested. In
an example military scenario, there are predetermined
types of wireless devices allowed to connect to the military
system. In this environment, there is a set of tasks that may
be requested for execution (e.g., target determination and
troop deployment decisions). A requested task is executed
on a “suitable” device, and the information is sent back to
the task requester. Because it is assumed that all the devices
and the tasks are known, the task execution times on those
devices are assumed to be known to the RMS (e.g.,
execution times can be determined by running the tasks
on the devices). The estimated execution times of each task
on each machine is assumed to be known based on user
supplied information, experiential data, task profiling and
analytical benchmarking, or other techniques (e.g., [1], [18],
[19], [24], and [42]). Determination of the execution times is
a separate research problem, and the assumption of such
information is a common practice in mapping research (e.g.,
[19], [23], [24], [27], [37], and [41]).

It is assumed that all devices are equipped with all
programs required and only input data is needed to execute
a task and send back results. Thus, the time to communicate
a task request to the RMS and to send a task execution
command to a device is assumed to be negligible. We make
the simplifying assumption that the RMS is located on a
dedicated machine that has unlimited power and that the
devices are within transmission range of the RMS (the
relaxation of these assumptions may be considered in future
work). In a real environment, the RMS would not have a
machine with unlimited energy, and so, its consumption
would need to be added to the model.

3 RELATED WORK

There has been much research on power constrained
(power-aware) resource management in uniprocessors

(e.g., [6], [20], [32], and [43]). The research in [6] presents
a static scheduling solution of periodic tasks on a processor
assuming the worst-case scenario, a dynamic reclaiming
algorithm for tasks that complete before their worst-case
scenario, and an adaptive speed adjustment mechanism to
anticipate the probable early completion of future task
executions. A power minimizing approach for variable-
voltage systems is developed in [20], where tasks are
periodic and independent. The method described in [32]
assumes a dynamic preemptive environment where peri-
odic independent tasks arrive and leave a system. In [43], a
formal analysis of the minimum energy scheduling problem
is provided for a single processor and a model that assumes
a task with an arrival time and deadline. The difference
between these studies and our research is that our energy
constrained ad hoc grid environment considers multiple
heterogeneous devices and nonperiodic independent tasks
with priorities and deadlines that need input and/or output
communicated. The fact that our environment has hetero-
geneous multiple devices adds new issues to the resource
allocation problem.

Some research projects have explored a multiprocessor
environment with static resource management (e.g., [13],
[34], [45], and [46]). In [13], a genetic algorithm is used to
synthesize distributed heterogeneous embedded systems.
Using a static schedule derived from a list scheduling
scheme, the study in [34] does static and dynamic power
management. The work in [45] describes a linear program-
ming method that statically schedules periodic tasks on
heterogeneous processing elements. The research in [46]
assumes homogeneous processors and frame-based tasks.
In static mapping, information of all tasks is known and the
execution time of the heuristic itself is not a constraint. The
difference is that our research explores a dynamic environ-
ment where the arrival time of a task is not known prior to
its arrival and the task mapping time must be fast.

The research in [28] statically schedules periodic tasks onto
homogeneous processing elements first using the tool in
[13], and then, slots are created in this static schedule to
accommodate aperiodic tasks with hard deadlines. They
assume that the minimum interval between two hard
aperiodic tasks is larger than the lowest common multiple
period of all periodic tasks. Then, an online scheduler
modifies the system to minimize the response times for
aperiodic tasks with soft deadlines. The static schedule is
unchanged and the soft aperiodic tasks are run when there is
unused time. In our research, all of the devices are
heterogeneous and all tasks are aperiodic with hard dead-
lines. Because all tasks are aperiodic, slots are not created
among task periods, i.e., the RMS approaches are quite
different. Furthermore, our research considers the case where
not all tasks with hard deadlines can complete and does not
assume a minimum interval between the arrivals of two tasks.

The research in [38] tries to send tasks to another device
to be computed. It uses a distributed economic-based
subcontracting protocol to determine which device to use.
The goal of the devices in [38] is to find a suitable device
that can execute tasks to save energy. A cost is associated
with devices that are willing to execute a task for other
devices. The device that wants to move one of its tasks to

KIM ET AL.: DYNAMIC RESOURCE MANAGEMENT IN ENERGY CONSTRAINED HETEROGENEOUS COMPUTING SYSTEMS USING VOLTAGE... 1447

Fig. 1. The ad hoc grid HC environment model considered in this study.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

another device bargains with those willing devices. The
underlying model of our work differs in that the environ-
ment in our research assumes that all devices are capable of
DVS and tasks have deadlines and priorities.

The research in [35] and [36] studies static RMSs for
minimizing energy consumption for a heterogeneous ad hoc
grid. The differences are that in our research, the heuristics
operate dynamically, each device supports DVS, tasks have
priorities, and it is assumed that not all tasks are completed
before their hard deadlines.

4 HEURISTIC DESCRIPTIONS

4.1 Mapping Event

A dynamic mapping approach is designed to assign
resources to new tasks faster than the anticipated average
arrival rate of the tasks. Therefore, the heuristics that are
developed have a limit on the time each computation of a
new mapping can take.

A mapping event occurs when a new task arrives. For
immediate mode heuristics, at any mapping event, only the
new task is considered for mapping onto devices. For batch
mode heuristics, at any mapping event, the new task and
the tasks in the device queues still awaiting execution are
considered together for device assignment, i.e., previously
mapped, but unexecuted tasks can be remapped. The
exception is that the first task in each machine’s wait queue
(this task is not the task that is currently executing) is not
considered remapping. The reason for this is to reduce the
chance of a device becoming idle if during a mapping event
the currently executing task finishes. While it is still possible
that a device may become idle, it is highly unlikely for the
assumptions in this research (mean execution times of tasks
and mean execution times of mapping events described in
Sections 5 and 6, respectively). These tasks that are
considered for remapping are called mappable tasks. If a
task arrives while a mapping event is in progress, the
current mapping event is not disturbed. When the current
mapping event is completed, the next mapping event starts
and includes any tasks that have arrived.

4.2 Scheduling Communications

The following are same for all heuristic approaches. All
communications are scheduled as early as possible. If there
are previous communications scheduled, then current ones
are inserted in the gaps between the ones already scheduled
if possible, or else, they are put at the end of the
communication scheduling queue. It is assumed that a
communication between one device and another is not
broken. Communications from different sources can be
scheduled in different gaps.

4.3 Opportunistic Load Balancing (OLB) and
Minimum Energy Greedy (MEG)

The immediate mode OLB heuristic is a common method
for scheduling tasks. At a mapping event, among the
devices that can map the new task without violating its
deadline and have enough energy to complete the task, the
heuristic selects the device that will be ready (i.e., executes
all the tasks already in its queue) first to map the new task.
This is a simplistic method that ignores the relationship

between the needs of the task to be assigned and the
capability of the devices in the ad hoc grid.

At a mapping event, the immediate mode MEG heuristic
selects the device that can complete the task by its deadline
and executes the task using the minimum amount of
energy. This is a scheme that ignores other tasks that are
already in the system.

The following is same for both heuristics. If no device can
complete the task by its deadline, the task is deleted from
the system. The energy consumed status and the device
availability status (system status) is updated at every mapping
event.

4.4 Minimum Energy Minimum Completion Time
(ME-MC) Heuristic

The immediate mode ME-MC heuristic is based on the
general concept of the switching algorithm in [29]. The basic
idea behind this heuristic is to first try to map tasks onto
their “best” machine according to some metric. But, when
the load on the system becomes unbalanced, the strategy is
changed to balance the load. When the load is balanced,
then the scheme is changed back to the “best” machine
method. For this method, a load balance ratio is used to
determine whether the system is load balanced.

In this study, two different load balance ratios are
calculated. One is for the high-priority tasks and other is for
the medium- and low-priority tasks. The reason for the two
different load balance ratios is that when high-priority tasks
arrive, the high-priority tasks are inserted behind the last
high-priority task in front of all medium- and low-priority
tasks or at the front of a device’s wait queue. The primary
load balance ratio is the ratio of the earliest device availability
time over all the devices in the suite to the latest device
availability time. For this ratio, the device availability times
are determined using the last high-priority task in each
queue. If there are no high-priority tasks in a device queue,
then the device available time is the completion time of the
task that is running if it is the only task on the device. If
there are other tasks on the device, then the device available
time is the completion time of the first waiting task. The
secondary load balance ratio is same as the primary load
balance ratio except that it is calculated with all tasks. For
both load balance ratios, a common high threshold and low
threshold are established by experimentation (high thresh-
old > low threshold).

Initially, the system maps new tasks onto their minimum
energy consumption device using the slowest speed level. If
the task that arrived is a high-priority task and there are no
devices that can complete the high-priority task by its
deadline, then the speed level of the devices is increased
starting from device 0 using the method described below to
test if there are devices that can complete the high-priority
task with a speed level increase. When increasing a device’s
speed level, the total number of speed levels of a device is
taken into consideration. For example, assume a device 1
that has 16 speed levels and another device 2 that has four
speed levels. If device 1 increased its speed levels at least
four times, only then can device 2 be considered for speed
level increase. Only the speed level for the device finally
selected for mapping is increased. Once the speed level of a
device is increased to a faster level, the device will not try to

1448 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

execute tasks at a lower speed level later. All tasks mapped

earlier will complete faster than when the speed level was

lower (before the speed level is increased), thus guarantee-

ing that tasks mapped earlier complete by their deadline. At

any mapping event, the speed level is increased at most two

times. This is to avoid increasing the speed level to

accommodate the current task while not leaving enough

energy for future use.
The Switching Algorithm heuristic can be summarized

by the following procedure. The total energy consumed is

equal to the total CPU energy used plus the energy used for

communication (details of CPU and communication energy

are discussed in Section 5):

1. Determine the priority level of the new task.

2. Calculate the primary (or secondary) load balance ratio.

3. If the primary (or secondary) load balance ratio > high

threshold, then current method is to use the minimum

energy consumption device to map the new task.

If the primary (or secondary) load balance ratio < low

threshold, then current method is to use the minimum

completion time device to map the new task.
If low threshold � primary (or secondary) load balance

ratio � high threshold, then current method is the one

used at the previous mapping event to map the new

task.

4. If the task is a medium- or low-priority task, assuming

that it will be mapped at the end of a device queue,

determine all devices that can complete the task by its

deadline
if the task cannot be completed on any device, it is

deleted from the system

else, select a device using the current method, map

the task to this device, and all communications are

scheduled using the method in Section 4.2.

5. Initialize “iteration” to the number of speed level

changes on the device where the speed level was

changed the most.
If the task is a high-priority task, assuming that it will

be mapped (inserted) after the last high-priority task in

a device queue, determine all devices that can complete

the task by its deadline.

do until a device is selected for mapping or iteration is

increased twice.

if the task cannot be completed its deadline on any

device, increase the speed level (note that when trying

to increase a device’s speed level, the total number of speed

levels of a device is taken into consideration).

for each device, increase one speed level if the

(maximum number of speed levels over all

devices)/(total number of levels on the device) �
iteration and test if the device can complete the

task.

iteration ¼ iterationþ 1

else, select a device using the current method, map

the task to this device

if the task cannot be completed on any device, return all

device’s speed level to the level before this task arrived

and drop the task.

else, return all unselected devices’ speed level to the
level before this task arrived.

6. Check all devices as follows: If there is enough energy

on a device to continually execute at the highest speed

level and transmit data for the rest of the remaining

time (until the end of the eight hour period), then the

speed level for that device is increased to the highest

speed level.

7. Update the system status.

4.5 Minimum Energy Minimum Energy (ME-ME)
Heuristic

The batch mode ME-ME heuristic is based on the general

concept of the Min-Min (greedy) idea in [22]. The Min-Min
type heuristic performed very well in previous studies of
different environments (e.g., [10] and [29]). The basic idea of
a Min-Min type heuristic is to find the “best” device for all
tasks that are considered, and then among these task/

device pairs, it selects the “best” pair to map first. To
determine which device or which task/device pair is the
best, a fitness value is used. The fitness value of a task on a
given device for this study is 1) the energy consumed for

high-priority tasks, and 2) the energy consumed multiplied
by the weighted priority divided by the execution time of
the task for medium- and low-priority tasks. The energy
consumed is equal to the energy used by the CPU plus the

energy used for communication. This method also starts the
simulation by using the slowest speed level of devices to
map tasks.

The ME-ME procedure starts at a mapping event, and it

is assumed that none of the mappable tasks are mapped,
i.e., they are not in any device queue.

1. All high-priority tasks are considered first, then the
other tasks are considered.

2. All high-priority tasks in the mappable task list are
checked to see if they can be completed by their
deadline.

3. If there are some tasks that cannot be completed on
any device, then the speed level is increased or the
task is dropped using the method detailed within
step 5 of Section 4.4.

4. For each high-priority task in the mappable task list,
find the device that gives the task its minimum
fitness value (the first “ME”) among the devices that
can complete the task by its deadline using the
current speed level and ignoring other tasks in the
mappable task list.

5. Among all the task/device pairs found from above,
find the pair that gives the minimum fitness value
(the second “ME”), map the task to the device, and
remove the task from the mappable task list.
Input or results communication is scheduled using
the method in Section 4.2.

6. Update the system status.
7. Do steps 2 to 6 until all high-priority tasks are

mapped and then do the same for medium- and low-
priority tasks except the speed level is not increased.

8. Check all devices as follows: If there is enough
energy on a device to continually execute at the

KIM ET AL.: DYNAMIC RESOURCE MANAGEMENT IN ENERGY CONSTRAINED HETEROGENEOUS COMPUTING SYSTEMS USING VOLTAGE... 1449

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

highest speed level and transmit data for the rest of
the remaining time (until the end of the eight hour
period), then the speed level for that device is
increased to the highest speed level.

9. Update the system status.

4.6 Contention Resolved Minimum Energy (CRME)
Heuristic

The batch mode CRME heuristic is based on the general

concept of the suffrage idea in [29]. The CRME heuristic

applies the same fitness value calculation used in the

ME-ME heuristic (Section 4.5), but when deciding which

task to map, the task that “suffers” most if not mapped to its

“first choice machine” is selected.
The CRME procedure starts at a mapping event. When

the mapping event begins, it is assumed that none of the

mappable tasks are mapped, i.e., they are not in any device

queue.

1. All high-priority tasks are considered first, then the
other tasks are considered.

2. All high-priority tasks in the mappable task list are
checked if they can be completed by their deadline.

3. If there are some tasks that cannot be completed on
any device, then the speed level is increased or the
task is dropped using the method detailed within
step 5 of Section 4.4.

4. For each task in the mappable task list, find the
device that gives the task its minimum fitness value
among the devices that can complete the task by its
deadline using the current speed level, ignoring
other tasks in the task list.

5. If there is contention among any of the high-priority
tasks (i.e., two or more high-priority tasks have the
same minimum fitness value device), select the task
that will suffer the most (the task with the largest
difference of fitness value between the best and the
second best devices) to map onto the device selected.
Else, map all the high-priority tasks. All commu-
nications are scheduled using the method in
Section 4.2.

6. Remove the above mapped task(s) from the map-
pable task list.

7. Update the device availability and energy consumed
status.

8. Repeat steps 2 to 7 until all high-priority tasks are
mapped and do the same for the medium- or low-
priority tasks except the speed level is not increased.

9. Check all devices as follows: If there is enough
energy on a device to continually execute at the
highest speed level and transmit data for the rest of
the remaining time (until the end of the eight hour
period), then the speed level for that device is
increased to the highest speed level.

10. Update the system status.

4.7 Originator and Random

The immediate mode originator heuristic executes the task

on the device that originated the task. This heuristic is run

to compare to the performance of heuristics that utilizes

other devices in the system. The immediate mode random

heuristic maps the new task on a randomly selected device
when the new task arrives. This heuristic is run to compare
to the performance of the guided heuristics. The following
is for both heuristics. The method in Section 4.2 is used for
communication scheduling. If the selected device cannot
complete the task by its deadline or there is not enough
energy to complete the task, the task is deleted from the
system. The energy consumed status is updated at every
mapping event.

4.8 Upper Bound (UB)

Two UB methods are presented in this section. Each time
the environment is simulated, the overall UB is determined
by selecting the tighter bound of the two methods.

The first UB (UB1) uses the arrival time of tasks, priority
of tasks, the deadline of the tasks, and the time interval
between the arrivals of tasks based on the UB in [26]. The
bound ignores the communication and the energy con-
sumed. The tasks that have arrived before or at the
mapping event are called selectable tasks. At any mapping
event, only the selectable tasks are considered for the
calculation of the UB. Let ETCði; jÞ be the estimated time to
complete of task i on device j, and let Qi be equal to the
priority weighting of task i divided by the minimum
ETCði; jÞ over all machines.

The scheme starts by initializing all tasks’ remaining ETC
values, rETCði; jÞ, to the minimum ETCði; jÞ over all
devices. The UB1 follows the procedure described below:

1. At a mapping event, determine the total aggregate

computation time (TACT) until the next task arrives. That
is, TACT = time interval between arrival times of the

new task and the next task multiplied by the number of

machines.

2. Selectable tasks with rETCði; jÞ > 0 are put in a task

list.

3. Sort high-priority tasks in the task list using minimum

ETC values. Then, the medium and low-priority tasks

are sorted together based on Qi.
4. If there are high-priority tasks in the task list, select the

high-priority task a that has the minimum ETC value.

Else, select the medium/low-priority task a with the

highest Qa from the task list.

5. If TACT < rETCða; jÞ.
if the selected task is high-priority,

subtract TACT from rETCða; jÞ
if the selected task is medium or low-priority

add ðQa � TACTÞ to the secondary metric

subtract TACT from rETCða; jÞ
done (i.e., TACT ¼ 0)

if TACT � rETCði; jÞ
if the selected task is high-priority

add one to the primary metric (i.e., the number of

high-priority tasks completed)

subtract rETCða; jÞ from TACT (this becomes the
new TACT), rETCða; jÞ ¼ 0

if the selected task is medium or low-priority

add ðQa � TACTÞ to the secondary metric (i.e.,

the sum of the weighted priorities of medium

and low-priority tasks)

1450 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

subtract rETCða; jÞ from TACT (this becomes the
new TACT), rETCða; jÞ ¼ 0

6. Repeat steps 4 and 5 until TACT is equal to 0 or there

are no selectable tasks with rETCða; jÞ > 0.

7. Repeat steps 1 to 6 until the end of the simulation.

The second UB (UB2) uses the energy consumed informa-
tion of tasks. The total energy available is the sum of all
devices’ maximum energy available. The energy consumed
is equal to the energy used by the CPU plus the energy used
for communication. The UB2 starts by determining the
minimum energy consumed over all devices for each task.
Then, the high-priority tasks are ordered in the task list
using minimum energy consumed and then the medium
and low-priority tasks are ordered using the minimum
energy consumed divided by the weighted priority. Using
this order, the number of tasks completed is computed by
adding the energy consumed by the tasks until the sum
exceeds the total energy available.

While two methods were attempted, UB1 was always
tighter than UB2 for the cases considered here. This is
despite the fact that, in general, UB1 is an unreachable loose
bound for this environment.

The UB calculation explicitly considers all the high-
priority tasks first for completion, and then, if the system
has resources left they are used for the medium and low-
priority tasks. Recall that the primary goal of this research is
to complete as many high-priority tasks as possible.
Therefore, the UB for the medium and low-priority task
completed is shown (in the results) only when a heuristic
can achieve the UB on the high-priority task. Only then is it
valid to compare the medium and low-priority tasks
completed against the UB calculated.

5 SIMULATION MODEL

Ten types of wireless computing devices and 50 task types
are used in the simulated system. Because the devices and
the tasks are known, the estimated time to compute (ETC)
each of tasks on each of these different devices is known. In
each simulation of a system, eight devices are picked with
equal probability. The arrival of tasks is simulated by mean
intertask arrival times using a (memoryless) Poisson
distribution. Three scenarios with mean intertask arrival
times of 10, 8, and 6 seconds are considered. The mean
intertask arrival times are given to loosely generate more
and more tasks for the system to handle. Where, at the
beginning, the system can handle most of the tasks and
later, where there are a lot of tasks, the system could only
complete a percentage of the tasks. The system is simulated
for 480 minutes (i.e., eight hour work time), with eight
bursty periods of 10 minutes that do not overlap with each
other. The bursty periods have faster arrival rates (mean is
twice as fast as the rate of the normal period).

A 10� 50 ETC matrix of the 50 types of tasks on 10 types of
devices taking heterogeneity into consideration is generated
using the gamma distribution method described in [4], with
a COV of 0.9 for task heterogeneity and a COV of 0.6 for
device heterogeneity. Two means, 60 and 600 seconds, are
used for the ETC matrix. The mean execution time is chosen
to represent applications such as downloading files (such as

maps or weather reports), generating strategies, etc. When a
task is determined to arrive, one of the 50 task types is
selected with equal probability. A trial is defined as one such
simulation of the HC system (one 10 � 50 ET matrix). For
each of the six scenarios (three mean intertask arrival time
multiplied by two mean execution times), 50 trials are run for
all heuristics.

Each task is assigned a priority level of high, medium, or
low, with equal likelihood. The priority levels of medium
and low are given a weighting of four and one. This
weighting is to calculate the performance of the value of
medium- and low-priority tasks completed by their dead-
lines (secondary goal) if the number of high-priority tasks
completed by their deadlines (primary goal) is comparable
for some heuristics.

For each device, the maximum battery capacity, the
maximum CPU energy consumption rate, and the number
of discrete levels for DVS are given. The discrete levels for
DVS correspond to the speed at which the CPU is run and
defined as speed levels. The environment assumes the IEEE
802.11b standard for wireless communication. It is assumed
that the data communication and the task computation or
execution can be done simultaneously. Based on two types
of wireless devices (a laptop and a handheld), the energy
consumption rates are determined. These two devices can
be selected with equal probability. The maximum CPU
energy consumption rates are determined using a uniform
distribution with a range of 0.1 to 0.3 for laptops or 0.01 to
0.03 for handheld devices. The reason for the two ranges is
that the CPU energy consumption rate of a laptop is about
10 times higher than that of a handheld device (based on
sample devices from the Dell website). Based on sample
communication adapters (e.g., Linksys) for the two types of
devices, the transmission energy consumption rate is 0.6
(about three times the CPU energy consumption rate of a
laptop) or 0.2 (about 1/3 of transmission energy consump-
tion rate of a laptop) for the laptops or the handhelds,
respectively. The reception energy consumption rate and
the idle (communication) energy consumption rate are
assumed to be 65 percent and 25 percent of the transmission
power consumption rate, respectively. For the simulation
study, the maximum battery capacity (energy) of device j,
BCðjÞ, is set to the maximum CPU energy consumption rate
plus the transmission energy consumption rate, multiplied
by the maximum operation time. The maximum operation
time is determined using a uniform distribution with a
range of one to two hours. This means that if the CPU is
used at the maximum speed level, and the device is always
transmitting, then the battery capacity is only enough to
operate the device for one to two hours.

To simplify DVS, this research assumes that each voltage
level of a processor corresponds to a clock speed level for
the processor. Each device can have 2, 4, 8, or 16 discrete
speed levels with equal probability. After the number of
levels is decided, the relative speed of each level is
determined. The lowest speed level of a device is assumed
to be one third of the maximum speed level (e.g., if the
maximum speed level is 1.2 GHz, then the lowest speed
level will be 400 MHz). We make the simplifying assump-
tion that task execution time varies linearly with the discrete
speed level. It is assumed that the voltage switching is done

KIM ET AL.: DYNAMIC RESOURCE MANAGEMENT IN ENERGY CONSTRAINED HETEROGENEOUS COMPUTING SYSTEMS USING VOLTAGE... 1451

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

dynamically and that the overhead associated with the

switching is negligible ð20 � � 150 � sÞ. The power con-

sumption as a function of speed (voltage) levels is assumed

to be a quadratic function. For the example with four speed

levels, assume that the maximum energy consumption rate

is � ¼ 0:16. Using a simple equation of maximum energy

consumption rate ¼ �� ðrelative speed of a speed level to the

maximum speed levelÞ2, where � is 0.16. The relative speed

of the slowest speed level is 1/3 of the maximum speed

level, next will be 5/9 and 7/9 of the maximum speed level

(linear). Using these fractions, the energy consumption

rates for each speed level are calculated. In this example,

the energy consumption rates would be 0.16 � 1/9, 0.16 �
25/81, 0.16 � 49/81, and 0.16 from the slowest speed level

to the fastest (maximum) speed level, respectively. When

the CPU of the device is idle, the CPU energy consumption

rate is assumed to be 1/12 of the maximum energy

consumption rate.
The eight devices are assumed to transmit and receive at

the speed of 1 Mbps. When tasks need to communicate

1452 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 2. The simulation results using the mean execution time of 60 seconds and mean intertask arrival of 10 seconds for (a) and (b), 8 seconds for

(c) and (d), and 6 seconds for (e) and (f): (a), (c), and (e) show the percentage of high-priority tasks completed, and (b), (d), and (f) show the value of

medium and low-priority tasks completed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

input or output, it is assumed that only one communication

is allowed at a time. If multiple tasks need input data at this
moment in time, only one task at a time may receive its

input data (no broadcasting only point-to-point transfer).
For simulation purposes, the size of the input data was

calculated using 10 Kbits as the mean and a COV of 0.7 with

the maximum size of 1 Mbit. The size of the result (output)
was calculated using 10 Kbits as the mean and a COV of 0.7

with the maximum size being 10 Mbits. A task may receive
input from all other devices and from one outside source

KIM ET AL.: DYNAMIC RESOURCE MANAGEMENT IN ENERGY CONSTRAINED HETEROGENEOUS COMPUTING SYSTEMS USING VOLTAGE... 1453

Fig. 3. The simulation results using the mean execution time of 600 seconds and mean intertask arrival of 10 seconds for (a) and (b), 8 seconds for

(c) and (d), and 6 seconds for (e) and (f): (a), (c), and (e) show the percentage of high-priority tasks completed, and (b), (d), and (f) show the value of

medium and low-priority tasks completed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

(e.g., a weather station for forecast reports). The maximum
total number of inputs a task may need would be eight. The
average number of input sources was 2.5 (the number of
input sources was calculated using a normal distribution
with mean 2.5 and minimum of zero and maximum of
eight sources).

In a real system, the hard deadline of a task may be set
by the user that requested the task, by the task designer, or
the system operator/administrator. This research assumes
that when the task arrives, the deadline of the task is given.
For our simulation studies, the deadline of task i was equal
to its the arrival time plus the overall mean execution time
of all tasks plus two times the median execution time of
task i on all devices plus the expected communication time
(input and result) plus the expected communication wait
time (= the mean number of input receptions (2.5) multi-
plied by seven multiplied by the mean input communica-
tion time plus seven multiplied by the mean result
communication time).

6 RESULTS

The simulation results for the different mean execution
times and mean intertask arrival times are shown. For the
random, originator, and OLB heuristics, two different DVS
usage were studied. One is to use the fastest speed level for
the high-priority tasks while using the slowest speed level
for the medium and low-priority tasks. Thus, the speed
level used of any given device depends on the task
priority. The other is to use the median speed level for all
tasks. The median speed level of a device would be the
(total number of levels of a device)/2. Therefore, if there
are 16 discrete speed levels for a device starting from level
one being the slowest, then the median speed level would
be level eight. Preliminary tests show that the performance
of heuristics using the first method is better than the
heuristics using the second method. The first method is
used for all figures.

Fig. 2 shows the performance of the heuristics when the
mean task execution is 60 seconds. The 95 percent
confidence interval of the performance is shown in these
figures. Because the confidence intervals of ME-ME and
CRME heuristics overlap, these two heuristics are consid-
ered to perform comparably. The ME-MC heuristic was a
close third. The average runtimes, in seconds per mapping
event, of random, originator, OLB, MEG, ME-MC, ME-ME,
and CRME are 0.00001, 0.00001, 0.00004, 0.00005, 0.0015,
0.28, and 0.34, respectively.

Fig. 4a shows the performance while increasing the mean
task arrival rates (decreasing mean intertask arrival times).
As the mean task arrival rates increases, the number of tasks
in the system also increases and the percentage of high-
priority tasks completed decreases. The average number of
tasks per trial was 3,373, 4,185, and 5,688 for the mean
intertask arrival time of 10, 8, and 6 seconds. This average
includes tasks with mean execution time of 600 seconds.

Fig. 3 shows the results when the mean task execution
time is increased to 600 seconds. Overall, the performance
degraded. Because of the longer mean execution time, the
tasks are more likely to be dropped. The 95 percent
confidence interval of the performance is shown in these

figures. Because the confidence intervals of ME-ME and
CRME heuristics overlap, these two heuristics are consid-
ered to perform comparably. Fig. 4b shows the performance
while increasing the mean task arrival rates (decreasing
mean intertask arrival times). As the mean task arrival rates
increases, number of tasks in the system increases and the
percentage of high-priority tasks completed decreases.

As it gets more difficult to complete high-priority tasks
(as there are more tasks in the system due to increased task
arrival rate or as mean task execution times are increased),
the batch mode heuristics ME-ME and CRME perform better
than the rest of the heuristics (shown in Fig. 4). While
remapping, the batch mode heuristics (ME-ME and CRME)
consider all mappable tasks in the system, and the order in
which the tasks are mapped can be different from the
previous mapping event. Therefore, the tasks can be
assigned to another machine that is better suited, or they
can be rescheduled. The ME-MC only considers the new task
that arrived and once the task is mapped, it is not moved to
another device nor rescheduled. Also, MC-ME can only
increase the speed level for one device per mapping event.

The ME-MC, ME-ME, and CRME heuristics explicitly
consider the high-priority tasks first (in the batch for ME-
ME and CRME heuristics) to complete. The rest of the

1454 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Fig. 4. The percentage of high-priority tasks completed is shown. The

mean execution time of (a) 60 seconds and (b) 600 seconds and mean

intertask arrival times of 10, 8, and 6 seconds are used. The results for

random and originator are colocated in (b).

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

heuristics run the high-priority tasks using the fastest speed
level, giving the high-priority tasks a higher chance of
completing. A table that compares the heuristics described
in this research is shown in Table 1.

7 CONCLUSIONS

An ad hoc grid HC environment was modeled and
simulated. Seven dynamic heuristics were designed, devel-
oped, and evaluated using the HC environment. The
environment includes randomly arriving tasks with prio-
rities and a deadline and devices with limited battery
capacity that use DVS for power management. In this
scenario, a resource manager needs to exploit the hetero-
geneity of the tasks and resources while managing the
energy. The primary goal of this study was to complete as
many high-priority tasks as possible, under the constraint of
available system energy, during a given interval of time.
The secondary goal was to complete as many medium and
low-priority tasks as possible to maximize the sum of the
weighted priorities of medium and low-priority tasks
completed by their deadlines with the same constraints as
the primary goal. A mathematical UB was derived.

The batch mode ME-ME and CRME heuristics were the
best, and they performed comparably. However, they
required significantly more time than the other heuristics.
In cases where the mean task execution times are short, the
immediate mode ME-MC heuristic may be preferable
because it is very fast and can perform nearly comparable
to the two best heuristics.

There can many possible directions for future research
based on this study. A multihop ad hoc network or a wireless
cell network may be used. A more detailed communication
scheme and other communication issues may be introduced,
such as security and compression/decompression methods.
With asynchronous battery recharging as opposed to the
synchronous recharging model described in this paper
(which assumes all team members return together), the
problem of completing tasks while efficiently using the
system energy will be the same, but the complexity of
the heuristics will increase, and the metric will need to be
adapted for individual dynamic changes of available
battery energy. Another aspect of future work would be to

include the option of decreasing the speed of a processor at a
later time. In addition, we can consider relaxing the
assumption that the RMS is executed on a device with
unlimited energy.

In summary, we have presented various power aware
resource allocation heuristics that could be used in disaster
situations such as wildfire fighting. There are many
interesting future directions that can be pursued building
upon this research.

ACKNOWLEDGMENTS

The authors thank Sameer Shivle, Prasanna Sugavanam,
and T.N. Vijaykumar for their valuable comments. A
preliminary version of portions of this material was
presented at the 19th International Parallel and Distributed
Processing Symposium. This research was supported by
the US National Science Foundation under Grant CNS-
0615170, the Colorado State University George T. Abell
Endowment, and the Korea University Grant. Submitted to
the IEEE TPDS Special Section on Power-Aware Parallel
and Distributed Systems in October 2007.

REFERENCES

[1] S. Ali, T.D. Braun, H.J. Siegel, A.A. Maciejewski, N. Beck, L.
Boloni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D.
Theys, and B. Yao, “Characterizing Resource Allocation Heur-
istics for Heterogeneous Computing Systems,” Advances in
Computers Volume 63: Parallel, Distributed, and Pervasive Comput-
ing, A.R. Hurson, ed., pp. 91-128, 2005.

[2] S. Ali, A.A. Maciejewski, H.J. Siegel, and J.-K. Kim, “Measuring
the Robustness of a Resource Allocation,” IEEE Trans. Parallel and
Distributed Systems, vol. 15, no. 7, pp. 630-641, July 2004.

[3] S. Ali, A.A. Maciejewski, and H.J. Siegel, “Perspectives on
Robust Resource Allocation for Heterogeneous Parallel Systems,”
Handbook of Parallel Computing: Models, Algorithms, and Applica-
tions, S. Rajasekaran and J. Reif, eds., pp. 41-1-41-30, Chapman &
Hall/CRC Press, 2008.

[4] S. Ali, H.J. Siegel, M. Maheswaran, D. Hensgen, and S. Ali,
“Representing Task and Machine Heterogeneities for Heteroge-
neous Computing Systems,” Tamkang J. Science and Eng., special
50th anniversary issue (invited), vol. 3, no. 3, pp. 195-207, Nov.
2000.

[5] ARM Processor, http://www.arm.com, July 2007.
[6] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Power-

Aware Scheduling for Periodic Real-Time Tasks,” IEEE Trans.
Computers, vol. 53, no. 5, pp. 584-600, May 2004.

KIM ET AL.: DYNAMIC RESOURCE MANAGEMENT IN ENERGY CONSTRAINED HETEROGENEOUS COMPUTING SYSTEMS USING VOLTAGE... 1455

TABLE 1
This Is a Table That Summaries the Heuristic Methods Used for This Research

The mode, key idea, time complexity (TC), overall performance (perf.), and when a method performs the best are briefly described. The I and B for
the mode column is immediate mode and batch mode, respectively. The M and N for the time complexity calculation is the number of machines and
number of tasks, respectively.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

[7] H. Barada, S.M. Sait, and N. Baig, “Task Matching and Scheduling
in Heterogeneous Systems Using Simulated Evolution,” Proc. 10th
IEEE Heterogeneous Computing Workshop (HCW ’01) and Proc. 15th
Int’l Parallel and Distributed Processing Symp. (IPDPS ’01), Apr.
2001.

[8] I. Banicescu and V. Velusamy, “Performance of Scheduling
Scientific Applications with Adaptive Weighted Factoring,” Proc.
10th IEEE Heterogeneous Computing Workshop (HCW ’01), and Proc.
15th Int’l Parallel and Distributed Processing Symp. (IPDPS ’01), Apr.
2001.

[9] T.D. Braun, H.J. Siegel, and A.A. Maciejewski, “Heterogeneous
Computing: Goals, Methods, and Open Problems,” Proc. Int’l Conf.
Parallel and Distributed Processing Techniques and Applications
(PDPTA ’01), invited keynote paper, pp. 1-12, June 2001.

[10] T.D. Braun, H.J. Siegel, N. Beck, L. Boloni, R.F. Freund, D.
Hensgen, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D.
Theys, and B. Yao, “A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems,” J. Parallel and Distributed
Computing, vol. 61, no. 6, pp. 810-837, June 2001.

[11] Crusoe/Efficeon Processor, http://www.transmeta.com, July 2007.
[12] Computer and Job-Shop Scheduling Theory, E.G. Coffman Jr. ed., John

Wiley & Sons, 1976.
[13] R.P. Dick and N.K. Jha, “MOCSYN: Multiobjective Core-Based

Single-Chip System Synthesis,” Proc. Design Automation and Test in
Europe Conf. (DATE ’99), pp. 263-270, Mar. 1999.

[14] Heterogeneous Computing, M.M. Eshaghian, ed. Artech House,
1996.

[15] D. Fernandez-Baca, “Allocating Modules to Processors in a
Distributed System,” IEEE Trans. Software Eng., vol. SE-15,
no. 11, pp. 1427-1436, Nov. 1989.

[16] The Grid: Blueprint for a New Computing Infrastructure, I. Foster and
C. Kesselman, eds. Morgan Kaufmann, 1999.

[17] R.F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M.
Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kussow, J.D. Lima,
F. Mirabile, L. Moore, B. Rust, and H.J. Siegel, “Scheduling
Resources in Multiuser, Heterogeneous, Computing Environ-
ments with SmartNet,” Proc. Seventh IEEE Heterogeneous Comput-
ing Workshop (HCW ’98), pp. 184-199, Mar. 1998.

[18] R.F. Freund and H.J. Siegel, “Heterogeneous Processing,” IEEE
Computer, vol. 26, no. 6, pp. 13-17, June 1993.

[19] A. Ghafoor and J. Yang, “A Distributed Heterogeneous Super-
computing Management System,” IEEE Computer, vol. 26, no. 6,
pp. 78-86, June 1993.

[20] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M.B. Srivastava,
“Power Optimization of Variable-Voltage Core-Based Systems,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 12, pp. 1702-1714, Dec. 1999.

[21] I. Hong, G. Qu, M. Potkonjak, and M. Srivastava, “Synthesis
Techniques for Low-Power Hard Real-Time Systems on Variable
Voltage Processors,” Proc. 19th IEEE Real-Time Systems Symp.
(RTSS ’98), pp. 95-105, Dec. 1998.

[22] O.H. Ibarra and C.E. Kim, “Heuristic Algorithms for Scheduling
Independent Tasks on Non-Identical Processors,” J. ACM ’77,
vol. 24, no. 2, pp. 280-289, Apr. 1977.

[23] M. Kafil and I. Ahmad, “Optimal Task Assignment in Hetero-
geneous Distributed Computing Systems,” IEEE Concurrency,
vol. 6, no. 3, pp. 42-51, July 1998.

[24] A. Khokhar, V.K. Prasanna, M.E. Shaaban, and C. Wang,
“Heterogeneous Computing: Challenges and Opportunities,”
Computer, vol. 26, no. 6, pp. 18-27, June 1993.

[25] J.-K. Kim, D.A. Hensgen, T. Kidd, H.J. Siegel, D.St. John, C. Irvine,
T. Levin, N.W. Porter, V.K. Prasanna, and R.F. Freund, “A Flexible
Multi-Dimensional QoS Performance Measure Framework for
Distributed Heterogeneous Systems,” Cluster Computing, special
issue on cluster computing in science and engineering, vol. 9,
no. 3, pp. 281-296, July 2006.

[26] J.-K. Kim, S. Shivle, H.J. Siegel, A.A. Maciejewski, T.D. Braun, M.
Schneider, S. Tideman, R. Chitta, R.B. Dilmaghani, R. Joshi, A.
Kaul, A. Sharma, S. Sripada, P. Vangari, and S.S. Yellampalli,
“Dynamically Mapping Tasks with Priorities and Multiple Dead-
lines in a Heterogeneous Environment,” J. Parallel and Distributed
Computing, vol. 67, no. 2, pp. 154-169, Feb. 2007.

[27] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic Task Mapping
Algorithms for a Distributed Heterogeneous Computing Environ-
ment,” Proc. Fourth IEEE Heterogeneous Computing Workshop (HCW
’95), pp. 30-34, Apr. 1995.

[28] J. Luo and N.K. Jha, “Power-Conscious Joint Scheduling of
Periodic Task Graphs and Aperiodic Tasks in Distributed Real-
Time Embedded Systems,” Proc. Int’l Conf. Computer-Aided Design
(ICCAD ’00), pp. 357-364, Nov. 2000.

[29] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund,
“Dynamic Mapping of a Class of Independent Tasks onto
Heterogeneous Computing Systems,” J. Parallel and Distributed
Computing, vol. 59, no. 2, pp. 107-121, Nov. 1999.

[30] M. Maheswaran, T.D. Braun, and H.J. Siegel, “Heterogeneous
Distributed Computing,” Encyclopedia of Electrical and Electronics
Eng., vol. 8, J.G. Webster, ed., pp. 679-690, John Wiley & Sons,
1999.

[31] D. Marinescu, G. Marinescu, Y. Ji, L. Boloni, and H.J. Siegel,
“Ad Hoc Grids: Communication and Computing in a Power
Constrained Environment,” Proc. Workshop Energy-Efficient Wire-
less Comm. and Networks (EWCN ’03) and Proc. 22nd Int’l
Performance, Computing, and Comm. Conf. (IPCCC ’03), Apr. 2003.

[32] P. Mejia-Alvarez, E. Levner, and D. Mosse, “Power-Optimized
Scheduling Server for Real-Time Tasks,” Proc. IEEE Real-Time and
Embedded Technology and Applications Symp. (RTAS ’02), pp. 239-
250, Sept. 2002.

[33] Z. Michalewicz and D.B. Fogel, How to Solve It: Modern Heuristics.
Springer, 2000.

[34] R. Mishra, N. Rastogi, Z. Dakai, D. Mosse, and R. Melhem,
“Energy Aware Scheduling for Distributed Real-Time Systems,”
Proc. Int’l Parallel and Distributed Processing Symp. (IPDPS ’03),
Apr. 2003.

[35] S. Shivle, R. Castain, H.J. Siegel, A.A. Maciejewski, T. Banka, K.
Chindam, S. Dussinger, P. Pichumani, P. Satyasekaran, W. Saylor,
D. Sendek, J. Sousa, J. Sridharan, P. Sugavanam, and J. Velazco,
“Static Allocation of Resources to Communicating Subtasks in a
Heterogeneous Ad Hoc Grid Environment,” J. Parallel and
Distributed Computing, special issue on algorithms for wireless
and ad hoc networks, vol. 66, no. 4, pp. 600-611, Apr. 2006.

[36] S. Shivle, H.J. Siegel, A.A. Maciejewski, T. Banka, K. Chindam, S.
Dussinger, P. Pichumani, P. Satyasekaran, W. Saylor, D. Sendek, J.
Sousa, J. Sridharan, P. Sugavanam, and J. Velazco, “Mapping
Subtasks with Multiple Versions on an Ad Hoc Grid,” Parallel
Computing, special issue on heterogeneous computing, vol. 31,
no. 7, pp. 671-690, July 2005.

[37] H. Singh and A. Youssef, “Mapping and Scheduling Hetero-
geneous Task Graphs Using Genetic Algorithms,” Proc. Fifth IEEE
Heterogeneous Computing Workshop (HCW ’96), pp. 86-97, 1996.

[38] L. Shang, R.P. Dick, and N.K. Jha, “DESP: A Distributed
Economics-Based Subcontracting Protocol for Computation Dis-
tribution in Power-Aware Mobile Ad Hoc Networks,” IEEE Trans.
Mobile Computing, vol. 3, no. 1, pp. 33-45, Jan.-Mar. 2004.

[39] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” Proc. Usenix Symp. Operating Systems
Design and Implementation (OSDI ’94), pp. 13-23, Nov. 1994.

[40] M.-Y. Wu, W. Shu, and H. Zhang, “Segmented Min-Min: A Static
Mapping Algorithm for Meta-Tasks on Heterogeneous Comput-
ing Systems,” Proc. Ninth IEEE Heterogeneous Computing Workshop
(HCW ’00), pp. 375-385, May 2000.

[41] D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS and Contentiona-
ware Multi-Resource Reservation,” Cluster Computing, vol. 4, no. 2,
pp. 95-107, Apr. 2001.

[42] J. Yang, I. Ahmad, and A. Ghafoor, “Estimation of Execution
Times on Heterogeneous Supercomputer Architectures,”
Proc. Int’l Conf. Parallel Processing (ICPP ’93), pp. I-219-I-226,
Aug. 1993.

[43] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for
Reduced CPU Energy,” Proc. 36th Ann. Symp. Foundations of
Computer Science (FOCS ’95), pp. 374-382, 1995.

[44] V. Yarmolenko, J. Duato, D.K. Panda, and P. Sadayappan,
“Characterization and Enhancement of Dynamic Mapping Heur-
istics for Heterogeneous Systems,” Proc. Int’l Workshop Parallel
Processing (ICPP ’00), pp. 437-444, Aug. 2000.

[45] Y. Yu and V.K. Prasanna, “Energy-Balanced Task Allocation for
Collaborative Processing in Wireless Sensor Networks,” ACM/
Kluwer J. Mobile Networks and Applications, special issue on
algorithmic solutions for wireless, mobile, ad hoc and sensor
networks, vol. 10, no. 1, pp. 115-131, Feb. 2005.

[46] D. Zhu, R. Melhem, and B.R. Childers, “Scheduling with Dynamic
Voltage/Speed Adjustment Using Slack Reclamation in Multi-
processor Real-Time Systems,” IEEE Trans. Parallel and Distributed
Systems, vol. 14, no. 7, pp. 686-700, July 2003.

1456 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

Jong-Kook Kim received the BS degree in
electronic engineering from Korea University,
Seoul, in 1998 and the MS and PhD degrees in
electrical and computer engineering from Pur
due University in May 2000 and August 2004,
respectively. He is currently an assistant profes-
sor in the School of Electrical Engineering, Korea
University, Seoul. He has worked at Samsung
SDS’s IT R & D Center from 2005 to 2007. His
research interests include heterogeneous dis-

tributed computing, computer architecture, performance measures,
resource management, evolutionary heuristics, energy-aware comput-
ing, and efficient computing. He is a member of the IEEE, the IEEE
Computer Society, and the ACM. His complete vitae is available at http://
jongkook.kim.googlepages.com.

Howard Jay Siegel received the BS degree
in electrical engineering and the BS degree in
management from the Massachusetts Institute
of Technology (MIT), and the MA, MSE, and
PhD degrees from the Department of Elec-
trical Engineering and Computer Science,
Princeton University. He is the George T.
Abell endowed chair distinguished professor of
electrical and computer engineering in the
Department of Electrical and Computer En-

gineering and a professor of computer science in the Department of
Computer Science, Colorado State University (CSU). He is the
director of the CSU Information Science and Technology Center
(ISTeC). ISTeC is a university-wide organization for promoting,
facilitating, and enhancing CSU’s research, education, and outreach
activities pertaining to the design and innovative application of
computer, communication, and information systems. He is a fellow of
the IEEE and the ACM. From 1976 to 2001, he was a professor in
the School of Electrical and Computer Engineering, Purdue
University. He is a coauthor of more than 350 technical papers.
His research interests include heterogeneous parallel and distributed
computing, parallel algorithms, and parallel machine interconnection
networks. He was a co-editor-in-chief of the Journal of Parallel and
Distributed Computing and was on the editorial boards of both the
IEEE Transactions on Parallel and Distributed Systems and the
IEEE Transactions on Computers. He was the program chair/cochair
of three conferences, general chair/cochair of seven conferences,
and chair/cochair of five workshops. He is a member of the Eta
Kappa Nu electrical engineering honor society, the Sigma Xi science
honor society, and the Upsilon Pi Epsilon computing sciences honor
society. For more information, visit http://www.engr.colostate.edu/~hj.

Anthony A. Maciejewski received the BSEE,
MS, and PhD degrees from Ohio State University
in 1982, 1984, and 1987, respectively. From
1988 to 2001, he was a professor of electrical and
computer engineering in the Department of
Electrical and Computer Engineering, Purdue
University, West Lafayette. He is currently the
department head of the Electrical and Computer
Engineering Department, Colorado State Uni-
versity. He is a fellow of the IEEE. His complete

vitae is available at http://www.engr.colostate.edu/~aam.

Rudolf Eigenmann received the PhD degree in
electrical engineering/computer science from
ETH Zurich, Switzerland, in 1988. He is a
professor in the School of Electrical and Compu-
ter Engineering, Purdue University. He is also the
interim director of the Computing Research
Institute and associate director of Purdue’s Cyber
Center. His research interests include optimizing
compilers, programming methodologies and
tools, performance evaluation for high-perfor-

mance computers, and Internet sharing technology. From 1988 to 1995,
he worked as a research scientist at the Center for Supercomputing
Research and Development, University of Illinois, Urbana Champaign,
where he also served as the leader of the Center’s Cedar Fortran
compiler group. He has published his work in more than 100 papers in
international conference and workshop proceedings and journals. He
serves on the editorial boards of the International Journal of Parallel
Programming, the IEEE Transaction on Parallel and Distributed Systems
Journal, and the IEEE Computing in Science and Engineering Magazine.
He has served as the chairman of computer engineering at Purdue’s
School of ECE and as the chairman of the High-Performance Group,
Standard Performance Evaluation Corp. (SPEC). He has also been the
general chair and program chair of such conferences as the ACM
Symposium Principles and Practice of Parallel Programming, the
International Conference on Parallel Processing, the Workshop on
Languages and Compilers for High-Performance Computing, and the
Workshop on High-Level Interfaces for Parallel Systems. He is the
recipient of a 1997 US National Science Foundation CAREER Award. For
more information, please visit http://www.ece.purdue.edu/~eigenman.
He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KIM ET AL.: DYNAMIC RESOURCE MANAGEMENT IN ENERGY CONSTRAINED HETEROGENEOUS COMPUTING SYSTEMS USING VOLTAGE... 1457

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 9, 2008 at 13:58 from IEEE Xplore. Restrictions apply.

