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On Simulation and Design of Parallel-Systems
Schedulers: Are We Doing the Right Thing ?

Edi Shmueli and Dror G. Feitelson

Abstract— It is customary to use open-system, trace-driven
simulations to evaluate the performance of parallel-system sched-
ulers. As a consequence, all schedulers have evolved to optimize
the packing of jobs in the schedule, as a mean to improve
a number of performance metrics that are conjectured to be
correlated with user satisfaction, with the premise that this
will result in a higher productivity in reality. We argue that
these simulations suffer from severe limitations that lead to sub-
optimal scheduler designs, and to even dismissing potentially
good design alternatives. We propose an alternative simulation
methodology called site-level simulation, in which the workload
for the evaluation is generated dynamically by user-models that
interact with the system. We present a novel scheduler called
CREASY that exploits knowledge on user behavior to directly
improve user satisfaction, and compare its performance to the
original, packing-based EASY scheduler. We show that user
productivity improves by up to 50% under the user-aware design,
while according to the conventional metrics, performance may
actually degrade.

Index Terms— Parallel job scheduling, trace-driven simula-
tions, open-system model, user behavior, feedback.

I. INTRODUCTION

AN important goal of any parallel-system scheduler is to
promote the productivity of its users. To achieve high

productivity the scheduler has to keep its users satisfied and
motivate them to submit more jobs. Due to the high costs
involved in deploying a new scheduler, it is uncommon to
experiment with new designs in reality for the first time.
Instead, whenever a new scheduler is proposed, it is first
evaluated in simulation, and only if it demonstrates significant
improvements in performance, it then becomes a candidate for
an actual deployment. The role of simulations is thus critical
for the choices made in reality.

The conventional simulations presently used to evaluate the
schedulers are trace-driven, and use an open-system model
to play-back the trace and generate the workload for the
evaluation. This means that new requests get issued during
simulation solely according to the timestamps from the trace,
irrespective of the system state, and implies that as long as
the system is not saturated, the throughput of the scheduler
being evaluated also gets dictated by the timestamps, instead
of being affected by the actual performance of the scheduler.
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The inability to influence throughput is an inherent problem
in open models. In our case, job throughput is probably the
best indicator for user productivity, but the metric simply can-
not be used in the evaluation. The common solution is to use an
alternative set of metrics which on one hand can be affected by
the scheduler, and on the other be conjectured to correlate with
user satisfaction. More specifically, the jobs’ average response-
time and slowdown are frequently used in evaluations, with
the premise that improving them in simulation will result in a
higher productivity in reality.

We argue that these simulations suffer from severe limita-
tions, and that they lead the schedulers to focus on the packing
of jobs in the schedule as a mean to improve the average values
in simulation, which results in sub-optimal scheduler designs.
We also argue that the conventional performance metrics do
not necessarily correlate with user productivity, which may
even result in dismissing potentially good design alternatives
as poor.

As an alternative, we propose a novel simulation method-
ology named site-level simulation, in which the workload is
generated not from traces, but dynamically by user-models that
interact with the system, and whose behavior in simulation is
similar to the behavior of users in reality. We claim that such
behavior can be extracted directly from traces of systems, and
with a level of detail that is sufficient to enable us to develop
reliable models of the users to be used in the simulations.

Site-level simulations reproduce the fine-grained interaction
that naturally exists between the users and the system in reality.
This means that schedulers capable of motivating their users
to submit more jobs will actually cause the throughput of the
jobs in the simulation to increase, and implies that schedulers
can be designed to improve user satisfaction directly, since
their effect on productivity will be reliably evaluated.

We present such a scheduler and name it CREASY. Our
scheduler inherits its backfilling algorithm from the original,
packing-based EASY scheduler, but uses a novel prioritization
scheme that exploits knowledge on user behavior to improve
user satisfaction. It uses the fact that some jobs are more
critical to the users than others (hence “CR” stands for
CRiticality) in the sense that delaying them too much may
cause their owners to leave the system. It assigns higher
priorities to these jobs to reduce the likelihood for session
aborts, and to motivate the users to submit more jobs.

We compare the performance of our scheduler, in sim-
ulation, to the performance of EASY, and show that user
productivity improves by more than 50% under the user-
aware design. We investigate the reason for this exceptional
improvement and show that it stems from CREASY’s ability
to maintain long user sessions under high loads.
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We also compare the two schedulers according to the con-
ventional performance metrics and show inconsistent results:
the average job response-time under CREASY is 27% higher
compared to EASY, while the average slowdown is 66% lower.
We show that the increase in response time is the outcome
CREASY’s tendency to prioritize short jobs at the expense of
longer ones that dominate the average, and that the decrease
in slowdown is the result of the exact same trade-off, and the
fact that slowdown is affected mostly by the shorter jobs.

This paper is organized as follows. Section II provides the
background: it gives examples of common schedulers designs,
describes the conventional simulations and how they lead to
these designs. Section III introduces site-level simulations:
it describes our findings regarding the behavior of users in
parallel systems, and the user models we use in our simula-
tions which are based on these findings. Section IV presents
CREASY and describes the simulation results. Section V
surveys related work, and Section VI concludes the paper and
suggests future research directions.

II. SHORTCOMINGS OF CONVENTIONAL SIMULATIONS

There are different types of parallel systems, and each
requires a scheduler that is tailored to its own specific ar-
chitecture. Though all schedulers are evaluated in simulation
in a similar way, we chose to focus, without loss in generality,
on a specific type of system that is both common and easy to
describe.

Our system has a distributed memory model, in which every
processor in the system is associated with a private memory,
and the processors are connected to each other using a fast
network. A parallel job in such a system is a unit of work
that is composed of multiple processes that need to execute in
parallel and communicate over the network.

There is no time-sharing nor preemption support in our
system. This means that processors need to be allocated to the
jobs using a one-to-one mapping — one processor for every
process of the job, and once allocated they remain dedicated
to the job until it terminates. This scheme is often referred to
as space-slicing.

The role of the scheduler in such a system is to accept
the jobs from the users, to allocate processors and to execute
the jobs on the selected processors. For simplicity, we ignore
issues like network contention, heterogeneous node configura-
tions, and security.

The system users submit their jobs by providing job descrip-
tions to the scheduler. For our type of system this typically
includes two important attributes: the number of processors
the job requires in order to execute, which is often referred to
as the job’s size, and an estimated upper bound on the runtime
of the job, to enable the scheduler to plan ahead.

A. Common Scheduler Designs

The behavior of the schedulers upon job arrival differ
greatly. Most schedulers maintain a queue where the jobs wait
for processors to become available [1], [2]. Whenever the state
of the system changes, either due to an arrival of a new job,
or a termination of a running job, they scan the queue and

select jobs for execution. Some schedulers maintain a number
of queues and use, for example, the job’s runtime estimates to
select the right queue for the job [3]. Other schedulers maintain
futuristic execution profile for the jobs; when a new job arrives,
they insert it into the profile in a location where it either does
not conflict with any of the already existing jobs [4], or in a
place where it delays some of these jobs by a small factor [5].

It is difficult to determine which approach is the best, and in
fact some studies have indicated that the relative performance
of schedulers may actually depend on the workload [4]. On
the other hand, there is one thing that all schedulers share
in common: they all focus on the packing of jobs in the
schedule, which as we demonstrate below, may not be optimal
for productivity.

Consider for example a loaded system, and three users
numbered 1, 2 and 3, who submitted three jobs to their
scheduler at 11:00am, 11:10am, and 11:55am, respectively.
Assume that the time is 12:00pm and that neither of these
jobs had started executing yet. By this time, there is a high
probability that users 1 and 2 have given up waiting for their
jobs and that they have left the system already. On the other
hand, there is a good chance that user 3 who had just submitted
his job is still active at the system, and is excepting a fast
response.

Figure 1 illustrates how three different schedulers would
have treated these jobs. In all sub-figures, the system proces-
sors are laid out vertically, and time is running from left to
right, starting at 12:00pm. Our three jobs are labeled 1, 2 and
3, after their users. There is also one more job that is labeled
R and is currently running, and enough free space beside that
job to accommodate job 2 or 3, but not job 1.

The simplest scheduler, First-Come-First-Served (FCFS) in
Figure 1(a), would simply execute the jobs in their arrival
order. Since job 1 must wait for job R to terminate before
it can start executing, a large space at the beginning of the
schedule remains un-utilized. Jobs 2 and 3 will start executing
together under FCFS, but only after job 1 terminates.

The problem with FCFS is of course the poor system
utilization. This led to the development of a new class of
schedulers that relax the strict execution order of the jobs to
improve utilization. When the jobs reside in a wait queue in
their arrival order, such schedulers pick small jobs from the
back of the queue, and execute them before larger jobs that
arrived earlier, to fill holes in the schedule. This behavior was
given the name backfilling.

Backfilling can be implemented in different ways. Figure
1(b) illustrates the schedule under the EASY scheduler —
a classic backfilling scheduler that was originally developed
for the IBM SP parallel system, and is used ever since as
a reference for performance comparison in virtually any job
scheduling research [1].

EASY prioritizes the waiting jobs according to their arrival
order, and uses the jobs’ runtime estimates to calculate when
the highest priority job — the earliest arriving job — will be
able to execute in the future. It then examines the remaining
jobs in descending priority order, and backfills any job that
fits into the currently free processors, as long as it will not
conflict with the projected execution of the highest priority job.
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(c) User-aware Schedule

Fig. 1. Three different schedules for the jobs: (a) Poor system utilization under FCFS, (b) Improved utilization but not user-optimal schedule under EASY,
and (c) User-aware schedule to motivate user 3 to submit more jobs.

Concentrating on the highest priority job is done to guarantee
the execution of all jobs: once this job starts executing, the
next earliest-arriving job will become the highest priority job,
and it also will no longer be delayed.

In our example, job 1 is the earliest arriving job, so EASY
determines that it will be able to execute only after job R
terminates. It then examines job 2 that has the second-highest
priority, and backfills that job since it will not conflict with the
execution of job 1. Finally it examines job 3 and determines
that there are not enough free processors to backfill that job
too. Job 3 will therefore be delayed to a later time, and execute
only after job 1 terminates.

At first glance it seems that EASY’s schedule is optimal:
the space beside job R has been utilized by job 2, and job 1
will execute without delay — but this is just an impression
that is based on a static view of the system. The problem is
that by the time job 3 will terminate, there is a high probability
that user 3 will give up waiting for it and leave the system.
In other words, EASY backfilling may be apparently good for
utilization, but it is not optimal for the users.

Figure 1(c) illustrate a user-aware schedule in which job
3 is backfilled before job 2, although it has arrived last. The
idea is to get job 3 to respond while its owner is still active at
the system, to motivate user 3 to continue the interaction and
submit more jobs. Though initially it seems less intuitive, this
schedule is in fact based on the anticipated dynamics of the
system and speculating about future user behavior, and should
result in a higher productivity.

B. Simulations Effect on Design

Though it is clear from the above example that scheduling
jobs without considering the users might not be optimal,
virtually all schedulers would backfill, similar to EASY, job 2
ahead of job 3. We argue that the reason they do not explicitly
consider the users is rooted in the way the conventional
simulations are carried out to evaluate the performance of the
schedulers.

In these simulations, the workload is usually generated
from traces that contain records of jobs that were submitted
to real, production-use parallel systems over long periods of
time. Each record in the trace contains several attributes that
describe a job, and includes a timestamp that indicates when
the job was originally submitted.

There are two models for actually generating the workload
from the trace, the closed-system model, and the open-system

model. The closed model ignores the timestamps and issues
new requests only after a previous job completes. The problem
is that it leads to extreme regularity: there are no bursts of ac-
tivity in the workload which severely limits the optimizations
that can be performed by the scheduler, and there is no easy
way to manipulate the load for the evaluation.

The open model on the other hand plays-back the trace
solely according to the timestamps, and issues new requests
irrespectively of the system state. It supports bursts as imposed
by the timestamps, and the load can be easily manipulated by
modifying the timestamps in the trace before the simulation
begins. Since real workloads often exhibit bursts and varying
load conditions, the conventional simulations adopted this
model in generating the workload, but the choice is more of
a compromise than an optimal selection, and it even seems to
have affected the way schedulers are designed.

In open-system simulations, as long as the system is not
saturated, the throughput of the scheduler that is being evalu-
ated gets dictated solely by the timestamps from the trace, and
it is not affected by actual performance of the scheduler. A
scheduler capable of motivating its users to submit more jobs
will not cause more jobs to be submitted, and an inefficient
scheduler that ignores its users and causes them to leave the
system will not decelerated the creation of additional work.

This inability to influence throughput is an inherent problem
in open models in general. In our case, job throughput is
probably the best indicator for user productivity, and improv-
ing it should therefore be an important goal for any parallel-
system scheduler, but the metric simply cannot be used in
the evaluation. The common solution is to use an alternative
set of metrics which on one hand can be affected by the
scheduler, and on the other be conjectured to correlate with
user satisfaction. More specifically, the jobs’ average response-
time which is the time the jobs spent in the system from
submission to termination, and their slowdown which is the
response time normalized by the actual runtime of the job, are
frequently used in evaluations. The premise is that improving
them in simulation will result in a higher productivity in
reality.

Consequently, all schedulers evaluated using the conven-
tional simulations have evolved to consider the user of the
system only implicitly by trying to improve these metrics.
They often try to optimize the packing of the jobs in the
schedule, since tighter packing usually leads to lower average
values. We are not aware of any parallel-system scheduler
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TABLE I

METHODOLOGICAL DIFFERENCE BETWEEN THE TWO TYPES OF SIMULATION.

Category Conventional Simulations Site-Level Simulations

Workload source System traces User models
Workload generation Open-system model Users-scheduler interaction
Load scaling Trace (de)-compression Number of users
Performance metrics Response time, slowdown Throughput, session length

that considers its users explicitly, nor of any investigation
as to whether these seemingly “user-friendly” metrics indeed
correlate with higher productivity.

III. SITE-LEVEL SIMULATIONS

As described above, the conventional simulations lead to
the design of schedulers that consider the system users only
implicitly. To enable the design of truly user-aware schedulers,
we propose to change the way simulations are carried out:
instead of using traces to generate the workload, we suggest
to model the users of the system, and use these models
in simulation to dynamically generate the workload for the
evaluation. We name these simulations, naturally, site-level
simulations.

Site-level simulations reproduce the fine-grained interaction
that naturally exists between the users and their system in
reality. This means that schedulers capable of motivating the
users to submit more jobs will actually cause the throughput
of the jobs to increase, and implies that schedulers can be
designed to improve user satisfaction directly, since their effect
on productivity will be reliably evaluated. Table I summarizes
the methodological difference between the two types of sim-
ulations.

The basic and most important elements in a site-level simu-
lation are the user-models, and in fact our entire methodology
depends on the ability to understand the behavior of users,
and to capture this behavior in a model that can be used
in simulation. One of the major contributions of our work
is the analysis methodology we developed, that enabled us
to uncover the users’ behavior patterns directly from systems
traces, without conducting live experiments with real users.
In the following section we briefly describe our findings and
focus only on those that directly pertain to our user models.
The complete methodology is described in [6].

These findings form the basis for the session dynamics
model described below, which is the first of three models
that together comprise the complete user model we use in our
simulations. The dynamics model handles the dynamic aspects
in the user behavior — the starting and the ending of user
sessions as a reaction to the performance of their jobs. The
other two models are the job submission model that handles the
actual submission of jobs during the sessions, and the activity
cycles model that incorporates daily and weekly cycles into
the simulation.

Our user model is described in Section III-B. We imple-
mented and integrated it into Site-Sim — a framework we
developed for site-level simulations to enable the reliable eval-
uation of user-aware schedulers. We used Site-Sim extensively
to explore design alternatives as we developed CREASY —
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Fig. 2. CDF of think times in the five traces: negative values indicate
that sometimes users submit jobs without waiting for their previous jobs to
terminate. The steep climb in all curves which levels-off at about twenty
minutes lead to defining the sessions think time threshold to be twenty-
minutes.

TABLE II

THE FIVE TRACES WE USED FOR OUR ANALYSIS: TOGETHER, THEY

REPRESENT MANY YEARS OF ACTIVITY BY HUNDREDS OF USERS.

Trace Duration Users Jobs
SDSC-Par-1995-2.1-cln 1/1995–12/1995 98 53,970
CTC-SP2-1996-2.1-cln 6/1996–5/1997 679 77,222
KTH-SP2-1996-2 9/1996–8/1997 214 28,489
SDSC-SP2-1998-3.1-cln 4/1998–4/2000 437 59,725
SDSC-BLUE-2000-3.1-cln 4/2000–1/2003 468 243,314

the first truly user-aware parallel-system scheduler described
in Section IV. The simulation results of our scheduler reported
in that same section were also obtained using Site-Sim.

A. User Behavior Patterns

In reality, users tend to submit several jobs one after the
other in periods of activity that are known as sessions. The
time between the termination of a job and the submission of
the next is globally known as the think time, but the fact is that
if the think time is too long, it may actually indicate a break
which is not part of the session. The question is therefore what
is the think time threshold that separates jobs that belong to
the same session from those that belong to the next.

Zilber et al. answered the question by simply observing the
distribution of the think times in different traces of parallel
systems [7]. Figure 2 shows the CDF of the think times in five
of these traces1, which are listed in Table II. Two important
observation can be made on this figure. The first is that think
times can be negative, which means that sometimes users
submit jobs without actually waiting for their previous job
to terminate.

1All traces are available from the Parallel Workloads Archive at URL
http://www.cs.huji.ac.il/labs/parallel/workload/.
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The second observation is the steep climb in all curves at
zero, which starts to level off at around twenty minutes. This
means that a large portion of the jobs are submitted within
twenty minutes from the completion of a previous job, and that
beyond twenty minutes the think times are evenly distributed,
without any features indicating a natural threshold. Zilber et
al. therefore defined the threshold to be twenty minutes; above
twenty minutes the think times are considered breaks, and the
jobs that follow them are considered to belong to the next
session.

In our work we adopted this definition, but also tried to
understand what may cause the users to continue their sessions
or to take breaks. We found that in all traces, there is a strong
correlation between the response times of the jobs and the
think times: the longer the response, the higher the think times
that follow the jobs. This led us to speculate that user behavior
is affected by the response times of their jobs — that short
response times encourage the users to quickly submit more
jobs, and that longer ones may cause them to abort their
sessions. Similar observations regarding the relation between
job response and user behavior were reported through the use
of live-experiments in [8].

Due to the large variance that naturally exists in the traces,
we divided the jobs into classes according to their response
times, and for each class we calculated the percentage of
jobs that were submitted below the twenty minutes think time
threshold. The result was a mapping between the response
times of the jobs and the probability for the users to continue
their sessions, which indicates that the longer the response the
lower the probability for the users to continue and submit more
jobs. The mapping is illustrated in Figure 3(a) and it forms the
basis for session dynamics model described in Section III-B.1.

It is important to note that the response times of jobs is
only one of many factors that affect the users, and that user
behavior in reality is far more involved than what our current
model depicts. However, for the purpose of demonstrating
the effect of simulations on the design of the schedulers,
our simple models suffice. In the conclusions section we
provide suggestions as to how to enhance the models to further
improve the accuracy of the evaluation.

B. Complete User Model

Our user model is composed of three sub-models that in-
teract with each other during simulation to simulate a realistic
user behavior. The session dynamics model, the job submission
model, and the activity cycles model are described in detail in
the following sections. In section III-B.4 we provide examples
as to how these models interact during simulation.

1) Session Dynamics Model: As described above, one of
the important factors that affect user behavior is the response
times of their jobs: the longer the response, the lower the
probability for the users to continue their sessions. This means
that response times in effect, affect the users’ decision to
continue or abort their interactive sessions with the system.

There are two reasons why it is extremely important to
accurately model this decision. First, it is an integral part
in the behavior of users, representing their satisfaction with

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90

P
ro

ba
bi

lit
y 

to
 c

on
tin

ue
 s

es
si

on

Job response time [m]

sdsc_sp2_cln
ctc_sp2
kth_sp2

sdsc_blue_cln
sdsc_par95_cln

(a) Original trace data

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90
P

ro
ba

bi
lit

y 
to

 c
on

tin
ue

 s
es

si
on

Job response time [m]

0.8
P =

0.05 x response time + 1

(b) Data combined and curve smoothened

Fig. 3. Jobs response time effect on user behavior: (a) In all traces the longer
the response, the lower the probability for the users to continue their sessions,
and (b) Trace data combined and resulting curve smoothened.

the performance of the system. Second, since the length of
the sessions directly affects the throughput metric, schedulers
can try to influence this decision as a mean to improve
productivity. In other words, the accurate modeling of this
decision is essential for both the evaluation and the design of
user-aware schedulers.

The session dynamics model is responsible for taking these
decisions for the user models during simulation, and based on
the outcome to determine when will they submit more jobs
to the system. In its essence, the dynamics model handles
the dynamic starting and the ending of user sessions during
simulation.

To model the decision, we first combined the data from
all five traces of Figure 3(a) and smoothened the resulting
curve, as shown in Figure 3(b). We found that the curve can
be roughly described by Equation 1. Next, during simulation
whenever job j terminates, we calculate the response time
of the job, and use Equation 1 to determine the probability
p cont(j) that the user who submitted the job will continue
his session with the system.

p cont(j) =
0.8

0.05× resp time(j) + 1
(1)

To make the final call we perform a single Bernoulli trial,
with probability p cont(j) for success and 1 − p cont(j) for
failure. If the trial ends in a success, the user will continue his
session with the system, otherwise he will take a break. The
trial is summarized in Equation 2.
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Fig. 4. The two think time distributions in the traces: (a) short think times
are used for sessions that continue, and (b) longer think times are used for
breaks.

decision =

{
continue session with probability p cont(j)
abort session with probability 1− p cont(j)

(2)
Once we know whether its session continues or not, the next

step is to determine when will the user submit his next job. As
described above, jobs within the same session are submitted
with up to twenty-minutes of think time from the completion
of a previous job, whereas between sessions the think times
are longer and are considered breaks. We therefore need two
distributions: one with short think times to be used for sessions
that continue, and the other with longer think times to be used
for breaks.

We used distributions that are based on empirical data we
extracted from the same five traces of Table II. In these traces,
breaks may sometimes be as long as several months, since
real users do not necessarily use the system continuously
throughout the year. To avoid such long pauses in user activity
during simulation, we limited the breaks to a maximum of
eight hours by filtering-out longer think times during trace
analysis. The two distributions as they appear in the traces are
shown in their CDF format in Figure 4. For the simulations,
we combined the data from all five traces into a single
representative distribution.

2) Job Submission Model: The session dynamics model
described above does not handle the actual submission of jobs.
This is the role of the job submission model: it generates the
attributes for the jobs, and submits the jobs to the scheduler
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Fig. 5. CDF of job sizes and runtimes in the traces: (a) sizes is a modal
distribution with most jobs using power-of-two processors, and (b) runtimes
is rather skewed distribution, dominated by small runtime values.

in a realistic manner.
To generate the attributes, we once again used distributions

that are based on empirical data from the traces. The CDFs
of the job sizes and runtimes are shown in Figure 5. The
first is a modal distribution with most jobs using power-of-
two processors, and the second is a rather skewed distribution
dominated by small runtime values, usually in the order of a
minute or less. Similar observation regarding size and runtimes
were reported in several studies [9].

Though the above distributions are based on empirical data,
using them “as-is” will still not generate a truly realistic
workload. The reason is that in reality, users tend to submit the
same jobs over and over again, which means that successive
jobs by the same user tend to be similar to each other. This
temporal locality in the workload will therefore be lost if we
simply sample these distributions in the course of simulation.

The solution is to use a two-level sampling process, with
the top level generating the attributes for the jobs2, and the
bottom level repeating them to generate effects of locality
[10]. For the bottom level, we chose the jobs’ sizes to be the
leading distribution, and extracted the number of times jobs
of the same size appear successively in the traces. The CDF
of size repetitions in the different traces is shown in Figure
6(a). Again, we combined all traces into a single representative
distribution for use in the simulation.

2Further accuracy can be achieve be considering the correlation between
size and runtime.
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Fig. 6. CDF of job size repetitions and batch widths in the traces: for
the simulations, we combined the data from all five traces into a single
representative distribution.

To actually submit the jobs, we closely examine Figure 2
and observe that a large fraction of the think times in the
traces — more than 50% in some cases — are in fact negative.
This stems from the definition of think time as the time from
the termination of a job to the submission of the next, and
indicates that sometimes users submit jobs without waiting
for their previous jobs to terminate.

An effective way to model this behavior is to use batches
which are groups of jobs submitted asynchronously to one
another, without being affected by the performance of previous
jobs. Sessions will thus consist of series of one or more
batches, each containing one or more jobs, and the session
dynamics model described above will only be used to derive
the think time from the last job in a batch, to the first job in the
following batch. The relationship between sessions, batches
and think times is illustrated in Figure 7. The jobs marked
with an X are those used to derive the think time.

The CDF of the width of the batches — the number of
jobs submitted asynchronously within batches — is shown in
Figure 6(b). As can be seen, the distributions are reasonably
similar in all traces which indicates that our data is represen-
tative of job submission behavior in general.

3) Activity Cycles Model: Daily and weekly cycles are
universal human traits. Most users arrive to work in the
morning and leave for home in the evening. Normally, they
work during week-days, and rest over weekends. Incorporating
these cycles of activity in the simulation is important, not just
because they constitute a fundamental characteristic of real

workloads, but also since they introduce periodic intervals of
low loads that enable the scheduler to stabilize the state of the
system and prepare for the next interval of high load [11].

Figure 8(a) shows the distribution of job submissions during
the 24-hours daily cycle in the traces. Not surprisingly, all
traces indicate higher levels of activity during the daytime
compared to the nighttime. What is interesting though is
the high level of similarity among the traces, which in fact
enables us to roughly define a boundary between day and
night. Accordingly, we defined daytime to be from 7:30am
to 17:30pm, and nighttime from 17:30pm to 7:30am the next
morning. Our analysis indicates that approximately 70% of all
job are submitted during the 10 hours of daytime, and the reset
during the nighttime.

Similarly, Figure 8(b) shows the distribution of submissions
during the weekly cycle. As expected, weekdays Monday to
Friday are busier than weekends, accounting for 80% of all
submissions. The remaining 20% occur during the weekends,
Saturday and Sunday.

The role of the activity cycles model is to incorporate these
daily and weekly cycles into the simulation. At simulation
start, it performs two Bernoulli trials for each user model: the
first to determine whether the user will be active during the
day or the nighttime, and the second to determine its days of
activity — weekdays or weekends. The probabilities we used
in these trials are 70% and 80%, respectively. This effectively
divides the user population into four classes: (a) daytime-
weekdays, (b) daytime-weekends, (c) nighttime-weekdays, and
(d) nighttime-weekends, and guarantees that the levels of
activity in the simulated workload will be similar to those
found in reality.

The model then continuously monitors the time of day and
the day of week during the simulation, and determines for each
user model, based on its class, whether it should continue to be
active or be temporarily suspended. For the daytime-weekday
users for example, if a job terminates after 17:30pm, the model
will determine it is sleep time for these users, and suspend their
activity until the next morning, or even until the next weekday,
if it is already a weekend.

To prevent bursts of activity at shift transition, the cycles
model also attaches a random number between -60 and 60
to each user model, and uses this number to personalize the
user’s window of activity. For example, if the number 20
was attached to a certain daytime user, the cycles model will
shift its window of activity by 20 minutes from the “official”
daytime window. This means that the user will submit his first
job at 7:50am and be suspended at 17:50pm.

4) Models Interaction During Simulation: The three mod-
els described above interact with each other in order to
simulate a realistic user behavior. We provide two examples
for this interaction, both for the daytime-weekday users. The
first happens entirely during the day, and demonstrate how
sessions start and end dynamically during simulation. In the
second example, the cycles model intervenes, and suspends
the user until the next morning. In both cases, we assume the
user only submits a single job at a time.

The first example is illustrated on the left side of Figure
9. Our user arrives to work at 7:30am sharp, and the job
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Fig. 8. Daily and weekly cycles in the traces: (a) 70% of the jobs are
submitted during daytime, 7:30am to 17:30pm, and (b) 80% of them are are
submitted during week-days, Monday to Friday.

submission model is immediately called to submit the first job
to the scheduler. When the job responds five minutes later, the
activity cycles model is called to determine whether the user is
still active at work. Since 7:35am is just the beginning of the
workday for our daytime-weekday user, the session dynamics
model is called to determine if its session should continue or
not.

The dynamics model determines that five minuets of re-
sponse are satisfactory, and decides on a short think time of
10 minutes following this job. Ten minutes later at 7:45am,
the activity cycles model is called once again to verify the
time, and the submission model is called to submit the second
job by the user. When this job responds 10 minutes later, the
cycles model verifies the time again, and the dynamics models
decides on a 15 minutes think time until the next job.

At 8:10am our user submits the third job to the scheduler.

This time, the job responds after a whole hour, so the dynamics
model determines that the session should not continue, and
decides on a long, three hours break for the user. Three hours
later, at 12:10pm, the cycles model verifies the time once
again, and our user submits the fourth job, and so forth.

The second example is illustrated on the right side of the
figure. Our user submit a job at 17:10pm that responds five
minutes later. The time is verified, and the dynamics model
decides on a think time of 10 minutes until the next job.
At 17:25pm our user submits one more job that responds at
17:35pm. This time the cycles model determines that it is late
for the user, and send him on a long sleep of 13 hours and 55
minutes, until 7:30am the next morning.

IV. USER-AWARE SCHEDULING

Site-level simulations allow user-aware schedulers to be
reliably evaluated and effectively designed. We developed such
a scheduler and compared its performance, in simulation,
to the original EASY scheduler which is not user-aware.
We present our scheduler and its simulation results in the
following sections.

A. Criticality of Jobs

Our scheduler is similar to the EASY scheduler from Sec-
tion II-A in the sense that they both use backfilling to improve
performance. Furthermore, our scheduler actually inherits its
backfilling algorithm from the EASY scheduler. In fact, the
only difference between the two schedulers is in the way
they prioritize the waiting jobs: while EASY accounts only
for the jobs’ arrival order in the interest of fairness [12], our
scheduler tries to assess the criticality of the jobs for the users,
and assigns its priorities accordingly. We therefore named our
scheduler CREASY, with “CR” standing for CRiticality, and
“EASY” to denote the backfilling algorithm internally used.

The criticality of a job is determined by the way it affects
the behavior of its owner. We already know that user behavior
is affected by the response times of the jobs. A closer look at
Figure 3 also reveals that the mapping between the response
times and user behavior is non-linear: the probability for users
to continue their sessions drops rapidly as response times
increase for short response times, and continues to drop more
slowly for higher response times.

This means that jobs with short response times are much
more critical to the users in the sense that any delay incurred
by these jobs, even the smallest one, dramatically increases the
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Fig. 9. Two examples for the models interaction during simulation: active user sessions are shown in the dark gray.

chances for a session abort. We therefore defined the criticality
of jobs using Equation 3, which is the derivative of Equation
1 in absolute values, and hence accurately accounts for these
differences in criticality: it assigns high values to jobs with
short response times, and near-zero values to those whose
effect on user behavior is marginal. This differs from plain
shortest-job-first scheduling in the sense that short jobs are
given high priorities only provided that they have not been
delayed too much.

criticality(j) =
0.04

(0.05× estimated response time(j) + 1)2
(3)

Note that in the denominator of Equation 3 we only use an
estimate for the response time of the job, since exact response
times can only be determined after the jobs terminate. For the
estimate we sum the time the job had already spent waiting
in the scheduler’s queue, and the time it is expected to run,
which is based on the user estimate. Together, the two values
represent the total time the job is expected to spend in the
system, from submission to termination.

If Equation 3 will be used to prioritize the jobs, it will
increase the chances for critical jobs to execute before other
jobs, which should reduce the likelihood for sessions abort,
and motivate the users to submit more jobs. The problem is
that this is not enough, because the EASY algorithm internally
used to backfill the jobs can guarantee the execution of all jobs
only if every waiting job will eventually become the highest

priority job.
While this is true under EASY’s original prioritization

scheme, it is not guaranteed in our case since according to
Equation 3, senior jobs whose response time is already long
will never become more critical than short executing jobs that
keep getting submitted. In other words, the combination of
criticality-based prioritization and EASY backfilling may lead
to starvation.

The solution is to combine a seniority factor in the priority
calculation, as shown in Equation 4: the criticality part on
the left is taken directly from Equation 3, and the seniority
factor is simply the time, in minutes, that the job is waiting
for execution in the scheduler’s queue. Finally, the weight α

is used to set the relative importance of the two factors in the
calculation, and at the same time to adjust the different units
used.

priority(j) = α× criticality(j) + seniority(j) (4)

If α = 0, jobs will be prioritized solely according to
their seniority, resulting in a prioritization scheme which is
effectively identical to EASY’s original scheme. Non-zero α

values on the other hand will cause the criticality factor to
take an increasing effect, and performance to improve as we
demonstrate below. However, since the largest possible value
of the criticality factor according to Equation 3 is 0.04, and the
seniority of jobs steadily increases with time, it is guaranteed
that for any α value that we choose, senior jobs will eventually
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reach higher priorities, and their execution will be guaranteed
by the EASY algorithm.

B. Simulation Results

We used Site-Sim to run site-level simulations of CREASY,
and compared its performance to the performance of the
original EASY scheduler. As described above, setting α to
0 in Equation 4 results in a prioritization scheme which is
effectively identical to EASY’s original scheme, which means
that the behavior of the two schedulers becomes identical. We
therefore didn’t even need to explicitly implement EASY —
we simply simulated it using CREASY.

We found that α values of 1500, 3000, 4500 and 6000 have
a noticeable and a progressive effect on the performance of
our scheduler. When α = 1500 its performance is closest
to EASY’s, and beyond 6000 changes in performance are
marginal. In total, we experimented with five schedulers: the
original EASY scheduler (simulated using CREASY with
α = 0), and the four variants of CREASY, each with one
of the above non-zero α values.

To compare the performance of the schedulers under dif-
ferent loads we ran five simulations of each scheduler, using
a different number of users models in each run. We used 50
users to simulate low loads and gradually increased the size
of the site by adding 50 users each time, until we reached
250 user models. In each run we simulated six months of
user activity, which produces enough data to allow us to base
our conclusions on statistically significant results. We also
compared key attributes of the resulting data to their original
distributions from the traces to validate the correctness of our
simulations.

1) User Productivity: Improving productivity is an im-
portant goal for any parallel system scheduler, and the best
indicator for user productivity is the throughput — the number
of jobs the users submit to the system over a period of time.

Figure 10(a) shows the average job throughput under the five
schedulers as a function of the size of the site. As seen in the
figure, for the smallest site of 50 users, all schedulers perform
similarly since the load is too low for any optimization to take
effect. Only when the load begins to increase, the differences
in performance become noticeable.

For the largest site we simulated, of 250 users, the through-
put under the EASY scheduler is 47 jobs/hour, while under
CREASY with α = 6000 it is 71 jobs/hour which is an
exceptional improvement of more than 50%. Improvement is
milder but is still very significant for CREASY with lower
α values: 21%, 36%, and 44% for αs of 1500, 3000, and
4500, respectively. A similar improvement is seen in the
measured system utilization, which increased from 57% to
85% for the largest α value. This happens since the two
metrics are strongly correlated: as long as the system is not
saturated, increasing throughput directly leads to an increase
in utilization.

To understand this exceptional improvements in throughput
we need to examine the behavior of the users under the five
schedulers. We chose to focus on the users sessions and in
particular on the length of their sessions with the system.
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Fig. 10. Average job throughput and session length: the higher the value of
α, the higher the throughput (a), and the milder the drop in session length
(b).

Session length is defined as the number of jobs the users
submit during their sessions of activity with the system, and
hence it serves as a good indicator for user satisfaction.

Figure 10(b) shows the average session length under the
five schedulers, as a function of the size of the site. Under
the EASY scheduler, session length drops significantly from
2.69 jobs/session on average for the small 50 users site, to
1.73 jobs/session for the 250 users site — a 36% drop. The
drop becomes milder with higher α values, and it is hardly
noticeable when α = 6000.

The reason session length drops is rooted in the core design
of the schedulers. The original EASY scheduler does not
consider the critically of the jobs. As a consequence, when
the load begins to increase more and more users under EASY
abort their sessions as a result of their jobs being delayed by
the scheduler. This causes average session length to decrease,
and explains the poor throughput of the scheduler in Figure
10(a).

As we increase the value of α, the chances for critical jobs to
execute before other jobs also increase: the higher the value of
α, the higher the priority of critical jobs, and the more critical
jobs that respond in time, which causes more users to continue
their sessions with the system, and the overall job throughput
to improve.

Finally, when α = 6000, the drop in session length is
hardly noticeable even under the highest loads. This means
that CREASY was capable of virtually isolating the interactive
users from the load conditions that exist in the system, suc-
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Fig. 11. Inconsistency according to the conventional metrics: the schedulers
with the lower α values outperform the ones with the higher values according
to the response-time metric (a), but according to the slowdown, the ones with
the higher values have significantly better performance (b).

cessfully providing them with a highly responsive environment
even under the most extreme load conditions.

2) Conventional Performance Metrics: While throughput
remains the best indicator for user productivity, there are other,
more conventional metrics that can be measured in site-level
simulations as well. Figure 11 shows the performance of our
five schedulers according to two of the most commonly used
metrics: the average job response time and the slowdown.

Similar to Figure 10, we see that the differences in perfor-
mance between the schedulers become significant only when
the load begins to increase. In contrast from Figure 10 though,
it is the schedulers with the lower α values that outperform
the ones with the higher values, but only according to the
response-time metric of Figure 11(a). The ones with the higher
values still have significantly better performance according to
the slowdown.

Under the highest 250 users load for example, the average
job response time under the EASY scheduler is 78 minutes,
while under CREASY with α = 6000 it is 99 minutes,
which is a 27% degradation in performance for CREASY.
On the other hand, the average job slowdown under EASY
is 71, while under CREASY it is only 24, which is a 66%
improvement.

The above results are surprising. We would expect perfor-
mance to improve with higher α values according to both
metrics, since the metrics are conjectured to be correlated
with user satisfaction, and thus should improve along with
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Fig. 12. Per-class performance comparison of the two schedulers: (a) the
27% increase in the average response is the outcome CREASY’s tendency to
prioritize short jobs at the expense of longer ones that dominate the average,
and (b) the 66% decrease in the average slowdown is the result of the exact
same trade-off, and the fact that the metric is affected mostly by the shorter
jobs.

the throughput metric of Figure 10(a). Obviously, this is not
the case, and the response-time metric is in fact inversely
correlated with productivity.

To understand the reason for this inconsistency, we divided
the jobs into classes according to their runtimes, and examined
the average response-time and slowdown in each class. We
chose to use three classes: one for short jobs of up to 1
minute of runtime, the second for medium jobs whose runtime
is between 1 and 10 minutes, and the third for longer jobs that
execute for more than 10 minutes. We chose these boundaries
based on the distribution of runtimes from Figure 5(b), in order
to create classes of approximately the same size.

Figure 12 compares the performance of the EASY scheduler
with CREASY using α = 6000, under the highest, 250-user
load, on a per-class basis. For the response time metric in
Figure 12(a), we see that under both schedulers the response
times of the jobs is correlated with their runtimes: the higher
the runtimes, the higher the average response time in the class.

The difference, though, is that under EASY the increase
in the average response time is rather moderate, while under
CREASY it is more extreme. Furthermore, in the class with the
short jobs the average under CREASY is 83% lower than the
average under EASY, in the class with the medium runtimes
it is only 44% lower, while in the third class, the average
response under CREASY is 81% higher compared to EASY.
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These differences are, once again, rooted in the core design
of the schedulers. Short jobs have naturally more backfilling
opportunities than jobs with longer runtimes. While this is true
under both schedulers, the effect is intensified under CREASY
as it further prioritizes the short jobs which are also much more
critical to the users. The outcome is a large reduction in the
response of the short jobs, at the expense of an increase in
response for the longer jobs — a trade-off resulting in a 27%
higher average response-time for CREASY, because the long
jobs dominate the average.

The slowdown metric in Figure 12(b) behaves exactly the
opposite: the average slowdown is inversely correlated with
the runtimes, decreasing under both schedulers as the runtimes
increase. But this time, the decrease is steep under EASY, and
very small under CREASY.

Slowdown is the response time normalized by the actual
runtime, which causes the metric to be affected mostly by the
shorter jobs. This means that although the relative differences
in the average slowdown between EASY and CREASY in each
class are similar to the differences in the average response
time, the absolute values of the metric are intensified in the
class of the short jobs, and lessened in the class of the longer
jobs. This changes the relative contribution of each class of
jobs to the overall average, and results in a 66% lower absolute
average slowdown for CREASY.

Figure 13 summarizes the improvements in performance un-
der CREASY for all four metrics: the average job throughput,
session length, the average job slowdown, and the average
response times. The results were measured under the highest
250-users load, and are all relative to the performance of the
original EASY scheduler.

When α = 0, there are no gains or losses in performance
under CREASY since its behavior is identical to the behavior
of the EASY scheduler. When the value of α increases, perfor-
mance improves under CREASY but only for the first three
metrics; for the response time metric performance degrades
with higher α values. In either case, both improvements or
degradations are not linear, and the curves begin to level-off
at the right side of the scale.

V. RELATED WORK

Traditionally, parallel-systems schedulers are evaluated us-
ing trace-driven simulations [5], [4], [13], [14], [3], [2]. The
alternative but less common approach is to use models to
generate the workload for the simulations, but the early models
were too simplistic and failed to capture important proprieties
of the workload such as self-similarity, locality, and cycles of
activity [9], [15], [16], [17], [18].

Zilber et al. were the first to present a comprehensive study
of the traces based on users and sessions [7]. Similarly but in
a different context, Arlitt presented a session-based analysis
of web server logs [19]. Both studies can be used to develop
more realistic models of the workload based on users and
sessions, but they lack a description of how the users react to
the performance observed from the system.

While the mechanics of using traces during simulation
are straightforward, there is more than one way to model
the users that generate the workload. Haugerud and Straum-
snes used user models that have different characteristics and
whose behavior is affected solely by the time of the day,
to simulate the workload of an interactive computer system
[20]. Hlavacs et al. suggested a layered user model made of
sessions, application, and commands, and demonstrated its use
in driving network simulations [21]. Shmueli and Feitelson
used two interdependent models: a job-submission model and
a job characteristics model, that together generate the workload
for job-scheduling simulations [22]. In these cases also, user
behavior was independent of the performance of the system.

Until recently, it was assumed that studying user reaction to
performance requires live experiments with real users. Bouch
et al. for example, used live experiments to investigate the
tolerance of users to web server delays [23]. Similarly, Lee
and Snavely examined user satisfaction live, at the San Diego
Supercomputer Center [8]. Recent studies on the other hand
have shown that it is possible to uncover user behavior directly
from traces of the system. Tran et al. developed a model of
web surfers reaction to network congestion just by analyzing
HTTP packet-traces [24]. Similarly, Chen et al. developed a
model of Skype’s users satisfaction purely from their VoIP
traces [25].

In the context of parallel job scheduling, we were the first
to characterize user behavior. Using a novel trace analysis
methodology that we developed we have found that user
behavior is correlated with the response times of their jobs
[6]. This enabled us to develop the session-dynamics model
in Section III-B.1 that depicts the users reaction to their jobs.

The SJF scheduling algorithm is well-known to produce
optimal average response times, and variants have been in-
corporated in several parallel schedulers [26], [27]. However,
our prioritization differs from SJF in that we consider the
response time rather than just the job’s execution time. Thus
our scheduler is not equivalent, or even similar, to those other
parallel schedulers.

VI. CONCLUSIONS

For more than two decades parallel-systems schedulers are
being evaluated using simulations that suffer from severe
limitations. In particular, the inability of these simulations
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to reproduce the fine-grained interaction that naturally exists
between the users and the system, led to the design of
schedulers that focus solely on the packing of jobs as a mean
to improve a number of performance metrics that are only
conjectured to be correlated with user satisfaction.

In this paper we have shown that the conventional, packing-
based approach to scheduling is far from optimal, and demon-
strated the potential in user-aware designs. We have also shown
that the conventional metrics do not necessarily correlate with
user productivity, which means that it is even difficult to
identify good designs under these simulations.

Site-level simulations allow user-aware designs to be ex-
plored and their performance to be reliably evaluated, but they
rely on user-models to generate the workload, which, as op-
posed to traces, will always be open for interpretation. Though
we feel we have clearly demonstrated their advantage, we are
also aware of the fact that we relied on major simplifications,
and that user behavior in reality is far more involved than what
our current model depicts.

It is known for example that real users are influenced by
contextual factors such as the type of task they perform, their
experience, and the cumulative time they interact with the
system. It is also known that users are sensitive to fairness in
the system, and might consider fairness to be more important
than productivity. It is important to understand these factors
and the way they affect the users, in order to enhance the
models and improve the accuracy of the evaluation.

Furthermore, the jobs the users submit during the day are
known to be different from those submitted during the night:
interactive jobs usually require much less resources and are
much more critical to the users than the batch jobs that execute
over nights and weekends. Users also use scripts to automate
the submission of their jobs, which may result in tens and
hundreds of jobs being submitted simultaneously. Such factors
should also be taken into consideration.

Finally, CREASY will need to be revised to consider the
aggregate effect of all these factors on the users, and its
performance will need to be evaluated again to demonstrate
that it can still significantly improve user productivity. lThis
task alone is extremely challenging, but it is a necessary step
toward the actual deployment of the first truly user-aware
parallel-system scheduler.
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