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Abstract— Network-wide broadcast (simply broadcast) is a
frequently used operation in wireless ad hoc networks. One
promising practical approach for energy efficient broadcast is
to use localized algorithms to minimize the number of nodes
involved in the propagation of the broadcast messages. In this
context, the minimum forwarding set problem (MFSP) (also
known as multi-point relay (MPR) problem) has received a
considerable attention in the research community. Even though
the general form of the problem is shown to be NP-complete,
the complexity of the problem has not been known under the
practical application context of ad hoc networks. In this paper, we
present a polynomial time algorithm to solve the MFSP problem
for wireless network under unit disk coverage model. We prove
the existence of some geometrical properties for the problem and
then propose a polynomial time algorithm to build an optimal
solution based on these properties. To the best of our knowledge,
our algorithm is the first polynomial time solution to the MFSP
problem under the unit disk coverage model. We believe that the
work presented in this paper will have an impact on the design
and development of new algorithms for several wireless network
applications including energy efficient multicast, broadcast, and
topology control protocols for wireless ad hoc networks and
sensor networks.
Keywords: Multi-point relays, minimum forwarding set problem,
network wide broadcast, unit disk graphs.

I. INTRODUCTION

Wireless ad hoc networks (WANETs) are used to provide
communication services in dynamic environments including
active battlefield, search and rescue, and emergency relief.
Energy and wireless bandwidth are two scarce WANET re-
sources that need to be used efficiently. Energy is limited as the
nodes typically operate on battery power. Wireless bandwidth
is limited as the nodes share the same transmission medium
which is open to collision and contention. Network-wide
broadcast (simply broadcast) is a frequently used operation in
WANETs. In addition to data dissemination, many protocols
utilize broadcast to communicate control messages [1], [2],
[3], [4]. As an example, popular WANET routing protocols,
including OLSR, AODV, and DSR, use broadcast to discover
and maintain routes between the nodes in a WANET. A naive
implementation of the broadcast operation where each node
involves in propagation of a broadcast message (i.e., network
wide flooding) may cause a high level of energy and bandwidth
consumption in WANETs [5].
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A. Problem Definition

Energy efficient broadcast problem received a significant
attention from the research community and a large number of
studies have been published in the area [6]. One promising
approach that was proposed for energy efficient broadcast
is the neighbor designation approach [7] where the goal is
to prevent unnecessary transmission of broadcast packets for
energy efficiency. Each node collects 2-hop neighborhood
information and then identifies a subset of its 1-hop neighbors
as forwarding nodes for relaying a broadcast message toward
its 2-hop neighbors. The efficiency of neighbor designation
approach depends on finding a minimum size forwarding node
set among the 1-hop neighbors. This problem is referred to
as Minimum Forwarding Set Problem (MFSP) [7], [8] and is
formally defined as follows:

Definition 1 (Minimum Forwarding Set Problem (MFSP)):
Consider a graph G = (V, E) where V is the set of nodes
and E is the set of links in the network. Given a node v ∈ V ,
let N(v) and N2(v) represent the set of 1-hop and 2-hop
neighbors of v, respectively. N(v) and N2(v) are strict sets
such that v 6∈ N(v) and N(v) ∩N2(v) = ∅. MFSP asks for
a minimum-size subset S of N(v) such that every node in
N2(v) is within the coverage of at least one node in S. More
formally, MFSP asks for a minimum cardinality set S such
that S ⊆ N(v) and (∀x ∈ N2(v), ∃y ∈ S | x ∈ N(y)).

A solution to the MFSP problem at a node v is S ⊆ N(v)
where S is a minimum cardinality set called forwarding set.
Note that in an optimal solution, the assignment of a node
b ∈ N2(v) to a node s ∈ S requires that b ∈ N(s). In other
words, in the context of the wireless broadcast operation, b
should be within the coverage range of s. Also note that, in
certain cases, multiple different optimal solutions may exist.

B. Existing Solutions

The MFSP problem is shown to be NP-complete [7] with
a reduction from the Set Cover problem. The heuristic pro-
posed in [7] is an application of the well-known Chvatal’s
greedy algorithm for the Set Cover problem [9] and gives an
approximation ratio of (1+ ln(|Si|max)) where |Si|max is the
size of the largest subset of N2(v) that is covered by a node
i ∈ N(v). Busson et al. [10] presented a stochastic analysis to
argue that the heuristic in [7] performs near optimal for most
practical scenarios.

Calinescu et al. [8] studied the problem under the assump-
tion that nodes are distributed in 2-dimensional plane and they
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have a a unit disk coverage [11] for their transmissions. They
proposed a 6-approximation algorithm that runs in O(nlogn)
time and a 3-approximation algorithm that runs in O(nlog2n)
time. In addition, they presented an exact O(nlog2n) time
algorithm for a special case of the MFSP problem when all
2-hop neighbors are in the same quadrant of a 2-dimensional
coordinate space with respect to the broadcasting node.

Finally, Wu et al. [12] considered an extended version of
the MFSP problem where a broadcasting node v collects 3-hop
neighbor information to find a small number of 1-hop and/or
2-hop neighbors to cover the set of 2-hop neighbors. They
proposed a heuristic that gives a constant local approximation
ratio to identify an extended forwarding node set. We believe
that the extended version of the problem introduces a new
dimension to the original problem setup with some potential
performance improvements depending on the availability of
3-hop neighborhood information. In this paper, we consider
the original MFSP problem as defined above and leave the
extended version of the problem for future work.

C. Our Contributions

In this paper, we present the first polynomial time algorithm
to solve the MFSP problem under unit disk coverage model
for wireless transmission. First, we introduce two properties
named as Two-Set Property and Non-Interleaving Property.
We then present an algorithm that uses a dynamic program-
ming approach to build an optimal solution and prove its
correctness. The algorithm has O(n3 +n2m) time complexity
where m = |N(v)| and n = |N2(v)| for a broadcasting node
v. The current version of our algorithm works under the unit
disk coverage model and therefore may have limited utility
for real world wireless networks. However, the algorithm can
be quite instrumental in evaluating the performance of more
practical heuristics within simulation studies.

The rest of the paper is organized as follows. The next
section is on the related work. Section III presents the problem
setup and establishes some facts about intersecting unit disks.
Section IV introduces the two geometric properties that we
utilize in our algorithm. Section V presents our polynomial
time exact algorithm and Section VI concludes the paper.

II. RELATED WORK

The MFSP problem emerged within the context of network
wide broadcast in WANETs. In this section, we present a brief
summary of the related problems and refer our readers to
[13], [14], [15] for more information on the existing literature
on energy efficient broadcast operation in WANETs. The
general case of the MFSP problem is an instance of the
well-known NP-complete Set Cover problem [7]. Set Cover
problem has been extensively studied in the literature and
early approximation algorithms have been proposed for both
unweighted version by Johnson [16] and by Lovasz [17], and
for weighted version by Chvatal [9]. These algorithms give an
approximation ratio of 1 + ln(∆) where ∆ is the cardinality
of the maximum cardinality subset (maxi≤n |Si|). In [18],
Hochbaum presents an algorithm for the weighted version with
an approximation ratio of α where α represents the maximum

number of subsets covering an element. The running time
of this algorithm is O(n3). In [19], Bar-Yehuda and Even
present an algorithm with a similar approximation ratio but an
improved running time of O(n2). We refer readers to [20] for
other approximation algorithms on the Set Cover problem.

The MFSP problem becomes a geometrical problem when
we use unit disks to model the coverage area of wireless
transmissions. Unit disk graphs (UDGs) are neither perfect
nor planar graphs [11]. Thus, efficient algorithms proposed for
planar and perfect graphs cannot be applied to UDGs. MFSP
problem under the unit disk coverage assumption resembles to
the well-known Minimum Dominating Set (MDS) problem.
MDS problem for UDGs has been studied extensively. The
problem is shown to be NP-complete for UDGs [11]. In [21],
Marathe et al. present a linear time approximation algorithm
with a constant-factor performance guarantee of 5. In [22],
a polynomial-time approximation scheme (PTAS) with ((k +
1)/k)2 guarantee is given for a constant k in nO(k3). Minimum
Connected Dominating Set (MCDS) problem is a different
version of the problem in which the dominating set should
be connected. In [23], Cheng et al. presented a PTAS for
MCDS problem. In [24], Ambuhl et al. presented constant-
factor approximation algorithms for the weighted versions of
MDS and MCDS problems. These approximations do not
apply to MFSP problem as the dominating nodes in MFSP
should be chosen from only 1-hop neighbors.

Another related problem to MFSP problem is covering
with disks which aims at finding a minimally sized set of
unit disks to cover given points on the plane (disks can be
placed arbitrarily). This problem is examined in [25] and a
O(l2(l ∗ √2)2.(2n)2(l

√
2)2+1) time approximation algorithm

is given with a performance guarantee of (1 + 1/l)2. The
difference between this problem and our problem is in the
selection of the disks. This problem selects arbitrary disks to
cover given points, but in our problem we are bound to select
disks from the set of on-hop neighboring nodes.

Another related problem to MFSP problem is the well
known Disk Cover (DC) problem that tries to find a minimal
size set of disks (from a given set of disks) to cover a given
set of points on a plane [25]. In [26], authors present an
algorithm with an approximation ratio of O(1) and running
time of O(c2n log n log(n/c)) where c represents the size of
the optimal solution. MSFP problem is a special instance of
the DC problem where disks are selected from a given set of
1-hop nodes.

Another related work in the context of wireless broadcast is
Localized Broadcast Incremental Power Protocol (LBIP) [27].
In LBIP, nodes are assumed to have variable transmission
power and the goal is to cover 2-hop neighbors with minimum
energy. LBIP involves selection of forwarding nodes as well
as determining transmission power levels for such nodes to
achieve minimum energy usage. In our current work, we
assume fixed transmission power (i.e., unit disk coverage) and
our goal is to choose a minimum number of 1-hop neighbors
to cover all 2-hop neighbors.

Finally, the most related work to our study in this paper
is the previous work by Calinescu et al. [8]. In their work,
they propose approximation algorithms to solve the MFSP
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problem (see Section I-B). In this paper, we use a similar setup
and develop the first polynomial time algorithm for minimum
forwarding node selection.

III. PRELIMINARIES

A. The Practical Setup of the Problem

Most studies use a unit disk or a sphere to represent the
shape of the effective coverage area of wireless transmis-
sions [28]. This assumption, though may not always hold
in practice, helps in gaining more insight to the problem
within the practical context of wireless transmissions. In this
paper we consider a similar setup and assume a unit disk
coverage model for wireless transmissions. In addition, as most
local knowledge based broadcast approaches [6], our approach
requires the availability of 2-hop neighborhood information.
The required information includes (1) the identities of the 1-
hop and 2-hop neighbors and (2) a radial ordering (which we
define in Section III-B) of the 2-hop neighbors with respect
to the broadcasting node. The availability of the position
information for the nodes is sufficient to compute the radial
ordering of the 2-hop neighbors. One simple way of acquiring
the position information is to use a GPS unit at each node.
Another possibility is to use the distance and angle information
between the neighboring nodes. The distance information
can be calculated by using the transmission and reception
power level within an energy consumption model [29] that
is representative for the environment. The angle information
between neighboring nodes can be measured by using multiple
ultrasound receivers or directional antennas. Recently, Cali-
nescu [30] proposed methods to calculate 2-hop neighborhood
information (identities and positions) for the cases where GPS
or distance and angle information is available with a message
complexity of O(n) where n is the total number of the nodes
in the network.

B. Definitions

Consider an instance of MFSP problem at a node v. Let
N(v) and N2(v) represent the 1-hop and 2-hop neighbors
of v, respectively. To avoid the introduction of excessive
notation, let v also represent the location of the node v in a
2-dimensional space. Similarly, let each set N(v) and N2(v)
represent the set of points that 1-hop and 2-hop neighbors of
v are located in 2-dimensional space. The coverage area of
node v is a unit disk (i.e., a disk with a origin at point v and
radius r1 = 1) represented by Dv . Let D̄v represent the area
of the annulus with an origin at point v and radii r1 = 1 and
r2 = 2, i.e., D̄v = A(v, r2)\Dv where A(v, r2) is a disk with
origin at point v and radius r2 = 2 (see Figure 1-a). By this
definition, we have N(v) ⊆ Dv and N2(v) ⊆ D̄v . Based on
this setup, we introduce several definitions below.

Definition 2 (Radial Order): Radial order is the ordering of
a set of points in D̄v (or the nodes at those points) by using
the angle that they make with the origin (point) v. Radial order
is a cyclic order. If two or more points make the same angle
with v, then their distance to v can be used to put them into
a total order.

Consider the example scenario in Figure 1-(a) where N2(v) =
{a, b, c, d, e}. Starting from the exact south position, the nodes
in N2(v) form a radial order as (e < d < c < b < a).
The geometrical properties introduced below and the algorithm
presented in Section V-A use the radial ordering of the nodes
in N2(v) in finding an optimal solution. As we discussed in
Section III-A, a node v can compute the radial ordering of
the nodes in N2(v) from the collected geographical location
information from its neighbors. Therefore, from now on we
assume that the radial ordering of the nodes in N2(v) is known
by v.

Definition 3 (Radially Continuous Neighbor (RCN) Interval):
One or more points in the area D̄v that form a continuous
interval in the radial order with respect to (w.r.t.) v are said
to form a radially continuous neighbor (RCN) interval.
As an example, in Figure 1-(a), (a > b > c) and (e > a > b)
form RCN intervals w.r.t. v but (a > b > d) does not as
c ∈ N2(v) separates this interval into two non-consecutive
intervals.

Definition 4 (Radially Continuous Coverage Area (RCCA)):
Consider a set S ⊆ N(v). For a node s ∈ S, RCCA of s is a
continuous subarea in D̄v , RCCA(s)⊆ D̄v , such that s is the
only node in S that can cover all the points in RCCA(s). A
node s ∈ S may have zero or more RCCAs.

Definition 5 (Connectivity Matrix): Consider an instance of
MFPS problem at a node v. Let N(v) = {b1, b2, . . . , bm} and
N2(v) = {a1, a2, . . . , an} be the 1-hop and 2-hop neighbors
of v respectively. A connectivity matrix R is an m×n matrix
that shows the connectivity relation between the nodes in N(v)
and N2(v). For a given bi ∈ N(v) and aj ∈ N2(v), Ri,j = 1
if aj ∈ N(bi) and Ri,j = 0 otherwise.

Definition 6 (Coverage Matrix): Let m = |N(v)| and n =
|N2(v)| for a node v. Using two hop neighborhood informa-
tion, v generates a coverage matrix as a m × n matrix C.
Each row in C corresponds to a 1-hop neighbor of v and
each column corresponds to a 2-hop neighbor of v. An entry
Cef = (ap, p̄) represents the longest RCN interval in N2(v)
that is covered by e ∈ N(v) and that includes f in it. If
f /∈ N(e), then Cef = ∅.

Please see Figure 2 for an example of connectivity and
coverage matrices for a node v.

Definition 7 (Maximum Coverage Interval (MCI)):
An MCI of a node s ∈ N(v) is an RCN interval
{ai, . . . , aj} ∈ N2(v) that is completely covered by s
such that s cannot cover neither of ai−1 and aj+1. Note that
s can have multiple MCIs in N2(v).

Definition 8 (Essential Coverage): Consider a node s ∈
S ⊆ N(v) that covers a point ai ∈ D̄v . s is said to be essential
to cover ai if no other node t ∈ S covers ai. If s is essential
for a node (at a point) ai in an MCI that it covers, than s is
essential for this MCI. Similarly, a node s ∈ S ⊆ N(v) is said
to be essential to cover an RCCA(s).
Note that the essentiality of s in D̄v is w.r.t. S ⊆ N(v).

C. Intersection Characteristics of Two Unit Disks

Consider a unit disk centered at a point v. Let Dv represent
the unit disk and the area covered by it and Cv represent
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Fig. 1. Some geometric relations of two intersecting unit disks.
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the circle enclosing Dv . Assume that v is at the origin of a
two-dimensional space which is divided into four sub-spaces,
named as I , II , III , and IV , by the x and y coordinate axes
as shown in Figure 1-(a). Consider a second point s that is on
the x-axis to the east of v. Similar to the case for v, let Ds

and Cs represent the unit disk and the enclosing circle for s.

When |vs| = 2, Cv and Cs are tangent to each other and
Dv and Ds intersect at a single point. When |vs| < 2, Cv and
Cs intersect twice and Dv ∩Ds 6= ∅ as shown in Figure 1-
(b). Let m and n represent the intersection points of Cv and
Cs. Note that, since s is on x-axis to the east of v, m and n
have to be to the east of y-axis. This intersection forms two
equal angles as m̂vn and m̂sn. Let α represent these two equal
angles. When |vs| ≤ 1, α is in [ 2π

3 , π] and when 1 < |vs| ≤ 2,
α is in [0, 2π

3 ). Also note that when |vs| ≤ 1, the length of
the arc arc(mxvn) (the segment of Cv corresponding to α;
here xv is the intersection of Cv with x axis) is in [ 2π

3 , π].
Similarly, the length of the arc arc(mxsn) (the segment of
Cs corresponding to 2π−α; here xs is the intersection of Cs

with x axis) is in [π, 4π
3 ]. Finally, the line segment connecting

m and n vertically is referred to as Chordvs and it divides
the line segment between v and s into two equal parts.

D. Intersection Characteristics of Three Unit Disks

In this section, we consider the intersection characteristics
of three unit disks in a special setup that is relevant to the
MFSP problem. Consider an instance of MFSP problem at
a node v and consider {s, t} ∈ S ⊆ N(v). Similar to the
above discussion, we assume that v defines a two-dimensional
coordinate space and s lies to the exact east of v in this
coordinate space. Note that s and t are neighbors of v, and
|vs| ≤ 1, |vt| ≤ 1, and |st| ≤ 2. For |st| < 2, Cs and Ct

intersect twice and Ds ∩ Dt 6= ∅. and for |st| = 2, Cs and
Ct are tangent to each other, Ds and Dt intersect at a single
point. Observe that since s lies to the east of v, the coverage
area Ds beyond Dv (i.e., Ds/v = Ds \ Dv) lies in region
(II ∪ IV ). Similarly, let Dt/v represent the coverage area Dt

beyond Dv , i.e., Dt/v = Dt \ Dv . In addition, let Cs/v and
Ct/v represent the segments of Cs and Ct outside the coverage
area Dv , respectively.

From MFSP problem’s point of view, we study the nature
of the coverage area in Ds/v that s is essential for (i.e.,
number and nature of RCCA(s) w.r.t. S) in the presence of
intersections that Cs/v may have with Ct/v . Note that Cs/v

and Ct/v can have zero, one, or two intersections with each
other.

Lemma 1: Let S = {s, t} ⊆ N(v) in an instance of MFSP
problem at v. If Cs/v has no intersection with Ct/v , then
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Ds/v ∩Dt/v = ∅.
Proof of Lemma 1: Let the intersection points of Cv and
Cs be m and n. Let x+

v and x+
s be the points that Cv and Cs

intersect x-axis on east of v, respectively (see Figure 3-(a)).
Given that Cs/v and Ct/v have zero intersection, Ct and Cs

intersect twice in Dv . Since Dt and Dv are both unit disks,
Ct cannot be enclosed in Dv . Therefore, Ct should intersect
Cv at two points, say m̄ and n̄. While tracing Ct clockwise
direction, assume m̄ is the point Ct enters into Dv and n̄ the
point that Ct exits Dv . Observe that m̄ and n̄ cannot be to
east of Chordvs (i.e., the line crossing m and n) as otherwise
Ct intersects Cs/v . Assume now that Ds/v ∩Dt/v 6= ∅. Since
Ct cannot intersect Cs/v , this is only possible if Ct intersects
arc(mx+

s n) twice where m and n are the intersection points of
Cv and Cs. But, since Cv and Ct already intersected at m̄ and
n̄ on west of Chordvs, they cannot intersect on arc(mx+

s n).
Hence Ds/v ∩Dt/v 6= ∅ is not possible. ¤

Corollary 1: Let S = {s, t} ⊆ N(v) in an instance of
MFSP problem at v. If Cs/v has no intersection with Ct/v ,
then Ds/v is an RCCA of s w.r.t. S.

Lemma 2: Let S = {s, t} ⊆ N(v) in an instance of MFSP
problem at v. If Cs/v has one intersection with Ct/v , then s
is essential to cover one single RCCA in Ds/v w.r.t. S.
Proof of Lemma 2: From the previous section, the inter-
section of two disks Ds and Dt results in three coverage
areas as (1) Ds \ Dt, (2) Dt \ Ds, and (3) Ds ∩ Dt. We
consider the parts of these coverage areas in D̄v namely
Ds/v/t = (Ds \ Dt) ∩ D̄v , Dt/v/s = (Dt \ Ds) ∩ D̄v , and
Dst/v = (Ds ∩Dt ∩ D̄v), respectively (see Figure 3-(b)). Let
p be the intersection point of Cs/v and Ct/v . Consider a line
l that originates at v and crosses p as in Figure 3-(b). The
line l divides (Ds/v ∪Dt/v)∩ D̄v into two areas such that the
radial order of the points at both sides of l are disjoint from
each other. In this case, s is essential to cover one RCCA
that includes Ds/v/t and part of Dst/v below line l and t is
essential to cover one RCCA that includes Dt/v/s and part of
Dst/v above line l as in Figure 3-(b). ¤

Lemma 3: Let S = {s, t} ⊆ N(v) in an instance of MFSP
problem at v. If Cs/v has two intersections with Ct/v , then s
is essential to cover one or two RCCAs in Ds/v w.r.t. S.
Proof of Lemma 3: If Ct/v and Cs/v intersect twice, Ct

cannot intersect Cs in D(v). Let m1 and n1 be the intersection
points of Ct/v and Cs/v and m̄ and n̄ be the intersection points
of Cv and Ct. We have two cases: (1) both m̄ and n̄ are on
arc(mx+

v n) or (2) both m̄ and n̄ are on arc(mx−v n). Assume
the contrary that m̄ (or n̄) is on arc(mx+

v n) and n̄ (or m̄) is
on arc(mx−v n). This requires that arc(m̄n̄) intersects Cs in
Dv which contradicts that Ct and Cs intersect twice in D̄v .
We now examine the two cases.
Case 1 (m̄ and n̄ are on arc(mx+

v n)): The arc
arc(m̄x−t n̄) is in Dv ∩ Ds. Assume the contrary that
arc(m̄x−t n̄) is in Dv/s. Consider a walk on arc(m̄x−t n̄)
starting at point x−t in clockwise direction. Given that Ct and
Cv intersects at m̄ and n̄ on arc(mx+

v n), we cannot intersect
arc(mx−v n) while walking on Ct clockwise. Similarly, since
Ct and Cs intersect at m1 and n1 on arc(mx+

s n), we
cannot intersect arc(mx−s n) while walking on Ct clockwise.
This then makes it impossible to complete the walk as

the arc(m̄x−t n̄) is assumed to be in Dv/s. As a result,
arc(m̄x−t n̄) 6∈ Dv/s. Consider a walk on arc(m̄x−t n̄) starting
at point x−t in clockwise direction. Note that we cannot
intersect arc(mx−s n) but intersect arc(mx+

v n) at a point m̄.
In our walk, before we intersect n̄, we have to intersect m1

and n1 as Ct has to intersect Cs twice on arc(mx+
s n). Let

the first intersection be m1 and the second one be n1. Finally,
we intersect n̄ to get back into Dv ∩ Ds and reach back to
x−t . An example of the resulting coverage scenario for Dv ,
Ds and Dt is given in Figure 3-(c).

Consider the intersection points m1 and n1 and let l1 and
l2 be two lines that originate at v and cross m1 and n1

respectively. Observe that l1 and l2 divide Ds/v ∪ Dt/v into
three RCCAs such that part of Ds/v ∪ Dt/v between l2 and
l1 is an RCCA that t is essential to cover and the parts of
Ds/v ∪Dt/v from n to l2 and from l1 to m are two RCCAs
that s is essential to cover w.r.t. S.

Case 2 (m̄ and n̄ are on arc(mx−v n)): Given that
s is on positive x-axis, t is in (II ∪ IV ) as otherwise Ct/v

and Cs/v cannot intersect twice. This requires that x−t ∈ Dv .
Note that x−t 6∈ (Dv ∩ Ds) as otherwise Ct intersects either
arc(mx−s n) or arc(mx+

v n) contradicting our assumptions that
Ct intersects Cs on arc(mx+

s n) or that Ct intersects Cv on
arc(mx−v n), respectively. A walk on Ct starting at x−t in
clockwise direction first intersects Cv at a point m̄ as it exits
Dv . It needs to then intersect Cs at m1 and n1 before it enters
into Dv at a point n̄. Assume the contrary that it enters Dv

at n̄ without intersecting Cs outside Dv . This requires that Ct

intersect Cs in Dv which is a contradiction. Thus, the sequence
of intersections of Ct on this walk is m̄, m1, n1, and n̄. An
example of the resulting coverage scenario for Dv , Ds and
Dt is given in Figure 3-(d).

Consider the intersection points m1 and n1 and let l1 and
l2 be two lines that originate at v and cross m1 and n1

respectively. Observe that l1 and l2 divide Ds/v ∪ Dt/v into
three RCCAs such that part of Ds/v ∪ Dt/v between l2 and
l1 is an RCCA that s is essential to cover and the parts of
Ds/v ∪Dt/v from n to l2 and from l1 to m are two RCCAs
that t is essential to cover w.r.t. S. ¤

Lemma 4: Let S = {s, t} ⊆ N(v) in an instance of MFSP
problem at v. If Cs/v has two intersections with Ct/v , then
t ∈ Ds.

Proof of Lemma 4: Recall that s is on positive x-axis
and the two intersection points m and n for Cv and Cs

are on east of y-axis. This implies that |arc(mx+
s n)| is

in (π, 4
3π). Given that Ct/v intersects Cs/v twice at points

m1 and n1, arc(m1x
+
s n1) is a segment of arc(mx+

s n) and
|arc(m1x

+
s n1)| ≤ |arc(mx+

s n)|. From Section III-C, when
Cs and Ct intersect twice, we have two cases: (1) 1 < |ts| < 2
resulting that |arc(m1x

+
s n1)| in ( 4

3π, 2π) and (2) |ts| < 1
resulting that |arc(m1x

+
s n1)| in ( 2

3π, 4
3π). The case 1 <

|ts| < 2 is not possible as it requires |arc(m1x
+
s n1)| to be in

( 4
3π, 2π) whereas we have |arc(m1x

+
s n1)| ≤ |arc(mx+

s n)| <
4
3π. As a result, |ts| < 1 and t ∈ Ds. ¤
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Fig. 3. Some geometric relations of three intersecting unit disks.

IV. GEOMETRICAL PROPERTIES

A. Two-Set Property

Theorem 1 (Two-Set Property): Given an instance of the
MFSP problem (i.e., a node v and its 1-hop and 2-hop neighbor
sets N(v) and N2(v)), the coverage relation presented in
Figure 4-(a) is not possible.
Proof of Theorem 1: The scenario in Figure 4-(a) is
related to coverage relation between b1, b2 and b3 all in
N(v). In the figure {a1, a2, . . . , a6} ∈ N2(v) are a subset
of radially ordered 2-hop neighbors of v. Observe that, in
this setup, b1 covers three disjoint MCIs, MCI1 including
a1, MCI3 including a3, and MCI5 including a5. Let m and
n be the intersection points between Cb1 and Cv , m1 and n1

be the ones between Cb1 and Cb2 , and m2 and n2 be the ones
between Cb1 and Cb3 . Figure 4-(b) shows an example scenario
corresponding to the coverage relation presented in Figure 4-
(a). In the figure, the lines between bis and ais indicate the
coverage of bi on ai.

Now, from Lemma 4, {b2, b3} ∈ N(b1). From the discus-
sion in Section III-C, |arc(mn)| < 4

3π. Similarly, the coverage
relation in Figure 4-(a) requires that |arc(m1n1)| > 2

3π and
|arc(m2n2)| > 2

3π contradicting |arc(mn)| < 4
3π. As a

result, the coverage relation shown in Figure 4-(a) is not
possible. ¤

Assumption 1: Assume that the coverage relation presented
in Figure 4-(c) is not possible.
The reason for this assumption is that our algorithm considers
the interval of 2-hop nodes in N2(v) (i.e., (ai, n)) as a non-
circular interval, i.e., it ignores that ai follows ai+n−1 in
circular order. Note that, considering circularity of the nodes
in N2(v), Figure 4-(a) implies that b1 cannot be essential

for more than two MCIs in an optimal solution. Similarly,
assuming non-circularity, Figure 4-(c) also implies the same
property for b1.

B. Non-Interleaving Property

Definition 9 (Interleaving Coverage): Consider two nodes
{b1, b2} ∈ N(v) in an instance of MFSP problem at v. Assume
b1 covers {a1, a3} ∈ N2(v) but does not cover {a2, a4} ∈
N2(v). Similarly, assume b2 covers {a2, a4} ∈ N2(v) but does
not cover {a1, a3} ∈ N2(v). Finally, assume that the radial
order between the nodes in N2(v) is as (a1 > a2 > a3 > a4).
The coverage of this form between the nodes b1 and b2 is
called an interleaving coverage.

Theorem 2 (Non-Interleaving Property): In an instance of
the MFSP problem (i.e., a node v and its 1-hop and 2-hop
neighbor sets N(v) and N2(v)), no two nodes {b1, b2} ∈ N(v)
can have interleaving coverage, i.e., the connectivity matrix in
Figure 4-(d) is not feasible.
Proof of Theorem 2: Note that interleaving is consid-
ered between any two nodes {b1, b2} ∈ N(v). If Cb1/v and
Cb2/v intersect zero times, b1 and b2 both have two disjoint
coverage areas. If Cb1/v and Cb2/v intersect once, based on
Lemma 2, b1 (and b2) covers a single RCCA. When this
RCCA includes some node ai ∈ N2(v), then b1 (and b2) has
one single MCI (including such node ai). Finally, when they
intersect twice, based on Lemma 3, one of the nodes, say
b1, can cover two MCIs and the other node b2 can cover one
MCI. Note that, as shown in Figure 3-(c), the two intersections
radially separate the coverage areas D1

b1/v/b2
, Db2/v/b1 , and

D2
b1/v/b2

and no points q ∈ Db2/v can exist at west of the two
areas D1

b1/v/b2
and D2

b1/v/b2
. ¤
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Fig. 4. Unfeasible connectivity scenarios.

V. SOLUTION TO MFSP PROBLEM

A. Construction

In this section, we present a dynamic programming algo-
rithm to solve the MFSP problem under unit disk coverage
model. The algorithm consists of two parts ALG1 and ALG2
as shown in Figure 5. In an instance of MFSP problem at a
node v, all 2-hop neighbors of v form a circular interval of
length n = |N2(v)|. ALG1 works with non-circular intervals.
ALG1 assumes that Assumption 1 and Theorem 2 hold for
a given (ai, n). Hence, the solution of ALG1 for an interval
not satisfying Assumption 1 may not be optimal.

Let Smin(ai, j) be a list of 1-hop neighbors of v that cover
the interval (ai, j). ALG1 uses Nmin(ai, n) = |Smin(ai, n)|
for ease-of-presentation. Below are the steps of the algorithm
in finding a solution for an interval (ai, j) where {i, j} ∈
[1, n]:

1) Step 1: The best possible solution for (ai, j) is that the
entire interval is covered by a single node e ∈ N(v).
This can be checked by searching the column f = ai

of the coverage matrix. If there exists an MCI Cef =
(ap, p̄) that completely includes the interval (ai, j), then
the corresponding one hop neighbor e can be assigned to
cover the interval (ai, j) in the solution. Since this is an
assignment with minimum size, i.e., Nmin(ai, j) = 1,
there is no need to check for the other cases below.

2) Step 2: In this step, we split the interval (ai, j) to two
consecutive sub-intervals as (ai, k) and (ai+k, j − k).
We can combine the optimal solutions of these intervals
and this will be a solution to (ai, j). We consider each
possible case for splitting the interval (ai, j) into two
intervals. There are j − 1 possible cases. Since we are
interested in minimum cardinality solution, we take the
minimum one in cardinality.

3) Step 3: In this step, we pick a special 1-hop node s
which covers ai and ai+j−1 (end nodes of (ai, j)) and
find the MCIs (ap, p̄) and (aq, q̄) that s covers such
that ai ∈ (ap, p̄) and ai+j−1 ∈ (aq, q̄). A solution
in this case can be given by {s} ∪ Smin(ar, r̄) where
(ar, r̄) = {ap+p̄, . . . , aq−1} . We find such solutions for
all possible s and save it as the optimal solution if it is

better than the current solution.
Starting from j = 1, ALG1 applies the above procedure

for all intervals of lengths up to j = n. For an interval
(ai, j), it considers possible solution scenarios by applying
the above procedure. Among those solutions, it chooses the
one that gives the minimum size solution as Smin(ai, j). At
the end, the algorithm returns a solution as Smin(ai, n). The
running time of the algorithm is O(n3 + n2m) where O(n3)
comes from Step 2 and O(n2m) comes from Steps 1 and
3. ALG2 calls ALG1 n times for (ai, n) with i = [1, n]
resulting in the overall complexity O(n4 + n3m). The overall
run time complexity can be reduced to O(n3 + n2m) by
modifying ALG1 to compute Smin(ai, n) for all (ai, n) in
one call by changing the line 8 to "FOR i:=1 to n" and
by having ALG2 to choose the minimum size Smin(ai, n)
returned by ALG1. The space complexity of the algorithm is
Θ(n2k) where k represents an upper bound for the number
of forwarding nodes in an optimal solution (k < min(n,m)).
This bound can be reduced to Θ(n2) by saving special indices
instead of forwarding node sets for each interval. For each
interval, after calculating the optimal solution, we save an
index to represent how the optimal solution is found. If the
optimal solution is found in Step 1, the 1-hop node covering
the whole interval is saved. For Step 2, the optimal split point
is saved. For Step 3, 1-hop node and the identity of the middle
interval is saved. In this way, the entry for each interval is in
constant size and space complexity is Θ(n2). In this method
interval entries should be traversed back to find the elements of
forwarding set. Recall that 2-hop neighborhood information is
an input to the algorithm and Calinescu [30] proposes methods
to calculate 2-hop neighborhood information with a message
complexity of O(n). After the execution of the algorithm, the
node v includes the identities of the selected forwarding nodes
into the broadcast message. Hence, this step does not incur any
additional message overhead.

B. Proof of Correctness: Part 1
Theorem 3: Given an (ai, j) where Assumption 1 and

Theorem 2 hold, ALG1 finds an optimal solution to (ai, j)
provided that optimal solutions to all continuous subintervals
of (ai, j) are known.
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01.ALG1 {Input: index, N(v) = {b1, . . . , bm}, N2(v) = {a1, . . . , an}, C={m× n coverage matrix}}
02.{
03. /* initialization */
04. FOR i := 1 to n
05. Nmin(ai, 1) := 1, Lmin(ai, 1) := (b), Smin(ai, 1) := Lmin(ai, 1) where b ∈ N(v) and ai ∈ N(b)

06. /* main body of the algorithm */
07/ FOR j := 2 to n /* for each round */
08. FOR i := index to (index + n− j) /* for each interval (ai, j)*/
09. Nmin(ai, j) := ∞, Lmin(ai, j) := ∅
10. /* Step 1: */
11. FOR e := 1 to m
12. IF Cei includes (ai, j) as a subinterval THEN
13. Nmin(ai, j) := 1, Lmin(ai, j) := (be)

14. IF (Nmin(ai, j) 6= 1) THEN
15. /* Step 2: Check for alternative solutions */
16. FOR k := 1 to j − 1 /* for all possible splits of the interval (ai, j) */
17. IF (Nmin(ai, k) + Nmin(ai+k, j − k) < Nmin(ai, j)) THEN
18. Nmin(ai, j) := Nmin(ai, k) + Nmin(ai+k, j − k)
19. Lmin(ai, j) := (Smin(ai, k)) + (Smin(ai+k, j − k)) /* + is list append */

20. /* Step 3: Check if a be ∈ N(v) covers both ends of interval (ai, j) */
21. FOR e := 1 to m
22. Consider coverage matrix entries Cei = (ap, p̄) and Ce(i+j−1) = (aq, q̄)
23. IF (Cei 6= ∅) AND (Ce(i+j−1) 6= ∅) THEN
24. Let (ar, r̄) = (ap+p̄, ap+p̄+1, . . . , aq−1) be the subinterval of (ai, j) that be does not cover
25. IF (Nmin(ar, r̄) + 1 < Nmin(ai, j)) THEN
26. Nmin(ai, j) := Nmin(ar, r̄) + 1
27. Lmin(ai, j) := (Smin(ar, r̄)) + (be) /* + is list append */

28. Smin(ai, j) = Lmin(ai, j)
29. /* End of FOR */
30. Return Smin(aindex, n)
31.}

32.ALG2 {Input:N(v) = {b1, . . . , bm}, 33.N2(v) = {a1, . . . , an}, C={m× n coverage matrix}}
34.{
35. MFS(v)=ALG1{1, N(v), N2(v), C}
36. FOR i := 2 to n
37. Sol=ALG1{i, N(v), N2(v), C}
38. IF |Sol| < |MFS(v)| THEN
39. MFS(v) = Sol

40. Return MFS(v)
41.}

Fig. 5. Outline of the algorithms ALG1 and ALG2.

bk bk bk

bk bk(b) (e)

bk bk(c) (f)

(a) (d) (g)

Fig. 6. Possible MCIs bk is essential for in S.
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Proof of Theorem 3: Let S be an optimal solution for
(ai, j). Let bk ∈ S be a node that covers the largest MCI
starting from ai, i.e., bk covers (ai, x̄) and for any bl 6= bk ∈ S
covering an MCI (ai, x̃), x̃ ≤ x̄. Note that we know only the
existence of such a bk and do not need to know its identity.
We analyze the relations between the coverage characteristics
of bk and all other nodes in S in all possible coverage cases.
Note that bk is essential for at least one and at most two MCIs
in (ai, j). It is essential for at least one MCI because it is in
S. It is essential for at most two MCIs by Assumption 1.
Figure 6 presents possible configurations of MCIs where bk

is essential for in S. In the following, we first show that the
cases in Figure 6-(e),(f) are not possible and then present how
our algorithm handles the other cases.

Claim 1: The MCIs that bk is essential for cannot be as in
Figure 6-(e),(f).
Proof of Claim 1: Assume that this is not the case and
bk is essential for two MCIs (az, z̄) and (ad, d̄) as in Figure 7-
(a) or -(b). Note that these cases correspond to the cases in
Figure 6-(e),(f). Let bl ∈ S be a node covering ay and bm ∈ S
be a node covering ac in the figure. Note that since bk does
not cover either ay or ac, bl 6= bm due to non-interleaving
property. Note also that since bk covers the largest MCI (ai, x̄),
bl cannot cover this MCI completely. Finally, since bk is
assumed to be essential for (az, z̄) and (ad, d̄), neither bl

nor bm can cover these MCIs completely. This then causes a
violation of Assumption 1 by bk where the coverage relation
between bk, bl, and bm is similar to the one in Figure 4-(c).
¤
Case 1: Assume bk is essential for only one MCI on one of the
ends of the interval, e.g., (ai, x̄) as in Figure 7-(a) (or (ad, d̄)
as in Figure 7-(b)). We explain the behavior of the algorithm
using the first case and the same argument applies for the
second case. Since bk is not essential for any other nodes in
(ay, j − x̄), S \ {bk} covers (ay, j − x̄). Consider an optimal
solution Sopt(ay, j − x̄) for the interval (ay, j − x̄). Note that
|Sopt(ay, j−x̄)| cannot be larger than |S\{bk}| as the former is
an optimal solution and the latter is a solution covering (ay, j−
x̄), i.e., |Sopt(ay, j− x̄)| ≤ |S \ {bk}| = |S| − 1. Similarly, an
optimal solution Sopt(ai, x̄) for the interval (ai, x̄) can not be
larger than |{bk}| as the former is an optimal solution and the
latter is a solution covering (ai, x̄). This makes Sopt(ai, x̄) ∪
Sopt(ay, j − x̄) an optimal solution for (ai, j) as we assumed
that S is an optimal solution for (ai, j).

This case covers the essential coverage scenarios of bk in
S as presented in Figure 6-(a),-(c). If the optimal solution S
is of this nature, since we know the optimal solutions for all
intervals of length up to j − 1, the presented algorithm finds
this solution in Step 2 by looking at each split points for the
interval (ai, j).
Case 2: Assume that bk is essential for two MCIs (ai, x̄) and
(ad, d̄) at both ends of (ai, j) as shown in Figure 7-(b). In this
case, S \{bk} covers (ay, j− (x̄+ d̄)) since bk is not essential
for that part. Consider an optimal solution Sopt(ay, j−(x̄+d̄))
for the interval (ay, j−(x̄+d̄)). Note that |Sopt(ay, j−(x̄+d̄))|
cannot be larger than |S \ {bk}| as the former is an optimal
solution and the latter is a solution (ay, j − (x̄ + d̄)), i.e.,
|Sopt(ay, j−(x̄+d̄))| ≤ |S\{bk}| = |S|−1. This then requires

that {bk} ∪ Sopt(ay, j − (x̄ + d̄)) is an optimal solution for
(ai, j) as we started with an assumption that S is an optimal
solution for (ai, j), i.e., |Sopt(ay, j− (x̄+ d̄))|+ |{bk}| ≤ |S|.

This case covers the essential coverage scenarios of bk in S
as presented in Figure 6-(g). If the optimal solution S is of this
nature, since we know the optimal solutions for all intervals of
length up to j − 1, the presented algorithm finds this solution
in Step 3.
Case 3: Assume that bk is essential for two MCIs (ai, x̄) and
(az, z̄) as shown in Figure 7-(a) or -(b). In this scenario, we
divide the nodes in S into two subgroups, S1 and S2 in a
way that S1 ∪ S2 = S and S1 ∩ S2 = ∅. Our goal is to
create S1 and S2 such that S1 covers (ai, x̄ + ȳ + z̄) and S2

covers (ac, j − (x̄ + ȳ + z̄)). When we assign a node bx to
S1 (or S2), if we can guarantee that there exist another node
by in S2 (or S1) which covers all the nodes that bx covers in
(ac, j−(x̄+ ȳ+ z̄)) (or (ai, x̄+ ȳ+ z̄)), then this partition will
give two sets S1 and S2 with the desired properties. Note that
bk is the only node covering (ai, x̄) in S as in Figure 7-(a) or
-(b). Then, there is a node, say bm, in S which covers ac.

Claim 2: bk should cover all nodes that bm covers in
(ai, x̄ + ȳ + z̄).
Proof of Claim 2: bk covers a node in (ai, x̄) and a
node in (az, z̄) that are not covered by bm. bm covers ac that
is not covered by bk. If bk does not cover a node that bm covers
in (ay, ȳ), this leads to an interleaving coverage between bk

and bm contradicting Theorem 2. ¤
Claim 3: bm should cover all the nodes that bk covers in

(ac, j − (x̄ + ȳ + z̄)).
Proof of Claim 3: Recall that bk does not cover ay . Let
bl be a node covering ay . Note that bl 6= bm as otherwise bk

and bl have an interleaving coverage. Now, bk covers nodes
in (ai, x̄) and in (az, z̄) which bl does not cover. Note also
that bm covers ac which is not covered by bk. If bm does not
cover a node ad ∈ (ac, j − (x̄ + ȳ + z̄)) (ad 6= ac) that bk

covers, then this causes a violation of Assumption 1 where the
coverage relation between bk, bl, and bm is similar to the one in
Figure 4-(c). Thus, bm covers all such ad ∈ (ac, j−(x̄+ȳ+z̄)).
¤

Based on Claims 2 and 3, we can put bk into S1 and bm

into S2. For any other node bo:
1) If bo covers a node in (ac, j − (x̄ + ȳ + z̄)) which is

not covered by bk, then bo ∈ S2 and bk covers all nodes
that bo covers in (ai, x̄ + ȳ + z̄) due to Theorem 2.

2) If bo covers a node in (ay, ȳ) which is not covered by
bk, then bo ∈ S1 and bk covers all nodes that bo covers
in (ac, j−(x̄+ ȳ+ z̄)) due to Theorem 2. From Claim 3,
bm covers all nodes that bk covers in (ac, j − (x̄ + ȳ +
z̄)). Therefore, bm covers all nodes that bo covers in
(ac, j − (x̄ + ȳ + z̄)).

Note that bo should be in one of the above two cases as
otherwise bo 6∈ S. Based on the above construction, S1 covers
(ai, x̄ + ȳ + z̄) and S2 covers (ac, j − (x̄ + ȳ + z̄)). Consider
optimal solutions Sopt(ai, x̄+ ȳ+ z̄) and Sopt(ac, j− (x̄+ ȳ+
z̄)). We have |Sopt(ai, x̄ + ȳ + z̄)| ≤ |S1| and |Sopt(ac, j −
(x̄+ ȳ+ z̄))| ≤ |S2|. Since S = S1∪S2 is an optimal solution,
by Step 2 of ALG1, we have |Lmin(ai, j)| ≤ |Sopt(ai, x̄ +
ȳ + z̄)|+ |Sopt(ac, j − (x̄ + ȳ + z̄))| ≤ |S1|+ |S2| = |S|.
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Fig. 7. Coverage characteristics of bk in S.

This case covers the essential coverage scenarios of bk in S
as presented in Figure 6-(d). If the optimal solution S is of this
nature, since we know the optimal solutions for all intervals of
length up to j − 1, the presented algorithm finds this solution
in Step 2.
Case 4: We now examine the case where bk is essential for
one interval (e.g., (az, z̄) in Figure 7) which corresponds to
the case in Figure 6-(b). Similar to the above discussion, we
again divide S into S1 and S2 and try to put nodes bx into
one of these two sets such that S1∪S2 = S and S1∩S2 = ∅.
Let bm ∈ S be a node covering ac and bl ∈ S be a node
covering ay as in Figure 7. Note that bl cannot cover (ai, x̄)
as otherwise bk would not be covering the largest interval
including ai. Note also that bl 6= bm as otherwise bk and bl

would have an interleaving coverage.
Claim 4: We claim that bk or bl should cover all nodes that

bm covers in (ai, x̄ + ȳ + z̄).
Proof of Claim 4: Note that if bm does not cover
(ai, x̄), then the proof is the same as the proof of Claim 2
above. If bm covers (ai, x̄), it can cover some node in (ay, ȳ)
and some node in (ac, c̄) which are not covered by bk. If
this is the case, bl should cover all the nodes bm covers in
(ay, ȳ) as otherwise bm violates Assumption 1. That is, bm

covers (ai, x̄) and some nodes in aỹ 6= ay ∈ (ay, ȳ) which
bl does not cover; and bl covers ay which bm does not cover.
Based on this, bl separates the coverage of bm into two sets.
In addition, bm covers aỹ 6= ay ∈ (ay, ȳ) and ac which are
not covered by bk and bk covers (az, z̄) which bm does not
cover. The coverage scenario among the three nodes is similar
to the case in Figure 4-(c) with bm, bl, and bk in the position
of b1, b2, and b3 in the figure, respectively. ¤

Claim 5: bm covers all nodes bk covers in (ac, j−(x̄+ ȳ+
z̄)).
Proof of Claim 5: bk covers a node in (ai, x̄) and a
node in (az, z̄) which are not covered by bl. bl covers ay which
is not covered by bk. bm covers ac which is not covered by
bk. If bm does not cover a node that bk covers in (ac, j −
(x̄ + ȳ + z̄)), this will be a violation of Assumption 1 with a
coverage scenario among bk, bl, and bm similar to the case in
Figure 4-(c) with bk, bl, and bm in the position of b1, b2, and
b3 in the figure, respectively. ¤

Claim 6: bk covers all nodes that bl covers in (ac, j− (x̄+
ȳ + z̄)).
Proof of Claim 6: bk covers nodes in (ai, x̄) and in
(az, z̄) which are not covered by bl. bl covers ay that bk

does not cover. If bk does not cover a node bl covers in
(ac, j− (x̄+ ȳ+ z̄)), this will lead to an interleaving coverage
between bk and bl contradicting Theorem 2. ¤

Combining Claims 5 and 6, bm covers all nodes that bl

covers in (ac, j− (x̄+ ȳ + z̄)). Based on these results, we can
put bk and bl into S1 and bm into S2. For any other node bo:

1) If bo does not cover a node in (ay, ȳ) which is not
covered by bk, then bo ∈ S2.

2) If bo does not cover a node in (ac, j−(x̄+ ȳ+ z̄)) which
is not covered by bk, then bo ∈ S1. bm covers all nodes
bo covers in (ac, j − (x̄ + ȳ + z̄)).

3) If bo covers nodes from both (ay, ȳ) and (ac, j−(x̄+ȳ+
z̄)) which are not covered by bk, then bo ∈ S2. In this
case, bl covers all nodes bo covers in (ay, ȳ). Now, to
have a non-interleaving coverage between bo and bk, bo

should cover (ai, x̄) as bk covers a node in (az, z̄) that
bo does not cover. Next, if bl does not cover all nodes
bo covers in (ay, ȳ), bo will violate Assumption 1. This
case is similar to the case of bm in the proof of Claim 4
and is therefore omitted.

Note that bo should be in one of the above two cases as
otherwise bo 6∈ S. Similar to the discussion above, for optimal
solutions Sopt(ai, x̄ + ȳ + z̄) and Sopt(ac, j − (x̄ + ȳ + z̄)),
we have |Sopt(ai, x̄ + ȳ + z̄)| ≤ |S1| and |Sopt(ac, j − (x̄ +
ȳ + z̄))| ≤ |S2|. Since S = S1 ∪S2 is an optimal solution, by
Step 2 of ALG1, we have |Lmin(ai, j)| ≤ |Sopt(ai, x̄ + ȳ +
z̄)|+ |Sopt(ac, j − (x̄ + ȳ + z̄))| ≤ |S1|+ |S2| = |S|.

This case covers the essential coverage scenarios of bk in S
as presented in Figure 6-(b). If the optimal solution S is of this
nature, since we know the optimal solutions for all intervals of
length up to j − 1, the presented algorithm finds this solution
in Step 2. ¤

As a result, depending on the nature of the optimal solution
for (ai, j), one of the above mentioned four cases correspond
to the optimal solution Sopt(ai, j). This concludes the proof
of Theorem 3.

Lemma 5: ALG1 finds an optimal solution for (ai, j) if
Assumption 1 holds for (ai, j) and its all continuous subin-
tervals whose solutions contribute to calculate the solution for
(ai, j)1.
Proof of Lemma 5: The proof is by induction on j. For
j = 1, the optimal solution is found in Step 1 of ALG1.
For the hypothesis case, we assume that we have the optimal
solution for any (ak, j′) for j′ < j and k ∈ [i, i + j′ − 1]
where (ak, j′) contributes to the solution for (ai, j). By
Theorem 3 and the induction hypothesis, since Assumption 1
holds for (ai, j) and we have the solutions for all contributing
subintervals of (ai, j), ALG1 finds an optimal solution for
(ai, j). ¤

1A solution of a subinterval contributes to the solution of (ai, j) if it is
used as part of the selected solution for (ai, j). As an example, in Figure 8,
the solution for (a1, 4) and (a5, 1) contribute to the solution of (a1, 5).
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C. Proof of Correctness: Part 2

The example in Figure 8 shows that Assumption 1 may
not hold for all (ai, n). In the example, consider the interval
(a2, 5). In this interval, s is essential to cover three MCIs
namely (a2, 1), (a4, 1), and (a1, 1). The problem in this case
is that the interval (a2, 5) starts at the middle of an MCI that s
is essential for. Assumption 1 does not hold in this case and the
solution returned by ALG1 is not optimal. On the other hand,
please note that for another interval, (a1, 5), Assumption 1 is
satisfied.

Theorem 4: Given an instance of the MFSP problem (i.e.,
a node v and its 1-hop and 2-hop neighbor sets N(v) and
N2(v)), there exists at least one interval (ai, n) where i ∈
[1, n] such that ALG1 finds an optimal solution for (ai, n).
Proof of Theorem 4: Let S be an optimal solution for
an instance of MFSP problem. Let bk ∈ S be essential for an
MCI (ai, x̄). In this case, we represent the nodes in N2(v) as
an interval (ai, n). By the definition of an MCI, since bk is
essential for an MCI including ai, bk cannot cover ai+n−1,
i.e., the node prior to ai in circular order. From Theorem 1,
bk ∈ S may be essential for another MCI (az, z̄) in (ai, n).
Case 1: (bk is essential for (ai, x̄) only). This case is similar
to Case 1 in the previous section. That is, (ai, n) is divided
into two intervals (ai, x̄) and (ay, n − x̄) where ay = ai+x̄.
Following the same arguments as in Case 1 in the previous
section, we have Sopt(ai, n) = Sopt(ai, x̄) ∪ Sopt(ay, n− x̄).
ALG1 finds an optimal solution for (ai, x̄) in Step 1 as bk

covers (ai, x̄). ALG1 finds an optimal solution for (ay, n− x̄)
if Assumption 1 holds for (ay, n − x̄) and its all continu-
ous subintervals whose solution contribute to the solution of
(ay, n− x̄) by Lemma 5. Assume Assumption 1 does not hold
for (ay, n − x̄) or any of its continuous subintervals whose
solution contribute to the solution of (ay, n−x̄). Let us call the
(sub)interval that violates Assumption 1 (ac, c̄). There should
be a node bm that violates Assumption 1 for (ac, c̄) similar to
b1 in Figure 4-(c). In this case, bm should cover all the nodes
in (ai, n) \ (ac, c̄) as otherwise bm would violate Theorem 1
in (ai, n). If bm 6∈ Sopt(ac, c̄), then it can be discarded. If
bm ∈ Sopt(ac, c̄), then Sopt(ai, n) = Sopt(ay, n − x̄) which
contradicts that Sopt(ai, n) = Sopt(ai, x̄)∪Sopt(ay, n−x̄). As
a result, no bm can violate Assumption 1 for any (ac, c̄). Since
ALG1 finds optimal solutions Sopt(ai, x̄) and Sopt(ay, n−x̄),
and Sopt(ai, n) = Sopt(ai, x̄)∪ Sopt(ay, n− x̄) holds, ALG1
finds optimal solution for (ai, n) in Step 2.
Case 2: (bk is essential for (ai, x̄) and (az, z̄).) This case is
similar to Case 3 in the previous section. That is, (ai, n) is
divided into two intervals (ai, x̄+ȳ+z̄) and (ac, n−(x̄+ȳ+z̄))
where ac = ai+x̄+ȳ+z̄ . Since Theorem 1 holds for (ai, n)
and bk does not cover ai+n−1, we can use the arguments
in Case 3 in the previous section for this case again. From
those arguments, we have Sopt(ai, n) = Sopt(ai, x̄ + ȳ + z̄)∪
Sopt(ac, n− (x̄+ ȳ + z̄)). ALG1 finds an optimal solution for
(ai, x̄ + ȳ + z̄) if Assumption 1 holds for (ai, x̄ + ȳ + z̄) and
its all continuous subintervals whose solution contribute to the
solution of (ai, x̄+ ȳ+ z̄) by Lemma 5. Assume Assumption 1
does not hold for (ai, x̄ + ȳ + z̄) or any of its continuous
subintervals whose solution contribute to its solution. Let us

call this (sub)interval (ap, p̄). There should be a node bm that
violates Assumption 1 for (ap, p̄) similar to b1 in Figure 4-(c).
In this case, bm should cover all the nodes in (ai, n) \ (ap, p̄)
as otherwise bm would violate Theorem 1 in (ai, n). If bm 6∈
Sopt(ap, p̄), then it can be discarded. If bm ∈ Sopt(ap, p̄),
then Sopt(ai, n) = Sopt(ai, x̄ + ȳ + z̄) which contradicts that
Sopt(ai, n) = Sopt(ai, x̄+ȳ+ z̄)∪Sopt(ac, n−(x̄+ȳ+ z̄)). As
a result, no such bm can violate Assumption 1 in any (ap, p̄).
ALG1 finds an optimal solution for (ac, n − (x̄ + ȳ + z̄))
with a similar argument. Since ALG1 finds optimal solutions
Sopt(ai, x̄ + ȳ + z̄) and Sopt(ay, n − (x̄ + ȳ + z̄)), and
Sopt(ai, n) = Sopt(ai, x̄ + ȳ + z̄) ∪ Sopt(ay, n− (x̄ + ȳ + z̄))
holds, ALG1 finds optimal solution for (ai, n) in Step 2. ¤

Finally, since ALG1 finds the optimal solution for at least
one (ai, n), ALG2 returns this solution by choosing the
minimum size solution returned by ALG1.

VI. CONCLUSIONS

In this paper, we have studied the minimum forwarding set
problem (MFSP) in the context of wireless ad hoc networks.
Leveraging the practical characteristics of the application
environment, we have proposed a polynomial time algorithm
to build an optimal solution to the MFSP problem under
the unit disk coverage model for wireless transmission. We
expect the work presented in this paper to have an impact
on the design and development of new algorithms for several
wireless network applications including energy efficient multi-
cast and broadcast protocols; energy efficient topology control
protocols; and energy efficient virtual backbone construction
protocols for wireless ad hoc networks and sensor networks.
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