Recording Process Documentation for Provenance

Paul T. Groth and Luc Moreau

Abstract— Scientific and business communities are adopting
large scale distributed systems as a means to solve a wide
range of resource intensive tasks. These communities also have
requirements in terms of provenance. We define the provenance
of a result produced by a distributed system as the process
that led to that result. This paper describes a protocol for
recording documentation of a distributed system’s execution.
The distributed protocol guarantees that documentation with
characteristics suitable for accurately determining the prove-
nance of results is recorded. These characteristics are confirmed
through a number of proofs based on an abstract state machine
formalisation.

Index Terms— provenance, lineage, grids, distributed systems,
data protocols

I. INTRODUCTION

Scientific and business communities are adopting large scale
distributed systems (Grids, Web Services) as a means to solve
a wide range of resource intensive tasks. For example, bioin-
formaticians are using such systems to aid in drug discovery by
modelling the folding of proteins [20]. Likewise, in aerospace
engineering, practitioners are running simulations of aircraft
using networked supercomputers to improve design and safety,
while reducing cost [19]. Lastly, financial services firms are
using the idle cycles of desktop computers to perform financial
analytics with faster turn around times [22]. Beyond their use
of large amounts of computational resources in distributed
networks, these example applications share another common
concern. In each application, the process by which the result
was generated is as important as the result itself. For instance,
in the aerospace example, if a plane has a malfunction, it is
necessary to find where in the design and building process
the failure could have arisen. If during the design process
the simulation was at fault, it could be improved to prevent
future malfunctions in planes that use similar simulation
techniques. The process that led to the plane (including its
design, construction, and operation) is termed the provenance
of the plane. Thus, conceptually, we term the process that led
to a result, the provenance of that result.

The necessity for provenance is apparent in a wide range
of fields and mandated by a number of regulatory authorities.
For example, the American Food and Drug Administration
requires that the provenance of a drug’s discovery be kept as
long as the drug is in use (up to 50 years in some cases).
Likewise, the Federal Aviation Administration requires that
simulation records, as well as other provenance data, be kept
up to 99 years after the design of an aircraft. In financial
auditing, the American Sarbanes-Oxley Act requires public
accounting firms to maintain the provenance of an audit report
for at least seven years after the issue of that report (United
States Public Law No. 107-204). Beyond regulatory require-
ments, provenance is particularly important when there is no

physical record as in the case of purely in silico distributed
scientific processes since provenance provides the only means
to validate a result.

Therefore, the ability to determine the provenance of results
produced by a computational distributed systems is necessary.
However, in most instances, the existence of a computer-
derived result itself is not sufficient to determine its prove-
nance. We need to know details of the actual execution (e.g.
process) responsible for the result’s generation. During the
execution of a distributed system, it is possible to automat-
ically create a description of such an execution, which we call
process documentation and record it in a repository called a
provenance store. A provenance store can then be queried to
retrieve a concrete representation of the provenance of the
result of interest. To reiterate, process documentation contains
concrete representations of the provenance of results (e.g.
data) produced by a distributed system. Creating, recording
and querying process documentation are core steps of the
provenance lifecycle [18]. The focus of this paper is on the
creating and recording phase of such a lifecyle; we identify a
protocol by which a distributed system can record process doc-
umentation in a provenance store. Furthermore, we define the
expected behaviour of the distributed system, in the creation
and recording phases of the provenance lifecycle, so that the
recorded process documentation can help accurately determine
the provenance of a result. Consequently, the contribution of
this paper are threefold:

1) The definition of five characteristics that make process
documentation high-quality.

2) A description and a formal definition of a distributed
protocol that records process documentation.

3) Proofs that establish that the protocol records high-
quality process documentation.

The rest of this paper is organised as follows. Section
IT presents a set of characteristics to ensure that process
documentation is high-quality. In Section III, we describe
a provenance-aware application. An intuitive description of
a protocol for recording process documentation follows in
Section IV. Section V then defines a formal model of the
protocol using an abstract state machine. Based on this formal
model, Section VI presents analyses the protocol to show
that it supports to the characteristics presented in Section II.
Finally, we discuss related work and conclude.

II. HIGH-QUALITY CHARACTERISTICS

Auditors, scientists, and reviewers, need to be confident
that the process documentation which they rely upon for
provenance is both accurate and comprehensive. We now
define a set of five characteristics that help to ensure that
process documentation is indeed accurate and comprehensive.

These characteristics were derived from an analysis of use
cases from several domains [15]. We looked at both the
technical requirements enumerated in the analysis as well as
the use cases themselves. We found that in a majority of the
use cases, process documentation provides evidence that a
process occurred. Thus, these characteristics are justified by
philosophical arguments that equate process documentation to
evidence. Beyond these philosophical arguments, a number of
the characteristics also directly support technical requirements.

Characteristic 1 (Immutable): In a legal setting, once ev-
idence has been collected, it is criminal to tamper with it
because it corrupts the view the court has on what occurred.
Therefore, if we treat process documentation as evidence,
once an application has created it for a particular execution,
it should not be modified or deleted. Many times, it is
not apparent that process documentation is useful until it is
needed. Indeed, many users are caught off-guard when data
they previously produced is deleted. Thus, it is important to
maintain process documentation even when it is thought to be
unimportant. Furthermore, in settings where the provenance of
data might be used for scientific or legal verification, process
documentation must not be tampered with. The requirement
for immutable process documentation does not suggest that
errors in the documentation can not be corrected. There are a
number of ways, outside the scope of our protocol, to correct
errors, for example annotation, that do not entail the deletion,
replacement, or modification of existing documentation. The
essential point is to prevent tampering with process documen-
tation even under the guise of correcting errors.

Characteristic 2 (Attributable): In a court of law, evidence,
particularly testimony, is judged by the person or institution
who provides it. Furthermore, if it is found that the evidence
given is false then remedial action can be taken against the
provider. Similarly, if a user deems that process documentation
is somehow erroneous, the user must know who is responsible
for the creation of the documentation so that the party can
be held accountable. By insuring users know the accountable
party, they will have greater confidence in process documen-
tation.

Characteristic 3 (Autonomously Creatable): In both crimi-
nal and scientific investigations, evidence is gathered at the
most appropriate time and by the most appropriate person,
device, or institution. By analogy, the components of a
distributed systems should be able to create process docu-
mentation at a convenient point in time without having to
synchronise with any other component.

Characteristic 4 (Finalizable): When process documenta-
tion is created within a distributed system, it is helpful to
know when the components within the system have fully
documented their processes so that the system can know
when to query the documentation or relinquish components.
Furthermore, it is helpful for users to know when full evidence
(i.e. process documentation) has been provided for a particular
process, otherwise, it is hard to know when a judgement can be
made about the evidence. Thus, process documentation should
be finalizable (i.e. markable as the final representation of a past
process). This characteristic is particularly helpful in systems
where, to achieve performance gains, creation and recording of

documentation occur in an asynchronous fashion with respect
to the process.

Characteristic 5 (Process Reflecting): Evidence is only
useful in a court if it can be put together to make a
convincing case that a particular crime occurred. Likewise,
process documentation is only useful if it can be put
together to show that a process occurred. Thus, for a process
documentation to be useful, it should be connected in
such a manner that it reflects how the distributed system
executed. We term documentation that has this characteristic,
process reflecting. This characteristic may be realized in
different ways within different systems, for example in a
workflow system connections might be conveyed through
data dependencies.

We term process documentation that has the above five
characteristics as high quality. When process documentation
has these characteristics, the users of the provenance taken
from this evidence can trust that it is both comprehensive and
accurate. Later, in Section VI, these high-level characteristics
are expressed in a set of formal properties. Using these proper-
ties, we show how our protocol ensures, through well-defined
protocol messages (Section IV-A) and behavioral obligations
(Section IV-B) on the entities within a distributed system, that
the process documentation it records is high quality. Before
defining the protocol, we define a provenance-aware system.

III. PROVENANCE-AWARE SYSTEMS

To facilitate the presentation, we distinguish between the
whole of process documentation and its constituent parts.
We term an individual piece of process documentation, a
p-assertion. Documentation of process, then, is a set of p-
assertions. When a query is issued to a provenance store, it
also retrieves a set of p-assertions. This terminology is adopted
from an Architecture for Provenance Systems [12].

A distributed system can be described as a set of actors that
communicate by message passing.! Each actor can have one
or more roles that place specific obligations on actors to fulfil
the particular roles. The roles used in this paper are defined
below:

e An application actor is an actor that performs some

application functionality irrespective of provenance.

o A sender is an application actor that sends messages to

other actors.

e A receiver is an application actor that receives messages

from other actors.

o An asserter is an actor that can create p-assertions.

e A recorder is an actor that can record p-assertions in a

provenance store.

e A provenance store is an actor that can persistently store

p-assertions.

The introduction of a specialized actor obligated to persis-
tently store p-assertions is made to address the question of
where process documentation should be stored.

The adoption of provenance stores avoids storing dupli-
cate process documentation for multiple data items; second,

IThis definition is similar to other definitions of distributed systems in the
literature [4].

because they are specialised for the storage of p-assertions,
provenance stores can be built to persistently store large
amounts of process documentation. Systems that record p-
assertions about their execution in provenance stores are
referred to as provenance-aware systems.”> Using the above
role definitions, we now define a protocol for recording p-
assertions into provenance stores.

IV. PREP: THE P-ASSERTION RECORDING PROTOCOL

The P-assertion Recording Protocol (PReP) defines the
communication between actors and the expected behaviour of
those actors when recording p-assertions. In this case, PReP
has the following benefits:

1) It ensures that the data residing in the provenance store
is high-quality.

2) It provides a well-defined interface for actors to record
p-assertions.

We note that the protocol is abstract and acts as a guideline
for implementations. Thus, the abstract specification does not
directly address implementation performance. However, the
protocol has been designed to enable implementations that
minimize impact on application performance. In particular,
an extensive investigation of an implementation of PReP in
both bioinformatics and controlled environments demonstrated
a maximum overhead of between ten and fifteen percent [10].

We now present the protocol and corresponding definitions
of actor behaviour that together ensure the recording of process
documentation with high quality characteristics. We begin with
a specification of the protocol.

PReP is an abstract asynchronous protocol for an actor to
record p-assertions into a provenance store. An asynchronous
protocol allows actors to send their messages at any time,
which means that actors can choose when to record p-
assertions and thus not delay their execution. Furthermore,
this asynchronous approach enables implementations of the
protocol to minimise performance perturbations by selecting
when recording will have minimal impact on the application.
We define PReP in terms of both its messages as well as
the expected behaviour of the actors exchanging the protocol
messages.

With the previously listed characteristics in mind, we now
proceed to define the protocol itself. As we defined earlier,
an application can be described as actors communicating via
message passing. In such a system, communication between
actors gives a context to the individual execution of actors,
hence, we base the protocol around the notion of an infer-
action. Actors record p-assertions in the context of a given
interaction where they are either a sender or receiver. Note an
actor may be involved in many different interactions and that
its lifetime is application dependent.

2Examples of provenance-aware systems include workflow enactment en-
gines that capture traces of workflow execution [24], databases that allow the
retrieval of a tuple’s derivation [5] and file systems that capture how programs
manipulate files [14].

A. Messages

With these general notions, we now present the protocol’s
messages and those assumed by it. After describing the
messages, we then present the dependencies between them.

Let us consider the example of a distributed application
that is not provenance-aware, i.e. one in which there are no
provenance stores and p-assertions are not recorded. In such a
case, application actors communicate via application messages
that contain some application specific data. Figure 1 shows a
basic application message that has one parameter that consists
of an element from the set DATA. The parameter refers to the
data typically transmitted by senders and receivers irrespective
of p-assertion recording. Each message named in Figure 1 is
given a notation that is used later in a formalisation. Likewise,
the parameters of each message, which are defined by sets, are
used in the same formalisation.

Name Notation Parameters
basic application message DATA
application message app IK, DATA
record p-assertion rec IK, RI, A,
LPID,
P-ASSERTION
view size VS IK, RI, A,
LPID, N*
acknowledgement ack 1K, RI,
LPID, B

Fig. 1. The messages of PReP (IK = Interaction Key, RI = Role Identifier,
LPID = Local P-assertion Id, A = Actor Identity, N+ = number of p-
assertions, B = whether the message was stored)

To transform such an application into a provenance-aware
application, one or more provenance stores are introduced
and actors record p-assertions into them. Additionally, basic
application messages are extended with an identifier (similar
to a message id) to be exchanged between actors, which is
shown in Figure 1 as an application message. We label the
identifier an interaction key.

An interaction key identifies an interaction uniquely from
all other interactions. The sender in an interaction is required
to generate this key and send it to the interaction receiver. We
note that it may not always be possible to extend application
messages to add an interaction key. Instead, out of band mech-
anisms would be required to propagate similar information,
for example, by sending the interaction key in a separate
provenance-specific message or relying on the message layer
to provide unique message ids. During the following discus-
sion, we assume that an interaction key can be added to basic
application messages. The generation of interaction keys by
senders supports a decentralised design where no centralised
entity is necessary for senders or receivers to create or record
p-assertions. The set of interaction keys is denoted by IK.

In a provenance-aware application, application messages
define the messages exchanged by application actors. The rest
of the messages defined in Figure 1 are exchanged between
recorders and provenance stores.

The record p-assertion message is sent by a recording actor
to a provenance store in order to record a p-assertion (the set
of p-assertions is P-ASSERTION) about an interaction. Each
p-assertion is given a key that allows for each p-assertion to be

uniquely identified. This key consists of the following parts:
the interaction key the p-assertion is associated with, the role
identifier (element of set RI), and the local p-assertion id
(element of set LPID). The interaction key combined with
the role identifier and local p-assertion id ensures that every
p-assertion can be referenced uniquely. The role identifier
specifies whether the actor recording the p-assertion was the
sender or the receiver in the interaction. The local p-assertion
id is a nonce generated by the actor through a pseudo-function
that increments a local counter (LC) for every p-assertion
created by the actor.

The record p-assertion message also includes an actor
identity (element of set A) that is the asserter identity. The
asserter identity is the creator of the p-assertion within the
message and is essential for recording attributable process
documentation. It connects the p-assertion in the message to
the identity of the actor that creates, records, and is responsible
for it.

To allow an actor to inform the provenance store about
how many p-assertions should be recorded for a particular
interaction, we introduce the view size message. It is similar
to the record p-assertion message, except that the p-assertion
parameter is replaced with an integer representing how many
p-assertions a provenance store should receive in total from an
actor for an interaction. By knowing how many p-assertions
should be recorded, a provenance store can determine when an
actor has finished recording and thus allow process documen-
tation to be finalizable. The view size message, like any other
message, can be sent at any time. We note that in most cases
an actor will send this message after it has recorded all its
p-assertions. Thus, the view size does not imply that an actor
guesses how many p-assertions it will create and record for a
particular interaction. Instead, the ability to send the message
at any time preserves the asynchronicity of the protocol. For
example, consider an actor that has already created all its p-
assertions, because of PReP’s design, the actor can record all
the p-assertions and notify the provenance store about number
of p-assertions contained within a view in parallel.

The last kind of message exchanged by recorders and
provenance stores is the acknowledgement message. Each
message received by a provenance store is acknowledged by
an acknowledgement message, which contains the p-assertion
key contained in the message being acknowledged as well as a
boolean value denoting whether the message was stored. There
is some computation time in processing record messages and
storing their contents. Therefore, acknowledgement messages
allow actors to track whether their p-assertions have been
stored within the provenance store. This is useful when the
actor wishes to notify other actors that it has completed
recording. Furthermore, the provenance store can use the
acknowledgement message to notify the actor that the store
can be queried or to return error messages and other imple-
mentation specific information. We assume that flow control
and reliable message delivery are handled by the underlying
communication protocol. Thus, the acknowledgement message
is not used for guaranteeing message delivery or flow control
but, instead for the recorder to track the state of the provenance
store.

We now describe the dependencies between the messages
defined above. Due to the asynchronous nature of the protocol,
the dependencies are minimal. They are as follows:

o For any application message in a given interaction, a
record p-assertion or view size message about that in-
teraction must contain the same interaction key as the
application message.

o Acknowledgement messages must be sent after the receipt
of the message that is being acknowledged.

B. Behaviour

The set of messages and their dependencies impose some
behavioural constraints on the roles of sender, receiver,
recorder, and provenance store. We now make such behaviour
explicit. Our intent here is to give an intuitive description
of the required behaviour of these actors and then use the
formalisation that follows to give a precise definition of that
behaviour. We enumerate these behaviour constraints below.

1) (Unique Interaction Key Rule) A sender must generate a
globally unique interaction key for every new interaction
and associate it to that interaction.

2) (Interaction Key Transmission Rule) A sender must send
the interaction key to the receiver by including it within
the application message being sent.

3) (Appropriate Interaction Rule) Both receiver and senders
must use the interaction key associated with an interac-
tion, I, when asserting p-assertions about I.

4) A recorder must keep track of the messages it has sent to
a provenance store for a particular interaction until the
acknowledgements are received for them. This behaviour
models how actors can track the state of the provenance
store.

5) The provenance store must be waiting to receive mes-
sages and when it receives a message, it must process
its content, store it and return the appropriate acknowl-
edgement message. The provenance store must prevent
previously recorded p-assertions from being overwritten
and not allow additional p-assertions to be added to
complete Views.

We now present a formal model of PReP.

V. A FORMAL MODEL OF PREP

To show that PReP records process documentation with the
characteristics listed in Section II, we now present a formalisa-
tion of PReP in terms of the behaviour of the actors involved in
the protocol and the messages used. We have chosen to model
PReP as an abstract state machine (ASM) because it provides a
precise, implementation-independent means of describing the
protocol. The notation we use is a textual representation of
the calculus of constructions adopted by Coq and was used to
describe a distributed reference counting algorithm [16]. The
abstract machine characterises the behaviour of actors with
respect to the messages they send and receive. This behaviour
is specified by the permissible transitions that the ASM is
allowed to perform. We begin by describing the state space of
the ASM, and we then proceed to discuss its transitions.

1) State Space: The state space of the ASM is shown
in Figure 2. We model a distributed system as a set of
actors communicating via asynchronous message passing over
a set of communication channels, /. We identify specific
subsets of actors in the system, namely, senders, receivers and
provenance stores. An actor may be a member of all these
subsets. These subsets map to roles previously defined. Actors
are referred to using an Actor Identity, A.

Communication channels are assumed to be reliable and
secure, and not to duplicate messages. No assumption is made
about message order in the channel (i.e. sending message
A before sending message B does not guarantee that A
will arrive at its destination before B). Hence, channels are
represented as bags of messages between pairs of actors.
We note that the dependencies between messages (e.g. that
an acknowledgement is sent after the receipt of a message)
are not enforced by channels but by actors following their
specified behaviour. While PReP does not require message
order, applications are free to add such a requirement and
capture that fact in the process documentation that the appli-
cation generates. The messages listed in Figure 1 are sent over
these communication channels and are formally defined as an
inductive type producing set M in Figure 2.

Having defined the state space for communication between
actors, we now model the state space for the internal function-
ality of each actor role.

a) Provenance Store State Space: Informally, we can see
a provenance store as an actor containing a table that maps
interaction keys and a role identifier to a set of identified
messages. This models the Views within a provenance store
(V). An interaction key (x) together with a role identifier
(v) and set of identified messages is labelled a View. In
Figure 2, the table (store_T) is defined as a function that
takes an interaction key and role identifier and returns a triple
containing a view size message, several record messages and
some local p-assertion ids. We use the power set notation (IP)
to denote that there can be more than one of a given element.
We define the set of provenance stores, PSS, as a mapping
from an actor identity to a set of Views. Since each set of
Views can be located at a different actor, our model allows
for multiple provenance stores.

b) Sender and Receiver State Space: Now, we define
the state space of sending and receiving actors in Figure 2.
This state space describes the various tables that these actors
use to keep track of the messages they need to send to the
provenance store (TO_SEND), the messages they have sent
to it (SENT) and the acknowledgements received from it
(ACK). Furthermore, the state space describes the p-assertions
that a sender or receiver need to record in a provenance
store (ASSERT) and how an actor keeps track of the local
p-assertion ids it has already used (LPID_MAP). Finally,
each sending actor has a local counter (LC) used to create
interaction keys.

The state space that we have described may appear to be
global in Figure 2. However, each table for a sender or receiver
is indexed by an actor identity (A) and can be implemented
with updates that are local to actors. Hence, the protocol does
not require any global knowledge by actors of other actors’

state.

For convenience, we define two accessor functions. The
accessor function to access the state of the View is defined
as follows:

If store_T(a)(k,v) = (vs,Tecs, Ipids) then
store T(a)(k,v).vs = vs,
store T(a)(k,v).recs = recs,
store T(a)(k,v).lpids = Ipids
We also define a function for accessing the state of a view
size message. The function is defined as follows:
If vs = vs(k, v, a, ¥, na) then
VS.K = K, VS.V = v, Vs.a = a,
vs.f = f,vs.na = na

Having described the state space of our ASM, a state (or
configuration) of the machine is described in Figure 2. The
machine’s initial state, shown in the same figure, can be
summarised as: empty interaction record stores, empty com-
munication channels, all sending and receiving actors having
empty p-assertion and message tables, and local counters being
initialized to zero. We use A-calculus notation to represent
tables as functions in the initial state.

The machine proceeds from this initial state through its
execution by going through transitions that lead to new states.
These transitions are defined by the rules of the state machine
discussed in the next section.

When describing the execution of a state machine, we use
the following notation and definitions.

o A transition is the application of a rule to one configu-
ration to achieve another configuration.

o A reachable configuration is a configuration of the ASM
that can be reached by transitions from the initial config-
uration.

o —— denotes a transition.

e ¢ —* (¢ denotes any number of transitions from a
configuration ¢ to another configuration ¢’.

We now discuss the specific rules of the ASM.

2) State Machine Rules: The permissible transitions in the
ASM are described through rules, which are represented using
the following notation.

rule_name(vy, va, -) :

conditioni (vi,v2,)

A conditiong(vi, va,) A
—{

pseudo_statements;

pseudo_statementy,;

}

Rules are identified by their name and the parameters that
they operate over. Rules are configuration transformers; con-
verting any configuration satisfying all its preconditions into a
new configuration by applying all the rule’s pseudostatements.
There is a nondeterministic selection of rules when several can
be fired at the same time. This does not impact the eventual
recording of p-assertions in the provenance store as shown
later in Section VI-E.

We use send, receive and table update pseudo-statements.
Informally, send(ai,as,m) inserts a message m into the
channel from actor a; to actor ag, and receive(ai,az, m)
removes the message. Likewise, the table update operation

A = {ai,a2,...,an}
SENDERS C A
RECEIVERS C A
PS C A
REL = {7‘1)7‘2>-'<yr7z}
P-ASSERTION = {a1,a2,...}

M = app : IK x DATA — M
| rec: IK X RI X A x LPID x P-ASSERTION — M
| vs:IK x RI x A x LPID x Nt — M
| ack : IK x RI x LPID X B — M
VS = {m e M |m=vs(k,v,a,l,na)}
R = {meM]|m=rec(r,v,a,f a)}
IK = SENDERS X RECEIVERS X N
RI = {S,R}
V = IKxRI— VS, xP(R) x P(LPID)
PSS = A —P(V)
TOSEND = A — IK — Bag(M)
SENT = A — IK— Bag(M)
ACK = A —IK — Bag(M)
ASSERT = A — IK X RI — Bag(P-ASSERTIONS)
LPID_MAP = A — IK X RI — P(LPID)
LC = SENDERS — N
K = AXA— Bag(M)

= PSS x IC x TO_SEND x SENT x
ACK x ASSERT x LPID_-MAP x LC

Characteristic Variables:

kK € K
a S A .
a;, € SENDER lfzccli g EEII}SID)
Q. S RECEIVER store.T c PSS
ap; g E?EL to.send T € TO_SEND
m c M sent. T S SENT
d c DATA ack. T € ACK
« c P-ASSERTION assert.T € ASSERT
e c IK lpid T € LPID_MAP
le S LC
v € RI X c
na € Nt Z 2 B
¢ € LPID
Fig. 2. State Space

puts a message into a table. The notation table T is used to
refer to any table in the state space. Formally, these pseudo-
statements act as state transformers and are defined as follows.

o« We use the operators & and & to denote union and
difference on bags. If k is the set of message channels of
a state (..., k,...), then the expression send(a1, as, m)
and receive(ay,as,m) respectively denote the state
(..., K,...), where k'(a1,as) = k(a1,az2) ®{m} and
k(a1,a2) ©{m}, and k¥'(a;,a;) = k(ai, a;), V(a;, a;) #
(a1 y CLQ).

o If table.T is a component of state (..., tableT,...),
then the expression tableT.y := V denotes the state
(... ,tableT’,...), where table_ T.x = table T".x if x #
y, and table T .y =V.

To ease the readability of the rules, we also define the

following functions. The function complete determines if a
View is complete:

complete : A x IK x Rl — {true, false}
complete(a, k,v) :=
If store-T(a)(k,v).vs # L,
then return
storeT'(a)(k,v).vs.na =
|store T'(a)(k,v).recs|
else return false.

(Set of Actor Identities)

(Set of Sender Identities)

(Set of Receivers Identities)

(Set of Provenance Store Identities)
(Set of Business Logic Descriptions)

(Set of P-Assertions)

(Set of Messages)

(Set of View Size Messages)
(Set of Record Messages)

(Set of Interaction Keys)
(Set of Role Identifiers)

(Set of Views)
(Set of Provenance Stores)

(Set of Messages To Send Tables)

(Set of Sent Messages Tables)

(Set of Acknowledged Messages Tables)
(Set of p-assertions to be recorded)
(Map from actor to

local p-assertion ids)

(Set of Local Counters)

(Set of Channels)

(Set of Configurations)

Initial State / Configuration:

c; = (store T}, k;, to_send.T;, sent.T;, ack.T;, assert Ty, lpid T}, lc;)
where:

storeT; = Aa;Akv;.(L,0,0), ki = Xasa;.0,
to_send T; = dajk;.0, sentT; = Aaiik;.0,
ackT; = da;ik;.0, assertT; = dajk;vi.0,
lpidT; = Aa;jriv;.0, le; = Xa;.0

The pseudo function newldentifier creates new interactions

keys, updating an actor’s local counter table:

newldentifier : SENDERS X RECEIVERS — IK
newldentifier(as,ar) :=

le(as) :=lc(as) + 1

return {as, ar, lc(as)).

Figures 3 and 4 show the ASM’s transition rules, which
formally define the behaviour of the actors in PReP that meet
the constraints described in Section IV-B. We now discuss the
two rules that govern the provenance store’s behaviour shown
in Figure 3.

a) Provenance Store Rules: The
recetve_record_passertion rule takes an incoming record
message from a particular actor and places it in the correct
View in the provenance store as defined by store T, and
thereby also stores the p-assertion enclosed in the message.
The View is looked up via the interaction key and role
identifier located in the rec message. An acknowledgement
message (ack) is then sent to the actor who sent the rec
message. During its execution, the rule checks to see whether
or not the local p-assertion id (¢) of the p-assertion contained
within the message has already been used in the interaction
record. If ¢ has not been used, the message is stored,

—_

receive_record-passertion(a, aps, K, v, £, o) :

2: rec(k,v,a,f,a) € K(a, aps)
—{
3: receive(rec(k, v, a, , @), a, aps);
4: if (£ ¢ store T (aps)(k,v).lptdsA
—complete(aps, k,v)), then
5: store T (aps)(k,v).lpids :=
store T (aps)(k,v).lpids U {£};
6. store T (aps)(K,v).recs :=
store T (aps)(k,v).recs U {rec(x,v,a,,a)};
7. send(ack(k, v, £, true), aps, a);
8 else send(ack(k, v, £, false), aps, a);
I
9. receiveview.size(a, aps, Kk, v, £,na) :
10: vs(k,v,a,€,na) € K(a,aps)
—
11 receive(Vs(k, v, a, £, na), a, aps);
12: if (€ ¢ store_T(aps)(k,v).lpids A
store T (aps)(k,v).vs = L), then
13: store T (aps)(K,v).lpids :=
store T (aps)(k,v).lpids U {£};
14: store T (aps)(k,v).vs := VS(k, v, a, {,na);
15: send(ack(k, v, £, true), aps, a);
16: else send(ack(k, v, £, false), aps, a);
}
Fig. 3. Provenance Store rules

otherwise it is not. Likewise, if the View is complete (i.e.
it already contains the requisite number of p-assertions) the
message is not stored. In all cases, an acknowledgement is
sent informing the actor whether the p-assertion was stored
(true if it was, false otherwise). This rule satisfies part of
Behaviour Constraint 5 (See Section IV-B).

The view_size rule operates in a similar manner and
satisfies the rest of Behaviour Constraint 5. However, only
one view size message (vS) is allowed to be recorded. If
subsequent VS messages are received by the provenance store,
the message is discarded and an ack message is sent to the
actor.

b) Sender and Receiver rules: Figure 3 defined the
behaviour of a provenance store. However, in order to demon-
strate the protocols support for high-quality characteristics,
we need to prescribe some behaviour of the actors that use
provenance stores. Our aim is to show that if an actor behaves
in the manner defined, then certain guarantees can be given.
This behaviour is formalised in Figure 4.

The functionality of these rules can be summarised as
follows. When involved in an interaction (i.e. either sending
or receiving a message), an actor makes p-assertions related to
that interaction. This behaviour is shown in the send_app_msg
and receive_app_msg rules. We highlight the makeAssertions
function which takes an actor identity (a), an interaction
key (k), some data (d), and a business logic description
(r) and produces a set of p-assertions, {aq,...,ap}. This
function is defined by each protocol implementation, which is
responsible for generating p-assertions describing the contents
of messages exchanged in interactions as well as the business
logic (i.e., application functionality) operating on data within
those messages. Thus, by using business logic descriptions,
the makeAssertions function not only allows message contents
to be recorded but also the dependencies between those
messages to be captured. In other work [11], we describe how
documentation produced by the makeAssertions function can
be organized to effectively capture such dependencies and thus

1. send-app-msg(as,ar,d,r) :
// triggered when d, produced by a function described by r,
// is to be sent by as to a,

—{
2. let K = newldentifier(as,ar)
3: in let {ai,...,a,} = makeAssertions(as, k,d, T)
4: in send(app(x,d), as,ar);
5. assert.T(as, k,S) 1=

assert T(as,k,S) U{a1,...,an};
}

6. receive.app-msg(as,ar, K, d) :
7: app(k, d) € K(as, ar)

—{
8: receive(app(k, d), as, ar);

/I receive business logic
9: let {1, ..., an} := makeAssertions(a,, k,d, L)
10: in assert.T(a,,k,R):=
11: assert. T (ar,k,R) U{a1,...,an};
}

12: make_passertion-msg(a, o, K, v) :
13: o € assert.T'(a, Kk, v)

—
14: let £ ¢ lpid T (a, k,v)
15: in to_send.T(a, k) :=

to_send_T'(a, k) U {rec(k,v,a,£,a)};

16: assert.T(a, k,v) := assert.T(a, k,v) © a;
17: Ipid T (a, k,v) := lpid-T(a, k,v) B &

18: make_view_size-msg(a, K, v) :

19: assert.T(a,k,v) =0

—
20: let £ ¢ lpid T (a, k,v)
21: in to_send.T(a, k) :=

to_send_T'(a, k) U {vs(k,v,a, ¥, |lpid-T(a, k,v)|)};
22: Ipid-T(a, k,v) := lpid-T(a,k,v) D 4

23: record-message(a, aps, m) :

24: m € to_send.T'(a, k)
—
25: to_send.T'(a, k) := to_send-T'(a, k) © m;
26: sent.T'(a, k) := sentT(a, k) ® m;
27: send(m, a, aps);
}

28: receive_ack(a, aps, K, v, £, b) :
29: ack(k,v,4,b) € K(aps,a)
-
30: receive(ack(k, v, £,b), aps, a);
31: ackT(a, k) := ackT(a, k) ® ack(k, v, £, b);
}

Fig. 4. The rules of the ASM used by sending and receiving actors

aid in the determination of provenance.

Once the set of p-assertions has been created, a rec message
for each p-assertion is then constructed and added to the table
of messages to be sent to the provenance store (to_send_T),
which is shown in make_passertion_msg. This rule also obtains
the asserter identity. When all the rec messages have been
added to to_send T, a vS message is constructed . The vs
message could be constructed at any time, but we have chosen
to do so at this stage to make the rules simpler. Creating
VS messages in this manner is a lazy strategy, they could
alternatively be generated using an eager strategy. These steps
are formalised in make_view_size_msg. These two rules both
keep track of the local p-assertion ids that the actor has used.

Once a message has been sent, it is added to a table of
messages that have been sent to the provenance store, sent_T,
and removed from to_send_T'. Finally, when an acknowledge-
ment has been received, it is stored in the table ack_T. This
models how an actor keeps track of its communication with
a provenance store for a particular interaction identified by

k. The rules that correspond to this tracking functionality are

record_msg and receive_ack and satisfy Behaviour Constraint
4.

VI. PROTOCOL ANALYSIS

Based on the ASM above, we now analyse PReP according
to the high-quality characteristics presented in Section II. The
analysis shows how these broad characteristics are reflected
directly by concrete properties supported by PReP. Several
properties are invariants i.e. as the state machine proceeds
these properties always stay the same. We rely on case analysis
either on its own or in the context of a proof by induction to
establish these properties. Essentially, the rules of the ASM
are analysed to show that after any number of transitions the
particular property still holds for the resulting configuration of
the state machine.

When using proof by induction, induction is performed upon
the length of the transition sequence from one configuration
to another. In the base case, we establish that the invariant
holds in some initial configuration. In the inductive case, the
invariant is assumed to hold after a series of transitions from
the initial configuration to another configuration. We then
prove, using case analysis, that the property holds after an
additional transition. We now begin the analysis.

A. Immutable

We demonstrate that PReP supports the storage of im-
mutable process documentation by showing that p-assertions
that have been previously recorded will not be overwritten,
deleted or modified. We begin by defining a function that
retrieves the record messages from a View in a particular
configuration.

Definition 1 (View Function): For all C, ps, K, U,
View(c, aps, k,v) is defined as store T'(aps)(k,v).recs
where store_ T is in the configuration c.

Using this function, we define the following invariant,
stating that a view’s contents are monotonically increasing.

Invariant 1 (Monotonically Increasing): For any configura-
tions ¢; and ¢y, where ¢; —™ co,

View(c, aps, £, v) C View(ca, aps, K, V)

for any a,s, K, v.

Proof: We prove this invariant by induction on the length
of the transition sequence c; —* co. In the base case, where
the length is zero, c¢; equals co and the invariant holds.

In the inductive case, we assume that for c;
¢, the invariant holds: therefore, View(ci,aps,k,v) C
View(cn, aps, &, v). We then consider the possible transitions
from ¢, +—— co. There are only two rules of the state
machine that govern the actions of the provenance store:
receive_record_passertion and receive_view_size shown in
Figure 3.

In the case of the receive_record_passertion, store T is
only added to as shown in Figure 3 lines 5 and 6. Moreover, if
the same local p-assertion id is used by a record message, the
message is discarded and an acknowledgement is sent. This

—

test is shown in Figure 3 line 4. Hence, View(cy, Gps, k, V) C
View(cg, aps, K, v).

Likewise, in the case of the receive_view_size rule, if a vs
message has already been recorded for a given View, then no
other vS message is allowed to be recorded as seen in Figure
3 line 12. Furthermore, there are no rules that operate on
store_T that delete or modify already recorded p-assertions.
Hence,

View(cp, aps, £, v) C View(ca, aps, K, V).
By transitivity, we conclude that
View(c1, aps, &, v) C View(ca, aps, K, V).

For all other rules, the provenance store is not updated; hence,
¢n, = C2, which completes the proof. []

Because the contents of the provenance store are mono-
tonically increasing, PReP ensures that the evidence of a
process is immutable, which gives confidence to both users and
creators of process documentation. Users know that process
documentation is the same as it was when it was originally
recorded by the source. Likewise, creators know that process
documentation they have entrusted to the provenance store
will not disappear or be corrupted. Finally, immutable process
documentation ensures that users will not be caught off-guard
by its accidental or non-malicious deletion.

B. Attributable

PReP supports attributable process documentation by en-
suring that for every p-assertion in a provenance store there
is an actor identity for that p-assertion that identifies the p-
assertion’s asserter, which means that every p-assertion can
be “tracked back” to its creator. Thus, actors can be held
accountable for the p-assertions they create, by a means
outside PReP. Again, we note that, within PReP, the creator
and recorder of a p-assertion are the same actor. We begin
by defining the following invariant, which states that the actor
identity within a message does not change.

Invariant 2 (Identity Preserving): For all configurations,
c1, co, Where ¢ —* co, for any message m in ci, the actor
identity in m is the same in co, for all m € RUV'S.

The proof can be found in Appendix A, which follows the
same proof procedure as Invariant 1. Based on the Identity
Preserving invariant, the following lemma can be shown. Its
proof can also be found in the same appendix.

Lemma I: An actor identity contained within a given rec
message is always the identity of the actor that caused the
generation of the rec message.

Based on Lemma 1, Invariant 2, and Invariant 1, we
conclude that if a p-assertion is in a provenance store then the
identity of the actor who created and recorded the p-assertion
can be determined. Note, that p-assertions only appear within
rec messages inside the provenance store. Hence, every p-
assertion is attributed to a particular actor.

C. Autonomously Creatable

To ensure that actors are able to create and record p-
assertions at their convenience in an autonomous fashion

without having to synchronise with any other actors, PReP
specifies three behaviour constraints specific to sender and
receivers. When these behaviour constraints are followed, the
sender and receiver are able to create and record p-assertions
independently from one another while still ensuring consis-
tency within the provenance store. These behaviour constraints
are identified in the following definition:

Definition 2 (Actor Behaviour Compliant): Two actors
passing a single message are actor behaviour compliant when
they follow the Unique Interaction Key Rule, the Interaction
Key Transmission Rule, and the Appropriate Interaction Rule.

If actors conform to the state machine, they will be actor
behaviour compliant as shown by the case analysis given in
Appendix B.

D. Finalizable

We now show that process documentation recorded by PReP
is finalizable. Using the view size message, an actor can state
that its account of an interaction is fully documented. This
notion is captured in by a complete View. Once a View is
complete, it can no longer be changed. This is stated formally
in the following invariant, which is proven in Appendix C.

Invariant 3 (Complete View): Consider a configuration, ¢y,
where a View is complete. For any configuration cs, such that
c1 —* ¢, then

View(c1, aps, k,v) = View(ca, aps, K, v),

for all ayg, K, v.

From Invariant 3, process documentation recorded by PReP
in a View can be marked as complete and is then immutable.
Hence, the process documentation recorded by PReP has the
high-quality characteristic of being finalizable, which seals a
View preventing future information from being added, which
gives users a firm basis for making a judgement about the
interaction the View documents; they know that no new
information will suddenly arise. Furthermore, it allows a
system to determine when an actor is finished recording
process documentation for an interaction and thus when the
provenance store can be queried about that interaction.

E. Process Reflecting

We now show that a process (i.e. the execution of an applica-
tion) can be reflected by process documentation recorded in a
provenance store.?> To do this, we extend the ASM to consider
the execution of actors. The actors execute in accordance with
the following definition of process:

Definition 3 (Interaction Process Definition): A process is
a connected set of interactions and transformations.

Thus, the execution of actors is described by the exchange of
messages between actors and the transformations they perform
on received messages. Transformations are defined formally
later in Definition 4. To describe this execution formally, we
first define the state space for the execution of the set of actors.

As all the data that an actor works upon is located in
received messages, we model the state of actor (AS) as data

3By reflection, we mean common sense reflection. We do not mean intro-
spection as offered by some programming language runtime environments.

32! consume.-msg(as, ar, K, d) :
33: app(k, d) € K(as, ar)
—
34: receive(app(k, d), as, ar);
35: as(a,) = as(a,) U {(d, k) };
/I receive business logic

36: produce-msg(as, ar,d, f) :

// triggered when d, produced by function f

// that is described by 7,

/ is to be sent by as to a,

—A
37: let kK = newldentifier(as, ar)
38: in send(app(k, d), as, ar);

¥

AS = P(DATA X IK) (Actor States)
APPS = A — AS (Application State)
PAPPS = C x AprpS (Provenance-aware)

Application State)
Characteristic Variables:

(d, k) € AS, as € APPS, pas € PAPPS, (c, as) = pas

Fig. 5. Application Rules and State Space

paired with the interaction key from the message in which
the data was received. We assume that a garbage collector
will collect any unused data, but, for simplicity, we do not
model garbage collection here. We also define a table, APPS,
that maps from actor identities (A) to actor states. The same
accessor notation that we have used for other tables applies to
APPS as well. So that as(a) will access the state of the actor
identified by a. The configuration of the application is defined
by the combination of the state of all the actors in the system
combined with the configuration of PReP. This is modelled by
PAPPS.

The execution of actors following Definition 3 can be
modelled by rules shown in Figure 5 that express the transition
of states when sending and receiving messages.

Thus, after the receipt of a message, the state of the
application is updated, whereas, after sending a message, the
state stays the same. Sending a message is triggered by the
execution of some business logic or a transformation on the
actor state, which we define as follows.

Definition 4 (Transformation): A transformation is the ex-
ecution of a function f on an actor state, as(a), to achieve a
tuple (d, a,). This is represented as (d, a,) = f(as(a)) where
a, specifies the actor to which the data item should be sent.

The functions applied to actor states are modelled by
business logic definitions, which are specified by the set REL
defined in Figure 2.

The execution of some application is modeled by the
transitions between actor states denoted by as; »—»2@ aso,
where the transitions are defined in Figure 5. In our modeling,
an application is allowed to execute independently of recording
process documentation. We now show how the application
can be integrated with PReP. First, we denote three different
categories of transitions and provide a notation for each:

1) Provenance Aware Application Transitions are all the
transitions that occur in both PReP and an application.
These are denoted by +—— 4.

2) Application Transitions are the transitions defined in
Figure 5. These are denoted by ——).

3) PReP Transitions are the transitions defined in Figures
3 and 4. These are denoted by ——¢p.

The execution of such a provenance-aware application is
denoted by pas; }_);aa pass. In such an execution, PReP
Transitions and Application Transitions are coupled together
following Definition 5.

Definition 5 (System Coupling): For any application con-
figurations, {(c1,as1), {(ca2,ass), the following transition is
allowed:

<01, GS1> —paa <C27 6182>

if one of the following conditions hold:

1) asi ——qgpp as2 with produce_msg and
C1 F—prep C2 SENA_app_-msg.

2) asy ——qapp aS2 With consume-msg and
€1 ——prep C2 With receive_app_msg.

3) With transitions other than send_app_msg or
recetve_app-msg then ¢ ——p.¢p co and
as|y = asa.

What is occurring is that when the produce-msg or
consume_msg rules are fired in the application, the corre-
sponding send_app_msg or receive_app_msg rule are fired as
well. Essentially, the application and PReP rules are merged
together. Therefore, we note that the pseudo-statements shared
by the rules only execute once.

Using this system coupling definition, we can show that pro-
cess documentation reflecting the application’s execution will
end up in the provenance store. First, we define the function
that creates documentation when an application rule fires. The
function is called with » = 1 when receive_app-msg fires
and with r # 1 when send_app_msg fires.

Definition 6 (Make Assertions Function):

makeAssertions(a, k,d,r):
PA = 0; // set of p-assertions

fr#l

l PA = {<a8(a),7’, <d7 K’>>}
PA={{d,k)}

return PA;

This makeAssertions function creates p-assertions de-
scribing either a transformation executed resulting in a mes-
sage being sent or the receipt of a message by an ac-
tor. In the case where a transformation has been executed,
makeAssertions constructs a p-assertion which contains the
inputs to the transformation (ac(a) e.g. the state of the actor),
the output of the transformation ((d, x)) and the business logic
description of the function, ». When describing the receipt of
a message (specified as the argument 7 begin), a p-assertion
documenting the incoming data, d, within the interaction
identified by x (i.e. the state being added to the actor state).
Process documentation generated by this function reflects the
application’s actual execution as defined in Definition 3.

Using the above definitions, we provide a proof outline for
the following lemma, which is also depicted in Figure 6.

Lemma 2 (Process Reflection): For any application state,

as, reachable from as;, where as; n—>2pp as; for all pas

reachable from pas;: pas; = {(¢;, as;) F—1aa PaS With pas =
(c,as); there exists a final configuration pasy = (co,as)
for some co, where there are no messages in transit and
no messages to send, such that pas ——7,, pasz without
application transitions, such that the provenance stores in pass
contain the description of as; —y,,, as.

as; > app as

(ci,as;) . (e, as)

— *
Fig. 6. State transition diagram depicting Lemma 2

>

paa paa—wa <CQ7 a5>

Intuitively, the application proceeds from an initial state
as; to some final state as where the application has finished
executing. Because of system coupling (shown by the vertical
hash lines), the provenance-aware application also proceeds
from an initial state (c;, as;) to some state (c, as). However,
there may be p-assertions remaining to be recorded that
describe the application’s execution, thus the provenance-
aware application finishes recording those p-assertions without
using application transitions (denoted by paa-wa in the figure).
Our proof outline for this lemma again uses induction and
is described in Appendix E. The proof outline relies on the
guarantee that once a p-assertion is created it will recorded
into a provenance store and acknowledge. This guarantee
is discussed and proven in Appendix D. If an application
executes according to Definition 3 and the makeAssertions
function is defined according to Definition 6, then from
Lemma 2 documentation reflecting the application’s process
will eventually be found in provenance stores.

VII. RELATED WORK

The motivation for this paper stems from the need for the
provenance of results produced by computational systems.
This need has not gone without notice in the literature.
Under the heading of lineage, Bose and Frew present a
comprehensive overview of provenance related systems [2].
Likewise, Moreau and Foster provide a survey of current
provenance research [17]. From an analysis of these works,
we assert that the focus of provenance research has been on
the implementation of concrete systems for provenance in the
context of either specific domains (i.e. geographic information
systems, chemistry, biology) or technologies (i.e. databases).
In contrast, this paper describes a domain and implementation
independent means for recording process documentation for
provenance. Based on these surveys, we believe there are no
other abstract protocols designed specifically for recording
process documentation.* Furthermore, our protocol supports
the tracing of provenance through general transformations
(i.e. actors) that was highlighted as an area that needs to be
addressed by Tan [21].

4This version of PReP extends previous work on the protocol ([8], [9]) by
increasing its generality, clarifying the formalisation, and grounding the work
more clearly in use case analyses.

Like PReP, work in the database community has taken a
formal approach to provenance. Specifically, the community
has focused on the data lineage problem, which can be
summarised as: given a data item, determine the source data
used to produce that item. Cui et al. formalise the problem and
present a number of algorithms for determining the lineage of
data in relational databases [5]. Buneman et al. also develop a
formal model of provenance for database systems that applies
to both hierarchical and relational databases [3]. PReP differs
from these approaches because it considers provenance in open
systems where data is distributed and represented using several
different kinds of structures and processing happens using a
wide variety of algorithms.

PReP is closely related to data synchronization protocols
such as rsync [23] and Harmony [7]. Like these protocols,
PReP copies data from one actor to another (i.e. a recorder
to a provenance store). However, unlike these protocols, PReP
is not designed for duplication of data; instead; it is designed
for recording data as documentation of a process. Therefore, it
provides a context (interactions) to all pieces of data recorded.
Furthermore, PReP ensures that all data recorded using is
attributable to some actor. The protocols cited do not enforce
such attributability.

PReP is also similar to distributed debugging [1], [13] and
failure recovery systems [4], [6]. In distributed debugging, the
execution of a distributed system is recorded by capturing
events in the system. Events are defined by actions of the
various actors in the system. These traces of execution can
then be used to debug, visualise, or monitor execution [13].
Similarly, failure recovery systems take periodic snapshots of
the distributed system state so that execution can be restarted
if failure occurs. Unlike these systems, PReP ensures that
the documentation recorded using it conforms to five high-
quality characteristics. Additionally, PReP specifically enables
the capture of business logic descriptions of the functions used
within the distributed system.

VIII. CONCLUSION

The provenance of results produced by distributed systems
is important in fields such as aerospace, pharmaceuticals,
and finance. We have identified that the provenance of re-
sults can be retrieved from documentation of a distributed
system’s execution. Focusing on the recording of process
documentation, we have shown that our recording protocol
helps ensure that the process documentation recorded using
it complies with the five characteristics necessary for high-
quality process documentation. We follow a systematic proof
procedure based on mathematical induction. We believe that
this systematic approach, while done by hand, is sufficient
to provide confidence that the protocol does support the
enumerated high-quality characteristics. Furthermore, because
of this systematic approach and the extensive use of invariants,
we hypothesise that the proofs are at a stage where they could
be translated into a format suitable for mechanical proof.

REFERENCES

[1] P. C. Bates. Debugging heterogeneous distributed systems using event-
based models of behavior. ACM Transactions on Computer Systems,
13(1):1-31, 1995.

[2] R. Bose and J. Frew. Lineage retrieval for scientific data processing: a
survey. ACM Computing Surveys, 37(1):1-28, 2005.

[3] P. Buneman, S. Khanna, and W. Tan. Why and where: A characterization
of data provenance. In Int. Conf. on Databases Theory (ICDT), volume
1973 of Lecture Notes in Computer Science, pages 316-330. Springer-
Verlag, 2001.

[4] K. M. Chandy and L. Lamport. Distributed snapshots: determining
global states of distributed systems. ACM Transactions on Computer
Systems, 3(1):63-75, 1985.

[5] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a
warehousing environment. ACM Trans. Database Syst., 25(2):179-227,
2000.

[6] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM
Computing Surveys, 34(3):375-408, 2002.

[7] J. N. Foster, M. B. Greenwald, C. Kirkegaard, B. C. Pierce, and
A. Schmitt. Exploiting schemas in data synchronization. In Symposium
on Database Programming Languages (DBPL), Trondheim, Norway,
volume 3774 of Lecture Notes in Computer Science, pages 42 — 57.
Springer-Verlag, 2005.

[8] P. Groth, M. Luck, and L. Moreau. Formalising a protocol for recording
provenance in grids. In Proc. of the UK OST e-Science second All Hands
Meeting 2004 (AHM’04), Nottingham, UK, September 2004.

[9] P. Groth, M. Luck, and L. Moreau. A protocol for recording provenance

in service-oriented grids. In T. Higashino, editor, Proceedings of

the 8th International Conference on Principles of Distributed Systems

(OPODIS’04), volume 3544 of Lecture Notes in Computer Science,

pages 124-139, Grenoble, France, December 2004. Springer-Verlag.

P. Groth, S. Miles, W. Fang, S. C. Wong, K.-P. Zauner, and L. Moreau.

Recording and using provenance in a protein compressibility experiment.

In Proceedings of the 14th IEEE International Symposium on High

Performance Distributed Computing (HPDC’05), 2005.

P. Groth, S. Miles, and L. Moreau. A Model of Process Documenta-

tion to Determine Provenance in Mash-ups. Transactions on Internet

Technology (TOIT), 2008.

P. Groth, S. Miles, V. Tan, and L. Moreau. Architecture for provenance

systems. Technical report, University of Southampton, October 2005.

http://eprints.ecs.soton.ac.uk/11310/.

[13] J. Joyce, G. Lomow, K. Slind, and B. Unger. Monitoring distributed

systems. ACM Transactions on Computer Systems, 5(2):121-150, 1987.

[14] J. Ledlie, C. Ng, D. A. Holland, K.-K. Muniswamy-Reddy, U. Braun,

and M. Seltzer. Provenance-aware sensor data storage. In NetDB 2005,

April 2005.

S. Miles, P. Groth, M. Branco, and L. Moreau. The requirements of

using provenance in e-science experiments. Journal of Grid Computing,

5(1):1-25, 2007.

L. Moreau, P. Dickman, and R. Jones. Birrell’s Distributed Reference

Listing Revisited. ACM Transactions on Programming Languages and

Systems (TOPLAS), 27(6):1344 — 1395, Nov. 2005.

L. Moreau and I. Foster, editors. Provenance and Annotation of Data —

International Provenance and Annotation Workshop, IPAW 2006, volume

4145 of Lecture Notes in Computer Science. Springer-Verlag, May 2006.

L. Moreau, P. Groth, S. Miles, J. Vazquez, J. Ibbotson, S. Jiang,

S. Munroe, O. Rana, A. Schreiber, V. Tan, and L. Varga. The Provenance

of Electronic Data. Communications of the ACM, Apr. 2008.

A. Schreiber. The integrated simulation environment TENT. Concur-

rency and Computation: Practice and Experience, 14(13-15), January

2003.

C. D. Snow, H. Ngyen, V. S. Pande, and M. Gruebele. Absolute

comparison of simulated and experimental protein-folding dynamics.

Nature, 420:102—-106, 2002.

[21] W.-C. Tan. Research problems in data provenance.

Engineering Bulletin, 27(4):45-52, 2004.

S. Tezuka, H. Murata, S. Tanaka, and S. Yumae. Monte carlo grid

for financial risk management. Future Generation Computer Systems,

21(5):811-821, 2005.

A. Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD

thesis, Australian National University, February 1999.

[24] J. Zhao, C. Goble, R. Stevens, and D. Turi. Mining taverna’s semantic

web of provenance. Journal of Concurrency and Computation: Practice
and Experience, 2007.

(10]

[11]

[12]

[15]
[16]
[17]
[18]
[19]
[20]

IEEE Data

[22]

(23]

APPENDIX

In this section, we present proofs of the properties and
invariants presented in Section VI.

A. Proofs for Attributable Invariant and Lemma

Invariant 2 (Identity Preserving): For all configurations,
c1, co, Where ¢ —* co, for any message m in ci, the actor
identity in m is the same in co, for all m € RUV'S.

Proof: This invariant can be established by induction
on the length of invariant by induction on the length of the
transition sequence ¢y —™ cs.

In the base case, where the transition length is zero, c; is
equal to co and thus the invariant holds trivially.

In the inductive case, for transition lengths greater
than zero, we assume that the invariant holds for
c1 —" ¢, and we consider all the possible transitions
from ¢, There are five rules that deal with
messages from the set R U V'S: receive_record_passertion,
receive_submission _finished, record_message,
make_passertion_msg, and make_view_size_msg. None of
the first three rules create record or view size messages
neither do the rules modify them. Thus, the actor identity
in c¢o remains the same as in ¢, and the invariant holds.
In the case where ¢, —— co using make_passertion_msg or
make_view _size_msg, the newly created message does not
belong to ¢, and the invariant holds. [|

Lemma 1: An actor identity contained within a given rec
message is always the identity of the actor that caused the
generation of the rec message.

Proof: In Figure 4, once a p-assertion is in the assert T’
table, the make_passertion_msg rule can fire. In the first
pseudo-statement in the rule, a is used to generate the rec
message. Furthermore, the rule can only fire if « belongs to
assertT by a. Therefore, a in the rec message is the identity
of the actor that caused the rec message to be generated. A
similar argument also applies to the creation of VS messages.
Finally, from Invariant 2, we know that these identities remain
the same.]

= C2.

B. Proof for Actor Behaviour Compliant

Lemma 3 (Compliance Enforcement): Actors following
PReP are actor behaviour compliant.

This lemma can be established through a case analysis
of the send_app_msg and receive_app_msg that govern the
interactions between senders and receivers.

Proof: To establish this theorem, we perform a case
analysis. Rules send_app_-msg and receive_app_msg govern
the interactions between senders and receivers. send_app-msg
sends the application message to a receiver. In Figure 4
line 2, the rule creates a new interaction key using the
newldentifier(as,a,) pseudo-function, which guarantees
the creation of a unique interaction key (under the assumption
that actor identities are unique). Furthermore, in line 3, the
rule assigns the interaction key to the application message and
sends the application message to the receiver. Therefore, the
ASM, through the send_app_msg, rule complies to the Unique
Interaction Key Rule and the Interaction Key Transmission
Rule.

In send_app-msg rule, the makeAssertions(as,k,d,)
function uses the generated interaction key to create p-
assertions about the interaction (see Figure 4 line 3). Like-
wise, in the receive_app_msg rule, the makeAssertions

(ar, k,d, L) function uses the interaction key in the appli-
cation message, app(k,d), to create p-assertions about the
interaction (see Figure 4 line 9). Therefore, the ASM, through
these rules, complies with the Appropriate Interaction Rule.
Because the ASM complies to the Unique Interaction Key
Rule, the Interaction Key Transmission Rule, and the Ap-
propriate Interaction Rule, actors following PReP are actor
behaviour compliant as defined by Definition 2. []

C. Proof for the Complete View Invariant

Invariant 3 (Complete View): Consider a configuration, ¢y,
where a View is complete. For any configuration cs, such that
c1 —* co, then

View(c1, aps, k, v) = View(ca, aps, K, V),

for all aps, Kk, v.

Proof: We prove this lemma by induction on the length
of transition sequence c; —* co. In the base case, where the
length is 0, ¢y is the same as c; and the lemma trivially holds.

In the inductive case, a length greater than zero is consid-
ered. We assume that the invariant holds for ¢; —™* ¢,, and
show that the property holds for all possible transitions from
Cn — Ca.

An inspection of the ASM rules shows that only two rules
modify views. They are receive_submission_finished and
receive_record_passertion. By hypothesis, the view is com-
plete. Hence, by definition of complete, vs is not null. From
Invariant 1, if vs is not L, vs cannot be modified. Likewise,
the rules prevent messages from being recorded if vs is not
1 (see Figure 3 line 4 and the complete function definition).
Therefore, View(cz, aps, £, v) = View(cy, aps, k,v) and the
invariant holds. []

D. Guaranteed Recording

Once p-assertions have been created, we show that they will
be recorded in the provenance store and acknowledged. Before
establishing this formally, we first define two invariants. The
first invariant shows that every message sent to the provenance
store will be recorded by it. The second invariant shows that
once a message has been recorded the recorder will have
a corresponding acknowledgement message. Both invariants
can be proved by induction on the length of the transition
sequence between two configurations. We make the following
assumption:

o There is implicit conversion from sets to bags.

We also define a function to select a group of messages
from a table that contain a particular interaction key and view
kind combination.

Definition 7 (Messages Selector): For all k, v,

Bag(M) | (x.v) = {recw,v, . —.2) € Bag(M),

vs(k,v,—,—,—) € Bag(./\/l)}

Invariant 4 (Always Recorded): For any configuration c;
reachable from c¢;, for all s, a, aps,

sent T(a,k) | (k,v) =

k(a,aps) | (k,v)
@store_T(aps)(k,v).recs
@store_T(aps)(k,v).vs

where v is the role identifier of a.

Proof: We prove this invariant by induction on the length
of the transition sequence, c¢; —* c1, where ¢; is the initial
configuration of the state machine.

In the base case, where the length is zero, ¢; equals ¢;. In ¢;
all tables and channels are empty and thus the invariant holds.

In the inductive case, we assume that for ¢; —* ¢,, the
invariant holds. We then consider the possible transitions from
¢, +—— ci1. There are three rules that deal with the tables
identified in the invariant. We address each individually.

e In the record_message rule, a message is added to
the sent T table and is also placed on the channel
between a and a,s through the send pseudo-statement.
Hence, sent_T'(a, k) in ¢; is sent_T'(a, k) ®m in ¢, and
k(a, aps) in ¢ is k(a, aps) @m in ¢,. Thus, the invariant
holds for ¢; since it holds in c,,.

o In the receive_record_passertion rule, a message on
the channel from a to aps is received and is therefore
removed from the channel. The same message is then
added to store_T in Figure 3 line 6. Hence, k(a, aps) in
c1 is k(a,aps) ©m in ¢, and store T(aps)(k,v).recs
in ¢y i8 store_T'(aps)(k, v).recsU{m} in ¢,. Therefore,
the invariant holds in ¢; because it holds in ¢,,.

o In the receive_view_size rule, a message on the channel
from a to a,s is received and is therefore removed
from the channel. The same message is then added to
store T in Figure 3 line 14. Hence, k(a, aps) in ¢ is
k(a,aps) © m in ¢, and storeT'(aps)(k,v).vs in ¢
is store_T'(aps)(k,v).vs U {m} in ¢,. Therefore, the
invariant holds in ¢; because it holds in c¢,,.

Therefore, the property holds in the inductive case and the
invariant is established.
|
We note that the actor sending a message to a provenance
store will receive a corresponding acknowledgement message.
This notion relies on the following function that converts the
messages in a View to a set of acknowledgement messages.

Definition 8 (Message to Ack Conversion): For all a,k,v,
viewToAck(store T(a)(k,v)) is defined as

Bag(ack(n,v,é,b) | rec(k,v,a,l,a) €

store T'(a)(k,v).recs

or vs(k,v,a,l,na) €
store T(a)(k,v).vs

By using this function, the messages stored in the prove-
nance store can be converted to acknowledgement messages
and thus can be matched to the acknowledgement messages
received by the recording actor. This matching is explained by
the following invariant.

Invariant 5 (Always Acknowledged): For all configurations

c1 reachable from ¢;, for all &, a, ays, v,
viewToAck(store T(a)(k,v)) =

k(aps,a) | (k,v) ® ackT(a,k) | (k,v).

Proof: We prove this invariant by induction on the length
of the transition sequence c¢; —* ¢;, where c¢; is the initial
configuration of the state machine.

In the base case, where the length is zero, all tables and
channels are empty and thus

viewT oAck(store T'(a)(k,v)) = k(aps,a)
=ack T(a,k) =0

and the invariant holds.

In the inductive case, we assume that for ¢; —* ¢,, the
invariant holds. We then consider the possible transitions from
¢, +—— c1. There are three rules that deal with the tables
identified in the invariant. We address each individually.

e In the receive_record_passertion rule, a message is
added to the store_T" table. A corresponding acknowl-
edgement message is also generated and added to the the
channel k(aps,a). Hence,

viewToAck(store_T(a)(k,v)) in ¢ is
then viewToAck(store T(a)(k,v)) ®m in ¢y,

and k(aps,a) in ¢; is k(aps,a) @ m in c,. Thus, the
invariant holds in ¢; since it holds in ¢,,.

e In the receive_view_size rule, a message is added to
the store I table. A corresponding acknowledgement
message is also generated and added to the the channel
k(aps,a). Hence,

viewToAck(store T(a)(k,v)) in ¢ is
then viewToAck(store T(a)(k,v))® m in ¢,

and k(aps,a) in ¢q is k(aps,a) @ m in ¢,. Thus, the
invariant holds in ¢; since it holds in c,.

« In the receive_ack rule, an acknowledgement message is
removed from the channel k(a,,, a) and then added to the
ack_T(a, k) table. Hence, k(aps, @) in ¢1 is k(aps, a)om
in ¢, and ack-T(a,k) in ¢ is ack-T(a,k) ® m in c,.
Therefore, the invariant holds in ¢; because it holds in
Cn.-

Therefore, viewToAck(store T'(a)(k,v)) = k(aps,a) |
(k,v) ® ackT(a,k) | (k,v) holds in the inductive case and
the invariant is established. []

Using Invariants 4 and 5, we now establish that the messages
and thus the p-assertions within those messages sent to the
provenance store will be stored and an acknowledgement
will be received by the sender. Thus, the acknowledgements
received from the provenance store by the sender will be equal
to what was originally sent by the sender (after a simple
conversion step).

Lemma 4 (Always Recorded and Acknowledged): For all
a, aps, in any reachable configuration, c; where all channels
between a and a,s are empty, all messages from the set
RUVS that have been sent by a to a,, have been stored in

aps and a has received an acknowledgement.
Proof: From Invariant 4, if k(a,a,s) = (0 then for all
K\,
sent T(a,k) | (k,v) =

store T (aps) (K, v).recs U store T (aps) (K, v).vs.

By definition of store-T'(a)(k,v), we can collapse this
equation to be

sent T (a, k) | (k,v) = store_T(aps)(k,v).

Furthermore, from Invariant 5, if k(aps,a) = (then for all
K, U,
viewToAck(store T(a)(k,v)) =

ack T(a, k) | (k,v).

Hence,
viewToAck(sent T (a, k) | (k,v)) =

ack T(a,k) | (k,v).

Essentially, what an actor sent to a provenance store has
been acknowledged. Given that no rule removes messages
from the acknowledgement table and from Invariant 1 the
provenance store is immutable, all record and view size
messages that have been sent to a provenance store are stored
in the provenance store and acknowledgements have been
received by the recorder.]

We now introduce two more invariants that state that after
p-assertions are created, they end up in the sent_T'. The proofs
are omitted for brevity.

Invariant 6 (Always Sent): For all configurations ci, ca,
where ¢y —* ¢g, for all a, k, v,

assert T(a, k,v) @ to_send T (k,v) ® sent T (k,v)

is constant for all transitions excluding send_-app-msg and
recetve_app-msg.

Invariant 7 (P-assertion Accumulation): For all configura-
tions ¢y, ¢, where ¢; —™* ¢o, for all a, K, v,

assert_T(a, k,v) @ to_send T (k,v)
@sent T(k,v) atcy
C assert T(a, k,v) ® to_send_T(k,v)
@sent T(k,v) at co

for send_app-msg and receive_app_-msg transitions.

The above lemma and invariants show that once p-assertions
are created, they will end up in a provenance store and the cre-
ator of the p-assertions will have received acknowledgements
that they have been stored.

E. Proof of Process Reflection

Lemma 2 (Process Reflection): For any application state,
as, reachable from as;, where as; |—>;pp as; for all pas
reachable from pas;: pas; = (ci, as;) —,, pas with pas =
(c,as); there exists a final configuration pass = (ca,as)

for some co, where there are no messages in transit and

no messages to send, such that pas ——,, pasz without
application transitions, such that the provenance stores in pass
contain the description of as; —7,,, as.

Intuitively, the application proceeds from an initial state
as; to some final state as where the application has finished
executing. Because of system coupling (shown by the vertical
hash lines), the provenance-aware application also proceeds
from an initial state (c;,as;) to some state {c,as). However,
there may be p-assertions remaining to be recorded that de-
scribe the application’s execution, thus the provenance-aware
application finishes recording those p-assertions without using
application transitions (denoted by paa-wa in the figure).

Proof: Our proof outline proceeds by induction on the
length of the transition sequence from as; —7,,, as.

In the base case, as; equals as, hence no execution has taken
place and process documentation is empty and the lemma
holds trivially.

In the inductive case, we assume if as; ——
pas;
as; ——

app @Sn then
paa Dasn and process documentation describing
app @Sn Will be recorded in a set of provenance stores
at some later configuration, (c;,as,). This is the inductive
hypothesis and is shown in Figure 6.

We now show that for all possible transitions from
as, +—qpp as that process documentation describing that
transition will be in a provenance store after pas, ——;,q_wq
pasa, where pasy = (ca,as) and one application transition.

In this inductive step, the application proceeds from as;
after any number of transitions to the state as,,. We assume
that p-assertions describing this execution are recorded in the
provenance store when the provenance-aware application state
space reaches (c;,as,). Once the application has reached
the state as,, one more application transition occurs to the
state as. Through system coupling, the provenance-aware
application state will also proceed from (c;,as,) to {c,as)
by one application transition. We note that this application
transition can occur at any time after configuration (c,,, asy).
It does not have to wait for the recording of p-assertions to
finish.

We now consider the two possible application transitions
from as, F—qpp as, produce.msg and consume_msg.
When one of these rules executes, from Definition 5, the
corresponding rule (send-app-msg and receive_app-msg)
defined in Figure 4 will eventually execute. This eventual
execution is based on our hypothesis that in the ASM any
number of other rules can fire between the execution of the
application rule and the corresponding PReP rule but that rule
will fire.

Once the corresponding rule is fired, the makeAssertion
function is called and a set of p-assertions, aq,...,qy,, 18
produced. These p-assertions are then placed in a table,
assertT', with a key for the particular interaction, . Once o
is in the assert_T table, from Invariants 6 and 7, it will end
up in a message in sent_T. From Lemma 4, the message will
be recorded and acknowledged in a finite number transitions
and the system will reach a final configuration, pass. Thus, in
the inductive case the lemma holds. []

[

