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Abstract—Packet classification is the core mechanism that enables many networking services on the Internet such as firewall packet

filtering and traffic accounting. Using Ternary Content Addressable Memories (TCAMs) to perform high-speed packet classification has

become the de facto standard in the industry. TCAMs classify packets in constant time by comparing a packet with all classification

rules of ternary encoding in parallel. Despite their high speed, TCAMs suffer from the well-known interval expansion problem. As

packet classification rules usually have fields specified as intervals, converting such rules to TCAM-compatible rules may result in an

explosive increase in the number of rules. This is not a problem if TCAMs have large capacities. Unfortunately, TCAMs have very

limited capacity, and more rules means more power consumption and more heat generation for TCAMs. Even worse, the number of

rules in packet classifiers have been increasing rapidly with the growing number of services deployed on the Internet. In this paper, we

propose to address the interval expansion problem of TCAMs by removing redundant rules in classifiers. This equivalent

transformation can significantly reduce the number of TCAM entries needed by a classifier. Our experiments on real-life classifiers

show an average reduction of 58.2 percent in the number of TCAM entries by removing redundant rules. Given the logical interleaving

nature of packet filtering rules, identifying redundant rules in classifiers is by no means trivial, and to achieve the guarantee of no

redundant rules in resulting classifiers is even more challenging. In this paper, for the first time, we give a necessary and sufficient

condition for identifying all redundant rules in a classifier. Based on this condition, we categorize redundant rules into upward

redundant rules and downward redundant rules. Second, we present two algorithms for detecting and removing the two types of

redundant rules, respectively. Third, we formally prove that the resulting classifiers have no redundant rules after running the two

algorithms. Last, we conduct extensive experiments on both real-life and synthetic classifiers. The experimental results show that our

redundancy removal algorithms are both effective and efficient.

Index Terms—Packet classification, Ternary Content Addressable Memory (TCAM), redundant rules.

Ç

1 INTRODUCTION

PACKET classification, which has been widely deployed on
the Internet, is the core mechanism that enables routers

to perform many networking services such as firewall
packet filtering, virtual private networks (VPNs), network
address translation (NAT), quality of service (QoS), load
balancing, traffic accounting and monitoring, differentiated
services (Diffserv), etc. As more services are deployed on
the Internet, packet classification grows in demand and
importance.

The function of a packet classification system is to map
each packet to a decision (i.e., action) according to a
sequence (i.e., ordered list) of rules, which is called a
classifier. Each rule in a classifier has a predicate over some
packet header fields and a decision to be performed upon
the packets that match the predicate. To resolve possible
conflicts among rules in a classifier, the decision for each
packet is the decision of the first (i.e., highest priority) rule
that the packet matches. Table 1 shows an example classifier

of three rules. The format of these rules is based upon the
format used in Access Control Lists on Cisco routers.

1.1 Motivation

There are two types of packet classification schemes:
software based and hardware based. Many advanced soft-
ware-based packet classification algorithms and techniques
have been proposed in the past decade (see the survey paper
[37]). Based on complexity bounds from computational
geometry [33], for packet classification with n rules and d > 3
fields, the “best” software-based packet classification algo-
rithms use either OðndÞ space and OðlognÞ time or OðnÞ
space and Oðlogd�1 nÞ time. Many software-based solutions
are either too slow (such as linear search) or too memory
intensive (such as RFC [16]). Decision-tree-based packet
classification algorithms (such as [17] and [39]) seem to
achieve better time-space trade-offs. However, they may not
work as well in the future as they have exploited statistical
characteristics of packet classifiers to achieve the above time-
space trade-offs, and it has been observed that these
statistical characteristics are changing [22].

Due to the inherent limitations of software-based packet
classification algorithms, more and more packet classifica-
tion systems are hardware based; specifically, most packet
classification systems now use Ternary Content Addressable
Memories (TCAMs). A TCAM is a memory chip where each
entry can store a packet classification rule that is encoded in
ternary format. Given a packet, the TCAM hardware can
compare the packet with all stored rules in parallel and then
return the decision of the first rule that the packet matches.
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Thus, it takes Oð1Þ time to find the decision for any given
packet. Current TCAMs can support up to 133 million
searches per second for 144-bit-wide keys [22]. Because of
their high speed, TCAMs have become the de facto
industrial standard for high-speed packet classification [1],
[3], [4], [22]. In 2003, most packet classification devices
shipped were TCAM based [2]. More than six million TCAM
devices were deployed worldwide in 2004 [2].

Despite their high speed, TCAMs have their own

limitations with respect to packet classification:

1. Interval expansion. TCAMs can only store rules that are
encoded in ternary format. In a typical packet
classification rule, the source IP address, the destina-
tion IP address, and the protocol type are specified in
prefix format, which can be directly stored in TCAMs,
but source and destination port numbers are specified
in intervals (i.e., ranges), which need to be converted
to one or more prefixes before being stored in
TCAMs. This can lead to a significant increase in the
number of TCAM entries needed to encode a rule. For
example, 30 prefixes are needed to represent the
single interval [1, 65,534], so 30� 30 ¼ 900 TCAM
entries are required to represent the single rule r2 in
Table 1.

2. Low capacity. TCAMs have limited capacity. The
largest TCAM chip available on the market has
18 Mbits, while 2-Mbit and 1-Mbit chips are most
popular [2]. Given that each TCAM entry has 144 bits
and a packet classification rule may have a worst
expansion factor of 900, it is possible that an 18-Mbit
TCAM chip cannot store all the required entries for a
modest classifier of only 139 rules. While the worst
case may not happen in reality, this is certainly an
alarming issue. Furthermore, TCAM capacity is not
expected to increase dramatically in the near future
due to other limitations that we will discuss next.

3. High power consumption and heat generation. TCAM
chips consume large amounts of power and generate
large amounts of heat due to their high circuit
density. For example, a 1-Mbit TCAM chip consumes
15-30 W of power. Power consumption together with
the consequent heat generation is a serious problem
for core routers and other networking devices.

4. Large board space occupation. TCAMs occupy much
more board space than SRAMs. For networking
devices such as routers, area efficiency of the circuit
board is a critical issue.

5. High hardware cost. TCAMs are expensive. For exam-
ple, a 1-Mbit TCAM chip costs about 200 � 250 US
dollars. TCAM cost is a significant fraction of
router cost.

All these limitations of TCAMs can be addressed by

reducing the number of TCAM entries that a classifier

requires. As we reduce the number of TCAM entries
required, we can use TCAMs of smaller capacities, which
results in less board space and lower hardware cost.
Furthermore, reducing the number of rules in a TCAM
directly reduces power consumption and heat generation
because the energy consumed by a TCAM grows linearly
with the number of ternary rules it stores [40].

In this paper, we propose to reduce the number of
TCAM entries that a classifier requires by removing the
redundant rules in the classifier. A rule in a classifier is
redundant if and only if removing the rule does not change
the semantics of the classifier. For example, rule r2 in the
classifier in Table 1 is redundant because there is no packet
whose first matching rule is r2. Through this equivalent
transformation of removing redundant rules, the number of
TCAM entries needed by a classifier can be significantly
reduced. Using the example of the classifier in Table 1,
removing redundant rules reduces the number of TCAM
entries needed from 902 to 2. Our experiments on real-life
classifiers show an average reduction of 58.2 percent on the
number of TCAM entries by removing redundant rules.

1.2 Redundant Rules

Classifiers often have redundant rules. A rule in a classifier
is redundant if and only if removing the rule does not
change the function of the classifier, i.e., does not change the
decision of the classifier for every packet. For example,
consider the classifier in Fig. 1, whose geometric represen-
tation is in Fig. 2. This classifier consists of five rules r1

through r5. For simplicity, we assume that this classifier
only checks one packet field F1 whose domain is [1, 100].

We have the following two observations concerning the
redundant rules in the classifier in Fig. 1:

1. Rule r3 is redundant. This is because the first
matching rule for all packets where F1 2 ½30; 50� is
r1, and the first matching rule for all packets where
F1 2 ½51; 60� is r2. Therefore, there are no packets
whose first matching rule is r3. We call r3 an upward
redundant rule. A rule r in a classifier is upward
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TABLE 1
An Example Classifier

Fig. 1. A simple classifier.

Fig. 2. Geometric representation of the classifier in Fig. 1.



redundant if and only if there are no packets whose
first matching rule is r. Geometrically, a rule is
upward redundant in a classifier if and only if the
rule is overlayed by some rules listed above it.

2. Rule r4 is redundant. This is because r4 is the first
matching rule for all packets where F1 2 ½91; 95�. If
we remove rule r4, the first matching rule for all
those packets becomes r5, which has the same
decision as r4. Therefore, removing rule r4 does not
change the function of the classifier. We call r4 a
downward redundant rule. A rule r in a classifier is
downward redundant if and only if for each packet,
whose first matching rule is r, the first matching rule
below r has the same decision as r.

1.3 Redundancy Removal

A rule that examines d-dimensional fields can be viewed as
a d-dimensional object. Real-life classifiers are typically
four-dimensional or five-dimensional. While identifying
redundant rules in one-dimensional classifiers (such as the
one in Fig. 1) is simple, identifying redundant rules in
multidimensional classifiers is by no means easy. In this
paper, we first give a necessary and sufficient condition for
identifying redundant rules, based on which we categorize
redundant rules into upward redundant rules and down-
ward redundant rules. We develop two algorithms for
detecting and removing the two types of redundant rules,
respectively. Our redundancy removal algorithms use a tree
representation of classifiers, which is called firewall
decision diagrams (FDDs). The upward redundancy re-
moval algorithm scans the classifier top-down from the first
rule to the last rule and, during the scanning, converts the
classifier to an FDD and removes upward redundant rules.
The downward redundancy removal algorithm scans the
classifier bottom-up from the last rule to the first rule and,
during the scanning, removes downward redundant rules.
After the two-time scanning of the rules, the result classifier
is guaranteed to be redundancy free.

1.4 Key Contributions

This paper represents the first technical study of redundant
rules in classifiers. To summarize, we make the following
key contributions:

1. We propose redundancy removal as a new approach
to the interval expansion problem of TCAMs. Our
experiments on real-life classifiers showed an aver-
age reduction of 58.2 percent on the number of
TCAM entries by removing redundant rules. A key
advantage of this approach is that it can be easily
deployed because it does not require any modifica-
tion of existing packet classification systems. In
comparison, a number of previous interval expansion
solutions require hardware and architecture modifi-
cations to existing packet classification systems,
making their adoption by networking manufacturers
and ISPs much less likely [22], [31], [35], [38].

2. We give a necessary and sufficient condition for
identifying redundant rules for the first time. This
condition lays the foundation for developing re-
dundancy removal algorithms.

3. We present two tree-based algorithms for removing
the two types of redundant rules that we define in
this paper, respectively. We formally prove that the
resulting classifiers have no redundant rules after
running the two algorithms. The experiments that
we conducted on both real-life and synthetic
classifiers showed that removing all redundant rules
from a large classifier with thousands of rules only
takes a few seconds using the two algorithms.

Redundancy detection/removal has benefits beyond
minimizing TCAM entries. One exemplary use of redun-
dancy detection is in analyzing classifiers for potential
errors. For instance, when a rule is shadowed by rules
above it, the rule becomes redundant; however, this is
typically not the intent of the router or firewall adminis-
trator. Therefore, redundancy could be an indicator of
errors in classifiers.

The rest of this paper proceeds as follows: We start by
reviewing previous work in Section 2. Then, we formally
define the terms and concepts related to redundancy
removal in Section 3. We give a necessary and sufficient
condition for identifying redundant rules in Section 4. In
Section 5, we introduce FDDs, which will be used as the
core data structure for redundancy removal algorithms. The
upward and downward redundancy removal algorithms
are presented in Section 6 and 7, respectively. In Section 9,
we show the experimental results on both real-life and
synthetic classifiers. In Section 10, we discuss an open
problem on redundancy removal. Finally, we give conclud-
ing remarks in Section 11.

2 RELATED WORK

Many software solutions have been proposed for finding
the decision of the first rule that a packet matches in a given
classifier (see the survey paper [37]). A comprehensive
survey of this work is given in [37].

Recently, hardware packet classification systems based
on TCAMs have been widely deployed due to their Oð1Þ
classification time. This has led to a significant amount of
work that explores ways to cope with the well-known
interval expansion problem. These solutions fall into three
broad categories: 1) TCAM modification, which requires
changing TCAM hardware circuits, 2) range encoding, which
does not require changing TCAM hardware circuits but
does require preprocessing for every packet, and 3) classifier
minimization, which does not require changing TCAM
hardware circuits nor preprocessing for any packet. Next,
we review previous work in these three categories.

TCAM modification. The basic idea is to modify TCAM
circuits for packet classification purposes. For example,
Spitznagel et al. proposed adding comparators at each
entry level to better accommodate range matching [35].
This is an important research direction. However, solutions
from this research line are difficult to deploy due to issues
of cost and development [22]. Furthermore, changing the
ternary nature of TCAMs makes such TCAMs less
generally applicable to applications other than packet
classification. Additionally, there has been work on devel-
oping load balancing algorithms for TCAM-based systems
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by Zheng et al. [41], [42]. This work focuses on exploiting
chip-level parallelism to increase classifier throughput with
multiple TCAM chips without having to copy the complete
classifier to every TCAM chip.

Range encoding. The basic idea is to reencode intervals
that appear in a classifier and then store the reencoded rules
in the TCAM. When a packet comes, the packet needs to be
preprocessed according to the reencoding scheme such that
the packet, after preprocessing, can be used as a search key
for the TCAM. Previous range encoding schemes fall into
two categories: database-independent encoding schemes
[6], [22], where the encoding of each rule is independent of
other rules in the classifier, and database-dependent
encoding schemes [7], [31], [34], [38], where the encoding
of each rule may depend on other rules in the classifier.
While the TCAM circuit does not need to be modified to
implement range encoding, the system hardware does need
to be reconfigured to allow for preprocessing of packets,
and the delay caused by packet preprocessing could be
problematic.

Classifier minimization. The basic idea is to convert a given
classifier to another semantically equivalent classifier that
requires fewer TCAM entries. These solutions are the most
likely to be deployed by networking vendors and ISPs
because they require no changes to TCAM hardware or
existing packet classification systems and incur no pre-
processing overhead for packets. Our work, along with [5],
[8], [9], and [36], falls into this category.

Three papers focus on one or two-dimensional classi-
fiers. Draves et al. proposed an optimal solution for one-
dimensional classifiers in the context of minimizing routing
tables in [9]. Subsequently, in the same context of minimiz-
ing routing tables, Suri et al. proposed an optimal dynamic
programming solution for one-dimensional classifiers. They
also observed that a generalization of the dynamic program
was optimal for two-dimensional classifiers in which either
two rules are nonoverlapping or one contains the other
geometrically [36]. Suri et al. noted that their dynamic
program would not be optimal for classifiers with more
than two dimensions. In our studies, we have extended and
implemented Suri et al.’s algorithm to minimize five-
dimensional classifiers. Unfortunately, the extended algo-
rithm is prohibitively slow even for a classifier with just a
few rules. Recently, Applegate et al. have proposed an
optimal solution for classifiers with two dimensions where
each rule must have one field specified as the whole domain
of the field and there are only two decisions [5].

Our work is among the first in minimizing multi-
dimensional classifiers in TCAMs with more than two
dimensions. In [8], Dong et al. proposed schemes to reduce
range expansion by repeatedly expanding or trimming
ranges to prefix boundaries and then using our redundancy
removal algorithms presented in [26], which is the pre-
liminary version of this paper, as the core routine for testing
whether a specific modification changes the semantics of a
classifier. In [32], we proposed TCAM Razor, a greedy
algorithm that finds locally minimal prefix solutions along
each field and combines these solutions into a smaller
equivalent prefix classifier. TCAM Razor uses our redun-
dancy removal algorithms in [26] as an important post-
processing procedure in minimizing classifiers. Although

TCAM Razor achieves higher compression ratio than using
redundancy removal alone, our redundancy removal
algorithm can handle classifier updates more efficiently
because redundancy removal does not rewrite any rule. In
[30], Liu et al. presented an algorithm for compressing
firewall rules. Although the compression algorithm in [30]
can be used to compress general packet classifiers, it
compresses rules specified in ranges, not in prefixes.

As a special type of classifiers, firewalls have been
studied in previous work. Firewall policy design issues
have been studied in [12], [13], [14], [25], and [27]. The
analysis and verification methods of firewall policies have
been presented in [11], [23], [24], and [28], and the testing of
firewall policies was studied in [19]. Firewall vulnerabilities
were discussed and classified in [10] and [21] with focus on
firewall software. However, none of these works focuses on
redundancy removal.

Our work is the first that can removal all redundant rules
in a classifier. Little previous work is on redundancy
removal. The only previous work that can be traced is
Gupta’s definitions of two special types of redundant rules
in his thesis [15]: backward redundant rules and forward
redundant rules. A rule r in a classifier is backward
redundant if and only if there exists another rule r0 listed
above r such that all packets that match r also match r0.
Clearly, a backward redundant rule is an upward redun-
dant rule but not vice versa. For example, rule r3 in Fig. 1 is
upward redundant but not backward redundant. A rule r in
a classifier is forward redundant if and only if there exists
another rule r0 listed below r such that the following three
conditions hold: 1) all packets that match r also match r0,
2) r and r0 have the same decision, and 3) for each rule r00

listed between r and r0, either r and r00 have the same
decision or no packet matches both r and r00. Clearly, a
forward redundant rule is a downward redundant rule but
not vice versa. For example, rule r4 in Fig. 1 is downward
redundant but not forward redundant. To summarize,
backward redundant rules are a specifical type of upward
redundant rules, and forward redundant rules are a specifical
type of downward redundant rules. No redundancy removal
algorithms were given in [15], neither do the experimental
results on TCAM reduction by removing redundant rules.
Note that our work on redundancy removal has inspired
some following work, such as [29], on this topic.

3 FORMAL DEFINITIONS

We now formally define the concepts of fields, packets,
rules, classifiers, and redundant rules. A field Fi is a variable
of finite length (i.e., of a finite number of bits). The domain
of field Fi of w bits, denoted DðFiÞ, is ½0; 2w � 1�. A packet
over the d fields F1; . . . ; Fd is a d-tuple ðp1; . . . ; pdÞ, where
each pi ð1 � i � dÞ is an element of DðFiÞ. Classifiers
usually check the following five fields: source IP address,
destination IP address, source port number, destination
port number, and protocol type. The lengths of these packet
fields are 32, 32, 16, 16, and 8, respectively. We use � to
denote the set of all packets over fields F1; . . . ; Fd. It follows
that � is a finite set, and j�j ¼ jDðF1Þj � � � � � jDðFdÞj,
where j�j denotes the number of elements in set �, and
jDðFiÞj denotes the number of elements in set DðFiÞ.
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A rule has the form hpredicatei ! hdecisioni. A hpredicatei
defines a set of packets over the fields F1 through Fd and is

specified as F1 2 S1 ^ � � � ^ Fd 2 Sd, where each Si is a subset

of DðFiÞ and is specified as either a prefix or a nonempty

nonnegative integer interval. A prefix f0; 1gkf�gw�k with k

leading 0s or 1s for a packet field of length w denotes the

integer interval ½f0; 1gkf0gw�k; f0; 1gkf1gw�k�. For example,

prefix 01�� denotes the interval [0100, 0111]. A rule

F1 2 S1 ^ � � � ^ Fd 2 Sd ! hdecisioni is a prefix rule if and only

if each Si is represented as a prefix.
When using a TCAM to implement a classifier, we

typically require that all rules be prefix rules. However, in a
typical classifier rule, some fields such as source and
destination port numbers are represented as integer
intervals rather than a prefix. This leads to interval expansion
(also called range expansion), the process of converting a rule
that may have fields represented as integer intervals into
one or more prefix rules. In interval expansion, each field of
a rule is first expanded separately. The goal is to find a
minimum set of prefixes such that the union of the prefixes
corresponds to the integer interval. For example, if one 3-bit
field of a rule is the integer interval [1, 6], a corresponding
minimum set of prefixes would be 001, 01 � , 10 � , 110. The
worst case interval expansion of a w-bit integer interval
results in a set containing 2w� 2 prefixes [18]. The next step
is to compute the cross product of each set of prefixes for
each field, resulting in a potentially large number of prefix
rules. In Section 1, the interval expansion of rule r2 in
Table 1 resulted in 30� 30 ¼ 900 prefix rules.

A packet ðp1; . . . ; pdÞ matches a predicate F1 2 S1 ^ � � � ^
Fd 2 Sd and the corresponding rule if and only if the
condition p1 2 S1 ^ � � � ^ pd 2 Sd holds. We use � to denote
the set of possible values that hdecisioni can be. For
firewalls, typical elements of � include accept, discard,
accept with logging, and discard with logging.

A sequence of rules hr1; . . . ; rni is complete if and only if
for any packet p, there is at least one rule in the sequence
that p matches. To ensure that a sequence of rules is
complete and thus is a classifier, the predicate of the last
rule is usually specified as F1 2 DðF1Þ ^ � � �Fd 2 ^DðFdÞ. A
classifier f is a sequence of rules that is complete. A
classifier f is a prefix classifier if and only if every rule in f is
a prefix rule.

Two rules in a classifier may overlap; that is, there exists
at least one packet that matches both rules. Furthermore,
two rules in a classifier may conflict; that is, the two rules
not only overlap but also have different decisions. Classi-
fiers typically resolve conflicts by employing a first-match
resolution strategy where the decision for a packet p is the
decision of the first (i.e., highest priority) rule that p matches
in f . The decision that classifier f makes for packet p is
denoted fðpÞ.

We can think of a classifier f as defining a many-to-one
mapping function from � to �, where � denotes the set of
all possible packets, and � denotes the set of all possible
decisions. Two classifiers f1 and f2 are equivalent, denoted
f1 	 f2, if and only if they define the same mapping
function from � to �; that is, for any packet p 2 �, we have
f1ðpÞ ¼ f2ðpÞ. Using the concept of equivalent classifiers, we
define redundant rules as follows:

Definition 1 (redundant rule). A rule r is redundant in a
classifier f if and only if the resulting classifier f 0 after
removing rule r is equivalent to f .

4 REDUNDANCY OF CLASSIFIERS

4.1 Matching Set and Resolving Set

Before introducing our redundancy theorem, we introduce
two new concepts, matching set and resolving set, that are
associated with each rule in a classifier.

Definition 2 (matching set and resolving set). Consider a
classifier f that consists of n rules hr1; r2; . . . ; rni. The
matching set of a rule ri, denoted MðriÞ, is the set of all
packets that match ri. The resolving set of a rule ri in this
classifier, denoted Rðri; fÞ, is the set of all packets that match
ri but do not match any rj, where 1 � j < i.

Note that the matching set of a rule depends only on the
rule itself, while the resolving set of a rule depends on both
the rule itself and all the rules listed above it in a classifier.
For example, consider the rule r2 in Fig. 1: its matching set is
the set of all the packets whose F1 field is in [40, 90]; its
resolving set is the set of all the packets whose F1 field is in
[51, 90].

Based on Definition 2, the relationship between MðriÞ
and Rðri; fÞ is the following:

Rðri; fÞ ¼MðriÞ �
[i�1

j¼1

MðrjÞ:

The following theorem, whose proof is given in
Appendix A, states several important properties of match-
ing sets and resolving sets.

Theorem 1 (resolving set theorem). Let f be any classifier that
consists of n rules: hr1; r2; . . . ; rni. The following four
conditions hold:

1. Equality.
Si
j¼1 MðrjÞ ¼

Si
j¼1 Rðrj; fÞ for each i,

1 � i � n.
2. Dependency. Rðri; fÞ ¼MðriÞ �

Si�1
j¼1 Rðrj; fÞ for

each i, 1 � i � n.
3. Determinism. Rðri; fÞ \Rðrj; fÞ ¼ ; for each i 6¼ j.
4. Comprehensiveness.

Sn
i¼1 Rðri; fÞ ¼ �.

The following corollary says that the last rule in a
classifier can be modified in a way that the resulting
classifier is equivalent to the original one.

Corollary 1. Let f be any classifier that consists of n rules
hr1; r2; . . . ; rni. If rule rn in f is of the form ðF1 2 S1Þ ^ ðF2 2
S2Þ ^ � � � ^ ðFd 2 SdÞ ! hdecisioni and if f 0 is the resulting
classifier after rule rn is modified to become of the form ðF1 2
DðF1ÞÞ ^ ðF2 2 DðF2ÞÞ ^ � � � ^ ðFd 2 DðFdÞÞ ! hdecisioni,
then f and f 0 are equivalent.

By modifying rule rn in this way, any postfix of a
classifier is complete, i.e., if hr1; r2; . . . ; rni is complete, then
hri; riþ1; . . . ; rni is complete for each i, 1 � i � n.

In the rest of this paper, we assume that the predicate of
the last rule in a classifier is ðF1 2 DðF1ÞÞ ^ ðF2 2 DðF2ÞÞ ^
� � � ^ ðFd 2 DðFdÞÞ. This assumption is crucial in developing
the redundancy theorem that we discuss next.
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4.2 Redundancy Theorem

The following redundancy theorem gives a necessary and

sufficient condition for identifying redundant rules. Note

that we use the notation hriþ1; riþ2; . . . ; rniðpÞ to denote the

decision to which the classifier hriþ1; riþ2; . . . ; rni maps

packet p.

Theorem 2 (redundancy theorem). Let f be any classifier that

consists of n rules: hr1; r2; . . . ; rni. A rule ri is redundant in f

if and only if one of the following two conditions holds:

1. Rðri; fÞ ¼ ;.
2. Rðri; fÞ 6¼ ;, and for any p, where p 2 Rðri; fÞ,
hriþ1; riþ2; . . . ; rniðpÞ is the same as the decision of ri.

The correctness of the redundancy theorem is not

difficult to argue. Note that removing rule ri from classifier

f only possibly affects the decision of the packets in Rðri; fÞ.
If Rðri; fÞ ¼ ;, then ri is clearly redundant. If Rðri; fÞ 6¼ ;
and for any p in Rðri; fÞ, hriþ1; riþ2; . . . ; rniðpÞ yields the

same as that of ri, then ri is redundant because removing ri
does not affect the decision of the packets in Rðri; fÞ.

The redundancy theorem allows us to categorize redun-

dant rules into upward and downward redundant rules.

Definition 3. A rule that satisfies condition 1 in the redundancy

theorem is called upward redundant. A rule that satisfies

condition 2 in the redundancy theorem is called downward

redundant.

Consider the example classifier f in Fig. 1. Based on

Corollary 1, we first modify the last rule r5 to be

F1 2 ½1; 100� ! accept without changing the function of f .

Let f 0 be the resulting classifier after the modification of the

last rule. Looking upward, rule r3 is upward redundant in

f 0 because Rðr3; fÞ ¼ ;. Looking downward, rule r4 is

downward redundant in f 0 because Rðr4; f
0Þ consists of all

packets whose F1 field is in [91, 95] and for any packet

whose F1 field is in [91, 95], hr5iðpÞ is accept, which is the

same as the decision of r4.

5 FIREWALL DECISION DIAGRAMS AND RULES

In [14], Gouda and Liu presented FDDs as a useful notation

for specifying firewalls. In this paper, we extend these

diagrams to specify classifiers; therefore, we call the

extended decision diagrams FDDs. Later, we show that

Packet Decisions Diagrams play an important role in our

redundancy removal algorithms.

Definition 4. An FDD f with a decision set DS and over fields

F1; . . . ; Fd is an acyclic and directed graph that has the

following five properties:

1. There is exactly one node in f that has no incoming
edges and is called the root of f . The nodes in f that
have no outgoing edges are called terminal nodes of f .

2. Each node v in f has a label, denoted F ðvÞ, such that

F ðvÞ 2 fF1; . . . ; Fdg; if v is a nonterminal node;
DS; if v is a terminal node:

�

3. Each edge e in f has a label, denoted IðeÞ, such that if e
is an outgoing edge of node v, then IðeÞ is a nonempty
subset of DðF ðvÞÞ.

4. A directed path in f from the root to a terminal node is
called a decision path of f . No two nodes on a decision
path have the same label.

5. The set of all outgoing edges of a node v in f , denoted
EðvÞ, satisfies the following two conditions:

a. Consistency. IðeÞ \ Iðe0Þ ¼ ; for any two dis-
tinct edges e and e0 in EðvÞ.

b. Completeness.
S
e2EðvÞ IðeÞ ¼ DðF ðvÞÞ.

Fig. 3 shows an example of an FDD with a decision set
fa; dg and over the two fields F1 and F2, where
DðF1Þ ¼ DðF2Þ ¼ ½1; 100�. In the examples in this paper,
we employ the decision set fa; dg, where “a” represents
“accept” and “d” represents “discard.”

A decision path in an FDD f is represented by
ðv1e1 . . . vkekvkþ1Þ, where v1 is the root of f , vkþ1 is a
terminal node of f , and each ei is a directed edge from
node vi to node viþ1 in f . A decision path ðv1e1 . . . vkekvkþ1Þ
in an FDD defines the following rule:

F1 2 S1 ^ � � � ^ Fn 2 Sn ! F ðvkþ1Þ;

where

Si ¼

IðejÞ; if there is a node vj in the decision
path that is labeled with field Fi;

DðFiÞ; if no nodes in the decision path is
labeled with field Fi:

8>><
>>:

For an FDD f , we use Sf to represent the set of all the
rules defined by all the decision paths of f . For any
packet p, there is one and only one rule in Sf that p matches
because of the consistency and completeness properties of
the FDD f ; therefore, f maps p to the decision of the only
rule that p matches in Sf . We use fðpÞ to denote the decision
to which an FDD f maps a packet p. An FDD f and a
sequence of rules f 0 are equivalent, denoted f 	 f 0, if and
only if for any packet p, the condition fðpÞ ¼ f 0ðpÞ holds.

Given an FDD f , any classifier that consists of all the
rules in Sf is equivalent to f . The order of the rules in such a
classifier is immaterial because there are no overlapping
rules in Sf .

Given a sequence of rules, in Section 6, we will see that
an equivalent FDD is constructed after all the upward
redundant rules are removed by the upward redundancy
removal algorithm.

In the process of detecting and removing downward
redundant rules, the data structure that we maintain is
called a standard FDD. A standard FDD is a special type of
FDD where the following two additional conditions hold:
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Fig. 3. An FDD.



1. Each node has at most one incoming edge (i.e., a
standard FDD is of a tree structure).

2. Each decision path contains d nonterminal nodes,
and the ith node is labeled Fi for each i, where
1 � i � d (i.e., each decision path in a standard FDD
is of the form ðv1e1v2e2 . . . vdedvdþ1Þ, where F ðviÞ ¼ Fi
for each i, where 1 � i � d).

An example of a standard FDD is given in Fig. 3.
In the process of checking upward redundant rules, the

data structure that we maintain is called a partial FDD. A
partial FDD is a diagram that may not have the complete-
ness property of a standard FDD but has all the other
properties of a standard FDD.

We use Sf to denote the set of all the rules defined by all
the decision paths in a partial FDD f . For any packet p,
where p 2

S
r2Sf MðrÞ, there is one and only one rule in Sf

that p matches, and we use fðpÞ to denote the decision of the
unique rule that p matches in f .

Given a partial FDD f and a sequence of rules
hr1; r2; . . . ; rki that may not be complete, we say f is
equivalent to hr1; r2; . . . ; rki if and only if the following two
conditions hold:

1.
S
r2Sf MðrÞ ¼

Sk
i¼1 MðriÞ.

2. For any packet p that p 2
S
r2Sf MðrÞ, fðpÞ is the

same as the decision of the first rule that p matches
in the sequence hr1; r2; . . . ; rki.

6 REMOVING UPWARD REDUNDANCY

In this section, we discuss how to remove upward
redundant rules. By definition, a rule is upward redundant
if and only if its resolving set is empty. Therefore, in order
to remove all upward redundant rules from a classifier, we
need to calculate the resolving set for each rule in the
classifier. The resolving set of each rule is calculated by its
effective rule set. An effective rule set of a rule r in a
classifier f is a set of rules where the union of all the
matching sets of these rules is exactly the resolving set of
rule r in f . More precisely, an effective rule set of a rule r is
defined as follows:

Definition 5. Let r be a rule in a classifier f . A set of rules
fr01; r02; . . . ; r0kg is an effective rule set of r if and only if the
following two conditions hold:

1. Rðr; fÞ ¼
Sk
i¼1 Mðr0iÞ.

2. r0i and r have the same decision for 1 � i � k.

For example, consider the classifier in Fig. 1. Then, fF1 2
½1; 50� ! acceptg is an effective rule set of rule r1, fF1 2
½51; 90� ! discardg is an effective rule set of rule r2, ; is an
effective rule set of rule r3, and fF1 2 ½91; 95� ! discardg is
an effective rule set of rule r4. Clearly, once we obtain an
effective rule set of a rule r in a classifier f , we know the

resolving set of the rule r in f and consequently know
whether the rule r is upward redundant in f . Note that by
the definition of effective rule sets, if one effective rule set of
a rule r is empty, then any effective rule set of the rule r is
empty. Theorem 3 follows from the above discussion.

Theorem 3. A rule r is upward redundant in a classifier if and
only if an effective rule set of r is empty.

Based on Theorem 3, the basic idea of our upward
redundancy removal algorithm is given as follows: Given a
classifier hr1; r2; . . . ; rni, we calculate an effective rule set for
each rule from r1 to rn. If the effective rule set calculated for
a rule ri is empty, then ri is upward redundant and is
removed. Now, the problem is how to calculate an effective
rule set for each rule in a classifier.

An effective rule set for each rule in a classifier is
calculated with the help of partial FDDs. Consider a
classifier that consists of n rules hr1; r2; . . . ; rni. Our upward
redundancy removal algorithm first builds a partial FDD,
denoted f1, that is equivalent to the sequence hr1i and
calculates an effective rule set, denoted E1, of rule r1. (Note
that E1 cannot be empty because Mðr1Þ 6¼ ;; therefore, r1

cannot be upward redundant.) Then, the algorithm trans-
forms the partial FDD f1 to another partial FDD, denoted f2,
that is equivalent to the sequence hr1; r2i and, during the
transformation process, calculates an effective rule set,
denoted E2, of rule r2. The same transformation process
continues until we reach rn. When we finish, an effective
rule set is calculated for each rule.

Here, we use fi to denote the partial FDD that we
constructed from the rule sequence hr1; r2; . . . ; rii and Ei to
denote the effective rule set that we calculated for rule ri. By
the following example, we show the process of transform-
ing the partial FDD fi to the partial FDD fiþ1 and the
calculation of Eiþ1. Consider the classifier in Fig. 4 with the
decision set fa; dg and over fields F1 and F2, where
DðF1Þ ¼ DðF2Þ ¼ ½1; 100�. Fig. 5 shows the geometric repre-
sentation of this classifier, where each rule is represented by
a rectangle. In Fig. 5, we can see that rule r3 is upward
redundant because r3, whose area is marked by dashed
lines, is totally overlaid by rules r1 and r2. Later, we will see
that the effective rule set calculated by our upward
redundancy removal algorithm for rule r3 is indeed an
empty set.
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Fig. 4. A classifier of four rules.

Fig. 5. Geometric representation of the rules in Fig. 4.



Fig. 6 shows a partial FDD f1 that is equivalent to hr1i
and an effective rule set E1 of rule r1. In this figure, we use

v1 to denote the node with label F1, e1 to denote the edge

with label [20, 50], and v2 to denote the node with label F2.
Now, we show how to append rule r2 to f1 in order to

get a partial FDD f2 that is equivalent to hr1; r2i and how to
calculate an effective rule set E2 of rule r2. We first compare

the set [10, 60] with the set [20, 50] labeled on the outgoing

edge of v1. Since ½10; 60� � ½20; 50� ¼ ½10; 19� [ ½51; 60�, r2 is

the first matching rule for all packets that satisfy

F1 2 ½10; 19� [ ½51; 60� ^ F2 2 ½15; 45�, so we add one out-
going edge e to v1, where e is labeled ½10; 19� [ ½51; 60�, and

e points to the path built from F2 2 ½15; 45� ! d. The rule

d e f i n e d b y t h e d e c i s i o n p a t h c o n t a i n i n g e,

F1 2 ½10; 19� [ ½51; 60� ^ F2 2 ½15; 45� ! d, should be put in

E2 because for all packets that match this rule, r2 is their
first matching rule. Because ½20; 50� 
 ½10; 60�, r2 is possibly

the first matching rule for a packet that satisfies

F1 2 ½20; 50�. We further compare the set [35, 65] labeled

on the outgoing edge of v2 with the set [15, 45]. Since

½15; 45� � ½35; 65� ¼ ½15; 34�, we add a new edge e0 to v2,
where e0 is labeled [15, 34], and e0 points to a terminal node

labeled d. Similar to what we did to the new edge added to

node v1, we add the rule, F1 2 ½20; 50� ^ F2 2 ½15; 34� ! d,

defined by the decision path containing the new edge e0 into

E2. The partial FDD f2 and an effective rule set E2 of rule r2

are shown in Fig. 7, where E2 consists of the two rules

defined by the two new edges e and e0 that we add to the

partial FDD f1 in Fig. 6.
Let f be any classifier that consists of n rules:

hr1; r2; . . . ; rni. A partial FDD that is equivalent to hr1i is easy

to construct. Assume that r1 is ðF1 2 S1Þ ^ ðF2 2 S2Þ ^
� � � ^ ðFd 2 SdÞ ! hdecisioni. Then, the partial FDD that
consists of only one path ðv1e1v2e2 � � � vdedvdþ1Þ, where

F ðviÞ¼Fi and IðeiÞ¼Si for 1� i�d and F ðvdþ1Þ¼hdecisioni,
is equivalent to hr1i. We denote this partial FDD by f1 and

call ðv1e1v2e2 � � � vdedvdþ1Þ the path that is built from rule

ðF1 2 S1Þ ^ ðF2 2 S2Þ ^ � � � ^ ðFd 2 SdÞ ! hdecisioni.
Suppose that we have constructed a partial FDD fi that is

equivalent to the sequence hr1; r2; . . . ; rii and calculated an
effective rule set for each of these i rules. Let v be the root of

fi and assume that v has k outgoing edges e1; e2; . . . ; ek. Let

rule riþ1 be ðF12S1Þ^ðF2 2 S2Þ^� � �^ðFd 2 SdÞ!hdecisioni.
Next, we consider how to transform the partial FDD fi to a

partial FDD, denoted fiþ1, that is equivalent to the sequence
hr1; r2; . . . ; ri; riþ1i and, during the transformation process,

how to calculate an effective rule set, denoted Eiþ1, for

rule riþ1.

First, we examine whether we need to add another

outgoing edge to v. If S1 � ðIðe1Þ [ Iðe2Þ [ � � � [ IðekÞÞ 6¼ ;,
we need to add a new outgoing edge ekþ1 with label

S1 � ðIðe1Þ [ Iðe2Þ [ � � � [ IðekÞÞ to v. This is because any

packet whose F1 field satisfies S1�ðIðe1Þ[Iðe2Þ[� � �[IðekÞÞ
does not match any of the first i rules but matches riþ1

provided that the packet also satisfies ðF2 2 S2Þ^ðF32S3Þ^
� � � ^ ðFd 2 SdÞ. The new edge ekþ1 points to the root of the

path that is built from ðF22S2Þ^ðF32S3Þ^� � �^ðFd2SdÞ!
hdecisioni. The rule r, ðF12S1�ðIðe1Þ[Iðe2Þ[� � �[IðekÞÞÞ ^
ðF2 2 S2Þ ^ � � � ^ ðFd 2 SdÞ ! hdecisioni, defined by the

decision path containing the new edge ekþ1 has the property

MðrÞ � Rðriþ1; fÞ. Therefore, we add rule r to Ei.
Second, we compare S1 and IðejÞ for each j ð1 � j � kÞ in

the following three cases:

1. S1 \ IðejÞ ¼ ;. In this case, we skip edge ej because
any packet whose value of field F1 is in set IðejÞ does
not match riþ1.

2. S1 \ IðejÞ ¼ IðejÞ. In this case, for a packet p whose
value of field F1 is in set IðejÞ, the first rule that
p matches may be one of the first i rules and may be
rule riþ1. Therefore, we append ðF22S2Þ^ðF32S3Þ ^
� � � ^ ðFd 2 SdÞ ! hdecisioni to the subgraph rooted at
the node that ej points to in a similar fashion.

3. S1 \ IðejÞ 6¼ ; and S1 \ IðejÞ 6¼ IðejÞ. In this case, we
split edge e into two edges: e0 with label IðejÞ � S1

and e00 with label IðejÞ \ S1. Then, we make two
copies of the subgraph rooted at the node that
ej points to and let e0 and e00 point to one copy each.
Thus, we can deal with e0 by the first case and e00 by
the second case.

In the process of appending rule riþ1 to partial FDD fi,
each time when we add a new edge to a node in fi, the rule
defined by the decision path containing the new edge is
added to Eiþ1. After the partial FDD fi is transformed to
fiþ1, the rules in Eiþ1 satisfy the following two conditions:
1) the union of all the matching sets of these rules is the
resolving set of riþ1 according to the transformation
process, and 2) all these rules have the same decision as
riþ1 according to the transformation process. Therefore,
Eiþ1 is an effective rule set of rule riþ1.

By applying our upward redundancy removal algorithm
to the classifier in Fig. 4, we get an effective rule set for each
rule, as shown in Fig. 8. Note that E3 ¼ ;, which means that
rule r3 is upward redundant; therefore, r3 is removed.

The pseudocode for removing upward redundant rules

is shown in Fig. 9. In the algorithm, we use e:t to denote the

node that edge e points to.
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Fig. 6. Partial FDD f1 and an effective rule set E1 of rule r1 in Fig. 4. Fig. 7. Partial FDD f2 and an effective rule set E2 of rule r2 in Fig. 4.



7 REMOVING DOWNWARD REDUNDANCY

The effective rule set Ei calculated for rule ri in a classifier f
is useful in checking whether ri is downward redundant
because the resolving set of ri in f can be easily obtained by
the union of the matching set of every rule in Ei.

Our algorithm for removing downward redundant rules
is based the following theorem.

Theorem 4. Let f be any classifier that consists of n rules:
hr1; r2; . . . ; rni. Let fi ð2 � i � nÞ be a standard FDD that is
equivalent to the sequence of rules hri; riþ1; . . . ; rni. The rule
ri�1 with an effective rule set Ei�1 is downward redundant in
f if and only if for each rule r in Ei�1 and for each decision
path ðv1e1v2e2 � � � vdedvdþ1Þ in fi where rule r overlaps the
rule that is defined by this decision path, the decision of r is the
same as the label of the terminal node vdþ1.

Proof sketch. Since the sequence of rules hri; riþ1; . . . ; rni is
complete, there exists a standard FDD that is equivalent
to this sequence of rules. By the redundancy theorem,
rule ri�1 is downward redundant if and only if for each
rule r in Ei�1 and for any p, where p 2MðrÞ,
hri; riþ1; . . . ; rniðpÞ is the same as the decision of r.
Therefore, Theorem 4 follows. tu

Now, we consider how to construct a standard FDD fi,
2 � i � n, that is equivalent to the sequence of rules
hri; riþ1; . . . ; rni. The standard FDD fn can be built from
rule rn in the same way that we build a path from a rule in
the upward redundancy removal algorithm.

Suppose we have constructed a standard FDD fi that is
equivalent to the sequence of rules hri; riþ1; . . . ; rni. First, we
check whether rule ri�1 is downward redundant by
Theorem 4. If rule ri�1 is downward redundant, then we
remove ri�1, rename the standard FDD fi to be fi�1, and
continue to check whether ri�2 is downward redundant. If
rule ri�1 is not downward redundant, then we append rule
ri�1 to the standard FDD fi such that the resulting diagram
is a standard FDD, denoted fi�1, that is equivalent to the
sequence of rules hri�1; ri; . . . ; rni. This procedure of
transforming a standard FDD by appending a rule is
similar to the procedure of transforming a partial FDD in
the upward redundancy removal algorithm. The above
process continues until we reach r1; therefore, all down-
ward rules are removed. The pseudocode for detecting and
removing downward redundant rules is shown in Fig. 10.

Applying our downward redundancy removal algo-
rithm to the classifier in Fig. 4, assuming that r3 has been
removed, rule r2 is detected to be downward redundant;
therefore, r2 is removed. The standard FDD in Fig. 3 is the

resulting standard FDD by appending rule r1 to the
standard FDD that is equivalent to hr4i.

8 COMPLETE REDUNDANCY REMOVAL ALGORITHM

Given a classifier, our redundancy removal algorithm
consists of the following two steps (the resulting classifier
after the two steps is guaranteed to be redundancy free):

1. Scan the classifier top-down to remove upward
redundant rules using the upward redundancy
removal algorithm.

2. Scan the classifier bottom-up to remove downward
redundant rules using the downward redundancy
removal algorithm.

Theorem 5. Given a classifier f , let f 0 be the resulting classifier
after applying the upward redundancy removal algorithm on f
and f 00 be the resulting classifier after applying the downward
redundancy removal algorithm on f 0. Then, there is no rule in
f 00 that is redundant.

Proof sketch. Consider a rule ri in f 00. Let g denote the
classifier after removing the downward redundant rules
below ri in f 0. The difference between g and f 00 is that the
downward redundant rules above ri are removed in f 00.
Thus, Rðri; gÞ � Rðri; f 00Þ. Since Rðri; gÞ 6¼ ;, we have
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Fig. 8. Effective rule sets calculated for the classifier in Fig. 4.

Fig. 9. Upward redundancy removal algorithm.



Rðri; f 00Þ 6¼ ;. Thus, ri is not upward redundant in f 00.
Because ri is not downward redundant in g, there exists
at least one packet p in Rðri; gÞ that will be resolved
differently by the rules below ri in g if we remove ri from
g. Because p 2 Rðri; gÞ � Rðri; f 00Þ and the rules below ri
are the same in both g and f 00, p will be resolved
differently by the rules below ri in f 00 if we remove ri
from f 00. Thus, ri is not downward redundant in f 00.
Therefore, Theorem 5 follows. tu

Let n be the total number of rules in a classifier and d be
the total number of distinct packet fields that are examined

by a classifier. The time and space complexity of the
redundancy removal algorithm is OðndÞ. Despite the high
worst case complexities, our algorithms are practical for
two reasons. First, d is typically small. Real-life classifiers
typically examine five packet fields: source IP address,
destination IP address, source port number, destination
port number, and protocol type. Second, the worst cases of
our algorithms are extremely unlikely to happen in practice.
The experimental results have confirmed the above ob-
servations.

The time and space complexities of the two redundancy
removal algorithms lie in the time and space complexities of
the FDD construction algorithm [27], which is OðndÞ in the
worst case, where n is the number of rules and d is the
number of fields. Note that d is typically at most 5 (source IP,
source port, destination IP, destination port, protocol type).

9 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness and efficiency
of the redundancy removal algorithm on both real-life and
synthetic classifiers.

9.1 Metrics

We first define the metrics that we used to measure the
effectiveness of the redundancy removal algorithm. In this
paragraph, f denotes a classifier, S denotes a set of
classifiers, and RR denotes the redundancy removal
algorithm. We let RRðfÞ denote the classifier produced by
applying the redundancy removal algorithm on f , DirectðfÞ
denote the prefix classifier produced by applying direct
interval expansion on f , and jf j denote the number of rules
in f . We define the following three metrics for assessing the
performance of RR on a classifier f :

. The redundancy ratio of RR over f ¼ jfj�jRRðfÞjjfj .

. The compression ratio of RR over f ¼ jDirectðRRðfÞÞjjDirectðfÞj .

. The expansion ratio of RR over f ¼ jDirectðRRðfÞÞjjf j .

We define the following four metrics for assessing the
performance of RR on a set of classifiers S:

. The average redundancy ratio ¼ �f2S
jf j�jRRðfÞj

jf j
jSj .

. The total redundancy ratio ¼ �f2S jf j�jRRðfÞj
�f2S jf j .

. The average compression ratio ¼ �f2S
jDirectðRRðfÞÞj
jDirectðfÞj
jSj .

. The total compression ratio ¼ �f2S jDirectðRRðfÞÞj
�f2S jDirectðfÞj .

For comparison purposes, we measure the following two
metrics for direct expansion on a set of classifiers S:

. The average expansion ratio of direct expansion over

S ¼ �f2S
jDirectðfÞj
jfj

jSj .

. The total expansion ratio of direct expansion over

S ¼ �f2S jDirectðfÞj
�f2S jf j .

In our experiments, we treat redundancy removal as a
classifier compression scheme. Note that our redundancy
removal algorithm can be used as a preprocessing or
postprocessing procedure for other classifier compression
schemes. For example, the TCAM Razor algorithm in [32]
uses redundancy removal as a critical postprocessing
procedure.
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Fig. 10. Downward redundancy removal algorithm.



9.2 Effectiveness on Real-Life Classifiers

We use RL to denote the set of 17 real-life classifiers that we
performed experiments on. We actually obtained 42 real-life
classifiers from distinct network service providers that
range in size from dozens to hundreds of rules. Although
this collection of classifiers is diverse, some classifiers from
the same network service provider have similar structures
and exhibited similar results under the redundancy
removal algorithm. To prevent this repetition from skewing
the performance data, we divided the 42 classifiers into
17 structurally distinct groups, and we randomly chose one
from each of the 17 groups to form the set RL.

Redundancy ratio of real-life classifiers. Fig. 11 shows
the redundancy ratios of the redundancy removal algorithm
for each classifier in RL. The average and total redundancy
ratios of the classifiers in RL are 45.7 percent and
24.0 percent, respectively. This shows that a significant
percentage of the rules in real-life classifiers are redundant.

Compression ratio of real-life classifiers. Fig. 12 shows
the compression ratios of the redundancy removal algo-
rithm for each classifier in RL. The average and total
compression ratios of the redundancy removal algorithm
over the classifiers in RL are 41.8 percent and 35 percent,
respectively. We can see that our redundancy removal
algorithm can significantly reduce the number of TCAM
entries for a classifier.

Expansion ratio of real-life classifiers. Fig. 13 shows the
expansion ratios of redundancy removal and direct expan-
sion for each classifier in RL. The average expansion ratios
of redundancy removal and direct expansion over the
classifiers in RL are 19.9 and 69.9, respectively. The total
expansion ratios of redundancy removal and direct expan-
sion over the classifiers in RL are 7.1 and 20.4, respectively.
We can see that redundancy removal can significantly
reduce the expansion ratio of classifiers.

9.3 Effectiveness on Synthetic Classifiers

Classifier rules are considered confidential due to security
concerns. Thus, it is difficult to get many real-life classifiers
to experiment with. To address this issue and further
evaluate the effectiveness of our redundancy removal
algorithm, we generated a set of synthetic classifiers,
denoted SYN , in the following fashion. Every predicate of
a rule in our synthetic classifiers has five fields: source IP
address, destination IP address, source port number,
destination port number, and protocol type. We first
randomly generated a list of values for each field. For IP
addresses, we generated a random class-C address; for
ports, we generated a random interval; and for protocols,
we generated a random protocol number. Given these lists,
we generated a list of predicates by taking the cross product
of all these lists. We added a final default predicate to our
list. Finally, we randomly assigned one of two decisions,
accept or deny, to each predicate to make a complete rule.

Redundancy ratio of synthetic classifiers. Fig. 14 shows
the distribution of the redundancy ratios achieved by the
redundancy removal algorithm over the classifiers in SYN .
The average and total redundancy ratios of the classifiers in
SYN are 62.4 percent and 76.1 percent, respectively.

Compression ratio of synthetic classifiers. The average
and total compression ratios of redundancy removal over
the classifiers in SYN are 35.2 percent and 24.4 percent,
respectively. Fig. 15 shows the distribution of the compres-
sion ratios achieved by the redundancy removal algorithm
over the classifiers in SYN .

Expansion ratio of synthetic classifiers. The average
expansion ratios of the redundancy removal algorithm and
the direct expansion algorithm over the classifiers in SYN
are 60.092 and 177.995, respectively. The total expansion
ratios of the redundancy removal algorithm and the direct
expansion algorithm over the classifiers in SYN are 45.769
and 196.065, respectively. Fig. 16 shows the distribution of
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Fig. 11. Redundancy ratios of real-life classifiers.

Fig. 12. Compression ratios of real-life classifiers.

Fig. 13. Expansion ratios of real-life classifiers.

Fig. 14. Distribution of synthetic classifiers by redundancy ratio.



expansion ratios achieved by the redundancy removal
algorithm and the direct expansion algorithm on the
classifiers in SYN .

9.4 Efficiency on Real-Life Classifiers

We implemented the algorithms in this paper in Sun Java
JDK 1.4 [20]. The experiments were carried out on a
SunBlade 2000 machine running Solaris 9 with a 1-GHz
CPU and 1-Gbyte memory.

Table 2 shows the total runtime of our redundancy
removal algorithm for three representative classifiers.

9.5 Efficiency on Synthetic Classifiers

Fig. 17 displays the average total runtime of our redun-
dancy removal algorithm on the synthetic classifiers as a
function of the number of original rules along with the
standard deviation. We can see that our redundancy
removal algorithms are efficient. For example, it takes less
than 3 seconds to remove all the redundant rules from a
classifier that has up to 3,000 rules, and it takes less than
6 seconds to remove all the redundant rules from a classifier
that has up to 6,000 rules.

10 AN OPEN PROBLEM: MAXIMAL

REDUNDANCY SET

This paper suggests several new research problems. In this

section, we briefly describe the maximal redundancy set

problem. Addressing this problem is beyond the scope of

this paper, but we sketch our thoughts on how one can

pursue them in the future.
As we have noticed, the ordering of detecting and

removing redundant rules is critical. Consider the illus-
trative (although extreme) example in Fig. 18, we can either
remove r1 while keeping r2 and r3 or remove r2 and r3

while keeping r1. The order that we used in our redundancy
removal, namely, first examining rules from the first to the
last for upward redundancy and then examining rules from
the last to the first for downward redundancy, has the nice
property of guaranteeing that the resulting classifier has no
redundant rules.

Next, we describe this issue in a more general way.
Given a set of rules s in a classifier f , we use f � s to denote
the resulting classifier by removing all the rules in s from f .
A set of rules s in a classifier f is redundant if and only if
f � s is equivalent to f . A set of rules s is a complete set of
redundant rules of f if and only if f � s is equivalent to f
and f � s has no redundant rules. A set of rules s is a
maximal set of redundant rules of f if and only if both of the
following two conditions are satisfied:

1. s is a complete set of redundant rules of f .
2. For any other complete set s0 of redundant rules of f ,
jsj � js0j.

From these definitions, we see that the set of rules
removed by our upward and downward redundancy
removal algorithms is complete, but the removed set of
rules is not guaranteed to be maximal. We are interested in
the maximal set of redundant rules in a classifier because
we want to reduce the number of rules as much as possible.
A straightforward solution could be as follows: given a
classifier f , for every subset of rules s, test whether we have
f � s 	 f . This equivalence testing procedure is available in
[25]. Clearly, this solution is exponential in terms of the
number of rules, which could be large. Therefore, the
following questions remain open: 1) Is the problem of
detecting a maximal set of redundant rules in a classifier
NP-complete? 2) If not, what is the polynomial solution?
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Fig. 15. Distribution of synthetic classifiers by compression ratio.

TABLE 2
Sample Running Time Data for Real-Life Classifiers

Fig. 16. Distribution of synthetic classifiers by expansion ratio.

Fig. 17. Average processing time for removing all (both upward and

downward) redundant rules versus total number of rules in a classifier.

Fig. 18. An illustrative classifier.



11 CONCLUDING REMARKS

In this paper, we present the first technical study of
redundant rules in classifiers. Our contributions are
threefold. First, we propose redundancy removal as a
new approach to the interval expansion problem of
TCAMs. Removing redundant rules directly reduces power
consumption of TCAM chips. Our experiments on real-life
classifiers showed an average reduction of 58.2 percent on
the number of TCAM entries by removing redundant rules.
Unlike other interval expansion solutions that require
modifying TCAM circuits or packet processing hardware,
our approach can be deployed today by network admin-
istrators and ISPs to cope with interval expansion. Second,
we give a necessary and sufficient condition for identifying
redundant rules for the first time. This condition lays the
foundation for developing redundancy removal algorithms.
Third, we present two tree-based algorithms for removing
the two types of redundant rules that we define in this
paper, respectively. We formally prove that the resulting
classifiers have no redundant rules after running the two
algorithms. The experiments that we conducted on both
real-life and synthetic classifiers showed that removing all
redundant rules from a large classifier with thousands of
rules only takes a few seconds using our algorithm.

The results in this paper can be extended for use in many
systems where a system can be represented by a sequence
of rules. Examples of such systems are rule-based systems
in the area of artificial intelligence and access control in the
area of databases. In these systems, we can extend the
results in this paper to remove redundant rules and thereby
make the systems more efficient.

APPENDIX A

A.1 Proof Sketch for Theorem 1

1. Equality condition. We prove this condition by
induction. By the definition of matching set and
resolving set, we have Mðr1Þ ¼ Rðr1; fÞ and
Rðri; fÞ ¼MðriÞ �

Si
j¼1 MðrjÞ. Let us assume the

equality condition holds when i ¼ k, ð1 � k � nÞ.
When i ¼ kþ 1, we have

[kþ1

j¼1

MðrjÞ ¼
[k
j¼1

MðrjÞ [Mðrkþ1Þ

¼
[k
j¼1

MðrjÞ [ Mðrkþ1Þ �
[k
j¼1

MðrjÞ
 !

¼
[k
j¼1

MðrjÞ [Rðrkþ1; fÞ

¼
[k
j¼1

Rðrj; fÞ [Rðrkþ1; fÞ

¼
[kþ1

j¼1

Rðrj; fÞ:

2. Dependency condition. By the definition of matching set

and resolving set, we have Rðri; fÞ ¼MðriÞ �Si
j¼1 MðrjÞ. By the above equality condition, we

have
Si�1
j¼1 MðrjÞ ¼

Si�1
j¼1 Rðrj; fÞ. Therefore,Rðri; fÞ ¼

MðriÞ�
Si
j¼1 MðrjÞ¼MðriÞ�

Si�1
j¼1 Rðrj; fÞ.

3. Determinism condition. Without loss of generality, we
assume that i < j. By the dependency condition, we
h a v e Rðrj; fÞ ¼MðrjÞ �

Sj�1
k¼1 Rðrk; fÞ ¼MðrjÞ �Sj�1

k¼iþ1 Rðrk; fÞ �
Si�1
k¼1 Rðrk; fÞ �Rðri; fÞ. Therefore,

we have Rðri; fÞ \Rðrj; fÞ ¼ ;.
4. Comprehensiveness condition. By the definition of

comprehensiveness, we have � ¼
Sn
i¼1 MðriÞ. By

the equality condition, we have
Sn
i¼1 MðriÞ ¼Sn

i¼1 Rðri; fÞ. Therefore, we have � ¼
Sn
i¼1 Rðri; fÞ.tu

A.2 Proof Sketch for Lemma 1

By Theorem 1, we have Rðrn; fÞ¼ MðrnÞ�
Sn�1
j¼1 Rðrj; fÞ

andRðrn; fÞ ¼ ��
Sn�1
j¼1 Rðrj; fÞ. Therefore,Rðrn; fÞdoes not

change if we modify MðrnÞ to be �, i.e., if we modify the

predicate of the last rule rn to be ðF1 2 DðF1ÞÞ ^
ðF2 2 DðF2ÞÞ ^ � � � ^ ðFd 2 DðFdÞÞ. tu
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