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Abstract—This paper presents an adaptive partitioning scheme of sensor networks for node scheduling and topology control with the

aim of reducing energy consumption. Our scheme partitions sensors into groups such that a connected backbone network can be

maintained by keeping only one arbitrary node from each group in active status while putting others to sleep. Unlike previous

approaches that partition nodes geographically, our scheme is based on the measured connectivity between pairwise nodes and does

not depend on nodes’ locations. In this paper, we formulate node scheduling with topology control as a constrained optimal graph

partition problem, which is NP-hard, and propose a Connectivity-based Partition Approach (CPA), which is a distributed heuristic

algorithm, to approximate a good solution. We also propose a probability-based CPA algorithm to further save energy. CPA can ensure

K-vertex connectivity of the backbone network, which achieves the trade-off between saving energy and preserving network quality.

Moreover, simulation results show that CPA outperforms other approaches in complex environments where the ideal radio propagation

model does not hold.

Index Terms—Sensor network, sleep scheduling, graph partition, radio irregularity.

Ç

1 INTRODUCTION

WIRELESS sensor networks consist of a large number of
small battery-powered nodes that need to operate in

unattended status for months. In order to sustain sensors
to run for a long period of time with limited energy
capacity, it is critical to save energy in sensor operations.
Since wireless communication consumes the majority of
energy among all the sensors’ activities, reducing power
consumption in communication is the most effective
approach to prolong sensors’ lifetime. Two strategies are
usually used to minimize energy dissipation in sensor
communication: 1) adjust the radio transmission power of
each node or 2) schedule the wireless interfaces of sensor
nodes to rotate between active and sleeping status.

Several approaches have been proposed to reduce the

energy consumption of a sensor network by minimizing

sensors’ transmission power while maintaining the network

connectivity [1], [2], [3]. However, the major energy of a

sensor network is often consumed by idle listening instead

of packet transmission and reception under light traffic or

in a dense network. It has been broadly observed that the

energy consumption of a wireless interface cannot be

ignored even when it is in the listening mode. The

experiment in [4] shows that the energy consumption ratio

of listening, receiving, and transmitting is 1:1.2:1.7. (The

ratio is shown to be 1:1.05:1.4 in [5] and 1:2:2.5 in [6].)
Therefore, energy can be further saved by reducing the time

spent in idle listening of sensor nodes. In duty cycling

approaches [7], [8], the wireless interface of each sensor
node follows a periodic cycle of active/sleep states.

However, this approach incurs additional end-to-end

communication delay in the sensor network, because the

intermediate node has to wait for the node at the next hop
to wake up for receiving the packet.

In this paper, we adopt another sleep scheduling
approach to reduce the energy consumption without

causing dramatic data delivery delay in a dense sensor

network. Since only a small portion of the sensors are

involved in packet transmission and reception in a dense
sensor network where broadcast is not frequently initiated,

it will be most effective to save energy by turning off the

wireless interfaces of those redundant sensors that only

operate in listening status. Therefore, we can divide the
sensor nodes into groups such that nodes in each group are

equivalent with regard to data delivery. At each time, one

node is selected from each group to operate in active radio
mode (listening, transmitting, and receiving), while other

nodes put themselves into sleeping mode by turning off

their wireless interfaces. No matter which node is selected

from each group, all the active nodes need to form a
connected backbone network. If a sleeping node wants to

send data, it can turn on its wireless interface temporarily to

transmit the packets through the backbone network. In

addition, the roles of active nodes and sleeping nodes need
to be swapped once in a while to balance the power

consumption among all the nodes, which prolongs the

network’s lifetime.
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The algorithm that saves energy by utilizing this node
scheduling method has been proposed in ad hoc networks.
GAF [9], [10] partitions the nodes based on their geographic
locations. It divides the deployed area into multiple equal-
size squared cells so that nodes in the same cell form a group.
By assuming an ideal radio propagation model and choosing
the appropriate side length of cells, it ensures that a well-
connected backbone network can be formed as long as at least
one node in each cell remains in active mode. However, this
geographic partition suffers from several drawbacks besides
its dependence on the localization infrastructure. First, as
GAF uses fixed cells in its partition, it lacks the flexibility to
provide different partitions that can ensure different con-
nectivity levels of the backbone networks. Second, geo-
graphic partition methods depend on the assumption of an
ideal radio propagation model, which does not always hold
due to a radio’s irregular transmission pattern and multipath
effect in a real environment. As a result, the connectivity of the
backbone network cannot be guaranteed, which causes
degradation in network performance.

Motivated bythese limitations, we proposeaConnectivity-
based Partition Approach (CPA), which divides nodes based
on their measured connectivity instead of guessing connec-
tivity by their positions. In comparison, our approach has
more flexibility because it can generate partitions while
ensuring K-connectivity of the backbone network. In addi-
tion, as CPA is based on measured connectivity, it can
guarantee the connectivity of the backbone network even
under unideal radio propagation models. Thus, CPA is more
adaptive to complex environments.

The rest of the paper is organized as follows: To illustrate
the basic idea of CPA, we introduce the motivation and give
a formal problem description in Section 2. The detailed
description of the algorithm is discussed in Section 3. In
Section 4, we evaluate our proposed approach by compar-
ing it with the GAF approach. Previous studies are
summarized in Section 5, and we conclude our work in
Section 6.

2 OVERVIEW

In this section, we first analyze several limitations of GAF
that motivate us to partition the nodes based on their
measured connectivity rather than their locations. After
that, a formal description is given for the problem of
partitioning nodes based on their connectivity graph in a
large sensor network. Our solution is given in the next
section.

2.1 Motivation

GAF identifies redundant nodes based on location informa-
tion and virtual grids. It assumes an ideal radio propagation
model of circular transmission range and the same radio
transmission radius for all the nodes. Based on this
assumption, it divides the deployed area into virtual grids
with a side length ofR=

ffiffiffi
5
p

, where R is the radio transmission
radius, so that each node associates itself with a correspond-
ing grid according to its location. As any two nodes in
neighboring grids are guaranteed to be connected because
their distance is within R, a connected communication
backbone can be formed by selecting only one active node

from each grid. GAF provides a partition solution for node
scheduling in a large sensor network; nevertheless, it still
suffers from several limitations.

Although turning off nodes can reduce the energy
consumption dramatically, the change of network graph
property may affect the communication performance and
therefore incur more power dissipation. Vertex connectivity
is a useful metric to evaluate the communication quality of
the backbone network with regard to node failure and
congestion. In a K-connected network, the failure of any
K � 1 nodes will not disrupt it into a disconnected graph. In
addition, a network graph with higher vertex connectivity
has a lower possibility to have bottleneck nodes of
congestion because there are at least K vertex disjoint
paths between any two vertices in a K-connected graph. In
the extreme case, a 1-connected graph may have cut vertices
that are very likely to become congestion nodes.

GAF actually provides a 4-connected backbone network
for a large sensor network. As any two nodes in neighboring
grids are guaranteed to be connected, each node is connected
with at least four nodes in its four neighboring grids,
respectively, in the backbone network. However, GAF lacks
the flexibility to provide backbone networks with different
vertex connectivity under different requirements. If the
nodes are relatively more robust and the traffic rate is not
high, a backbone network with lower connectivity is desired
to achieve more energy saving by maintaining fewer active
nodes. On the other hand, a backbone network with higher
connectivity can cope with a higher node failure and
traffic rate. Therefore, a more flexible algorithm is desired
to partition the nodes into groups of appropriate size.

Another problem with GAF is that it may not work well
under irregular radio propagation models. To illustrate this,
we use the Degree of Irregularity (DOI) [11] as a radio
propagation model. This model assumes an upper and
lower bound on signal propagation range. The parameter
DOI is defined as the maximum radio range variation per
unit degree change in the direction of radio propagation.
The DOI model used in our example is shown in Fig. 13b.
The upper bound is the maximum radio transmission
radius R, the lower bound is half of the upper bound, and
DOI is set to 0.1.

We deploy 12 sensor nodes with a maximum radio
transmission radius of

ffiffiffi
5
p

uniformly into a 2 � 2 area, as
shown in Fig. 1a. Each edge between pairwise sensors
represents a symmetric link between them based on
the DOI model. In Fig. 1b, the deployed area is divided
into 2 � 2 grids, each of which owns three nodes according
to GAF. At each period, one node in each grid turns into
active status to form a communication backbone. However,
there is a possibility that the backbone graph is discon-
nected. As the case shown in Fig. 1b, nodes 1, 4, 9, and 10
are selected from each grid to become active nodes, but they
form a disconnected backbone network. The partition of
GAF is invalid because the connectivity between nodes in
neighboring grids is no longer ensured under the irregular
radio model. They may not be able to communicate with
each other even though they are within a distance of R. In
addition, although the connectivity can be guaranteed by
halving the grid’s side length so that each two nodes in
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neighboring grids are within a distance of R=2, the lower

bound of the radio propagation range, it is still not a good

partition because it makes 4 � 4 grids, which is even more

than the number of nodes. On the other hand, Fig. 1c shows

a valid partition. It consists of six groups where the nodes in

each group are mutually connected. Each edge between two

groups means that any node from one group is connected

with any node in the other group. Fig. 1d shows an example

of the backbone network constructed from the partition. It is

obvious that the backbone formed by selecting an arbitrary

node from each group is always connected, because the

graph in Fig. 1c is a connected graph. This partition is valid

because it is based on the measured connectivity between

nodes instead of guessing connectivity from nodes’ loca-

tions. Therefore, it can ensure the connectivity between

neighboring groups in the partition.
In this paper, we propose CPA, which is based on the

measured connectivity between nodes. CPA aims at

partitioning the nodes into groups of appropriate size to

ensure K-connectivity of the backbone network and at the

adaptability in complex environments with irregular radio

transmission models. Before presenting our design of CPA,

a formal problem description is given in the following.

2.2 Problem Formulation

To reduce the energy consumption of communication in

sensor networks, we can divide sensor nodes into groups

such that only one node in each group keeps active at each

snapshot while others are put into sleeping mode. The

partition must satisfy the following constraints:

. Any node is within one hop away from all the other
nodes in the same group. Under such a constraint,
each node can be covered by the communication
backbone, that is, each node is either in the backbone
network if it is an active node or directly connected
to the backbone network if it is a sleeping node. This
also enables efficient communication among nodes
in each group to switch between active and sleeping
modes for load-balance purposes, because each node
can communicate directly with any other node in the
same group.

. The backbone network formed by active nodes at
each snapshot must satisfy some connectivity prop-
erties such that it does not suffer a significant loss of
communication quality as compared with the origi-
nal network.

. The analysis in [12] shows that for those sensor
applications where data are collected by a sink, the
sensors closer to the sink always deplete their energy
faster under uniform distribution of nodes, no matter
what sleep scheduling is used. However, some
mobility-assisted approaches such as [13] and [14]
can help achieve uniform energy consumption in
sensor networks. Therefore, in order to better
evaluate the sleep scheduling algorithm, we assume
the uniform energy consumption for sensor nodes in
this paper. In order for all the groups to remain alive
together as long as possible, the energy needs to be
evenly distributed among groups. This is because if
there is a considerable number of groups with
dramatically less total energy than the others, the
connectivity of the backbone network will deteriorate
with the early death of these lower energy groups.

. A smaller number of groups is preferred without
degrading the communication quality of the original
network, because more energy conservation can be
achieved by decreasing the number of active nodes at
each time.

By referring to some terms in graph partition problems

[15], we can formalize the problem as below.
Let GðV ;EÞ be an undirected graph for the original

sensor network, where each vertex in V corresponds to a

sensor node, and each edge in E represents a symmetric

communication link between the two nodes.

Definition 1. Given a graph GðV ;EÞ, we can partition V into N

disjoint sets A1; A2; . . . ; AN such that the induced graph of

each vertex set, denoted by G½Ai� ði 2 f1; 2; . . . ; NgÞ, is a

clique. We can encode this partition by a symmetric N �N
matrix M, where

. Mi;i ¼ 1 ði 2 f1; 2; . . . ; NgÞ, representing that each
G½Ai� is a clique, and

. for Mi;j ði; j 2 f1; 2; . . . ; Ng; i 6¼ jÞ

– Mi;j ¼ 2 if Ai and Aj are completely adjacent,
that is, any vertex in Ai is connected with any
vertex in Aj,

– Mi;j ¼ 1 if Ai and Aj have arbitrary connections,
that is, there exists some vertex in Ai connected
with some vertex in Aj, but Ai and Aj are not
completely adjacent, and

– Mi;j ¼ 0 if Ai and Aj are completely nonadjacent,
that is, no vertex in Ai is connected with any
vertex in Aj.
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This partition is called an MM-partition of G, and N is the
size of the partition.

Definition 2. Given an M-partition P ¼ fA1; A2; . . . ; ANg of
GðV ;EÞ, we select an arbitrary vertex xi from
Ai ði ¼ 1; 2; . . . ; NÞ. Let X ¼ fx1; x2; . . . ; xNg. The in-
duced graph G½X� is called a backbone graph of G
under M-partition P . In the rest of the paper, we also call
it the backbone network without confusion.

Note that the M-partition implies some connectivity
property of the backbone graph. Let B denote a backbone
graph of G under an M-partition P ¼ fA1; A2; . . . ; ANg. If
Mi;j is 2, then xi and xj (the two vertices selected from Ai

and Aj, respectively) are guaranteed to be connected; if Mi;j

is 0, they must be disconnected; otherwise, they may or may
not be connected.

Definition 3. Given an M-partition P ¼ fA1; A2; . . . ; ANg of
G, we define a graph HðS; T Þ, where each vertex si 2 S
corresponds to Ai 2 P ði ¼ 1; 2; . . . ; NÞ, and ðsi; sjÞ 2 T if
and only if Mi;j ¼ 2. We call H the 2-induced graph of P.

We are interested in H because it reflects the minimum
connectivity property of any backbone graph B of G. If si
and sj are connected in H, then Ai is completely adjacent
with Aj. Thus, in any backbone graph B of G, xi and xj (two
arbitrary vertices selected from Ai and Aj, respectively) are
guaranteed to be connected. In other words, EðHÞ is a
subset of EðBÞ. Therefore, suppose �ðHÞ ¼ K; then, we
have �ðBÞ � K, where � denotes the vertex connectivity of
the corresponding graph.

Let l be a label on V of the original network GðV ;EÞ,
where lðvÞ ðv 2 V Þ is the amount of energy in the sensor
node v; then, the total energy of the sensor network is
Etotal ¼

P
v2V lðvÞ. We can also derive another label g on the

M-partition P ¼ fA1; A2; . . . ; ANg of G, gðAiÞ ¼
P

v2Ai
lðvÞ,

for each Ai 2 P , which represents the total energy in each
group of the partition.

Problem formulation (constrained minimum-size
MM-partition problem). Given a graph GðV ;EÞ, which
represents the original sensor network, and a label l on V ,
which represents the amount of energy in each sensor node,
find a minimum-size M-partition P � of G such that
1) �ðHÞ � K, where H is the 2-induced graph of P �, and
K is the minimum vertex connectivity required by the
backbone network, and 2) ð1� �Þ EtotalN � gðAiÞ � ð1þ �Þ EtotalN

for each Ai 2 P �, where N is the size of P �, and 0 � � < 1 is
the unbalanced factor.

As G½Ai� ðAi 2 P �; i ¼ 1; 2; . . . ; NÞ is a clique, each node
is within one hop away from all the other nodes in the same
group of the partition. The connectivity property of the
backbone network can be guaranteed by the first constraint
of the problem, and the balanced energy distribution can be
satisfied by the second constraint. Moreover, the optimiza-
tion nature of this problem requires the most efficient
partition with regard to energy saving.

Theorem 1. The constrained minimum-size M-partition problem
is NP-hard.

Proof. Consider a problem that is less hard than the
formulated problem. We remove the two constraints

from the formulated problem, and the resulting
problem becomes finding a minimum-size M-partition
of G, which we denote by the smallest M-partition
problem. We then show that the clique problem, which is
NP-complete, can be reduced to the smallest M-partition
problem in polynomial time. (The clique problem is the
problem of determining whether a graph contains a
clique of at least a given size k.) As M-partition
requires that G½Ai� is a clique for each Ai 2 P , the
smallest M-partition problem is equivalent to finding all
maximal cliques in G. Suppose the set of all maximal
cliques of G has been found. Then, G contains a clique
of size at least k if and only if there exists a maximal
clique of size at least k. This reduction only needs
polynomial time. Thus, the smallest M-partition problem
is NP-hard. Therefore, the constrained minimum-size
M-partition problem is also NP-hard. tu

3 CPA DESIGN

In this section, we propose CPA to approximate a good
partition for this problem. We want to find an M-partition
of which the size is as small as possible, while satisfying
that any backbone graph under the M-partition is at least
K-connected and the energy distribution in different
groups is as even as possible. The proposed algorithm is a
distributed heuristic algorithm, where only local computa-
tion is involved. Some of our preliminary results have
already been published in [16]. CPA is a distributed
iterative process. It starts from the initial partition where
each node forms a unique group. CPA continuously merges
two groups into a larger one until further merging will
break the constraints of the problem.

In CPA, there are two kinds of nodes in each group:
ordinary nodes and a head node. Each kind of node
maintains its node ID and associated group information,
including its group ID, the IDs of other group members,
and the ID of the head node in its group. One head node is
selected from each group to maintain some additional
information on the connectivity between its group and the
neighboring groups in the current M-partition. Let NlðAiÞ
be the set of neighboring groups that are connected with
group Ai through l-value edges in the current M-partition,
i.e., NlðAiÞ ¼ fAjjMi;j ¼ lg. Thus, each head node of group i
will store N1ðAiÞ and N2ðAiÞ, which are the set of
neighboring groups having arbitrary connection with
group i and completely adjacent with group i, respectively.

CPA starts from the initial partition of one node in each
group. Let Ai denote the group formed by node vi.
Consequently, vi acts as the head node and stores group
connectivity information N1ðAiÞ and N2ðAiÞ, where N2ðAiÞ
is the set of groups Aj whose node vj is connected with
node vi, and N1ðAiÞ is empty because any two groups are
either completely adjacent or completely nonadjacent in the
initial partition. CPA goes through a group merging process
iteratively before it gets to the final partition.

3.1 Group Merging

In the group merging process, the head nodes of each two
completely adjacent groups exchange group connectivity
information to decide whether their groups should merge.
Only completely adjacent groups can merge so that the new
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group is also a clique. Suppose Ai and Aj are two
completely adjacent groups in the current M-partition. Let
Aij be the new group obtained by merging Ai and Aj. The
group merging process first updates the group information
in each node of Aij and keeps only one head node to
maintain the group connectivity information in Aij. Then,
the new group and the neighboring groups of Ai and Aj

update their group connectivity information based on the
following rules: 1) for each group A0 2 N2ðAiÞ \N2ðAjÞ, Aij

and A0 are completely adjacent (edge value of 2), 2) for each
group A0 2 N0ðAiÞ \N0ðAjÞ, Aij and A0 are completely
nonadjacent (edge value of 0), and 3) otherwise, Aij and A0

have arbitrary connections (edge value of 1). Therefore, an
updated M-partition is formed. Fig. 2 illustrates the process
of merging two groups into a larger group. In Fig. 2a, a and
b are two completely adjacent groups, that is, any node in a
is connected with any node in b. When the two groups
merge, as shown in Fig. 2b, as groups c, e, and f are
completely adjacent to both a and b, each of them is
completely adjacent to the new merged group. On the other
hand, groups d and g only have arbitrary connection with
the new group, which are illustrated by the dashed lines in
the figure, because d is not completely adjacent with b and g
is not completely adjacent with a.

Contentions may occur when multiple neighboring
groups want to merge simultaneously. We resolve this by
imposing a randomized backoff delay on the time when the
two groups announce their willingness to merge. If no
contention is observed at the end of the delay, the two groups
about to merge will announce their decision to all of their
neighboring groups. Otherwise, they will reevaluate the
backoff delay based on the updates from other group merges.

The goodness of the final partition depends on the
sequence of group merge. We consider several factors for
deciding which two groups are preferred to be merged first
in the current partition in order to arrive at a good partition
eventually. These factors can be reflected as a utility
function in the randomized backoff delay so that higher
priority groups will announce their intentions to merge
with a shorter time of delay:

. For any two groupsAi andAj in the current partition,
let P ¼ jN2ðAiÞ \N2ðAjÞj and Q ¼ jN2ðAiÞ [N2ðAjÞj;

then, C ¼ P=Q indicates the level of equivalence
between Ai and Aj. The two groups with a higher C
value will be given higher priority in the group
merging process. Specifically, at the starting phase of
the algorithm, where each node constitutes a single
group, nodes with exactly the same set of neighbors
will be merged first, because these nodes are exactly
equivalent with regard to relaying data.

. Let gðAiÞ denote the energy in group Ai. We want the
total energy to be evenly distributed in each group so
as to maximize the network’s lifetime. For any two
groupsAi andAj, letD ¼ ½gðAiÞ þ gðAjÞ�=Etotal, where
Etotal is the total energy of all the sensor nodes in the
network; then, we will give pairwise groups with a
lower D value higher priority in the group merging
process.

Therefore, each two completely adjacent groups can be
assigned with a utility value U ¼ k1ð1� CÞ þ k2D, where k1

and k2 are coefficients. The backoff delay for each pair of
groups is set to be proportional to U þR, where R is a
random value uniformly distributed in [0, 1], which is used
to resolve contentions among pairwise groups with the
same utility value. As a result, the appropriate assignment
of backoff delay enables pairwise groups with a lower
utility value to merge first, as well as resolving contentions
in the group merging process.

3.2 Guarantee of Connectivity

As we have discussed in the previous section, the K-
connectivity of the backbone network can be guaranteed by
the K-connectivity of the 2-induced graph of M-partition.
However, the group merging process may disrupt this
connectivity. When Ai and Aj merge, the number of
completely adjacent groups for Aij may decrease, and this
number for each A0 2 N2ðAiÞ [N2ðAjÞ will decrease by one.
For example, when the groups a and b merge in Fig. 2, the
number of completely adjacent groups for the new group
decreases by two, while the number decreases by one for
each group of c, d, e, f , and g. In order to ensure the K-
connectivity of the 2-induced graph of M-partition, we
apply a result on the property of random geometric graphs
that was published in [17].
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Random geometric graphs (with parameters n and r) are
constructed by dropping n points randomly uniformly into
the unit square (or more generally on a d-dimensional
euclidean space) and adding edges to connect any two
points distant at most r from each other. Therefore, a large-
scale sensor network with an ideal radio propagation model
can be modeled as a random geometric graph. Penrose [17]
proved that “For a random geometric graph Gðn; rÞ , let rn,
(respectively sn) denote the minimum r at which the graph,
obtained by adding an edge between each pair of points
distant at most r apart, is K-connected (respectively, has
minimum degree K). Then rn ¼ sn with probability
approaching 1 as n tends to infinity.” In other words, for
a random geometric graph with a large number of nodes,
the network reaches K-connectivity at the same time when
its minimum degree reaches K.

We assume that the backbone graph can be approxi-
mated as a random geometric graph, then its K-connectivity
can be guaranteed by ensuring its minimum degree of K.
As the 2-induced graph of M-partition is a subgraph of
each backbone graph, its minimum degree is no greater
than the backbone graph. Therefore, we can guarantee the
K-connectivity of the backbone graph by ensuring
the minimum degree of K in the 2-induced graph of
M-partition.

In M-partition, we refer “2-degree of Ai” to the number of
groups that are completely adjacent to Ai. Each group keeps
track of its 2-degree value during the group merging
process, which is used to decide whether pairwise groups
should be merged. If a group merge may cause the 2-degree
of some group to drop below K, then these two groups will
give up their intention to merge. The group merging
process will be terminated when no groups can be merged.

The theoretical proof above demands the ideal radio
propagation model to form a sensor network into a random
geometric graph. However, our simulations in Section 4
show that under the irregular radio propagation model, we
can still form a K-connected backbone network with
high probability by ensuring the minimum degree of K in
the 2-induced graph of the M-partition. Compared with
geographic partition methods, CPA can preserve the
network’s communication quality much better in irregular
radio environments.

3.3 Centralized and Distributed Implementation

To better illustrate the idea of CPA, we first show the
centralized version in Algorithm 1. During the group
merging process, for each pair of completely adjacent
groups, fij denotes the priority of merging these two
groups, and tij indicates whether the minimum 2-degree of
the partition will drop below K (the connectivity require-
ment of the backbone network) if we merge them. In each
step of the iteration, we will merge the two groups with the
highest priority (smallest f value) that will not break the
connectivity constraint (t value is false). The merging
process continues until the merge of any pair of groups will
break the constraint.

Algorithm 1. Centralized Partitioning Algorithm

1: for all vi 2 V do

2: Ai ¼ fvig

3: deg2ðAiÞ ¼ degree of vi in G

4: end for

5: repeat

6: for all Ai, Aj 2 A, where Ai and Aj are completely

adjacent do

7: C ¼ jN2ðAiÞ \N2ðAjÞj=jN2ðAiÞ [N2ðAjÞj
8: D ¼ ½gðAiÞ þ gðAjÞ�=Etotal

9: fij ¼ k1ð1� CÞ þ k2D

10: d� ¼ jN2ðAiÞ \N2ðAjÞj
11: mindeg¼minfd�[fdeg2ðsÞ�1js 2 N2ðAiÞ [N2ðAjÞgg
12: tij ¼ ðmindeg < KÞ ? true : false

13: end for

14: Choose ðAx;AyÞ with the smallest f value among all
ðAi;AjÞ where tij ¼ false

15: for all s 2 N2ðAxÞ [N2ðAyÞ do

16: deg2ðsÞ ¼ deg2ðsÞ � 1

17: end for

18: Ax ¼ Ax [Ay, deg2ðAxÞ ¼ jN2ðAxÞ \N2ðAyÞj
19: A ¼ A� fAyg
20: until tij ¼ true for all ðAi;AjÞ

With some modifications, the algorithm can be imple-
mented in a distributed fashion. Fig. 3 illustrates the state
transition diagram of each head node. Initially, each node
constitutes a group (or is a head node). At the start, each
node broadcasts an UPDATE MSG to its neighbors
containing its group information. In the Decision state, the
head node calculates the f value and t value for each of its
completely adjacent groups and selects the group with the
smallest f value (highest priority to merge) where the
t value is false (the merge will not break the connectivity
constraint). Let Ax be the current group and assume that the
best group to merge with is Ay. If any completely adjacent
group of Ax or Ay is in the Merging or Holding state, then the
head node will go into the Waiting state, because the merge
of Ax and Ay will collide with the merge of some other
groups. Otherwise, the head node will go into the
Contending state. In this state, the head node will send a
MERGE REQ message to Ay, expressing its willingness to
merge with Ay, with a backoff delay as a function of f . If the
contention succeeds (Ax receives a MERGE ACK message
from Ay), it goes into the Merging state, and otherwise (Ax

receives a MERGE NAK message from Ay), it enters the
Waiting state. In the Merging state, it first broadcasts a
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HOLD_MSG to the neighboring groups of Ax and Ay to put
them into Holding state and then updates its group
information. After the merge is finished, it broadcasts an
UPDATE_MSG, which contains the information of the
newly merged group, to its neighboring groups. If a head
node has not yet entered the Merging state, it will enter the
Holding state when it receives a HOLD_MSG from neigh-
boring groups. When a head node is in the Holding state or
Waiting state, it will enter the Decision state again once it has
received an UPDATE_MSG.

3.4 Probability-Based Partition

In the previous partition algorithm, we only focused on the
completely adjacent groups, that is, we ensure that each
group has at least K completely adjacent groups in the
partition. Thus, in the backbone network formed by
activating one node from each group, each node has at least
K neighbors, which maintains the network’s connectivity.
However, we did not make use of the groups having
arbitrary connections, especially when one group has most
nodes connected with most nodes in the other group. In this
section, we try to utilize this information in the optimization
problem to further reduce the partition size.

Let Ai and Aj be two groups with size ni and nj. We can
evaluate the connectivity between these two groups by the
connectivity probability Pij ¼ m

ni�nj , where

m ¼ ðx; yÞjx 2 Ai \ y 2 Aj \ ðx; yÞ 2 E
� ��� ��:

Thus, if Ai and Aj are completely adjacent, then Pij ¼ 1
becausem ¼ ni � nj. IfAi andAj are completely nonadjacent,
then Pij ¼ 0 because m ¼ 0. Otherwise, 0 < Pij < 1.

With slight modifications, we can utilize the connectivity
probability in the previous algorithm. In Algorithm 1, we
keep track of the number of completely adjacent groups for
each group. Instead, we can count the number of groups
with connectivity probability more than P for each group.
Thus, we are able to guarantee that each group has at least
K groups with connectivity probability more than P in the
final partition.

One drawback of the probability-based approach is that
the K-connectivity of the backbone network cannot be
guaranteed for sure if P < 1. However, by loosing the
requirement on connectivity, we save more energy
because of the reduced final partition size, while ensuring
the K-connected backbone with high probability at the
same time. We will show this in the simulation.

3.5 Load Balancing Energy Usage in Groups

As all the nodes in the network are equally important,
running a node in active status until its energy is depleted is
not an appropriate energy usage strategy. In order to
prolong the lifetime of each node, the nodes in each group
need to switch between active and sleeping status periodi-
cally so that all nodes remain alive together for as long as
possible.

Assume that all the nodes in each group can be
synchronized. In order to elect an active node, each group
member broadcasts a message to the whole group stating
its willingness to become active. Each node waits for a
certain time delay before its announcement. The earliest
announcement will suppress the others so that the

corresponding node will become the active node in the
group. The time delay for each node is set to be inversely
proportional to its residual energy. Therefore, the node
with the maximum residual energy will be selected. Then,
the selected active node informs other nodes of the time it
will remain active, after which all the nodes need to reselect
an active node again within the group.

4 PERFORMANCE EVALUATION

We evaluate our schemes under uniform deployment of
sensors. The simulation is based on the energy consumption
model observed in [4], that is, the ratio of energy consumed in
listening, receiving, and transmitting status is 1:1.2:1.7. The
initial energy level of each node is set to 500, which means that
the node will remain alive for 500 units of time in the listening
status. According to the assumption in Section 2.2 that the
energy consumption is uniform over all the sensor nodes with
the mobility-assisted approaches helping to collect data, we
simulate the energy consumption in the sensor network by an
equivalent scenario. In each time slice, we randomly select
20 traffic nodes, which send and receive packets between each
other. In addition, we use load-balanced energy-aware
routing [18] in the backbone network. One slight modification
we make is that we use the total residual energy of the group
to denote the residual energy of the corresponding active
node in the load-balanced route decision.

We perform the simulation in Matlab. The energy
consumption is calculated based on the changing status of
each node and the energy consumption ratio for each status.
In our evaluation of the sensor network’s lifetime, we do
not take the energy consumed in the partition process into
consideration, because it runs only once at the deployment
phase of the sensor network so that it only consumes a
trivial portion of the network’s total energy.

In this section, we will first analyze the scalability of our
partition algorithm and then evaluate the partition of CPA in
comparison with GAF under both the ideal radio transmis-
sion model and the irregular radio transmission models.

4.1 Scalability of CPA

As CPA is a distributed algorithm where only local
computation is involved, it is scalable with the network
size. This can be seen in Fig. 4. We run the distributed
partition algorithm on networks with the same density of
sensors but different ranges. In all configurations, the
density is set to five sensors per square unit, and the radio
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transmission range is set to
ffiffiffi
5
p

. We try networks with an
area of 5� 5; . . . , 25 � 25, which are shown in the x-axis of
the figure. Assume that each group merge needs one unit of
time. We use a relative scale to measure the runtime. The
y value of each point means that the runtime of the
distributed algorithm is comparable to the time used for
sequentially merging groups y times. We can observe from
the figure that the runtime tends to converge with the
increase of network scale.

In Fig. 5, we run the partition algorithm on a network
with the range of 10 � 10 but with different node densities
(two, . . . , six nodes per square unit). We can observe that
the runtime increases linearly with the node density
approximately. This is because the radio transmission range
remains unchanged though the node density increases.
When two groups are going to merge, all the groups within
their communication range cannot merge due to collision.
Therefore, increasing the node density does not increase the
pairs of groups that can merge simultaneously.

Fig. 6 illustrates the overhead of CPA under different
network scales while the node density remains unchanged
at five. We evaluate the overhead by counting the average
number of messages transmitted per node. In the figure, we
can observe that the average number of messages trans-
mitted per node converges with the increasing network
size. This is because the CPA algorithm only requires local
information at each node. The overhead is reasonable,
because CPA is not running frequently. Only when there is
dramatic environmental change or there are a considerable
number of groups dead will CPA be reexecuted.

4.2 CPA under the Ideal Radio Propagation Model

In this section, we evaluate the partitions of CPA and GAF
under the ideal radio propagation model in a 10 � 10 area.
We first set the node density to five, that is, we deploy
500 sensors uniformly in the area. We compare CPA and

GAF based on the network lifetime and the connectivity of
backbone networks. After that, we repeat our simulation for
different node densities and network scales.

In the ideal radio propagation model, the radio transmis-
sion range is the same in different directions. In our
simulation, the radio transmission radius R is set to

ffiffiffi
5
p

,
which is the same with GAF. GAF uses squared cells with a
length of R=

ffiffiffi
5
p
¼ 1 to partition the deployed area; thus, all

the nodes are divided into 100 groups. We also run CPA,
which is based on the connectivity between nodes instead of
their locations under the same experiment setting. CPA is
executed with different values for parameter mindeg, which
controls the minimum degree of the 2-induced graph of the
final partition. CPA guarantees that the backbone network
generated based on this partition will be mindeg-connected.

The partition results are shown in Table 1. For CPA, the
number of groups increases with the parameter mindeg,
because more active nodes are needed each time in order to
ensure higher connectivity of the backbone network. GAF
ensures that each node is connected with at least four nodes in
its four neighboring cells in the backbone network. Therefore,
we can regard GAF as comparable to CPA(mindeg ¼ 4). As
shown in the table, CPA(mindeg ¼ 4) partitions the nodes
into 91 groups, which is fewer than that of GAF. This indicates
that CPA can identify redundant nodes more sufficiently than
GAF. As discussed in previous sections, it is preferable to
have the total energy evenly distributed in the groups so as to
prevent the early death of some groups, which may disrupt
the connectivity of the backbone network. We assume that
each node has the same initial energy when deployed, so the
standard deviation of group size can be an indication of how
evenly the total energy is distributed in the groups. Table 1
shows the standard deviation of group size for each partition
result. It shows that our approach can divide energy as evenly
in groups as GAF under random uniform distribution of
nodes.
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Fig. 5. Runtime of CPA under different densities. Fig. 6. Overhead of CPA (node density ¼ 5).

TABLE 1
Partitions of GAF and CPA
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We then evaluate the lifetime of the network when the
partition results are applied. Each group keeps only one
active node each time to form a backbone network. The
nodes in each group balance the energy usage by reselecting
the active node periodically, which may change the
topology of the backbone network. We refer to lifetime as
the time when the backbone network formed by active
nodes turns out to be disconnected. If no sleeping schedule
scheme is used, that is, all nodes keep active until death, the
network lifetime will be less than 500. Fig. 7 illustrates the
network lifetime where different partitions are adopted. As
shown in the figure, the fraction of surviving nodes
decreases with time, and the simulation stops when the
backbone network becomes disconnected. The partition of
CPA(mindeg ¼ 2) achieves the longest network lifetime
(around 3,000), because it keeps the fewest number of active
nodes each time. The network lifetime decreases for
partitions of CPA with higher mindeg values, which can,
however, ensure better connectivity of the backbone net-
work. We can also observe from the figure that the partition
of CPA(mindeg ¼ 4) has a longer network lifetime than the
partition of GAF, even though they ensure the same level of
connectivity. Fig. 8 illustrates the energy consumption of
the whole network with regard to time. The energy
consumption rate is relatively constant because the traffic

nodes generate traffic at a constant speed and the number of

active nodes remains constant each time as well.
Although lowering the node density reduces the energy

consumption of the network, the topology change may affect

the network’s communication quality. For example, if a

packet goes through a much longer path in the backbone

network than it does in the original network, a longer data

transfer delay will be experienced. Fig. 9 shows the ratio of the

average routing path length in the backbone network and the

original network for different partitions. The ratio decreases

for CPA with higher mindeg values because its partition

ensures higher connectivity. As can be seen, the ratio is quite

low (below 1.3) for all the partitions listed in the figure, which

means the node scheduling based on these partitions does not

dramatically increase packet delivery delay.
We repeat our experiments under different node

densities without changing the range of the network. Table 2

shows the partition sizes when the parameter mindeg is set

to different values. We can observe that when the node

density remains unchanged, the partition size increases

with mindeg, which is consistent with previous experiment

results. In addition, when mindeg is fixed, the partition size

remains approximately the same under different node

densities, which indicates that our algorithm can effectively

identify redundant nodes under different node densities.
We also repeat the simulations to see the network

lifetime when these partitions are applied. The simulation

results are shown in Fig. 10. We can observe from the figure

that when mindeg is fixed, the network lifetime increases

with the increase of node density. This is because more

redundant nodes can be utilized to prolong the network

lifetime under a higher node density. Moreover, when the

node density remains unchanged, the network lifetime

decreases with the increase of mindeg, because more nodes

need to be active in each time slice to maintain better

network connectivity.
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Fig. 7. Comparison of network lifetime.

Fig. 8. Comparison of energy consumption.

Fig. 9. Comparison of the impact on route length under GAF and CPA.

TABLE 2
Partition Size of CPA under Different Node Densities
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In Figs. 11 and 12, we fix the node density to five nodes
per square unit and run CPA with mindeg equal to two,
four, and six, respectively, on networks of different scales.
As shown in Fig. 11, the partition size increases with the
network scale. However, the network lifetime remains
approximately the same regardless of the network scale,
which is shown in Fig. 12.

4.3 CPA under an Irregular Radio Propagation
Model

In order to evaluate the performance of CPA in comparison
with GAF under complex environments, we choose the DOI
model [11]. This model assumes an upper and lower bound
on the signal propagation range. The parameter DOI is
defined as the maximum radio range variation per unit
degree change in the direction of radio propagation. In our
simulation of radio irregularity, we set the upper bound toffiffiffi

5
p

and the lower bound to half of the upper bound. Fig. 13
shows two examples of radio propagation range in different
directions where the DOI value is set to 0.05 and 0.10,

respectively. The higher the DOI value, the more irregular-
ity in the radio propagation range.

Like the previous section, we first perform the simula-
tion in a 10 � 10 square area with the node density of five.
GAF cannot adapt to different levels of irregularity in the
radio propagation model, because it is based on the sensors’
locations and consequently cannot detect the irregularity
level. Unlike GAF, CPA partitions sensors based on their
measured connectivity, which enables it to obtain appro-
priate partition sizes under different levels of radio
irregularity. Fig. 14 shows the partition sizes of CPA with
different mindeg under an irregular radio with different
DOI values. We can observe in the figure that the partition
size increases with the DOI value. As the communication
between sensors is more seriously influenced by higher
irregularity in the radio propagation model, more active
nodes are needed to maintain the same level of connectivity
in the backbone network, leading to a larger partition size.

We perform simulations to study the network lifetime
under GAF and CPA(mindeg ¼ 2 or 4). For GAF, we use the
same partition for different DOI values, that is, 100 groups
with a cell length of one, because GAF is unaware of the radio
irregularity. We run the simulation multiple times for each
partition, and the comparison of average lifetime is shown in
Fig. 15. Our simulation finds that the lifetime for GAF is not
stable through repeated simulations. As the connectivity
between neighboring cells is no longer guaranteed by GAF
under the irregular radio propagation model, there is a
possibility that the backbone network formed by randomly
selecting an active node from each group is disconnected. The
higher the radio irregularity, the higher the probability of a
disconnected backbone network. As illustrated in the figure,
when DOI is close to 0.1, the GAF partition cannot even work.
In contrast, CPA works well under different conditions. The
lifetime for CPA decreases with the radio irregularity level,
because more active nodes are needed to maintain the same
connectivity of the backbone network, and thus, more energy
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Fig. 10. Network lifetime under different node densities.

Fig. 11. Partition sizes under different network scales (node density = 5).

Fig. 12. Network lifetime under different network scales (node

density = 5).

Fig. 13. Irregular radio propagation model. (a) DOI = 0.05. (b) DOI = 0.10.

Fig. 14. Partition sizes under different DOI values.
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is consumed per time unit. On the other hand, GAF does work
if it divides the deployed area by cells with a side length of 0.5
so that any nodes in two neighboring cells are within

ffiffiffi
5
p

=2,
the lower bound of the radio transmission range in the DOI
model. However, this results in 400 groups with an average
group size of 1.25. Apparently, this partition can only prolong
the network’s lifetime for a very small portion.

As we cannot guarantee the K-connectivity of the
backbone network for 100 percent by ensuring the mini-
mum degree of K in the 2-induced graph of the M-partition
under irregular radio propagation models, we try to
evaluate the connectivity of the backbone networks
generated by CPA partitions through simulation. We select
the CPA partition (mindeg ¼ 4) and compare its connectiv-
ity with the GAF partition under different values of radio
irregularity. For each partition, we generate different
backbone networks by randomly selecting an active node
from each group. We then compute the connectivity of each
backbone network, and the statistical results are shown in
Fig. 16. The percentages of graphs that are disconnected,
connected, 2-connected, 3-connected, and 4-connected
under the irregular radio with different DOI values are
shown as bars with different colors in the figure. Note that
if a graph is K-connected, it is also ðK � 1Þ-connected,
ðK � 2Þ-connected, and so on. In Fig. 16a, we can observe
that the connectivity of the backbone graphs deteriorates
dramatically with the increase of radio irregularity for the
GAF method. For example, the percentage of 4-connected
backbone graphs drops to around zero when the DOI value
increases to 0.03; the percentage of 3-connected graphs
approaches zero when DOI is 0.08. Furthermore, when DOI

increases to 0.08, there is possibility that the backbone
formed by GAF is disconnected. In contrast, as shown in
Fig. 16b, CPA maintains the connectivity of backbone
graphs much better. It keeps higher than 95 percent of 4-
connected graphs even when DOI increases to 0.10, and all
backbones generated by CPA are at least 3-connected under
different DOI values.

In addition to the connectivity metric, we also evaluate
the communication quality of different backbone networks
by the ratio of the average routing path length in the
backbone network and the original network, because it
reflects the packet delivery delay. As illustrated in Fig. 17,
the ratio of route length under the GAF method increases
dramatically with the DOI value. When DOI reaches 0.1, the
ratio is infinite because the backbone network is frequently
disconnected. In comparison, the ratio of route length under
the CPA method remains approximately constant with the
change of the DOI value. The results show that CPA can
form well-connected backbone networks, which preserve
the communication quality under different levels of radio
irregularity. Therefore, it is more adaptive to the real
environment than GAF.

We change the number of nodes while keeping the same
scale of the deployed area. As shown in Fig. 18, we simulate
CPA (mindeg ¼ 4) in the same deployed area with 200, 300,
. . . , 600 nodes separately, that is, the corresponding
densities are two, three, . . . , six nodes per square unit. For
all the cases, nodes are distributed uniformly. We evaluate
the CPA partitions and the corresponding network lifetime
under both ideal (DOI ¼ 0) and irregular (DOI ¼ 0:01; 0:03)
radio propagation models. Fig. 18 illustrates that the
network lifetime under CPA partitions increases with node
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Fig. 15. Network lifetime under different DOI values.

Fig. 16. Connectivity of backbone networks under irregular radio. (a) Using GAF partition. (b) Using CPA(mindeg ¼ 4) partition.

Fig. 17. Impact on route length under irregular radio.
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density in both ideal and irregular radio environments. We
can also observe that under a certain node density, the
network lifetime decreases with the increase of radio
irregularity, because CPA needs to keep more active nodes
in order to maintain the same level of network connectivity.

4.4 Probability-Based Partition

In this section, we will evaluate the probability-based
partition algorithmdiscussed inSection 3.4. In oursimulation,
the deployed area is still a 10 � 10 square with 500 nodes
uniformly distributed, and the ideal radio propagation model
is assumed. The threshold P is set to 0.90. Fig. 19 shows the
partition sizes of both approaches under different configura-
tions of mindeg. The probability-based approach generates
smaller size partitions than CPA because it looses the
requirement on the network connectivity. Fig. 20 illustrates
the network lifetime corresponding to both approaches. The
probability-based approach is able to increase the network
lifetime by more than 10 percent at the cost of lowering the
network connectivity a little bit. Through simulation of the
probability-based approach, we find that the backbone
network ismindeg-connected with a probability of more than
0.90 and ðmindeg� 1Þ-connected with a probability of more
than 0.99.

5 RELATED WORK

Energy in sensor networks can be saved by adjusting the
radio transmit power of each node. Several topology control
algorithms [1], [2], [3] have been proposed to reduce energy
consumption by selecting adequate node transmit power
while maintaining network connectivity. Ramanathan and
Rosales-Hain [1] formulated it as a constrained optimization

problem and presented distributed heuristic algorithms to
maintain a connected topology using minimum power.
Wattenhofer et al. [2] suggested to decide the radio transmit
power of each node based on the directional information, that
is, a node grows its transmission power until it finds a
neighbor node in every direction. Li and Hou [3] proposed
FLSSk, which minimizes the maximum transmission power
used while preserving K-vertex connectivity of the wireless
network. In addition, some other work studied energy saving
specifically in routing packets, such as energy-conserving
routing [19] and the efficient communication proposed in
[20]. Energy-conserving routing [19] selects the appropriate
routes and corresponding power levels in order to maximize
the network lifetime. Li and Song [20] proposed a topology
control algorithm for each node to adjust its transmission
power such that the topology formed is efficient for both
unicast and broadcast communications.

References [21], [22], and [23] select the set of active
nodes for routing purposes based on the idea of approx-
imating a minimum connected dominating set (MCDS).
Reference [24] further discusses how to balance energy
dissipation in the cluster heads of the connected dominating
set (CDS). Deb and Nath [25] proposed a node scheduling
approach that can adapt to the trade-off between energy
conservation and data delivery quality. Although CDS
approaches save energy by decreasing the number of active
nodes, they are not efficient at balancing energy consump-
tion among nodes so as to maximize the network lifetime.

To reduce the energy waste in idle listening, duty cycling
has been proposed in [7] and [8], where the wireless interface
of each node follows a periodic cycle of active/sleep states.
Although duty cycling is energy efficient, it increases the
delay of data delivery, because the intermediate node has to
wait for the next-hop node to wake up to receive the packet.
Reference [26] analyzes the bounds of data delivery delay by
using completely decentralized duty cycling. In [27], the
authors formulate the problem of assigning duty cycle to
each node while minimizing the end-to-end communication
delay and provide optimal solutions for networks with some
special topologies and heuristic solutions for networks with
arbitrary topologies.

Node scheduling algorithms that maintain a CDS and
balance energy usage by switching node status have been
studied in [4] and [9]. These approaches cope with the idle
listening problem without causing a dramatic data delivery
delay. Span [4] aims at reducing energy consumption of a
wireless network without significantly diminishing its
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Fig. 18. Effect of node density.

Fig. 19. Comparison of partition size between CPA and the probability-

based approach.

Fig. 20. Comparison of network lifetime between CPA and the

probability-based approach.
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capacity or connectivity. In Span, each node makes a local
decision on whether to sleep or join the backbone as a
coordinator by periodically checking the status of its
neighbors. Unlike Span, GAF [9] divides nodes into groups
such that a communication backbone is formed by selecting
an arbitrary active node from each group while keeping
others in sleeping mode. Compared with Span, GAF
imposes less overhead on switching node status, because
only nodes within each group need to communicate with
each other for load-balance purposes.

Our proposed CPA schedules nodes based on partition-
ing. Different from GAF, CPA is based on the measured
connectivity between nodes instead of their locations. Besides
preserving GAF’s advantage in efficient load balancing of
energy dissipation, it aims at ensuringK-vertex connectivity
of the backbone network and better adaptivity for unideal
radio propagation. CEC [10] divides nodes into clusters based
on measured connectivity similarly, but it cannot efficiently
switch node status within each group like GAF and CPA.
Instead, it needs to reform clusters to balance energy
consumption among nodes. Friedman [28] proposed timed
grid routing, which is based on virtual grids and synchro-
nized clocks. It aims at avoiding message collision, as well as
conserving energy through node scheduling. Reference [29]
focuses on energy efficiency and preserving network cover-
age at the same time. In comparison, our work focuses on
maintaining network connectivity while saving energy
consumption of the network.

6 CONCLUSION

As the energy consumption of idle listening nodes is
comparable to active nodes that send and receive packets in
a wireless sensor network, node scheduling mechanisms can
reduce energy dissipation dramatically. In this paper, we
propose to partition the nodes based on their measured
connectivity instead of geographic locations. We formulate it
as a constrained optimal graph partition problem and present
CPA to approximate a good partition. As a distributed
algorithm, CPA has fast converging speed and is scalable
with the network size. CPA partition outperforms other
partition approaches in two aspects. First, CPA can guarantee
K-vertex connectivity of the backbone network under ideal
radio propagation models, which balances the trade-off
between saving energy and preserving the network’s com-
munication quality. In addition, simulation results show
that CPA can also ensure K-vertex connectivity of the
backbone network with high probability under irregular
radio propagation models. Therefore, CPA has better
adaptivity to complex environments.
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