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Abstract—Flood is a communication primitive that can be used by the base station of a sensor network to send a copy of a message to

every sensor in the network. When a sensor receives a flood message, the sensor needs to check whether it has received this

message for the first time and so this message is fresh, or it has received the same message earlier and so the message is redundant.

In this paper, we discuss a family of four flood sequencing protocols that use sequence numbers to distinguish between fresh and

redundant flood messages. These four protocols are: a sequencing free protocol, a linear sequencing protocol, a circular sequencing

protocol, and a differentiated sequencing protocol. We analyze the self-stabilization properties of these four flood sequencing

protocols. We also compare the performance of these flood sequencing protocols, using simulation, over various settings of sensor

networks. We conclude that the differentiated sequencing protocol has better stabilization property and provides better performance

than those of the other three protocols.

Index Terms—Self-stabilization, flood sequencing protocol, sequence numbers, sensor networks.
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1 INTRODUCTION

FLOOD is a communication primitive that can be used by
the base station of a sensor network to send a copy of a

message to every sensor in the network. The execution of a
flood starts by the base station sending a message to all its
neighbors. When a sensor receives a message, the sensor
needs to check whether it has received this message for the
first time or not. Only if the sensor has received the message
for the first time, the sensor keeps a copy of the message
and may forward the message to all its neighbors.
Otherwise, the sensor discards the message.

To distinguish between “fresh” flood messages that a
sensor should keep and “redundant” flood messages that a
sensor should discard, the base station selects a sequence
number and attaches it to a flood message before the base
station broadcasts the message. When a sensor receives a
flood message, the sensor determines based on the sequence
number in the received message if the message is fresh or
redundant. The sensor accepts the message if it is fresh and
discards the message if it is redundant. We call a protocol
that uses sequence numbers to distinguish between fresh
and redundant flood messages a flood sequencing protocol.

In a flood sequencing protocol, when a fault corrupts the
sequence numbers stored in some sensors in a sensor
network, the network can become in an illegitimate state

where the sensors discard fresh flood messages and accept
redundant flood messages. Therefore, a flood sequencing
protocol should be designed such that if the protocol ever
reaches an illegitimate state due to some fault, the protocol
is guaranteed to converge back to its legitimate states where
every sensor accepts every fresh flood message and
discards every redundant flood message.

In this paper, we discuss a family of four flood
sequencing protocols. These four protocols are: a sequencing
free protocol, a linear sequencing protocol, a circular sequencing
protocol, and a differentiated sequencing protocol. We analyze
the stabilization properties of these four protocols. For each
of the protocols, we first compute an upper bound on the
convergence time of the protocol from an illegitimate state
to legitimate states. Second, we compute an upper bound on
the number of fresh flood messages that can be discarded by
each sensor during the convergence. Third, we compute an
upper bound on the number of redundant flood messages
that can be accepted by each sensor during the convergence.
We also compare the performance of these protocols, using
simulation, over various settings of sensor networks.

The rest of the paper is organized as follows: In Section 2,
we discuss related work and motivation of the flood
sequencing protocols. In Section 3, we present a model of
the execution of a sensor network. In Section 4, we give an
overview of a flood sequencing protocol. We present the
four flood sequencing protocols and analyze their stabiliza-
tion properties in Sections 5-8. In Section 9, we show the
simulation results of these protocols, and in Section 10, we
discuss how frequent floods affect the performance of the
differentiated sequencing protocol, and how the protocol
can be extended for multiple sources. We finally make
concluding remarks in Section 11.

2 RELATED WORK AND MOTIVATION

The practice of using sequence numbers to distinguish
between fresh and redundant flood messages has been
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adopted by most flood protocols in the literature. In other
words, most flood protocols “employ” some flood sequen-
cing protocols to distinguish between fresh and redundant
flood messages. A flood sequencing protocol can be
designed in various ways, depending on several design
decisions such as how the next sequence number is selected
by the base station, how each sensor determines based on
the sequence number in a received message if the received
message is fresh or redundant, and what information the
base station and each sensor stores in its local memory.
Unfortunately, flood sequencing protocols have been used
without full investigation of their design decisions.

There have been earlier efforts to study flood protocols in
ad hoc networks [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
and in sensor networks [13], [14], [15], [16]. It is important to
state that these protocols focus on reducing the total number
of retransmissions or forwarding (sensor) nodes for a flood
message, while the flood sequencing protocols focus on
distinguishing between fresh and redundant messages, to
prevent nodes from forwarding the same message more than
once. Thus, these protocols compute if a node can reach
additional nodes by forwarding a received message, and
make only those nodes that can reach additional nodes
forward the message, based on probability [2], [3], location
information [2], [6], [9], [13], [14], [16], or neighbor and
history information [4], [5], [10], [11], [12].

The flood protocols discussed in [3], [4], [5], [6], [13], [15]
assume (explicitly or implicitly) that when a node receives a
flood message, the node can figure out whether it has
received this message for the first time or not, without
specifying any mechanism to achieve this.

In [2], [16], it was suggested to associate a sequence
number with each flood message. The flood protocols
discussed in [7], [8], [14] propose to attach a unique
identifier or sequence number to each flood message and
make each node maintain a list of identifiers that it has
received recently. Similarly, it was suggested in [9] that each
node maintains a list of flood messages received by the
node recently. In [11], for a recently received flood message,
each node maintains an entry of the source address,
sequence number, and lifetime. However, in these proto-
cols, any details on how sequence numbers or identifiers are
used by nodes, how many identifiers or messages each
node maintains, when a node deletes an identifier or a
message from the list, or how the lifetime of a message is
determined (i.e., the design decisions of their flood
sequencing protocols) were not specified.

In Scalable Reliable Multicast (SRM) [17], when a receiver
in a multicast group detects that it has a missing data
message, it attempts to retrieve the message from any node
in the group by requesting retransmission. This work is
based on the assumption that each data message has a
unique and persistent name, and it utilizes application data
units to name messages (such as sector 5 of a file
“paper.pdf”). In a flood sequencing protocol, sensors can
use sequence numbers in a limited range for flood messages.
Thus, the sensors cannot identify a message uniquely based
on the sequence number of the message, and cannot use the
sequence number for requesting retransmission and reply-
ing to a request. The protocols in [18], [19] use named data
that is specific to applications for dissemination and routing

in sensor networks. However, a flood sequencing protocol
can be used, before any application is deployed in the
network. Thus, using named data is not suitable for a flood
sequencing protocol.

A flood sequencing protocol is important, since the fault
tolerance property of a sensor network is affected by a flood
sequencing protocol used in the network. When a fault
corrupts the sequence number stored in some sensor in the
network, the sensor may discard fresh flood messages and
accept redundant flood messages. The number of fresh
flood messages discarded by the sensor and the number of
redundant flood messages accepted by the sensor, before
the network reaches a legitimate state, are different
depending on which flood sequencing protocol is used in
the network. Therefore, we need to study various flood
sequencing protocols and analyze the stabilization proper-
ties of these protocols. The stabilization properties of the
flood sequencing protocols are useful for sensor network
designers or developers to select a proper flood sequencing
protocol that satisfies the needs of a target sensor network.

In practice, a flood sequencing protocol is used with a
flood protocol that may use other techniques to improve the
performance of flood such as reliability or efficiency (as
discussed above). In this paper, each of the flood sequen-
cing protocols is described focusing on how sequence
numbers are used by sensors, and it is not described as a
specific flood protocol. Note that the stabilization property
of a flood protocol is affected by that of a flood sequencing
protocol used in the flood protocol. If the flood protocol
does not maintain any extra state such that it is based on
probability [3], [16], the stabilization property of the flood
protocol is the same as that of the used flood sequencing
protocol. If the flood protocol maintains extra state such
that it is based on neighbor information [4], [10], the
stabilization property of the flood protocol also depends on
how the extra state in each sensor is stabilized.

3 MODEL OF SENSOR NETWORKS

In this section, we describe a formal model of the
execution of a sensor network, which was introduced first
in [20]. This model accommodates several characteristics of
sensor networks such as unavoidable local broadcast,
probabilistic message transmission, asymmetric commu-
nication, and message collision. We use the model to
specify our flood sequencing protocols, verify the stabiliza-
tion properties of these protocols, and develop our
simulation of these protocols.

Topology of sensor networks. The topology of a sensor
network is a directed graph where each node represents a
distinct sensor in the network and where each directed edge
is labeled with some probability. A directed edge (u; v), from
a sensor u to a sensor v, that is labeled with probability p
(where p > 0) indicates that if sensor u sends a message, then
this message arrives at sensor v with probability p (provided
that neither sensor v nor any “neighboring sensor” of v sends
another message at the same time). In this work, two values
0.95 and 0.5 are selected for p. We will discuss some
experiments on sensors that led us to this choice of values in
Section 9. If the topology of a sensor network has a directed
edge from a sensor u to a sensor v, then u is called an in-
neighbor of v and v is called an out-neighbor of u.
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Sensor network execution. We assume that during the
execution of a sensor network, the real time passes through
discrete instants: instant 1, instant 2, instant 3, and so on.
The time periods between consecutive instants are equal.
The different activities that constitute the execution of a
sensor network occur only at the time instants, and not in
the time periods between the instants. We refer to the time
period between two consecutive instants t and tþ 1 as a
time unit (t; tþ 1).

A sensor is specified as a program that has global
constants, local variables, one time-out action, and one
receiving action.

At a time instant t, if the time-out of a sensor u expires,
then u executes its time-out action at t. Executing the time-out
action of sensor u at t causes u to update its local variables,
and to send at most one message at t. It also causes u to
execute the statement “timeout-after <expression>” which
causes the time-out of u to expire (again) after k time units,
where k is the value of <expression> at the time unit (t; tþ 1).
The time-out action of sensor u is of the following form:

timeout-expires ->

<update local variables of u>;

<send at most one message>;

<execute timeout-after <expression>>

To keep track of its time-out, each sensor u has an implicit
variable named “timer.u.” In each time unit between two
consecutive instants, timer.u has a fixed positive integer
value. If the value of timer.u is k, where k > 1, in a time unit
(t� 1; t), then the value of timer.u is k� 1 in the time unit
(t; tþ 1). On the other hand, if the value of timer.u is 1 in a
time unit (t� 1; t), then sensor u executes its time-out action
at instant t. Moreover, since sensor u executes the statement
“timeout-after <expression>” as part of executing its time-
out action, the value of timer.u in the time unit (t; tþ 1) is
the value of <expression> in the same time unit.

If a sensor u executes its time-out action and sends a
message at an instant t, then an out-neighbor v of u receives
a copy of the message at the same time instant t with
probability p, where p is the label of edge (u; v) in the
topology, provided that the message sent by u does not
collide with another message sent by v or another in-
neighbor of v at t. If the message sent by u collides with
another message, then v receives no message at t. We will
discuss details of probabilistic message transmission and
message collision in Section 9. Sending operations and their
corresponding receiving operations are executed synchro-
nously in the network, and a sensor cannot send and receive
messages at the same time instant.

If a sensor u receives a message at instant t, then u
executes its receiving action at t. Executing the receiving
action of sensor u causes u to update its own local variables.
It may also cause u to execute the statement “timeout-after
<expression>.” The receiving action of sensor u is of the
following form:

rcv <msg> ->

<update local variables of u>;

<may execute timeout-after <expression>>

A state of a sensor network protocol is defined by a value
for each variable and timer.u for each sensor u in the
protocol. We use the notation <var>.u to denote the value of

variable <var> at sensor u. (Note that a state of the protocol
corresponds to a time unit.)

During the execution of a sensor network protocol,
several faults can occur, resulting in corrupting the state of
the protocol arbitrarily. Examples of these faults are wrong
initialization, memory corruption, message corruption, and
sensor failure and recovery. We assume that these faults do
not continuously occur in the network.

4 OVERVIEW OF A FLOOD SEQUENCING PROTOCOL

In this section, we give an overview of a flood sequencing
protocol as well as a flood protocol that is used with the
flood sequencing protocol.

Consider a network that has n sensors. In this network,
sensor 0 is the base station and can initiate message floods
over the network. To initiate the flood of a message, sensor
0 selects a sequence number slast for the message, and
sends the message of the form data(hmax, slast), where
hmax is the maximum number of hops to be made by this
data message in the network.

If sensor 0 initiates one flood and shortly after initiates
another flood, some forwarded messages from these two
floods can collide with one another causing many sensors in
the network not to receive the message of either flood, or
(even worse) not to receive the messages of both floods.

To prevent message collision across consecutive flood
messages, once sensor 0 broadcasts a message, it needs to
wait enough time until this message is no longer
forwarded in the network, before broadcasting the next
message. The time period that sensor 0 needs to wait after
broadcasting a message and before broadcasting the next
message is called the flood period. The flood period
consists of f time units. (A lower bound on the value of
f is computed below.) Thus, after sensor 0 broadcasts a
message, it sets its time-out to expire after f time units in
order to broadcast the next message. A formal specifica-
tion of sensor 0 in a flood sequencing protocol is given in
Fig. 1. Note that sensor 0 does not receive any messages.

Each sensor u that is not sensor 0 keeps track of the last
sequence number accepted by u in a variable called slast.
When sensor u receives a data(h; s) message, the sensor
decides whether it accepts the message based on the values
of slast and s, and forwards it as a data(h� 1; s) message,
provided h > 1.

To reduce the probability of message collision, any
sensor u, that decides to forward a message, chooses a
random period whose length is chosen uniformly from the
range 1..tmax, and sets its time-out to expire after the
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chosen random period, so that u can forward the received
message at the end of the random period. This random time
period is called the forwarding period. A sensor u maintains a
variable called new. The value of new is true only when u is
in the forwarding period. A formal specification of sensor u
is given in Fig. 2. Sensor u also maintains a received data
message that u will forward later, even though this is not
explicitly specified in the formal specification. Note that in
the protocol, the value of timer.0 is at most f time units, and
the value of timer.u is at most tmax. This is maintained by
the executions of the protocol.

This flood sequencing protocol is in a legitimate state iff
it satisfies the following two conditions:

1. Every time sensor 0 initiates a new flood, previous
flood messages whether initiated by sensor 0
legitimately or other sensors illegitimately due to
some fault are no longer forwarded in the network.

2. Every sensor u accepts every fresh flood message,
and discards every redundant flood message.

We give some explanation concerning the first condition.
If timer.0 ¼ 1 in time unit (t� 1; t), sensor 0 executes its time-
out action at t, and initiates a new flood at t. (Note that after
sensor 0 initiates a new flood at t, timer.0 becomes f in
(t; tþ 1).) In (t� 1; t), for every sensor u, where u 6¼ 0, u
should not have any previous message that has been received
but has not been forwarded yet. Thus, if timer.0 ¼ 1, for every
u, new.u should be false.

Next, we compute the lower bound on the flood period
f . The proofs of all the theorems in this paper are presented
in the Appendix.

Theorem 0.

f � ðhmax� 1Þ � tmaxþ 1:

To analyze each of the four flood sequencing protocols,

we use the following value for the flood period f .

f ¼ hmax � tmaxþ 1:

(We choose this value for f , instead of the minimum value
ðhmax� 1Þ � tmaxþ 1, to keep our proofs of the stabiliza-
tion properties simple.)

Note that the above flood period is computed to guarantee
that no two consecutive flood messages ever collide with
each other. In a typical execution of the protocol, each sensor
chooses its forwarding period at random in the range
1::tmax, and so most sensors likely receive the flood
messages within ðhmax� 1Þ � tmax=2 time units. Moreover,
the flood of a message is affected by the topology of the
network. Therefore, we can use only half or even less of the
flood period without significantly degrading the stabiliza-
tion property and performance of a flood sequencing
protocol. In Section 10, we will discuss the effect of frequent
floods on the differentiated sequencing protocol.

5 FIRST PROTOCOL: SEQUENCING FREE

In this section, we discuss a first flood sequencing protocol
where no sequence number is attached to each flood
message. In this protocol, no sensor can distinguish
between fresh and redundant flood messages, resulting
that the sensor accepts every received message. This
protocol is called the sequencing free protocol.

To initiate the flood of a new message, sensor 0 sends a
data(hmax) message, and then sets its time-out to expire
after f time units to broadcast the next message. The time-
out action of sensor 0 is specified as follows:

When sensor u receives a data(h) message, u always
accepts the message. Sensor u forwards the message as
data(h� 1), if h > 1 in the received message and new ¼
false in u. The time-out and receiving actions of sensor u
are specified as follows:

A state S of the sequencing free protocol is legitimate iff
either S is a state where the predicate

ðtimer:0 ¼ 1Þ ^ ðfor all u; u 6¼ 0; new:u ¼ falseÞ ðP1Þ

holds or S is a state that is reachable from a state, where this
predicate holds, by some execution of the protocol.

It follows from this definition that if the protocol is
executed starting from a legitimate state, then every time
sensor 0 initiates a new flood, previous flood messages are
no longer forwarded in the network.

Unlike the other flood sequencing protocols in this
paper, each flood message has no associated sequence
number. Thus, sensors do not have variable slast and/or
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variable s, and a legitimate state is defined as a state that
satisfies only the first condition in Section 4.

The stabilization property of the sequencing free protocol
can be stated by the following three theorems: Theorem 1A
gives an upper bound on the convergence time of the
protocol from an illegitimate state to legitimate states.
Theorem 1B gives an upper bound on the number of fresh
messages that can be discarded by each sensor during the
convergence. Theorem 1C gives an upper bound on the
number of redundant messages that can be accepted by
each sensor during the convergence. (In general, the
stabilization property of each of the other three protocols
can be stated by three theorems: Theorem iA, Theorem iB,
and Theorem iC, where i ¼ 2, 3, and 4.)

Theorem 1A. In the sequencing free protocol, starting from any
illegitimate state, the protocol reaches a legitimate state
within 2 � f time units, and continues to execute within
legitimate states.

Theorem 1B. In the sequencing free protocol, starting from any
illegitimate state, every sensor discards no fresh message
(before the protocol converges to a legitimate state).

Note that starting from any legitimate state, every sensor
discards no fresh message, since the sensor accepts every
received message.

Theorem 1C. In the sequencing free protocol, starting from any
illegitimate state, every sensor accepts at most 2 � f redundant
messages (before the protocol converges to a legitimate state).

Note that even starting from any legitimate state, the
sensor cannot distinguish between fresh and redundant
flood messages. The number of redundant copies of the
same message accepted by a sensor u depends on the value
of hmax and the network topology. In the worst case, u can
accept a redundant copy of the same message at each time
instant during the flood period of the message. Thus,
starting from any legitimate state, every sensor accepts at
most f redundant copies of the same message.

6 SECOND PROTOCOL: LINEAR SEQUENCING

In this section, we discuss a second flood sequencing
protocol where each flood message carries a unique
sequence number that is linearly increased, and so a sensor
accepts a flood message that has a sequence number larger
than the last sequence number accepted by the sensor. This
protocol is called the linear sequencing protocol.

Each flood message in this protocol is augmented with a
unique sequence number. Whenever sensor 0 broadcasts a
new message, sensor 0 increases the sequence number of
the last message by one, and attaches the increased
sequence number to the message. The time-out action of
sensor 0 is given as follows:

When sensor u receives a data(h; s) message, sensor u
accepts the message if s > slast, and forwards the message
if h > 1. Otherwise, sensor u discards the message. The
receiving action of u is given as follows:

A state S of the linear sequencing protocol is legitimate iff
either S is a state where the predicate

ðtimer:0 ¼ 1Þ ^
ðfor all u; u 6¼ 0; new:u ¼ false ^ slast:u � slast:0Þ

ðP2Þ

holds or S is a state that is reachable from a state, where this
predicate holds, by some execution of the protocol.

It follows from this definition that if the protocol is
executed starting from a legitimate state, then every time
sensor 0 initiates a new flood, previous flood messages are
no longer forwarded in the network, and the new flood
message has a sequence number that is larger than every
slast.u in the network, so that every u accepts the message.

Let k be the maximum value between 1 and k0, where k0

is the maximum difference slast:u� slast:0 for any sensor u
in the network at an initial state. Note that the value of k is
finite but it is unbounded.

Theorem 2A. In the linear sequencing protocol, starting from
any illegitimate state, the protocol reaches a legitimate state
within ðkþ 1Þ � f time units, and continues to execute within
legitimate states.

Theorem 2B. In the linear sequencing protocol, starting from any
illegitimate state, every sensor discards at most ðkþ 1Þ�f fresh
messages (before the protocol converges to a legitimate state).

Theorem 2C. In the linear sequencing protocol, starting from any
illegitimate state, every sensor accepts at most n� 1 redundant
messages (before the protocol converges to a legitimate state).

The linear sequencing protocol requires sensors to use
unbounded sequence numbers. Thus, this protocol is very
expensive to implement for sensor networks that have
limited resources. However, once the protocol starts its
execution from any legitimate state, every sensor accepts
every fresh message and discards every redundant message
under any degree of message loss.

7 THIRD PROTOCOL: CIRCULAR SEQUENCING

In this section, we discuss a third flood sequencing
protocol where each flood message carries a sequence
number that is circularly increased within a limited range,
and so a sensor accepts a flood message that has a
sequence number “logically” larger than the last sequence
number accepted by the sensor. This protocol is called the
circular sequencing protocol.

Each flood message is augmented with a sequence
number that has a value in the range 0 .. smax, where
smax > 1. We assume that smax is an even number (to keep
our presentation simple).

Whenever sensor 0 broadcasts a new message, sensor 0
increases the sequence number of the last message by one
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circularly within the range 0 .. smax, and attaches the
increased sequence number to the message. The time-out
action of sensor 0 is modified as follows:

From the viewpoint of each sequence number s in the
range 0 .. smax, the range can be divided into two
subranges, where one subrange consists of the sequence
numbers that are logically “smaller” than s, and the other
subrange consists of the sequence numbers that are
logically “larger” than s. Thus, sequence number s has
smax

2 numbers logically smaller than it and smax
2 numbers

logically larger than it. For example, if smax ¼ 8, number 0
is logically smaller than 1, 2, 3, and 4, and is logically larger
than 5, 6, 7, and 8.

When a sensor u receives a data(h; s) message, sensor u
checks if s is logically larger than slast. Sensor u calls the
function “Larger(s; slast)” that returns true if s is logically
larger than slast, and otherwise returns false. Sensor u
accepts the message if Larger(s; slast) returns true, and
forwards it if h > 1. The receiving action of sensor u is
modified as follows:

To prove the stabilization property of the circular
sequencing protocol, we make an assumption of bounded
message loss as follows:

. Bounded message loss: Starting from any state, if
sensor 0 broadcasts smax

2 consecutive flood messages,
then every sensor in the network receives at least one
of those flood messages.

Two explanations concerning the above assumption are
in order. First, the protocol cannot be self-stabilizing
without any bound on message loss. For example, consider
a scenario where smax ¼ 8. Assume that sensor 0 sends a
flood message with sequence number 0 and a sensor u
accepts the message. If sensor u does not receive the next
four (i.e., smax

2 ) consecutive messages with sequence
numbers 1, 2, 3, and 4, and later receives a fresh message
with sequence number 5, it discards the message since
sequence number 5 is not logically larger than sequence
number 0. Sensor u also discards the next flood messages
with sequence numbers 6, 7, 8, and 0, if it receives them. In
this scenario, if sensor u does not receive the flood messages
with sequence numbers 1, 2, 3, and 4, it keeps discarding
fresh flood messages. Thus, some assumption of bounded
message loss is necessary for the stabilization property of
the protocol.

Second, the above assumption becomes acceptable if the
value of smax is reasonably large enough for a given

network setting. Selecting an appropriate value for smax
depends on the size of the network, the topology of the
network, and a flood sequencing protocol used in the
network. (In Section 9, we show how different values are
selected for smax depending on these factors.)

A state S of the circular sequencing protocol is legitimate

iff either S is a state where the predicate

ðtimer:0 ¼ 1Þ ^
ðfor all u; u 6¼ 0;

ðnew:u ¼ falseÞ ^
ðslast:u ¼ slast:0 _
slast:u ¼ ðslast:0� 1Þ mod ðsmaxþ 1Þ _
. . .

slast:u ¼ ðslast:0� smax
2
þ 1Þ mod ðsmaxþ 1Þ

Þ
Þ ^

ðsensor 0 has already initiated at least
smax

2
þ 2 floodsÞ

ðP3Þ

holds or S is a state that is reachable from a state, where this
predicate holds, by some execution of the protocol.

It follows from this definition that if the protocol is
executed starting from a legitimate state, then every time
sensor 0 initiates a new flood, previous flood messages are no
longer forwarded in the network, and the new flood message
has a sequence number that is logically larger than every
slast.u in the network, so that every u accepts the message.

Theorem 3A. In the circular sequencing protocol, starting from

any illegitimate state, the protocol reaches a legitimate state

within ðsmaxþ 2Þ � f time units, and continues to execute

within legitimate states.

Theorem 3B. In the circular sequencing protocol, starting from

any illegitimate state, every sensor discards at most ðsmaxþ
2Þ � f fresh messages (before the protocol converges to a

legitimate state).

Theorem 3C. In the circular sequencing protocol, starting from
any illegitimate state, every sensor accepts at most f þ 1
redundant messages (before the protocol converges to a
legitimate state).

Note that starting from any legitimate state, every sensor
accepts every fresh message and discards every redundant
message under the assumption of bounded message loss.

8 FOURTH PROTOCOL: DIFFERENTIATED

SEQUENCING

In this section, we discuss the last flood sequencing protocol
where the sequence numbers of flood messages are in a
limited range, similar to the circular sequencing protocol.
However, in this protocol, a sensor accepts a flood message
if the sequence number of the message is different from the
last sequence number accepted by the sensor. This protocol
is called the differentiated sequencing protocol.

Each flood message is augmented with a sequence
number that has a value in the range 0 .. smax, where
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smax > 0. We assume that smax is an even number (to keep

our presentation simple).
Sensor 0 in this protocol is identical to the one in the

circular sequencing protocol. However, when a sensor u

receives a data(h; s) message, sensor u accepts the message if

s is different from slast, and forwards the message if h > 1.

The receiving action of sensor u is modified as follows:

Similar to the circular sequencing protocol, if a sensor

does not receive a large number of consecutive flood

messages, the differentiated sequencing protocol cannot be

self-stabilizing. Thus, the proofs of the stabilization proper-

ties of this protocol are based on the assumption of

bounded message loss described in Section 7.
A state S of the differentiated sequencing protocol is

legitimate iff either S is a state where the predicate

ðtimer:0 ¼ 1Þ ^
ðfor all u; u 6¼ 0;

ðnew:u ¼ falseÞ ^
ðslast:u ¼ slast:0 _
slast:u ¼ ðslast:0� 1Þ mod ðsmaxþ 1Þ _

. . .

slast:u ¼ ðslast:0� smax
2
þ 1Þ mod ðsmaxþ 1Þ

Þ
Þ

ðP4Þ

holds or S is a state that is reachable from a state, where this

predicate holds, by some execution of the protocol.

It follows from this definition that if the protocol is

executed starting from a legitimate state, then every time

sensor 0 initiates a new flood, previous flood messages

are no longer forwarded in the network, and the new

flood message has a sequence number that is different

from every slast.u in the network, so that every u accepts

the message.

Theorem 4A. In the differentiated sequencing protocol, starting

from any illegitimate state, the protocol reaches a legitimate

state within ðsmax2 þ 2Þ � f time units, and continues to

execute within legitimate states.

Theorem 4B. In the differentiated sequencing protocol, starting

from any illegitimate state, every sensor discards at most

ðsmax2 þ 2Þ � f fresh messages (before the protocol converges to

a legitimate state).

Theorem 4C. In the differentiated sequencing protocol, starting

from any illegitimate state, every sensor accepts at most f þ 1

redundant messages (before the protocol converges to a

legitimate state).

Note that starting from any legitimate state, every

sensor accepts every fresh message and discards every

redundant message under the assumption of bounded

message loss.
We compare the stabilization properties of the four flood

sequencing protocols in Table 1. We also compare the

properties of the flood sequencing protocols after conver-

gence (or starting from a legitimate state) in Table 2. We call

these properties the stable properties of the protocols. In

Tables 1 and 2, “free,” “lin,” “cir,” and “dif” represent the

sequencing free, linear sequencing, circular sequencing, and

differentiated sequencing protocols, respectively. We con-

clude that the differentiated sequencing protocol has better

stabilization and stable properties than those of the other

three protocols.
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9 PERFORMANCE EVALUATION

9.1 Methodology and Metrics

We have developed a simulator that can simulate the
execution of the four flood sequencing protocols, based on
our formal model described in Section 3. This simulator
monitors the execution of an abstract and generic version of
a sensor protocol based on our model. However, our model
actually captures unique characteristics of sensor networks
such as local broadcast, probabilistic message transmission,
and message collision. The simulation based on our model
is useful to evaluate the performance of protocol designs,
and explore the performance trade-offs between sensor
protocols. In our simulation, we explore the implications of
design decisions on the flood sequencing protocols, and
verify and evaluate our theoretical analysis on the stabiliza-
tion properties of the protocols, some of which are done
under the assumption of bounded message loss. (Perfor-
mance evaluation based on a specific implementation of the
protocols such as TinyOS [21] is a subject of future work.)

In the model, a message can be lost due to probabilistic
message transmission and message collision. If a sensor u
sends a message at an instant t, then an out-neighbor v of u
receives a copy of the message at the same time instant t,
provided that the following three conditions hold:

1. A random integer number is uniformly selected in
the range 0 .. 99, and this selected number is less
than 100 � p, where p is the probability label of edge
(u; v) in the topology.

2. Sensor v does not send any message at instant t. If v
sends a message at t, this message collides with the
message sent by u (with the net result that v receives
no message at t).

3. For each in-neighbor w of v, other than u, if w sends a
message at t, then a random integer number is
uniformly selected in the range 0 .. 99, and the
selected number is at least 100 � p0, where p0 is the
probability label of edge (w; v). If the selected
number is less than 100 � p0, then this message sent
by w collides with the message sent by u.

Note that sending operations and their corresponding
receiving operations are executed at the same instant
synchronously. (The value of a time unit is not critical to
the current work, but we estimate that the value of the time
unit is around 100 milliseconds.)

In this work, two values 0.95 and 0.5 are selected for p,
based on some experiments on sensors. In the experiments
[22], we measured the percentages of messages received at a
sensor v, sent by another sensor u over various distances.
The results are summarized in Fig. 3. Similar results are also
reported in [23] and [24].

We observe that from Fig. 3 if the distance between u
and v is less than 0 .. 38 inches, v receives between 90 and
100 percent of the messages sent by u. If their distance is in
the range 38 .. 67 inches, v receives anywhere between 0 and
100 percent of the messages sent by u. If their distance is
longer than 67 inches, v receives 0 percent of the messages
sent by u. From these observations, we idealize the diagram
in Fig. 3 as follows: If their distance is in the range 0 .. x,
then the directed edge from u to v can be labeled with
probability 0.95. If their distance is in the range x .. y, then

the directed edge from u to v can be labeled with
probability 0.5. (We refer the reader to [22] for details of
the experiments.)

In ad hoc and sensor networks, Unit Disk Graph and
Quasi Unit Disk Graph models have been used [25], [26], [27].
In both models, a network is represented by an undirected
graph, where the euclidean distance between two nodes
determines the existence of an edge between them, and an
edge between them indicates that they can always commu-
nicate with each other directly. Unlike our model, these
models do not consider probabilistic message delivery, and
asymmetric communication, which are very common in
sensor networks.

For the purpose of simulation, a network is an N �N
grid where N is the number of sensors in each side of the
grid, and the distance between a sensor (i; j) and each of
(iþ 1; j), (i; jþ 1), (i� 1; j), and (i; j� 1), if it exists,
where 0 � i; j < N , is 1. In a grid, sensor 0 is (0,0) which is
located at the left-bottom corner. Two values 10 and 20 were
used for N , and also the following two types of topologies
that have different network density were used.

. A topology for a sparse network: The edge prob-
ability between two sensors is labeled with prob-
ability 0.95 if their distance is at most 1, and with
probability 0.5 if their distance is larger than 1 and
less than 2. Otherwise, there is no edge between the
two sensors. In this topology, each sensor (i,j) that is
not on or near the boundary of the grid generally has
eight neighbors.

. A topology for a dense network: The edge prob-
ability between two sensors is labeled with prob-
ability 0.95 if their distance is at most 1.5, and with
probability 0.5 if their distance is larger than 1.5 and
less than 3. Otherwise, there is no edge between the
two sensors. In this topology, each sensor (i,j) that is
not on or near the boundary of the grid generally has
24 neighbors.

The performance of a flood sequencing protocol can be
measured by the following two metrics:

1. Reach: The percentage of sensors that receive a
message sent by sensor 0.

2. Communication: The total number of messages for-
warded by all sensors in the network.

In our simulations, we do not consider other techniques
that can improve the performance of a flood protocol based
on extra information such as probability, location, and
neighbor information.
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9.2 Simulation Results

We first studied the performance of the sequencing free and
linear sequencing protocols starting from a legitimate state.
The result of each simulation in this study represents the
average value over the simulations of 100,000 floods.
Staring from a legitimate state, the linear sequencing
protocol never discards fresh messages and never accepts
redundant messages under any degree of message loss, and
so we consider its performance as the ideal one for flood
sequencing protocols that attach a sequence number to a
flood message. When the value of smax is reasonably large
for a given network setting, the performance of the circular
sequencing and differentiated sequencing protocols be-
comes the same as that of the linear sequencing protocol in
terms of reach and communication.

Table 3 shows the reach and communication of the
sequencing free and linear sequencing protocols in sparse
and dense networks. Also the value of hmax used in each
network setting is specified in the table. Notice that the
value of hmax used in each dense network is around half of
that used in its corresponding sparse network. In these
simulations, tmax ¼ 6 was used for a sparse network, and
tmax ¼ 7 was used for a dense network. From the above
results, one can observe that the sequencing free protocol
requires the sensors to send much more messages than

those that the linear sequencing protocol does. Specially in
the sparse 20 � 20 network where a large value needs to be
selected for hmax (¼ 27), the communication of the
sequencing free protocol is around 7.39 times that of the
linear sequencing protocol.

Next, we studied the stabilization properties of the four
sequencing protocols, and their performance while stabiliz-
ing. We simulated the sequences of floods starting from
1,000 different illegitimate states, and computed the average
reach for each ith flood. For the linear sequencing protocol
that requires sensors to use unbounded sequence numbers,
we simulated the protocol such that sensors use unsigned
16-bit integers, that have the range of 0 .. 65,535, for
sequence numbers, and an initial value of slast for each
sensor is randomly selected from the range. Note that an
initial value for slast:0 was selected such that slast:0 will
not wrap around during the simulation of the first
100 floods. For the circular and differentiated sequencing
protocols, we attempted to select an appropriate value of
smax for each network setting such that the assumption of
bounded message loss becomes acceptable, while the
convergence time of each protocol is minimized.

Figs. 4 and 5 show the reach of the four protocols starting
from an illegitimate state in sparse networks and in dense
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TABLE 3
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Fig. 4. Reach of the four flood sequencing protocols starting from an illegitimate state in sparse networks. (a) A 10�10 network. (b) A 20�20 network.

Fig. 5. Reach of the four flood sequencing protocols starting from an illegitimate state in dense networks. (a) A 10�10 network. (b) A 20�20 network.



networks, respectively. The behaviors of the protocols while
stabilizing are discussed next.

In all the simulated settings, the reach of the first flood
is very low. This is because forwarded messages initiated
by sensor 0 and other sensors illegitimately collide with
each other.

The sequencing free protocol converges to a legitimate
state quickly. However, the communication of the proto-
col is much higher than that of the other protocols. The
average communication of the protocol was 344.7 for the
10�10 sparse network, 2,830.8 for the 20�20 sparse net-
work, 197.1 for the 10�10 dense network, and 1,240.1 for
the 20�20 dense network.

The performance of the linear sequencing protocol
starting from an illegitimate state is bad. The maximum
difference slast:u� slast:0 for any sensor u in a network can
be very large (in simulation, the maximum difference is
65,535), and the sensors that have slast larger than slast:0
will not forward a received message, resulting in a low
reach of the protocol.

The convergence of the circular sequencing protocol is
affected by a topology type and network size. Moreover,
these factors affect selecting a value for smax. The circular
sequencing protocol converges faster to a legitimate state in
a dense network than in a sparse network, since each sensor
has a higher probability to receive a (fresh) flood message
from one of its neighbors in a dense network than that in a
sparse network. On the other hand, the convergence of the
differentiated sequencing protocol is not affected by these
factors, and a small value can be selected for smax,
regardless of the factors.

In the circular and differentiated sequencing protocols, at
the beginning, a flood message does not reach most of
sensors in the network, since a sensor u, near sensor 0, that
receives the message discards it, due to the wrong value of
slast:u. As sensor 0 initiates more floods, a flood message
can reach more sensors. The reach of the circular protocol
increases slowly compared to that of the differentiated
protocol. This is because each sensor has a higher
probability to accept a received fresh message in the
differentiated protocol (where it accepts a message if the
message has a different sequence number than its last
sequence number) than that in the circular protocol (where
it accepts a message if the message has a logically larger
sequence number than its last sequence number). In the
circular protocol, after a flood message is propagated all
over the network, some sensors still discard a received
message (due to the wrong value of slast stored in them),
and then the reach increases more slowly until the
convergence. Thus, in all the simulated network settings,

the differentiated protocol reaches a legitimate state faster
than the circular protocol does.

In Table 4, we compare their stabilization properties in
simulation with those in analysis (as in Table 1). We

measured the convergence time of each protocol such that
the sequencing free protocol converges to a legitimate state

if its reach becomes around the average reach of the protocol
starting from a legitimate state, and the other protocols

converge to a legitimate state if their reach becomes around
the average reach of the linear sequencing protocol starting

from a legitimate state. In the circular protocol, the
convergence time measured in simulation becomes larger

than that analyzed under the assumption of bounded
message loss, while in the differentiated protocol, the

convergence time measured in simulation is the same as
or less than that analyzed under the same assumption. This

is because it is harder to satisfy the assumption in the
circular protocol, specially for a large sparse network. In

some settings, the convergence time in simulation is smaller
than that in analysis, since the convergence time in analysis
is computed based on the worst case.

In summary, starting from any legitimate state, the
performance of any flood sequencing protocol that attaches

a sequence number to a flood message is better than that of
the sequencing free protocol in terms of communication.
Starting from an illegitimate state, the differentiated

sequencing protocol converges to a legitimate state quickly
in all the simulated network settings. Thus, we conclude

that the differentiated sequencing protocol has better
stabilization property and performance compared to those

of the other three protocols.

10 DISCUSSION

Frequent floods. The flood period, hmax � tmaxþ 1, used

in previous sections is based on the lower bound on the flood
period in Theorem 0. Recall that this bound is computed to

guarantee that no two consecutive flood messages ever
collide with each other. In a typical execution of the protocol,

each sensor chooses its forwarding period at random in the
range 1::tmax, and so most sensors likely receive the flood

messages within ðhmax� 1Þ � tmax=2 time units, instead of
ðhmax� 1Þ � tmax time units. Thus, in practical setting,

sensor 0 may not need to wait a full period that guarantees
no collision between two consecutive floods to initiate a next
flood. When a shorter flood period is used, sensor 0 can

flood a message frequently. However, in this case, multiple
concurrent floods can exist in the network, which may affect

the performance and stabilization property of a flood
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sequencing protocol. We discuss the effect of frequent floods

on the differentiated sequencing protocol.
We simulated the differentiated sequencing protocol such

that sensor 0 initiates a flood frequently in the same network

settings and with the same parameter values as in the

previous section. Four different flood periods, hmax �
tmaxþ 1, ðhmax � tmaxþ 1Þ=2, ðhmax � tmaxþ 1Þ=4, and

ðhmax � tmaxþ 1Þ=8 were used. In this study, we call the

flood period of hmax � tmaxþ 1 a full flood period.
Table 5 shows the performance of the differentiated

sequencing protocol, with different flood periods (f in time

units), starting from a legitimate state. The result of each

simulation in the table represents the average value over the

simulations of 100,000 floods. In all the simulated settings,

the performance of the protocol using half the full flood

period remains the same as that using the full flood period.

The performance using one fourth of the full flood period

remains almost the same as that using the full flood period,

except in the 10�10 dense network where a relatively small

flood period is used. The performance using one eighth of

the full flood period is degraded. However, how much the

performance is degraded is different depending on a

network setting.
Fig. 6 shows the reach of the differentiated sequencing

protocol, with different flood periods, starting from an

illegitimate state in sparse and dense networks. We

simulated the sequences of floods starting from 1,000

different illegitimate states, and computed the average reach

for each ith flood. The stabilization property of the protocol

remains (almost) the same in the 10�10 networks. Using one

fourth or one eighth of the full flood period, the stabilization

property is degraded slightly in the 20�20 networks.
In summary, in all the simulated settings, half the full

flood period can be used without degrading the stabiliza-

tion property and performance of the differentiated

sequencing protocol. Even less than half the full flood

period can be used, depending on a network topology type

and size.
Multiple sources. In previous sections, only sensor 0 is a

source that can initiate message floods. The flood sequen-

cing protocols presented in this paper can be extended to

support multiple sources. We discuss how the differen-

tiated sequencing protocol can be extended such that each

sensor can be a source.
If a large number of floods are forwarded concurrently,

forwarded messages from these floods collide with one

anther, causing many sensors not to receive any flood

message. Thus, we assume that the number of floods that

are initiated by different sensors and are forwarded

concurrently is reasonably small. Each source needs to

make sure that it waits f time units after initiating one flood

and before initiating another flood, but after f time units, it

can choose not to initiate a new flood.
Each flood message is augmented with a source ID as

well as a sequence number. For a source w, each sensor

maintains new, slast, and hlast variables. When a sensor u

receives a data(w, h, s) message, u accepts and forwards the

message if s is different from slast:w. It is possible that u

accepts another message from a different source w0, before u

times out and forwards the message from w. In this case,

when u times out, u should send one composite message

that consists of the two messages from w and w0. Also if u

has a new message to flood, the new message is also

combined into the composite message. Note that under the

above assumption, a composite message will contain a

small number of flood messages. When u receives a

composite message, u processes each flood message in the

composite message.
Starting from any state, the protocol converges to a

legitimate state, provided that each source keeps initiating

floods, and the assumption of bounded message loss in

Section 7 is satisfied for each source.
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Performance of the Differentiated Sequencing Protocol with Different Flood Periods

Fig. 6. Reach of the differentiated sequencing protocol, with different flood periods, starting from an illegitimate state. (a) A 10�10 sparse network.

(b) A 20�20 sparse network. (c) A 10�10 dense network. (d) A 20�20 dense network.



11 CONCLUDING REMARKS

In this paper, we discussed a family of the four flood
sequencing protocols that use sequence numbers to

distinguish between fresh and redundant flood messages.

The members of our family are the sequencing free
protocol, the linear sequencing protocol, the circular

sequencing protocol, and the differentiated sequencing
protocol. We concluded that the differentiated sequencing

protocol has better overall performance in terms of
communication, and stabilization and stable properties,

compared to those of the other three protocols. Note that
our analysis is useful for sensor network designers or

developers to select a proper flood sequencing protocol that
satisfies the needs of a target sensor network.

A spanning tree can be used to distinguish between fresh

and redundant flood messages [28], [29]. Flood protocols

using a spanning tree require extra overheads to build and
maintain the spanning tree. When sensors are mobile, the

spanning tree needs to keep changed. Thus, these protocols
may not be suitable for some sensor networks.

APPENDIX

The proof of Theorem 0. When sensor 0 broadcasts a
data(hmax, s) message at time t, an out-neighbor u of

sensor 0 can receive the message at t and choose the
maximum possible value tmax for the forwarding

period. At time tþ tmax, u forwards the message as

data(hmax� 1, s). Similarly, an out-neighbor u0 of sensor
u can receive the message at tþ tmax and choose tmax

for the forwarding period. This forwarding process
continues until this message makes hmax hops. There-

fore, some sensor u can receive the last data(1, s) message
at time tþ ðhmax� 1Þ � tmax in the worst case. Thus, the

flood period needs to be at least ðhmax� 1Þ � tmaxþ 1

time units to guarantee that no forwarded messages from

two consecutive floods collide with one anther. tu
The proof of Theorem 1A. The protocol can start from a

state where some sensor u ( 6¼ 0) has wrong initial values,
true for new and hmax for hlast. In this case, u initiates a

flood illegitimately. This flood will be terminated within
f time units, since u will time-out within tmax time

units, and the maximum lifetime of a flood message is
ðhmax� 1Þ � tmax time units as shown in the proof of

Theorem 0. After all illegitimately initiated floods are

terminated, new:u for every sensor u always becomes
false when timer:u ¼ 1. Consider a case that the last

illegitimately initiated flood message is sent and received
at t, and sensor 0 broadcasts a new message at t. In this

case, in (t� 1; t), new:u for some sensor u in the network
is true. In time unit (tþ f � 1; tþ f), timer.0 becomes 1

again, new:u for every sensor u is false, and so predicate
(P1) holds. Thus, the protocol reaches a legitimate state

within 2 � f time units, and continuously stays in
legitimate states. tu

The proof of Theorem 1B. It is straightforward, since every
sensor accepts every received message and so it discards

no fresh message. tu

The proof of Theorem 1C. A sensor u can receive at most
one message at each time instant. In the worst case, u
can accept a redundant message at each time instant
during the convergence time, and so the maximum
number of redundant messages accepted by u until
convergence is 2 � f . tu

The proof of Theorem 2A. Let s be the value of slast:0 at an
initial state. After f time units, any illegitimately initiated
flood will be terminated, and new:u for every sensor u
always becomes false when timer:0 ¼ 1. Then, the value
of timer.0 becomes 1 again, say in (t� 1; t), with 2 � f
time units (as shown in the proof of Theorem 1A). In
(t� 1; t), slast:0 is at least sþ 1. The protocol has two
cases to consider. Note that k is the maximum value
between 1 and k0, where k0 is the maximum difference
slast:u� s for any u at the initial state. In the first case, at
the initial state, s is larger than or equal to every slast:u
(i.e., k0 � 0), or k0 is one, and so k ¼ 1. In this case, in
(t� 1; t), for every sensor u, new:u is false, and slast:u is
at most slast:0 (slast:u � slast:0). Thus, predicate (P2)
holds within 2 � f time units.

In the second case, at the initial state, the maximum
difference slast:u� s for any sensor u is larger than one
(i.e., k0 > 1), and so k > 1. In this case, in (t� 1; t), slast:0
is less than some slast:u in the network, and at t, sensor 0
broadcasts a message with sequence number s0 where
s0 � sþ 2. At tþ ðk� 2Þ � f , sensor 0 broadcasts a
message with sequence number s0 þ k� 2 (� sþ k) and
this flood will be terminated by tþ ðk� 1Þ � f � 1. In
time unit (tþ ðk� 1Þ�f � 1; tþ ðk� 1Þ�f), for every
sensor u, new:u is false, and slast:u is at most slast:0
(slast:u � slast:0). Thus, predicate (P2) holds within ðkþ
1Þ � f time units. Thus, the protocol reaches a legitimate
state within ðkþ 1Þ � f time units, and continuously stays
in legitimate states. tu

The proof of Theorem 2B. A sensor u can receive at most
one message at each time instant. In the worst case,
sensor u can discard a fresh message at each time instant
during the convergence time, and so the maximum
number of fresh messages discarded by sensor u until
convergence is ðkþ 1Þ�f . tu

The proof of Theorem 2C. The protocol can start from a
state where new:u for every sensor u is true. In this
case, every sensor u can initiate a flood of the previous
accepted message. Thus, a sensor u can accept at most
n� 1 redundant messages from every other sensor in
the network. tu

The proof of Theorem 3A. After f time units, any
illegitimately initiated flood will be terminated, and
new:u for every sensor u always becomes false when
timer:0 ¼ 1. The value of timer.0 becomes 1 again, say in
(t� 1; t), within 2 � f time units (similar to the proof of
Theorem 1A), and then sensor 0 broadcasts a flood
message at t. By the assumption of bounded message loss,
every sensor u is guaranteed to receive at least one (fresh)
flood message by tþ smax

2 � f � 1. When u receives a
message, u computes whether the message is fresh or
redundant based on the values of the received sequence
number and slast:u. Because of message loss and/or
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wrong initial value of slast:u, u may compute that the
received message is redundant. Assume that in
(tþ smax

2 � f � 1; tþ smax
2 �f), the value of slast:0 is s and

the value of slast:u for some sensor u is equal to (sþ smax
2 )

mod (smaxþ 1). At tþ ðsmax� 1Þ � f , sensor 0 broad-
casts a message with sequence number (sþ smax

2 ) mod
(smaxþ 1), and this flood message will be terminated by
tþ smax � f � 1. I n ( tþ smax � f � 1; tþ smax � f) ,
timer.0 becomes 1 again, and for every sensor u, new:u
is false, and slast:0 is logically larger than or equal to
slast:u. Thus, predicate (P3) holds. Therefore, the protocol
reaches a legitimate state within ðsmaxþ 2Þ � f time
units, and continuously stays in legitimate states. tu

The proof of Theorem 3B. This proof is similar to that of
Theorem 2B.

The proof of Theorem 3C. During the first f time units,
some illegitimately initiated floods can exist in the
network. During this period, a sensor u can accept at
most f redundant messages, since u can receive and
accept a redundant message at each time unit in the
worst case. After all illegitimately initiated floods are
terminated, any forwarded message is initiated by sensor
0. Assume that sensor 0 initiates a flood with s at t� 2,
and all illegitimately initiated floods are terminated at t.
Also assume that a sensor u accepts the message with s at
t� 2, an illegitimately initiated message with s0 ¼
ðsþ smax

2 Þ mod ðsmaxþ 1Þ (which is logically larger than
s) at t� 1, and another illegitimately initiated message
with s00 ¼ ðs� 1Þ mod ðsmaxþ 1Þ (which is logically
larger than s0) at t. At tþ 1, if u receives the same
message with s, u accepts it again, since s is logically
larger than s00. Then, u will not accept any redundant
message any more. Thus, the maximum number of
redundant messages accepted by sensor u is f þ 1. tu

The proof of Theorem 4A. Similar to the proof of Theorem
3A, after all illegitimately initiated floods are terminated
(within f time units), the value of timer.0 becomes 1 again,
say in (t� 1; t), within 2 � f time units. Assume that sensor
0 broadcasts a new message with sequence number s at t.
Then, sensor 0 broadcasts a new message with sequence
number ðsþ smax

2 � 1Þ mod ðsmaxþ 1Þat tþ ðsmax2 � 1Þ � f .
In time unit (tþ smax

2 � f � 1; tþ smax
2 � f), timer.0 becomes

1 again, and for every sensor u, new:u is false, and slast:u
has one of the values in s :: ðsþ smax

2 � 1Þ mod ðsmaxþ 1Þ,
since u receives at least one of those sequence numbers by
the assumption of bounded message loss. Thus, predicate
(P4) holds. Therefore, the protocol reaches a legitimate
state within ðsmax2 þ 2Þ � f time units, and continuously
stays in legitimate states. tu

The proof of Theorem 4B. This proof is similar to that of
Theorem 2B.

The proof of Theorem 4C. Similar to the proof of
Theorem 3C, during the first f time units, a sensor u can
accept at most f redundant messages. Assume that sensor
0 initiates a flood with s at t� 1, and all illegitimately
initiated floods are terminated at t. Also assume that a
sensor u accepts the message with s at t� 1, and an
illegitimately initiated message with s0 ( 6¼ s) at t. At tþ 1,
if u receives the same message with s, u accepts it again,

since s0 6¼ s. Then, u will not accept any redundant

message any more. Thus, the maximum number of

redundant messages accepted by u is f þ 1. tu
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[16] M. Heissenbüttel, T. Braun, M. Waelchli, and T. Bernoulli,
“Optimized Stateless Broadcasting in Wireless Multi-Hop Net-
works,” Proc. IEEE INFOCOM, 2006.

[17] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang, “A
Reliable Multicast Framework for Light-Weight Sessions and
Application Level Framing,” IEEE/ACM Trans. Networking, vol. 5,
no. 6, pp. 784-803, Dec. 1997.

1054 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 7, JULY 2010



[18] J. Kulik, W. Heinzelman, and H. Balakrishnan, “Negotiation-
Based Protocols for Disseminating Information in Wireless Sensor
Networks,” Wireless Networks, vol. 8, nos. 2/3, pp. 169-185, 2002.

[19] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. ACM MobiCom, 2000.

[20] M. Gouda and Y. Choi, “A State-Based Model of Sensor
Protocols,” Proc. Ninth Int’l Conf. Principles of Distributed Systems
(OPODIS ’05), Dec. 2005.

[21] “Tinyos,” http://www.tinyos.net, 2009.
[22] Y. Choi, M.G. Gouda, M.C. Kim, and A. Arora, “The Mote

Connectivity Protocol,” Proc. 12th Int’l Conf. Computer Comm. and
Networks (ICCCN ’03), pp. 533-538, Oct. 2003.

[23] A. Woo, T. Tony, and D. Culler, “Taming the Underlying
Challenges of Reliable Multihop Routing in Sensor Networks,”
Proc. ACM SenSys, 2003.

[24] A. Cerpa, N. Busek, and D. Estrin, “SCALE: A Tool for Simple
Connectivity Assessment in Lossy Environments,” CENS Techni-
cal Report 21, Sept. 2003.

[25] F. Kuhn and A. Zollinger, “Ad-Hoc Networks beyond Unit Disk
Graphs,” Proc. 2003 Joint Workshop Foundations of Mobile Comput-
ing: Discrete Algorithms and Methods for Mobile Computing and
Comm.-Principles of Mobile Computing (DIALM-POMC ’03), pp. 69-
78, 2003.

[26] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Initializing Newly
Deployed Ad Hoc and Sensor Networks,” Proc. ACM MOBICOM
’04, pp. 260-274, 2004.
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