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The Distributed Spanning Tree Structure
Sylvain Dahan, Laurent Philippe, and Jean-Marc Nicod

Abstract— Search algorithms are a key issue to share resources
in large distributed systems as peer networks. Several distributed
interconnection structures and algorithms have already been
studied in this context. With expanding ring algorithms, the
efficiency of searches depends on the topology used to send
query requests and on the dynamics of the structure. In this
paper, we present an interconnection structure that limits the
number of messages needed for search queries. This structure,
called Distributed Spanning Tree (DST), defines each node as the
root of a spanning tree. So, it behaves as a tree for the number
of messages but it balances the load generated by the requests
among computers and, thus, it avoids to overload the root node.
This structure is scalable because it only needs a logarithmic
memory space per computer to be maintained. A formal and
practical description of the structure is presented and we describe
traversal algorithms. Simulations show that DST based searches
behave better than randomly generated graphs and trees as it
generates less messages to query all computers while avoiding
the tree bottlenecks.

Index Terms— Distributed systems, Search algorithms, Ex-
panding Ring Algorithms, Interconnection graphs.

I. INTRODUCTION

TWENTY years ago, networks have seen tremendous ad-
vances in computer topologies. Hypercubes, tori and rings

are classical examples. At this time, the goal was, on one hand,
to build a topology that achieves the best bandwidth between pro-
cessors and tolerates faults. On the other hand, it tries to minimize
the number of links because computer buses, that implement those
links, were expensive. Nowadays, overlay networks benefit from
the interest on topologies even if the context is different: links are
no longer expensive because the cost of opening a TCP/IP link is
negligible and the number of peers is dynamic — we no longer
have n2 processors. Trees, connected graphs and Distributed Hash
Tables (DHT) [1] are common overlay network topologies.

Ressources: CPU, data, network...

Applications

Services: discovery, security, communication...

Fig. 1. Multi-layered Architecture.

As for physical networks, an overlay network topology is the
lower layer of a multi-layered system (see figure Fig. 1). Middle
layers — usually offered by middlewares — are composed of
services, as discovery, group management or security. Upper
layers gather applications, as resource sharing or virtual commu-
nities. The implementation and efficiency of these services and
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applications closely depend on the characteristics of the overlay
network. However, the link between the overlay network and the
services is not so close as the link between communication proto-
cols and physical networks. Different services may used different
overlay networks. The Distributed Spanning Tree presented in this
paper is relevant to discovery and broadcasting algorithms. Other
topologies as the DHT are more relevant to identify and access
data stored on the overlay.

Search algorithms for distributed systems is an old and well
known computer research field. Even if peer-to-peer search al-
gorithms like Gnutella and Distributed Hash Tables (DHT) have
bring some novelty, the basic issue stays the same: look-up in
a directory versus direct resources querying. There is a great
difference between these two approaches. (i) Looking up in a
directory implies to link a structure to the searched information.
Universal Description, Discovery and Integration (UDDI), Jini,
Lightweight Directory Access Protocol (LDAP), Domain Name
System (DNS) and DHT are implementations that relay on an
information structure. Looking up in a directory is appropriate
to distribute and efficiently access informations on a peer-to-peer
network. This implies a centralized view of the system. (ii) Direct
resource querying relays on no structure except the connections
between peers. Gnutella, Address Resolution Protocol (ARP) and
NetBIOS name service are examples of this approach Direct
resource querying fits to locate resources in self organized peer-
to-peer networks, without a centralized view. In this case, the
resources are not placed according to an index but rather pub-
lished by their owners on the network and made available from
their computer.

In this paper we focus on direct resource querying. We aim at
efficiently discover, search or broadcast on a peer-to-peer network
where nodes can dynamically come or leave at any time. In this
context, a popular direct querying algorithm is called expanding
ring, or TTL-based flooding. With this algorithm, resources are
connected through a graph and the algorithm forwards queries
through the graph to find a particular resource. With expanding
ring algorithm, it is well known that search performances are
affected by the communication graph topology. The structure
of the Distributed Spanning Tree, described in the following,
provides better performances than usual topologies as trees or
random graphs.

To show our contribution on this context we organize the paper
as follow. In the section II, to take a stand on the network structure
domain, we present related works on topologies and overlay
networks. The context and the originality of our contribution
is described in the third section. The section IV defines the
structure and the properties of the DST. Traversal and construction
algorithms are described in the section V. Then, to validate our
work, we present in the next section the results of simulations
that compare DST, tree and graph topologies. Lastly, we discuss
and conclude with few DST’s issues.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ??, NO. ??, 2007 2

II. RELATED WORKS

The Distributed Spanning Tree is not the first structure that tries
to interconnect a set of nodes efficiently. We can distinguish three
main classes of interconnection structures. (i) Static structures like
hypercubes or fat-trees were studied extensively and are used to
build parallel computers. (ii) Dynamic structures like Distributed
Hash Tables are organized, distributed and specifically designed
to store and access data or resources in distributed systems.
(iii) Finally, self-organized structures do not relay on a strict
organization but provide a support to efficiently communicate
between peers or interconnect virtual communities. Instances of
these three classes of structures are presented in the remaining of
this section. Most of them are not suitable for our context however
they may be used as a source of inspiration to interconnect peers.

In [2] S. Campbell, M. Kumar and S. Olariu proposed a static
structure called hierarchical cliques (HiC). The HiC is a k-ary
tree, modified to enhance local connectivity in a hierarchical,
modular fashion. The k children of every node are grouped
together to form a clique. These cliques add robustness and
alternate paths to the tree structure. This topology was designed
to build parallel computer which combines the positive features
of the tree and the hypercube. But in the HiC, all nodes are
not equal. There are processor elements that are the leaves and
switching elements that forward the messages. Due to the static
structure of the HiC, if the root and its k children fail or leave,
the whole structure is split in k separated groups.

Q. M. Malluhi and M. A. Bayoumi [3] proposed the Hier-
archical Hypercube (HHC). An n-HHC has three levels with
n = 2m + m. The first level is constituted of 2n nodes. At the
second level the 2n nodes are grouped into 2m hypercubes of
2m nodes called SonCubes. At the third level, the 2m SonCubes
are connected in an hypercube fashion to form a father cube.
Each SonCube has exactly 2m links that connect it to the other
SonCubes, and each link is incident to one node of the SonCubes.
This is interesting because every node has the same role. It also
implements an interesting vision: it uses recursion on a distributed
structure to add several levels and it is able to keep a degree for
each node with a complexity order of O(log(n)). But the HHC is
designed to build parallel computers and not to build distributed
systems. So, it has a low degree for each node and needs a static
number of nodes. It is also a very static structure where it is
difficult to remove or to add a node.

In [4] S. D. Gribble et al. introduced a dynamic data structure
(DDS) with a Distributed Hash Table (DHT). The DHT provides
incremental scalability of throughput and data capacity when
more nodes are added to the cluster. To achieve this, they
horizontally partition the table to spread operations and data
across bricks. The DDS was used to build a large scale file
service. Then the DHT were integrated in peer-to-peer systems
where they gain more scalability. Chord and Pastry are two DHT
implementations. A. Rowstron and P. Druschel [5] explain that
Pastry bears some similarity to the work by Plaxton et al. [6]. In
the Plaxon structure, each object has an unique address x of n
bits. The structure uses the address prefix to route the message
to the object. Every node has a routing table of n

b levels. The ith

level of the routing table is a list of links that satisfy the following
constraints: (i) the (i− 1).b bits prefix of a pointed node must be
the same as the current node, (ii) for the 2b permutations of the i.b
bits prefixes with the same (i−1).b bits prefix two nodes (for fault
tolerance) are pointed by the routing table. Using this structure,

at most n
b hops are needed to route a message to an object. The

approach of routing based on address prefixes can be viewed as
a generalization of the hypercube routing. As an interconnection
structure, the DHT are interesting because every node is able
to send a message to an other node in only O(log(n)) hops
and they just needs O(log(n)) entries in its routing table. They
are also theoretically scalable and resistant to failures. However
the index implementation of a DHT lays on a global view of
the system and determines the data placement whereas in self
organized networks, every peer is independent and provides its
own data or resources from its computer to the network.

Some peer-to-peer systems use less structured topologies and
use best effort algorithms. The Gnutella specifications [7] ex-
plains that a Gnutella servant connects itself to the network
by establishing a connection with another servant currently on
the network. The acquisition of another servant’s address is not
part of the protocol definition. So the topology is a connected
graph without a more precise specification. In such topology,
search and multicast are done by flooding. Despite the high
bandwidth consumption of the flooding, the structure is strong
against faults and the algorithms that add or remove a node are
straightforward. The Kazaa networks allow to pass an additional
scale by the use of supernodes [8]. Nodes elect supernodes to
represent themselves. The discovery is done between supernodes
and regular nodes are not longer queried by the discovery process.
It results in a reduction of message emissions. JXTA [9] uses a
similar method, although supernodes are called rendez-vous peers.
JXTA also adds a cache mechanism to achieve better perfor-
mances. Finally, this supernodes method is implemented in the
discovery mechanism of the Distributed Integrated Engineering
Toolbox (DIET) [10], a RPC-GRID middleware based on the
Application Service Provider paradigm. Supernodes decrease the
global communication load but they are not scalable, as they just
decrease this load of one order of magnitude, nor suited for self-
organized networks, as they must be administrated.

Few systems try to share the communication load between
the peers like SplitStream [11] and BitTorrent [12]. B. Cohen
introduces BitTorrent as a file distribution system with Pareto
efficiency. A BitTorrent platform is composed of a tracker and
peers. The tracker is a directory with the reference of all the
peers which replicate a file. With the help of the tracker, each peer
connects itself with twenty or forty other peers. Peers exchange
pieces of the data with a “tit-for-tat” policy. The system is
able to achieve good performances and scalability by using a
simple best effort algorithm and by sharing the load between the
peers efficiently. M. Izal et al. [13] describe the performance of
BitTorrent over a five months period. Unfortunately, the latency
is high and BitTorrent is dedicated to data sharing. So it cannot
be used to share resources and access services.

III. CONTEXT AND CONTRIBUTION

In this section we present first the context which justify our
work and then our contribution.

A. Project Context

The Distributed Interactive Engineering Toolbox (DIET) [14],
[15] is a grid middleware which allows clients to access appli-
cation servers via Remote Procedure Calls (RPC) [16]. For each
remote call, DIET tries to find the best suited server by taking into
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account, the application availability, the server load, the location
of processed data and the average time used by the server to
process similar calls. Because most of those informations are
highly dynamic, it is more efficient to query every server at each
request than to store or cache all those informations in a directory
and update them regularly.

To allow efficient communications, the DIET architecture is
based on a broadcast tree (figure Fig. 2). The root of the tree
is called Master Agent (MA) which is the front end between a
DIET platform and clients. Application Servers (SeD) compose
the leaves and Local Agents (LA) forward queries from the Master
Agent (MA) to the Application Servers (SeD). Because it is
useless to query a server that does not support the procedure
searched by the client query, a filter has been implemented: each
Application Server provides its parent node (LA or MA) with
the list of its applications. Then, the parent forwards to its own
parent the list of the software available in its descendants, and
so on. Because every query lists the software that it searches,
it is easy to not send messages in branches that do not have
the needed software. Experimental studies show that this tree
architecture is efficient and allows a good scalability in term of
requests frequency [17].

Application Server (SeD)

Local Agent (LA)

Master Agent (MA)

Fig. 2. The DIET architecture.

However, this architecture has a scalability limitation in term
of number of servers and clients as every request is sent and
managed by the MA node. Moreover, for each query, every server
that owns the needed software is queried. When there are lots
of queries, servers are overloaded by queries. This is pointless
because a client does not want to access the best server of the
world. He only wants to access a good server. So, it is preferable
to just contact a subset of the available servers than the whole
set of servers. For this reason, the whole set is split in several
small trees which each recover a limited area. All these subtrees
are considered as independent peers and the whole set of peers
constitute a self-organized community. We added this mechanism
into DIET by implementing a Gnutella like flooding algorithm
where there are several small DIET platforms which are connected
by a communication graph through their Master Agent [10]. If a
Master Agent does not find an available server, then it forwards
the query to its neighbors, and so on.

We can explore several ways to optimize the expanding ring
algorithm. We can use caching and routing mechanisms. We can
optimize the graph by tuning its specifications: which degree?
Should it be scale-free? Should it be small-world? Semantical
search algorithms are also promising ways to optimize it. Finally,
we can try to find a better suited topology that the usual graph.
This topology is presented in the remaining of this paper. It was
design to support large DIET platforms but it is also suitable for
interconnecting self-organized overlay networks.

B. Contribution

We propose a new topology, called Distributed Spanning
Tree (DST), that optimizes flooding algorithms — TTL-based
search algorithms — for search applications to get better search
performances. The idea comes from the opposition between tree
and graph topologies1. Tree topologies are interesting because of
their complexity in number of messages for querying (request-
reply) nodes: only 2n messages are needed for n computers.
However, if each tree node is a computer, then the tree topology
suffers from bottlenecks as the root node will concentrate most
of the messages. Graph sends more messages but does not suffer
from any bottleneck, as the load of messages will be shared
between the nodes. Thus, in practice, graphs are more efficient
than trees.

The tree-based overlay networks suffer from a major drawback
when the computer behavior is determined by its identity. Indeed,
the root computer initiates a search and sends a message to its
children. Intermediate node computers — computers that are not
a leaf and not the root — wait for messages and forward them
to their children and finally, leaf computers wait for messages.
The unbalance is obvious, most computers are usually leaves (if
the tree is balanced) and they do nothing in regard to message
forwarding.

Conversely, it is possible to create a tree where every computer
behaves at the same time as a leaf, as the root and as intermediate
nodes and where the root node is distributed between the whole
set of computers. This is exactly what the Distributed Spanning
Tree (DST) does: each computer is a leaf and each non-leaf node
is distributed through its children. Each computer is the root of
its own spanning tree.

IV. STRUCTURE DEFINITION

A DST can be described at three different levels. The logical
level is an abstract vision of the DST. At this level, tree nodes
— that are groups of computers — are linked together by abstract
links. Then comes the interconnection level that implements inter-
nodes links with TCP/IP links. Finally, there is the topological
level which describes how the TCP/IP links map on a real
network.

A. Logical Level

1) General Idea: If we have 5 computers and want to build
a tree of arity greater than 4, we have two solutions. The first is
obvious. Take one computer randomly and link it with the other.
This computer becomes the tree root and at the same time, it
becomes the bottleneck of the tree.

The second solution challenges the common assumption that
a node must be a computer. 5 computers is not a lot. We can
consider in practice that the 5 computers know each others. In
other words, we have a complete graph and this complete graph is
our root node. This is important because saying that a parent node
is the complete graph of its children is the DST’s fundamental
concept.

By being a complete graph, the root is inherently distributed.
When the root wants to send a message to its children, it elects

1In this document, we use the term of graph as a shortcut for random
undirected graphs or more precisely pseudo-random undirected graphs because
these communication graphs are not truly random: their algorithms usually
bound the number of links between a node and the others and they usually
assume or guarantee that the graph is connected.
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one of its children and orders it to send the message to its
brothers. Doing it is possible, thanks to the complete graph.

2) Description: As a tree, a DST is a recursive structure. A
DST has usually several stages where each stage is built with
elements of the above stage:
• Stage 0 contains the leaves of the DST. Every leaf is a

computer and every computer that participates to a DST must
be a leaf.

• Stage n+ 1 (with n > 0) contains the parents of the stage n
nodes. Each parent is a complete graph of its children and the
number of children is bounded by a and b where 0 < a ≤ 1

2 b.
• Stage h (with h the DST height), is different from the others

in the fact that it contains the DST root and that the root can
have less than a children.

The following figures illustrate the DST structure at the logical
level.

Fig. 3. Logical structure, stage 0.

Figure Fig. 3 displays the computers set that constitutes a DST.
Every computer is drawn with a square. Every square is also a
DST leaf node.

Fig. 4. Logical structure, stage 1.

Figure Fig. 4 displays the stage 1 nodes. Those nodes — white
round squares — are composed of small complete graphs of
leaves — gray squares. The arrows represent the logical links
between the leaves that form the complete graphs.

Figure Fig. 5 displays the stage 2 nodes. Those nodes — white
round squares — are composed by small complete graphs of
stage 1 nodes — gray round squares. The arrows represent the
logical links that form the complete graphs. Those links are
abstract and do not directly connect computers but they logically
connect stage 1 nodes together. How those links are implemented
is defined by the interconnection level.

Figure Fig. 6 displays the stage 3 node, root of this DST. The
root node — white round square — is composed by a small

Fig. 5. Logical structure, stage 2.

Fig. 6. Logical structure, stage 3.

complete graph of two stage 2 nodes — gray round squares. The
arrows represent the logical links which form the complete graph.

3) Invariants Definition: To be a DST, a graph must respect
several invariants. This paragraph describes the seven invariants
that define the DST logical level. The following definitions are
used in the expression of invariants:
• h is the DST height,
• C is the set of computers that participate to the DST,
• Sn is the set of nodes that form the stage n of a DST, with

0 ≤ n ≤ h,
• X, Y , Z are nodes of the DST. A node X is a graph X(V,E)

where V is the set of vertices, the children nodes, and E is
the set of logical links that interconnect these nodes.

• d(X,Y ) is a link between two nodes X and Y ,
• u, v are computers that participate to the DST,
• the root node is noted ε.
Firstly, the children of a stage 1 node are computers.
Invariant 1: For each node X of S1, every element of V is

also an element of C, the computers set.

X(V,E) ∈ S1 ∧ u ∈ V ⇒ u ∈ C

Secondly, every computer that participates to the DST must be
a child of one and only one stage 1 node.

Invariant 2: For all node X(V,E) of S1, the union of the V
sets is equal to the computer set and every intersection of two
nodes is the empty set. ⋃

X(V,E)∈S1

V = C∧

∀Xi(Vi, Ei), Xj(Vj .Ej) ∈ S1 ⇒ Xi(Vi, Ei) ∩Xj(Vj .Ej) = ∅

So, from this invariant we can note that S0 = C.
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Thirdly, the children of a stage n node, which is not a computer,
are stage n− 1 nodes.

Invariant 3: For a node X of Sn, where n is not equal to zero,
a child u of the V set belongs to Sn−1.

n > 0 ∧X(V,E) ∈ Sn ∧ Y ∈ V ⇒ Y ∈ Sn−1

Fourthly, every stage n node that is not the root node must be
the child of a stage n+ 1 node.

Invariant 4: For all stage n node Y where stage n is not the
root stage, there is a stage n+ 1 node that is the parent of Y .

n < h ∧ Y ∈ Sn ⇒ ∃X(V,E) ∈ Sn+1 | Y ∈ V

Fifthly, a node is the child of a unique node.
Invariant 5: For all two nodes X(V,E) and Y (V ′, E′) of the

same stage n, where n is not zero, there is no node that can be a
child of these two nodes. So no stage n− 1 node belongs at the
same time to V and V ′.

n > 0∧X(V,E) ∈ Sn ∧Y (V ′, E′) ∈ Sn ∧X 6= Y ⇒ V ∩V ′ = ∅

Sixthly, the number of children for a node is bounded by two
values a and b.

Invariant 6: A stage n node X must have a number of children
that is equal or less than b. The number of its children must also
be greater that a if X is not the last stage node, the root node.

X(V,E) ∈ Sn ⇒ |V | ≤ b ∧ (n = h ∨ |V | ≥ a)

Finally, stage n nodes are complete graphs made up of stage n−
1 nodes.

Invariant 7: A stage n node X, where n is not zero, is a
complete graph of its children. So for two nodes u and v of
V , there is a link in E that connects them.

n > 0 ∧X(V,E) ∈ Sn ∧ Y ∈ V ∧ Z ∈ V ⇒ d(Y,Z) ∈ E

B. The interconnection level

1) Description: The logical level is an abstract vision of the
DST. The interconnection level is the implementation of this
vision. It describes how nodes are distributed through comput-
ers and how computers implement inter-node abstract links on
TCP/IP connections.

Non leaf nodes are complete graphs of their children, so they
are inherently distributed among their children. Recursively, non
leaf nodes are distributed among their descendants. At the end,
every non leaf node is distributed among computers because all
leaf nodes are computers.

Logical level abstract links of level 1 are implemented by
linking all computers of a node together to form a complete graph.
Then, for upper level, if there is an abstract link between two
nodes A and B, then every computer that is a descendant of A
opens a TCP/IP link with one computer that is a descendant of
B and every computer that is a descendant of B opens a TCP/IP
link with one computer that is a descendant of A. In this way,
every computer of A can directly send a message to B and vice
versa.

Even if the DST structure does not care about how computer
pairs are constituted, this choice has an impact on the DST

performances. The details depend on the application and their
priorities. However, if there is an abstract link between A and B,
we do not recommend that every computer of node A opens a link
with the same computer of B. To allow better fault tolerance and
load distribution, the algorithm should take care that computers
of A are linked with different computers of B as shown in the
figures Fig. 8 and Fig. 9.

Fig. 7. Interconnection level, stage 1.

Implementing stage 1 abstract link is simple because stage 1

nodes are complete graphs of computers. Figure Fig. 7 shows the
TCP/IP links that form the stage 1 nodes.

Fig. 8. Interconnection level, stage 2.

Figures Fig. 8 and Fig. 9 show the TCP/IP links that form
respectively stage 2 and stage 3 nodes. You can see that for each
logical level abstract link defined on figures Fig. 5 and Fig. 6,
every computer of a node is connected to one computer of the
other node and vice versa.

Fig. 9. Interconnection level, stage 3.

For each level, a computer is also connected to the node it
belongs to by being connected to itself.
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2) Invariants Definition: The interconnection level adds few
invariants to the DST specifications. At the interconnection level,
we use the same definitions than for the logical level and we add
L the TCP/IP links set that forms a DST.

Firstly, we need to define what is a descendant.
Invariant 8: X is a descendant of Y means that X is a child

of Y or the node X is a descendant of a child of Y .

desc(X,Y (V,E))⇒ X ∈ V ∨ (Z ∈ V ∧ desc(X,Z))

For each abstract link that connects two nodes, every computer
of a node opens one TCP/IP connection with one computer of
the other node and vice versa.

Invariant 9: For each abstract link that connects the two chil-
dren Y and Z of a node X there is a TCP/IP link d(u, v) that
connects one descendant u of Y with one descendant v of Z.

n > 0 ∧X(V,E) ∈ Sn ∧ Y,Z ∈ V ∧ d(Y,Z) ∈ E ⇒

(∃u ∈ C | desc(u, Y )) ∧ (∃v ∈ C | desc(v, Z)) ∧ d(u, v) ∈ L

And we specify that there is no link that does not correspond
to invariant 9.

Invariant 10: For each TCP/IP link d(u, v) of a DST, there is
an abstract link d(Y,Z) that connects two children Y and Z of
a node X of a stage n where u is a descendant of Y and v is a
descendant of Z.

u ∈ C ∧ v ∈ C ∧ d(u, v) ∈ L ∧ n > 0 ∧X(V,E) ∈ Sn ⇒

(∃Y,Z ∈ V | desc(u, Y ) ∧ desc(v, Z))

Finally, every computer is connected to itself.
Invariant 11: Every computer u of C is connected to itself.

u ∈ C ⇒ d(u, u)

3) Implementation: All these TCP/IP links are managed by
every computer thanks to a routing table. To justify these routing
tables, we first need to define two naming notations:

1) Each computer connected to a DST has an IP address. For
clarity, we represent IP addresses with a single character
written in a different font. For example, a, b and c represent
the IP addresses of three computers.

2) Every node is indexed. Figure Fig. 10 shows how the nodes
are indexed. The name of the root node is the empty string
ε. The children of a node are indexed with a number that
ranges from 1 to the number of children. Then, the name of
a children is formed by the concatenation of its father name
and its index. For example, the root node of figure Fig. 10
has two children: 1 and 2. Then the node 1 has three
children: 11, 12 and 13.

At the interconnection level, each computer knows one com-
puter for each of its brothers at every stage. This knowledge is
stored in a routing table which matches the computer’s local view
of the DST. Table I displays the routing table of computer e.

Each line of this table stores data for a different stage of the
DST. The first column indicates which stage is represented by
this data. The second column indicates, for this stage, the index
of the child that contains the current computer e. It can be noted
that we obtain the name of the leaf that contains the current
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Fig. 10. DST structure with node names and computer’s IP addresses..

TABLE I
COMPUTER e’S ROUTING TABLE.

position representatives

stage index 1 2 3

3 1 e m –
2 2 c e i
1 2 d e f

computer e by reading the second column from top to bottom.
The following columns indicate for each child, which computer
is used as the child’s representative level. Each time the computer
e wants to contact a child, it sends its message to the computer
whose address is indicated in the routing table.

The routing table is the only data structure that is needed
to store the DST structure. We can conclude that the memory
complexity order for an n-computers DST is O(log(n)) per
computer because the routing table size is b × h, where h is
the number of stages and b the upper bound of the number of
children of a node: hence the following formula logb(|C|) ≤ h ≤
loga(|C|) + 1 (see theorem 2 in the section IV-D).

C. The topological level

The topological level defines how the TCP/IP links should be
mapped onto a real network. Studies about this level are still at
the beginning but give an idea of what is possible to do. We
describe two examples to show how a DST can be mapped onto
the Internet and on a semantical network.

1) Mapping onto the Internet: The Internet, as an intercon-
nection of networks, has a hierarchical structure. Local Area
Networks (LAN) are the lower stones of the Internet. Those
LANs are aggregated to form sites like university campuses or
Metropolitan Area Networks. Those sites are then interconnected
in an autonomous system and autonomous systems are intercon-
nected together to form the Internet.

Message transfers are more efficient and inexpensive if they
only pass through a LAN, and become slower and more expensive
when they go through a site, an autonomous system or through the
Internet. Thus, it is desirable to encourage local communications
and to limit long distance communications.

In average, we observed that there is a+b
2 more messages

exchanged between the stage n nodes than between stage n+ 1
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nodes because each stage n + 1 nodes has a+b
2 children, in

average. Thus, it is interesting to map a DST hierarchy onto
the Internet one. Computers that belongs to the same LAN are
grouped together to form low level nodes. Then, low level nodes
that belong to the same site are grouped together and so on. This
way, the structure favors the use of local communications.

2) Mapping on a semantical network: Some TTL-based search
mechanisms classify resources semantically [18]. They group
together resources that share common interests. This is based on
the hypothesis that the group has a higher probability to provide
the searched resource when the resources/users that compose it
share a limited number of interests. This leads to more efficient
searches as less resources/users are queried during a lookup
request.

One of those mechanisms, the Dynamic Pub-
lish/Subscribe (DPS) system [19], [20], organizes resources
with a semantical tree but suffers from bottlenecks. Using a
DST, to map the DST groups onto the semantical groups, keeps
the hierarchical classification while removing bottlenecks and
thus allows to keep the optimization proposed by the DPS.

D. Height of a DST

In this section, we define the height of a DST and we prove
that the memory complexity of the data structure needed to store
a n-computer DST is O(log(n)) per computer.

Theorem 1: For every stage n, the number of computers of a
node is bounded by an−1 and bn.

Proof: If is | cn | the number of computers of a stage n node,
by recursion, we show that, for every stage n, with 1 ≤ n ≤ h

where h is the DST height, | cn | is bounded by an−1 and bn.
If n = 1 ∧ h = 1, then 1 ≤| cn |≤ b because of invariant 6.
If n = 1 ∧ h 6= 1, then a ≤| cn |≤ b because of invariant 6. So

the theorem is true for n = 1.
We suppose that an ≤| cn |≤ bn is true for a stage n with

n < h. If n+ 1 < h, a.an = an+1 ≤| cn |≤ b.bn = bn+1 because
of invariant 6.

If n+ 1 = h, 1.an = a(n+1)−1 ≤| cn |≤ b.bn = bn+1 because
of invariant 6.

Then ∀n, 1 ≤ n ≤ h, an−1 ≤| cn |≤ bn

Theorem 2 (DST height): If h is the height of a DST, then
logb(| C |) ≤ h ≤ loga(| C |) + 1.

Proof: The set of computers C that constitutes a DST is also
the set of computers that constitutes the root node.

From Theorem 1:

ah−1 ≤| C |⇔ h ≤ loga(| C |) + 1

and

| C |≤ bh ⇔ logb(| C |) ≤ h

Then, logb(| C |) ≤ h ≤ loga(| C |) + 1

Since the DST structure is defined we can present its use for
traversal algorithms.

V. TRAVERSAL ALGORITHMS

In this section, we describe two traversal algorithms. The first
one intends to broadcast a message to every computer belonging
to a DST. The second one is an optimized TTL-based search
algorithm. More traversal algorithms can be found in [21].

A. Notations

The presented algorithms use the following notations:
• h is the height of a DST.
• routing table is the routing table described in section IV-

B.3. Every row is implemented by a list where the nth

element is a reference to a computer of the child of index
n. The list corresponding to the ith stage is stored in
routing table[i].

• c →P(p1, . . . , pn) is a call of the procedure P on the com-
puter c with the parameters p1, . . . , pn. To allow parallelism,
these calls are asynchronous. The caller sends a message
to the callee, instructing it of the call, and then executes
the following instruction without waiting for the end of the
call. When the procedure call is a remote procedure call
written by the instruction a← (c→F()), a is set to the value
returned by c →F(). In this case, we suppose that there is
a mechanism which automatically puts the return value of
F in the variable a when the execution of the procedure F
terminates.

• The variable self references the current computer.

B. Broadcast Algorithm

The aim of the broadcast algorithm is to efficiently send
messages to every computer that is part of a DST. This algorithm
is the simplest one and is very similar to the classical tree
parallel traversal. The root node initiates the traversal by sending
a message to all its children. Then, recursively, when a non-leaf
node receives a message, it forwards it to its children.

Algorithm 1 Broadcast algorithm
procedure Broadcast(msg)

Broadcast aux(h,msg)
end procedure

procedure Broadcast aux(s,msg)
5: if s = 0 then . The message is sent to a leaf

process msg locally . End of the broadcast
else . The message is sent to a non-leaf node

for all child ∈ routing table[s] do
child→Broadcast aux(s− 1,msg)

10: end for
end if

end procedure

The DST broadcast algorithm is presented by Algorithm 1. This
algorithm uses two procedures. Broadcast aux is a recursive
procedure which broadcasts the message and Broadcast is the
procedure which initializes the broadcast.

The procedure Broadcast aux takes two parameters: msg
the broadcasted message, and s the level of the called node in
the tree (DST). Because non-leaf nodes are distributed over their
descendants, every computer acts as leaf, as a node of stage 1, ...
and as the root node. The parameter s tells the computer which
node receives the message. If s = h, the computer must act as
the root node. If s = h − 1, it must act as the child of the root
node. If s = 0 (line 5), the computer must act as a leaf and it
does not forward the message further.

If s 6= 0, the computer acts as a stage s forwarding node.
So, this node forwards the message to its children. To do it, the
computer takes the list of computers that represent the children of



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ??, NO. ??, 2007 8

its stage s node (line 8). For each of them, it asks him to forward
the message (line 9) as a stage s − 1 node, child of the stage s
node.

The broadcast is initialized by the Broadcast procedure.
This procedure must be called by a computer that is part of the
DST. By calling Broadcast aux(h,msg), it asks to himself to
act as the root node2 to forward the message msg.

1

43

2

Fig. 11. Broadcast initiated by computer e.

The figure Fig. 11 is an example of a broadcast initiated by
computer e. During the first step, e calls itself to broadcast the
message. As the root node ε, e must forward the message to
nodes 1 and 2 (see figure Fig. 10). Thus, during the second step,
e sends a message to itself to contact node 1 and a message to
m to contact node 2. As node 2, m must forward the message
to node 21 and node 22. Thus, during the third step, m sends a
message to itself to contact node 21 and a message to o to contact
node 22.

Because a computer always uses itself as the representative of
the nodes that contain it, every computer receives only one distant
message. We can conclude that the number of distant messages
of a broadcast on a n-node DST is n − 1 because the computer
that initializes a broadcast does not receive any distant messages.
So, the complexity order of the broadcast is O(n) messages.

Traces of algorithm 1 show that the algorithm runs h+1
recursions. So, the algorithm runs in h + 1 ≤ loga(| C |) + 2

steps. We can conclude that the algorithm time complexity is
O(log(n)) time units.

C. Balancing of the Broadcast Algorithm

Traces of the broadcast algorithm illustrate well how the
DST distributes the communication load between computers.
The figure Fig. 11 is a trace of a broadcast initiated by e. The
figure Fig. 12 is a trace of a broadcast initiated by f, another
computer.

By comparing the traces of these two execution broadcasts we
see that, depending of which computer initiates the broadcast, a
computer can be a leaf or a non-leaf node which forwards the
message. The figure Fig. 13 shows this by displaying the trace of
two broadcasts — one initiated by e and the other initiated by f —
on the same figure. Thus, contrary to classical broadcast trees,
the DST distributes the load of forwarding messages between
computers because every computer has the property to act as a leaf

2because h is the height of the DST and stage n only contains the root
node.

1

4

2

3

Fig. 12. Broadcast initiated by computer f.

node and as a non-leaf node, depending on which computer the
broadcast starts. This property makes every spanning tree different
if the routing tables are different.

Fig. 13. Broadcast initiated by e and f.

D. Search Algorithm

The search algorithm aims at querying a number of computers
which grows exponentially like a TTL-based graph flooding
algorithm. This algorithm uses a broadcast like algorithm to query
a sub-tree of stage 1, then a sub-tree of stage 2 and so on until
the DST is completely flooded or until the query is positively
answered.

The search algorithm uses two procedures. Search aux is a
recursive procedure which broadcasts requests in sub-trees and
Search is the procedure which controls the search. To look
for a resource matching a query, you need to call the Search
procedure and pass your query as a parameter.

The Search aux procedure takes two parameters to broadcast
the request: s the height of the sub-tree and query the searched
resource description. If s equals 0, we query a leaf. In this case,
the computer gathers the list of resources that match the query
(line 20) and returns the list to the caller (line 31).

If s is not equal to 0, the computer broadcasts the query
to its sub-tree of height s − 1. To do it, for each child of its
node of level s (line 23), the computer sends a message to its
representative (line 8). This message asks the computer to gather
the list of resources that match the query in its sub-tree of height
s − 1 (line 24). Then, the computer waits for the answers of
the queried sub-trees and merges the lists of matching resources
(lines 26–29). Finally, it returns the merged list to its caller
(line 31).

The Search procedure takes one parameter (query) which
describes the searched resource. The procedure starts by searching
locally a resource that matches the query (line 2) and stores the
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Algorithm 2 Search algorithm
procedure Search(query)

l←Search aux(0, query)
s← 1
while s ≤ h ∧ l ≡ ∅ do

5: tmp← ∅
for all child ∈ routing table[s] do

if s 6= self then
tmp[child]← child→Search aux(s, query)

end if
10: end for

for all ltmp ∈ tmp do . Joins found resources
l← l ∪ ltmp

end for
s← s+ 1

15: end while
return l

end procedure

procedure Search aux(s, query)
if s = 0 then

20: l← List of local resources that match the query.
else

tmp← ∅
for all child ∈ routing table[s] do

tmp[child]← child→Search aux(s− 1, query)
25: end for

l← ∅ . List of found resources
for all ltmp ∈ tmp do . Join found resources

l← l ∪ ltmp
end for

30: end if
return l

end procedure

list of found resources in the list l. Then, starting with a height
of 1 (line 3), the procedure queries sub-trees of increasing height
until querying the whole tree or until finding a resource (line 4).

To query a sub-tree of height s, the Search procedure
sends a message (line 8) to a computer of each child of its
node of level s (line 6) but one (line 7). We remind that a
computer always chooses itself to represent nodes that contains
the computer (invariant 11).

So, with the test s 6= self (line 7), we avoid to query the sub-tree
that contains the computer because this sub-tree is the sub-tree
that has been queried during the previous iteration.

Once the queried subtrees return their lists of found resources,
the computer merges the lists (lines 11–15) and prepares a new
iteration in the case where no resources is found. At the end, it
returns to the client the list of found resources that match the
query (line 16).

The figure Fig. 14 is an example of a search initiated by the
computer e where no resources is found. During the first step, the
computer queries e, itself. Then, it queries its sub-tree of height 1
by querying d and f. During the third step, the computer queries
its subtree of height 2 by broadcasting its search on node 11 and
13. Finally, it finishes to query the tree by broadcasting its search
to node 2. Then, the whole DST is queried.

By following traces of the search algorithm, it is easy to notice
that each computer is only queried once and that only 2.(n− 1)

messages are used to query the n computers of the DST. So,
the complexity order of the search algorithm is O(n) messages.
Because broadcasts are parallel, only 2s time units are needed to

1

4

2

3

Fig. 14. Search initiated by computer e.

query a sub-tree of height s. Thus, to query a h stages DST, we
need 2.(1+2+. . .+h) = h(h+1) time units. We can conclude that
the search algorithm has a time complexity order of O((log(n))2)

time units.

VI. DISTRIBUTING THE DIET FORWARDING TREE

In section III-A we explained that the DIET middleware uses
a tree topology to query computational servers. To optimize
searches, queries are only forwarded to sub-trees that have at
least one computer which owns the software needed by the client.
This is possible because every computational server informs its
parent with the list of softwares that it proposes and every Local
Agent informs its parent with the list of softwares proposed by
its descendants. Fig. 15 displays this for two softwares a and b.
This routing mechanism allows to send messages only to useful
servers thus saving network resources. In this section, we explain
how to do the same thing with a DST.

Master Agent (MA)

Local Agent (LA)

Application Server (SeD)

b

aa

aa

a b

a/b a

a b a a

Fig. 15. A DIET search routing example.

When a computer e — which is always a leaf in a DST —
installs a software, it informs its father node. Then, when the
father node needs to forward a search query for this software, it
knows that it has to forward the query to the computer e. Because,
in a DST, a father node is distributed between several computers,
the computer e has to forward the information on the software
availability to all these computers by using the sub-tree rooted by
its father.

In a more general way, when a node wants to provide a defined
software, because the node is a computer or because one of its
descendant wants to give access to a defined software, it must
inform its father to forward it search queries that look for this
software. To do this, it acts as its father node and broadcasts a
message to all the descendants of its father node informing that it
provides the software. A similar operation is done when a node
stops to give access to a software.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. ??, NO. ??, 2007 10

This way, when a computer must act as a node X to forward
a search query for an available server that proposes access to a
software a, the computer knows which X’s child must receive the
query as this information has been forwarded to all computers that
form the node X.

This routing mechanism is very useful when used with the
search algorithm described in section V-D. The main issue
with flooding algorithms is that they are inefficient to find rare
resources because too much messages are generated. With this
routing system we keep the characteristics of flooding algorithms
but it is not longer needed to flood lots of computers to find a rare
resource. We must note, in this case, that the trade-off is between
the update process cost and the TTL value. The load is however
balanced between the two processes.

We think that this approach is scalable because a software
cannot be available on lots of computers and in few computers at
the same time. In the DIET’s context, servers are stable and do
not come and go frequently. Thus, if a software is only present on
few computers, the event that one of those computers comes or
leaves is rare and the entire DST will be rarely completely flooded
by the updating process. On the other hand, if lots of computers
have the software, the event that one of those computers comes
or leaves is common, but the message will be forwarded only to
few computers because there is a high probability that its parent
or grant-parent has another child that provides the same software.

This routing mechanism does not fit a context where there are
lots of rare softwares that are proposed by only one computer and
those computers come and go frequently because the DST will be
completely flooded each time one of those computers comes or
leaves. We can note however that there is, in our knowledge, no
good solution to manage this kind of very dynamic environment.

VII. CONSTRUCTION ALGORITHMS

Building a DST with centralized algorithms is straightforward.
We quickly introduce them in the following section. But main-
taining a DST with distributed algorithms is far more complex. A
decentralized algorithm as been implemented in a simulator [22]
and can be used as an example. Then we discuss the most
interesting parts of this construction algorithm.

A. Centralized Algorithm

DST’s construction algorithms must take care of two elements:
making groups of nodes to build the hierarchy and linking
computers together.

As described in section IV-A a non-leaf node is a complete
graph of its children. Thus, we need an algorithm that puts nodes
together to build parent nodes. As a reminder, nodes must have
between a and b children, except the root and the leaves. If we
choose a and b such as b = 2a, then the algorithm is very similar
to B-tree construction algorithms [23]. This is interesting because
B-tree building algorithms and their variants [24] are efficient and
widely studied.

Once the algorithm finishes to build the hierarchy, it needs
to connect computers together. Each computer is part of several
nodes: its leaf node, the root node and several intermediate nodes.
More precisely, every computer is a leaf node and also acts as all
the parent node of its leaf. As explained in section IV-B every
computer needs to know for each of its brother nodes (a brother
node is an other child of its parent node) a computer that acts as
this brother.

An simple method to do that is to run the following algorithm
for every computer. The computer is a leaf. For every ancestor3

of this leaf, take the list of its children. For every child, randomly
take a computer that acts as this child and open a socket to this
computer. This socket will be used as the link to this brother
node.

Choosing randomly the computer that will be used to contact a
brother is fine because the DST only specifies that the computer
must be a descendant of the brother node. However, applications
can use specialized algorithms to match their needs. For example,
for fault robustness reasons, an application can take special care to
avoid that every computer chooses the same computer to contact
the brother node. Other applications could make other choices
for load balancing reasons or depending on the physical network
topology.

B. Distributed Algorithm

Using a centralized algorithm is easy to build a new DST each
time you need it. But using a distributed algorithm is better to get
an incremental approach, limit the number of exchanged messages
and avoid the need of a global knowledge. This distributed
algorithm is also mandatory in the case of self-organized peer
networks.

Implementing the distributed algorithm is difficult for efficiency
reasons and due to numerous details. However, we use some new
techniques that greatly simplify the algorithm. In particular, we
are able to use a simple and mutex-free election algorithm and a
simple way to choose a computer that is a descendant of a defined
node.

From the specification, a node cannot have more than b

children. If several children can be added in parallel, then it is
not trivial to avoid the case where several children are inserted
when the parent node already has b−1 children and, thus, do not
respect the specification. To avoid this problem, we implement a
mutex that allows the insertion or the exclusion of only one child
at a time, for a given node.

In our implementation, every node has a particular computer
that acts as a mutex. Thus, before modifying the structure of the
node, the algorithm acquires this mutex and releases it when the
modification ends. Instead of implementing an election algorithm
for choosing which computer serves as a mutex, we choose to
use shared information for doing it.

When a new child is added, every computer that forms the
parent node becomes aware of this new child. This is because if
a computer does not know that it has a new child, the computer
is not able to act as the parent node to forward messages to
this child. If a computer knows who is the new child, it also
knows who are the old children. Thus, every computer is able to
maintain a list sorted by date where the oldest child is the first
element and the youngest the last one. The advantage of this list
is that all computers that form a node are able to share it without
needing to exchange a message. In our implementation, this list
used no memory (routing table is sorted instead of implementing
a separated list) and uses few CPU to be maintained.

The mutex of a leaf’s parent node is its oldest child. The mutex
of a leaf’s grant-parent node is the oldest child of its oldest child,
and so on. By recursively taking the oldest child of a node, we
end up taking a computer. This computer is used as the mutex of
the node.

3parent node, grant-parent node, ..., root node.
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VIII. PERFORMANCES STUDY

To prove the interest of the DST structure, we have developed a
simulator. In this section, we present a study on the performances
obtained with this simulator for the structure and the algorithms
.

A. Description of the simulations

The aim of these simulations is to compare the behaviors and
the performances of flooding search algorithms on top of three
overlay network topologies: tree, pseudo-random graph and DST.
Our comparison is limited to these two topologies because, as
presented in section II, they are the most commonly used for self-
organized networks whereas static or index oriented topologies
cannot be used in this context.

Our first idea was to simulate and study the DST behavior
on the Internet. However, experiences on Internet cannot be
reproduced as the simulation conditions cannot be two times the
same. Thus, we restrict ourselves to a model where all computers
have one link, an access to every other computer through a central
router and a limited bandwidth. This model is widely used to
simulate overlay networks. It is not far from a realistic Internet
model if we consider different bandwidth for different links and
FIFO queues which guarantee that there is not two messages on a
link at the same time. With this model, we can measure the impact
of different factors, as the bandwidth or the physical network
topology, on the execution performances.

Exact details of the simulations can be found by downloading
the simulator [22]. The link model can be described the following
way: a message4 takes 1 ms to cross a link and there are FIFO
queues assuring that there is no more than one message on a
link at a given time. We perform simulations for populations of
10, 100, 1 000 and 10 000 peers to study the behavior of the
algorithms when the overlay network scales up.

To simulate the execution of flooding algorithms, we use the
algorithm described in [10] for the tree and the graph topologies:
the initiator peer contacts its neighbors and waits for a reply; if no
resource is found, then the initiator asks its neighbors to contact
their neighbors and waits for their replies and so on until the end
of the tree or the graph is reached. For the DST topology, we use
the breadth first search like algorithm described in section V-D.
It corresponds to an implementation of a flooding algorithm on
this structure. Hundred different types of resources are available,
and every computer has a probability of 10 % to own a resource
of each type. Each search request stops either when it finds a
node with the requested resources or when the whole structure is
traversed.

About the overlay topologies characteristics, trees are bidi-
rectional and their arity is 5. Graphs are also bidirectional,
connected and the degree of each node is 5. Finally the DST
is made in a way that each node has 5 children. These degrees
were chosen because they show the best performances in our
simulations. More precisely, we run some tests at various scales
to find out these optimal degrees. Then, we use them for all the
simulations by considering that these degrees are always optimal
in our experiments5. However, these values depend on the links

4search messages are all about the same size, so they are modeled with the
same length.

5This is always true when we check it. But systematic checking is not
possible because of the amount of computing resources needed.

throughput and the probability to find a service. Changing one of
these parameters implies that the chosen degrees would no longer
be optimal.

B. Search algorithm simulation

In this section, we discuss the results of the simulations done
to evaluate the performances of the DST. For each simulated
overlay network, we compare the performances of the three tested
topologies. The two performance criteria studied here are the
average time taken to process a search and its variation depending
on the average load of the system. The system load is defined by
the request arrival rate or frequency: the number of queries that
are initiated per second for the whole system.

1) Overlay networks of 10 peers: The simulations results for
the 10 peer overlay networks are displayed on the figure Fig. 16.
The simulations show that the average time needed to process a
request depends on the request arrival rate. This is an ordinary
observation. When the number of initiated requests increases, the
system becomes more and more loaded and messages spend more
time in a waiting queue before being sent.
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Fig. 16. Performances for networks of 10 peers

When the number of requests that enter the system becomes
higher that the number of requests that leave it, the system
becomes saturated. This saturation is easily identifiable for the
DST on the figure Fig. 16: the average time needed to process
a request increases slowly for frequencies from 1 req.s-1 to
a frequency of 150 req.s-1; but it increases very quickly for
frequencies greater than 200 req.s-1. On the other hand, the graph
and the tree become very quickly saturated.

For a 10 peer overlay network, the simulations tell us that
graphs and trees have similar performances. This is interesting
because we expected to get better performances with the graph
in term of time used to process a request when the system is
not loaded (0.1 req.s-1) as explained in section VIII-B.2. The
more plausible explanation of this result is that some requests
completely traverse the graph as no resource is found (we only
have 10% of chance to find a resource on each peer and we only
have 10 peers). So, these requests need an additional round to
check that no other peer can be contacted. This is the final round
where lots of messages are sent to traverse the latest links both
ways while no untraversed peer remains. This additional round
affects the global average search time.

Studies of individual load of peers also explain why the tree and
the graph become saturated on a similar way: bottlenecks of both
topologies have to support similar load. This can be explained by
the fact that the tree has few bottlenecks that send an average of,
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say x̄ messages. With the graph traversal, which generates more
messages, every peer sends an average of x̄ messages. Because
every peer has the same bandwidth, and because the topology
performances are limited by their bottlenecks, both topologies
become overloaded in a similar way at this scale.

The DST has the best behavior for these simulations. Because a
DST is a tree, a search request only needs 2.n messages to query
n peers, which is less than the graph. But, because it distributes
the load of father nodes between its children, it does not suffer
from the tree bottlenecks. Thus, the DST can support much more
load than the other topologies at a scale of 10 peers. Note that
the DST also generates a lower search time than the tree when
the system is not loaded. The explanation is delivered in the next
section which also discuses the results for a scale of 100 peers.

So the main result of this experience, except that the DST
behaves as expected, is that for a small number of nodes or when
the searched resource is rare the graphs topologies will generate
an overhead to complete their traversal of links.

2) Overlay networks of 100 peers: The figure Fig. 17 presents
the simulation results for 100 peers. Like before, the three topolo-
gies saturate when the query arrival rate becomes too high. From
the simulations, it is clear that the tree has the worst performances
in term of supported load. A frequency of 100 req.s-1 is enough
to overload trees while graphs and DST start to be overloaded for
a frequency of 700 req.s-1. Before reaching this point, the average
search time increases slightly with the average load of the system.
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Fig. 17. Performances for networks of 100 peers

Graphs performances are roughly similar to the DST ones in
term of supported load and average search time. To understand
this similitude, it is important to remember that, in this experience,
a query has 10 % chance to find the searched resource on each
peer, that a search stops when at least one resource is found and
that simulated graphs are not small world. For graphs of 100 peers
and more, we notice that resources are found in one or two steps.
Searches with three steps are rare and searches with more than
three steps do not occur in graphs with at least 100 peers. A two
steps search means that 31 peers6 are traversed at most. From
this value, we can conclude that the probability for a peer to be
contacted at least twice is less than 1

3 . If every peer of a graph is
contacted only once, then only 2.n messages are needed to query
n peers and the average number of messages is optimal, like for
the tree.

This is one of the results of these simulations: because each
search needs to query a small part of the graph, few links are
traversed to access already contacted peers. Thus, few peers are

631 = 50 + 51 + 52.

contacted twice by the same request and the number of exchanged
messages is, with a big approximation, roughly similar to the
tree’s one. It depends on the number of nodes rather than on the
number of links. For this reason, as a graph inherently distributes
its load between its peers and as a DST is a tree that distributes the
load of a father node between its descendants, the performances of
both graph and DST are approximately similar in term of average
search time and supported load. But this result is however only
true when the searched resources have a high probability to be
found. If they have not, then the graph topology will, as in the first
experience, generates an overhead due to the traversal of unuseful
links.

1
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2 1
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1
1
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Fig. 18. The two first steps of a search in a tree and in a graph

We observe that tree topologies have a higher average search
time than graphs even when the average load is very low. This
is counterintuitive if we think that the average query time mainly
depends on the number of exchanged messages and that the tree
based traversal generates an optimal number of messages. But
these results do not take into account the time taken for this
traversal nor the position of the node into the tree. If we consider
the root node, this traversal is optimal on a balanced tree even
if the execution is done in parallel. But, if we consider a leaf
of the same tree, the first step of a search only queries one
peer, the father of the leaves. This behavior is illustrated by the
figure Fig. 18 where the gray node only queries one node for the
first round while the same step queries 5 peers in a graph or in a
DST. At the second step the tree queries 5 peers when the graph
or the DST can query 25 peers. Further, the tree behaves as if it
always has one round late compared to the two other topologies,
because tree leaves have one more hop to cross when they issue
a search request. In a balanced tree with an arity of 5 and height
n, there are more leaves (5n) than non-leaf nodes (

∑n−1
i=0 5i),

roughly a ratio of 5. Because every peer has the same probability
to initiate a search, the majority of searches are initiated by leaf
nodes. These searches are one round behind the other topologies
and generate a higher latency. This fact explains why the average
search time of the tree is more important than the two others even
when the system is under light load.

So the main result of this experience is that the tree topologies
are not efficient for the leaves, compared to graphs or DST, as
their first request will only query one node: their parent.

3) Large overlay networks: The figure Fig. 19 gives the simu-
lated performances for overlay networks of 1 000 peers. A load of
300 req.s-1 is enough to saturate the tree. Graphs and DST start to
be overloaded around 8 000 req.s-1. Before being overloaded, the
average search time of DST and graphs increases slowly when
the load is increasing.

Graph’s performances are close to the DST’s ones. The pre-
vious observation, which claims that graphs roughly send 2.n

messages to query n peers, is more pertinent in this case because
peers have a very low probability to be queried twice due to the
total number of peers as explained for the previous experience.
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Fig. 19. Performances for networks of 1 000 peers

Simulation results for topologies of 10 000 peers (see fig-
ure Fig. 20) do not show anything new. Trees start to be over-
loaded around 1 000 req.s-1 and the two other topologies support
at least a load of 40 000 req.s-1. The average search time of graphs
and DST increases slowly and linearly as a function of the load.
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Fig. 20. Performances for networks of 10 000 peers

We did no simulation with more that 40 000 req.s-1 due to the
amount of needed RAM. Every request sends several messages
and every message uses some memory space until it arrives to
its destination, then this memory is freed. A simulation with
a load of more that 40 000 req.s-1 is enough to consume 1 GB
of memory. With bigger simulations our system swaps and the
average CPU usage falls to 3 %. This is unacceptable knowing
that the simulation of 40 000 req.s-1 takes between 2 and 3 days
of computation with a CPU usage of 100%.

4) Scalability of the three topologies: Until now, we have
discussed the performances for each scale separately. Here we
present how the number of peers affects the performances of each
topology.

Adding new peers allows to increase the performances in term
of supported load. 40 req.s-1 saturate a tree of 10 peers, 100 req.s-1

saturate a tree of 100 peers, 300 req.s-1 saturate a tree of 1 000

peers and 1 000 req.s-1 saturate a tree of 10 000 peers. This is not
very efficient because multiplying the number of peers by 100

(from 100 peers to 10 000 peers) only multiplies the supported
load by 10 (from 100 req.s-1 to 1 000 req.s-1).

The DST has a good scalability. The supported load increases
linearly with the number of peers: 150 req.s-1 for 10 peers,
700 req.s-1 for 100 peers, 8 000 req.s-1 for 1 000 peers and more
than 40 000 req.s-1 for 10 000 peers. When the system is not
saturated, the average search time is stable: it varies from 25 ms
to 75 ms whatever the number of peers.

A performance of 150 req.s-1 on 10 peers (15 per peer) for a
DST may look inconsistent with the performance of 700 req.s-1

for 100 peers (7 per peer). But, the reason is that a two step search
only contacts 10 peers with only 10 peers, while the same search
contacts 25 peers in a DST of 100 peers. Less peers contacted
means that less messages are generated and so implies better
supported load.

Globally on the previous figures (10 to 10 000 nodes), the
scalability of the graph is similar to the scalability of the DST
except for small scales where the graph get bad performances.
This similarity comes from the fact that both topologies behave
in a similar way when the probability to find a resource on each
peer is fixed (10 % in our simulation) and that the number of
peers is high enough.
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Fig. 21. Performances for networks of 1 000 peers when no resources are
available

However, if the probability to find a resource is low enough
that the request is more widely spread and that peers receive
a query several times, then the performances of graphs cannot
cope with the performances of DST. The figure Fig. 21 presents
the performances of graphs and DST of 1 000 computers when
the probability to find a resource is 0 %. In this case, the DST’s
performances are better than the graph’s ones for two reasons:

1) a DST sends fewer messages as it uses the spanning tree
for its traversal algorithm. The number of sent messages
depends on the number of nodes while it depends on the
number of links for the graph;

2) a DST distributes fairly its load between computers as the
spanning trees used by the nodes are distributed across the
network nodes. Thus no bottleneck is generated compared
to the tree topology.

Note that a frequency of 1 broadcast request every 5 seconds
is enough to saturate a DST of 1 000 computers. This is normal
as expanding ring algorithms, which generates several waves of
search, are not efficient for this kind of applications. A DST is
more designed to support search requests that are just partially
spread on the structure.

IX. CONCLUSION

In this paper we have presented the Distributed Spanning
Tree structure: an interconnection proposition which aims at
connecting distributed nodes of a self-organized overlay network.
This structure is designed to support scalable searches and
traversal algorithms. It provides characteristics similar to trees
while avoiding the bottlenecks generated by the tree root. It
behaves better than randomly generated graphs as it only needs
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two times the number of nodes messages to query all nodes
and, thus, significantly improves traversal algorithm efficiency.
Simulations validate that the DST improves the performances of
search algorithms, whatever the size of the network, from ten
to several thousands nodes. The DST provides also good results
when broadcasting a request on the whole network. The main
drawback of this structure is its cost of construction but this cost
is spread out over the life time of the DST as the structure is
incrementally generated by nodes that join (or leave) the overlay
network.

Future works include the detailed study of the DST properties.
In particular, we are interested in tuning the value of the two
constants a and b (respectively min and max size of the groups) to
guarantee the stability of the DST. From these values will depend
the number and the frequency of group splitting and merging. If
these two values are too distant, the balance of the DST will not
be as good and this will probably impact the algorithm efficiency.

In the design of the DST, we assume that the global number
of nodes does not vary too much on a short period. So, an other
key point is to show that the behavior remains stable in these
conditions and to study its evolution if this assumption is not
verified anymore. We plan to evaluate the maintenance cost when
the number of nodes varies more than expected and to find the
threshold above which the maintenance becomes too costly.
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in 1997 at the École Normale Supérieure of
Lyon (ENS) and his HDR at the Université
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