
1

Coordinating Computation and I/O in Massively
Parallel Sequence Search

Heshan Lin, Member, IEEE, Xiaosong Ma, Member, IEEE, Wuchun Feng, Senior Member, IEEE,
and Nagiza F. Samatova

Abstract—With the explosive growth of genomic information, the searching of sequence databases has emerged as one of the
most computation- and data-intensive scientific applications. Our previous studies suggested that parallel genomic sequence-search
possesses highly irregular computation and I/O patterns. Effectively addressing these run-time irregularities is thus the key to designing
scalable sequence-search tools on massively parallel computers. While the computation scheduling for irregular scientific applications
and the optimization of noncontiguous file accesses have been well studied independently, little attention has been paid to the interplay
between the two. In this paper, we systematically investigate the computation and I/O scheduling for data-intensive, irregular scientific
applications within the context of genomic sequence search. Our study reveals that the lack of coordination between computation
scheduling and I/O optimization could result in severe performance issues. We then propose an integrated scheduling approach that
effectively improves sequence-search throughput by gracefully coordinating the dynamic load-balancing of computation and high-
performance noncontiguous I/O.

Index Terms—scheduling, parallel I/O, bioinformatics, parallel genomic sequence search, BLAST

!

1 INTRODUCTION
Genomic sequence search forms an important class of ap-
plications used widely and routinely in the life sciences.
A sequence-search tool compares a set of query sequences
against a database of DNA or amino-acid sequences using
an alignment algorithm and then reports the statistically
significant matches between the query sequences and the
database sequences. The similarities that are found between
a new unknown sequence and a sequence of known func-
tion can help identify the function of the new sequence and
find sibling species from a common ancestor.

Today, the collective amount of genomic information is
doubling every 12 months [1]–[3] while the computational
horsepower of a single processor is only doubling every 18-
24 months. The widening disparity between computational
capability and the massive technological advances in se-
quencing technology necessitates highly scalable sequence-
search tools that are capable of taking advantage of state-
of-the-art massively parallel computers. For instance, ini-
tial studies have shown that large sequence-search jobs,
such as genome-to-genome comparisons [4] and database-
to-database alignments [5], take hours or even days to
complete on supercomputers consisting of thousands of
processors.

Our past experiences suggest that the key design chal-
lenge of massively parallel sequence-search tools lies in
their highly irregular computation-and-I/O patterns:

• Heshan Lin and Wuchun Feng are with the Department of Computer
Science, Virginia Tech.
E-mail: {hlin2,feng}@cs.vt.edu.

• Xiaosong Ma and Nagiza F. Samatova are with the Department of
Computer Science, North Carolina State University and the Computer
Science and Mathematics Division, Oak Ridge National Laboratory.
E-mail: {ma,samatova}@csc.ncsu.edu.

• The execution time of a search task is hard to predict
from metrics such as the size of the input data. Tasks
processing the same amount of input can have execu-
tion times that differ by orders of magnitude [5].

• The output data distribution on different processes
is fine-grained as well as irregular, varying from one
query to another depending on the search results [6].

The reasons for these run-time irregularities are two-fold.
First, the required compute time and the output data
distribution of a search task depend on the similarities
between the compared sequences, which can vary signif-
icantly even between different tasks processing the same
amount of input data. Second, popular sequence-alignment
algorithms, such as BLAST [7], [8], employ heuristics to
improve computational efficiency, making it hard to predict
the execution time of a search task.

The efficient scheduling for irregular scientific applica-
tions has been extensively investigated during the last
decade, with a wealth of techniques proposed for dy-
namic load-balancing by leveraging applications’ runtime
profiles [9]–[12] or probabilistic signatures [13]–[17]. Most
of these scheduling studies, however, focus on compute-
intensive applications and do not address the irregular
I/O issue in data-intensive applications. Existing studies
on noncontiguous I/O optimizations [18]–[23], on the other
hand, emphasize improving actual I/O performance in
isolation and often ignored interactions with the scheduling
of computation. Thus, the interaction between I/O opti-
mizations and the computation scheduling for irregular
scientific applications has not been well understood.

In this paper, we systematically address the runtime
irregularities of parallel genomic sequence-search applica-
tions. We consider our contributions as follows:

• An empirical study that shows how the lack of coor-
dination between the I/O optimization and the com-

2

putation scheduling can result in severe performance
degradation for genomic sequence search, a repre-
sentative example of data-intensive applications with
irregular compute kernels.

• An integrated scheduling approach that gracefully
coordinates fine-grained, dynamic load-balancing and
asynchronous output processing to maximize through-
put and prevent the aforementioned performance
degradation for large-scale sequence search.

• An asynchronous, two-phase I/O technique that opti-
mizes concurrent noncontiguous I/O access without
paying synchronization overhead imposed by tradi-
tional collective I/O techniques.

• A performance evaluation of our integrated schedul-
ing approach and asynchronous two-phase I/O, run-
ning atop mpiBLAST [24], an open-source, parallel
sequence-search tool. Hereafter, we refer to the above
collectively as mpiBLAST-PIO, short for mpiBLAST
with parallel I/O1.

2 BACKGROUND AND OTHER RELATED
WORK
2.1 Genomic Sequence-Search Algorithms
Genomic sequence-search tools employ different alignment
algorithms to compare a query sequence against a database
of sequences. Examples of such alignment algorithms
include Smith-Waterman [25], Needleman-Wunsch [26],
FASTA [27] and BLAST [7]. Of these, the BLAST family of
algorithms is most widely used in biological and biomed-
ical research. BLAST compares a query sequence against
a database of sequences with a two-phase, heuristic-based
alignment algorithm. The database sequences that are most
similar (measured by a statistic called E-value) to the query
sequence will be reported along with the matching results.

2.2 Genomic Sequence-Search Parallelization
Because searching a sequence database is computation-
and data-intensive, many parallel approaches have been
investigated to cope with the rapid growth of sequence
databases. Hardware-based solutions [28]–[30] parallelize
the computation of individual alignments. These solutions
are highly efficient but require custom hardware such as
field-programmable gate arrays (FPGAs). The optimization
techniques presented in this paper focus on software-based
parallel solutions. These techniques, however, can be gen-
eralized to efficiently glue many hardware processing units
together to deliver even higher search throughput.

Early parallel sequence-search software adopted the
query segmentation approach [31]–[33], where a sequence-
search job is parallelized by having individual com-
pute nodes concurrently search disjoint subsets of queries
against the whole sequence database. This embarrassingly
parallel approach scales well when the database can fit in the
memory of a compute node. However, query segmentation
suffers expensive paging overhead when the database is
much larger than the memory of a compute node. This

1. The mpiBLAST-PIO package is available for download at
www.mpiblast.org.

issue motivated database segmentation [24], [34]–[36], where
the sequence database is partitioned and distributed across
compute nodes. By fitting large databases into the aggre-
gate memory of multiple nodes, database segmentation
eliminates the paging issue and allows timely sequence
analysis to keep up with the fast growing database sizes.
However, this approach introduces computational depen-
dencies between individual nodes because the distributed
results generated at different nodes need to be merged
to produce the final output. The parallel overhead caused
by merging results increases as the system size grows,
consequently limiting the program’s scalability for large-
scale deployments.

In summary, neither query segmentation nor database
segmentation alone is sufficient to offer scalable sequence-
search solutions on massively parallel computers. Con-
sequently, recent efforts adopted a combination of both
segmentation approaches. Rangwala et al. developed a par-
allel BLAST that extended and optimized pioBLAST [36],
a research prototype developed in one of our previous
studies, on Blue Gene/L [38]. Oehmen et al. presented
ScalaBLAST [39], a highly efficient parallel BLAST built on
top of the Global Array [40] toolkit. These tools organize
processors into equal-sized groups and assign a subset of
input queries to each group. Within a processor group, each
processor searches the assigned queries on a distinct por-
tion of the database. Both tools employ static load balancing
and implicitly assume that the execution time of a BLAST search
task is predictable from the total sizes and/or the numbers of the
input queries. For instance, in ScalaBLAST, the input queries
are split among processor groups such that the query
batch assigned to each group contains presumably the same
amount of “work units.” The work units of a query batch
are calculated based on a “trial-and-error” model that takes
into account both the total number of characters and the
number of queries.

However, our recent study discovered that for certain
types of BLAST search, there is no clear correlation between
the amount of input data and the execution time of a
sequence-search task [5]. In addition, tasks processing the
same amount of input can have execution times differing
by orders of magnitude. The weak correlation between the
sequence size and its search time can be attributed to that
1) the amounts of alignment computing depends more on
the similarities between the sequences than on the sequence
sizes; 2) the BLAST algorithm is heuristic-based, and thus,
its execution time is not necessary proportional to the
sequence sizes. As a consequence, the statically partitioned
and load balanced approaches of [38] and [39] will re-
sult in significant performance degradation due to their
implicit assumption of a predictable correlation between
the amount of input data and the execution time of a
sequence-search task. Observing the limitations of existing
static-load balancing approaches, with mpiBLAST-PIO, we
adopt a dynamic load-balancing approach and focus on
effectively reducing the query scheduling overhead. Our
previous study showed that our dynamic load balancing
approach can deliver 30% performance improvements over
the aforementioned static load balancing approaches when
searching skewed DNA sequences [37].

3

Finally, this paper extends from the preliminary stud-
ies conducted in our three previous conference publica-
tions [36], [37], [41]. The distributed result processing (Sec-
tion 3.3) was first introduced in our IPDPS’05 paper [36].
A preliminary design of the hierarchical architecture (Sec-
tion 3.1) was presented in our ACM CF’07 paper [41]. Part
of the dynamic load balancing optimizations (Section 3.2)
and I/O optimizations (Section 3.4) was discussed in our
SC’08 paper [37].

2.3 mpiBLAST
mpiBLAST [24] is an open-source, sequence-search tool that
parallelizes the NCBI BLAST toolkit [7]. The original design
of mpiBLAST follows a database segmentation approach
and a master-worker style. The master uses a greedy al-
gorithm to assign pre-partitioned database fragments to
workers. Each worker then concurrently performs a BLAST
search on its assigned database fragment. The results from
different workers are merged and written to the file system
on the master. mpiBLAST achieves good speedups when
the number of processes is small or moderate. However, as
we shall see in Section 3.3, the scalability of mpiBLAST, and
any approaches that employ database segmentation for that
matter, can be greatly hampered by its centralized output
processing design.

2.4 MapReduce
MapReduce is a programming model designed to simplify
parallel data processing on commodity clusters [42]. While
MapReduce has proven to be effective for many web data
processing applications, it is less suitable for large-scale
sequence search for several reasons. First, MapReduce only
handles one-dimensional input and hence is not suitable
for implementing both query segmentation and database
segmentation approaches. Moretti et al. has reported a simi-
lar observation that MapReduce is not sufficient to express
all-to-all style computation [43]. The existing MapReduce
BLAST implementation, i.e., CloudBLAST [44], only imple-
ments query segmentation and stores the entire database on
each node. As we discussed in Section 2.2, such a design is
not scalable to large databases. Second, cluster MapReduce
implementations are coupled with distributed file systems
such as the Google File System [45] that require local
storage on each compute node. However, many supercom-
puters today adopt a disk-less design on compute nodes.
Third, MapReduce imposes a restricted data format, i.e.,
data is stored in key-value pairs. The output of sequence-
search tools such as BLAST is not completely structured.
For instance, output data such as global search statistics
are hard to express in key-value pairs, making it difficult
to implement database segmentation in MapReduce. The
flexibility of the MPI model allows fine-grained processing
of this kind of unstructured data.

2.5 Optimization of Noncontiguous I/O
With database segmentation, the search results generated at
each processor will appear noncontiguously in the global
output file. Thus, optimizing noncontiguous I/O is im-
portant to improve the performance of parallel sequence

search. Traditionally, there are two techniques widely
adopted to optimize noncontiguous I/O performance used
in popular parallel I/O libraries such as ROMIO [19].

The first one is data sieving, introduced in the PASSION
I/O library [46], which targets noncontiguous I/O requests
issued from one process. It replaces the original small,
noncontiguous I/O requests with larger ones and uses ad-
ditional in-memory data manipulation to pick out portions
of the data specified in the original read request(s) or to
update portions of the data specified in the original write
request(s). Since these operations are much faster than disk
seeks, data sieving can considerably improve noncontigu-
ous I/O performance at the cost of accessing extra amounts
of data. However, with many processes accessing shared
files with fine-grained and interleaved write patterns, such
as the output of parallel sequence-search applications, data
sieving can incur too much extra data access and, hence,
yield unsatisfactory I/O performance.

The second technique, collective I/O, was designed to
improve parallel noncontiguous I/O by having multiple
processes coordinate their operations to combine small,
noncontiguous I/O requests into large, sequential ones [18],
[19], [47]. The most popular collective I/O strategy used
today is two-phase I/O [18]. With a two-phase write, in-
volved processes first exchange data to form a contiguous
write request, then write such buffered blocks to the file
system in parallel. Collective I/O has been widely used in
data-intensive numerical simulations. In this paper, we ar-
gue that collective I/O, when implemented synchronously,
incurs high synchronization cost whenever computational
phases of a parallel program are not balanced.

Recently, Bent et al. designed PLFS [48], a fast checkpoint
file system that optimizes noncontiguous write accesses
by having processes log their checkpoint data and the
corresponding offsets to individual files. For read accesses,
a global index needs to be constructed to offer a logical
view for the logged data belonging to a file. Although
PLFS can considerably improve the noncontiguous write
performance, it does not fully address the I/O issue in
large-scale sequence search. Unlike the checkpoint data,
sequence search results need to be frequently read for
further analysis. However, read accesses in PLFS are ineffi-
cient, because data is stored noncontinuously, and accessing
the global index incurs extra overhead. In addition, PLFS
generates one output file per process, which would signifi-
cantly increase the file management overhead on peta-scale
machines with hundreds of thousands of processors.

3 INTEGRATED COMPUTATION AND I/O
SCHEDULING
In this section, we first present the software architecture
of mpiBLAST-PIO. Then we discuss the details of our
proposed computation and I/O scheduling optimizations.

3.1 Software Architecture
mpiBLAST-PIO adopts a hierarchical architecture as de-
picted in Fig. 1. At the top level, processors in the system
are organized into equal-sized partitions, which are super-
vised by a dedicated supermaster process. The supermaster

4

is responsible for assigning tasks to different partitions
and handling inter-partition load balancing. Within each
partition, there is one master process and many worker
processes. The master is responsible for coordinating both
computation and I/O scheduling in a partition. It peri-
odically fetches a subset of query sequences (defined as
a query segment) from the supermaster and assigns them
to workers, and it coordinates the output processing of
queries that have been processed in the partition. Such a
hierarchical design avoids creating scheduling bottlenecks
as the system size grows by distributing the scheduling
workload to multiple masters.

SuperMaster

f1

Master1

P11

Partition 1

f2

P12

f1

P13

f2

P14

qi1 qi1

f1

Mastern

Pn1

Partition n

f2

Pn2

f1

Pn3

f2

Pn4

qj1 qj1

Qi Qj

…

…

Fig. 1. mpiBLAST-PIO software architecture. Qi and Qj are
query segments fetched from the supermaster to masters,
and qi1 and qj1 are query sequences that are assigned by
masters to their workers.

In this architecture, the compute processes in the system
are segregated into two groups – masters and workers. In
order to maximize the system throughput, it is important
to keep both groups of processes equally busy so that the
system idleness is minimized. The key to balancing the
workload between the masters and workers is to choose
an appropriate partition size Sp (defined as the number of
workers in the partition). To this end, our design supports
mapping an arbitrary number of workers to a master and
allows users to determine the appropriate Sp value through
initial profiling with sampled sequences from the original
query.2 As the master’s workload increases monotonically
as Sp grows, an optimal Sp can be found by comparing
the program performance at gradually increased Sp values.
Note that the optimal Sp value is platform- and workload-
dependent. While automatic tuning of this parameter is
challenging and beyond of the scope of this paper, our
experiences on multiple platforms and search workloads
suggest that using 128 workers per partition is a reasonably
good choice.

To enable database segmentation, mpiBLAST-PIO pre-
partitions the sequence database into fragments and stores
the fragments onto the shared file system. mpiBLAST-
PIO defines two running modes, non-sharing and sharing,
according to how the databases are distributed and stored
on the worker nodes.

2. We found that using randomly sampled query sequences from a
BLAST job to perform initial profiling is practical in finding appropri-
ate parameter values in our system.

The non-sharing mode assumes that input database frag-
ments are not shared among different parallel BLAST jobs.
This mode is suitable for platforms without locally attached
disks, such as IBM Blue Gene systems. In this mode, the
fragments are replicated to the worker nodes’ memory in a
way similar to those replication schemes used in previous
parallel BLAST studies [38], [41]. During system initializa-
tion, all workers in the system are organized into tempo-
rary equal-sized replication groups, and the first group is
designated as the I/O group. All database fragments are
disjointly assigned to the workers in the I/O group in a
round-robin fashion. Each worker in the I/O group then
reads in its assigned fragments in parallel and broadcasts
them to the corresponding workers in all other groups.

In institutions where BLAST is heavily used by many
users and cluster nodes are equipped with locally attached
disks, it is desirable to enable sharing of common sequence
databases between BLAST jobs to reduce the cost of data
movement. In the sharing mode, the database fragments
used by a BLAST job will remain on the local disks of the
worker nodes after the job is finished. At the beginning
of mpiBLAST-PIO execution, workers report the cached
fragments on their local disks to the master. This fragment
distribution information is then taken into account during
the scheduling decision.

3.2 Fine-Grained, Dynamically Load-Balanced Compu-
tation Scheduling
BLAST search time is highly variable and unpredictable, as
found in our past research [5]. To the best of our knowledge,
there is no effective way to estimate the execution time of
a given BLAST search. So, without a priori knowledge of
queries’ processing time, we simply use a greedy schedul-
ing algorithm to assign fine-grained tasks to idle processes.

To effectively balance loads across multiple partitions, we
assign a small query segment to each partition, especially
for running on supercomputers with a large number of
partitions. On the other hand, fine-grained, query-segment
allocation incurs two problems. First, the scheduling over-
head increases as the query segment size decreases. Second,
using small query segments forces frequent synchroniza-
tion between the workers within each partition, leaving
faster workers to wait for their slower peers to finish
before acquiring a new segment of queries to work on. In
particular, with small query segments, there are not enough
queries to “cancel out” the per-query imbalance of search
time, therefore intra-partition load imbalance may worsen,
resulting in degradation of resource utilization.

We address the above problems associated with small
scheduling granularity via dynamic worker grouping and
proactive query prefetching. Specifically, the search of a query
is broken into a set of tasks corresponding to the set of
database fragments this query has to be searched against.
The masters dynamically maintain a window of outstand-
ing tasks. Whenever a worker finishes its current task, it
contacts the master to request another one. The set of work-
ers that work on one particular query is thus dynamically
formed. This can achieve better load balancing within a
partition compared to statically assigning search tasks of
a query to a fixed set of workers. With query prefetching,

5

the master requests the next query segment when the total
number of outstanding tasks in the window falls under
a certain threshold. By combining these two techniques,
workers will not be slowed down by waiting for their peers
or for the next batch of query sequences.

The scheduling process running on the master is given
in Algorithm 1 below. The master maintains a list of query
sequences, QL, that are being processed in the partition.
A query sequence in QL corresponds to |F | individual
tasks, each searching the query sequence against a distinct
database fragment. The master keeps track of how many
tasks have been completed by workers. When observing
that the number of total incomplete tasks of all query
sequences in QL is less than the number of workers (|W |) in
the partition, the master issues a query prefetching request
to the supermaster. To overlap network communication
with local job scheduling, the master receives the query
segment in the background with a non-blocking MPI call.
The new query segment received from the supermaster is
then appended to the end of QL.

Algorithm 1 Master Scheduling Algorithm

Let QL = {q1, q2, ...} be the list of unfinished query sequences
Let F = {f1, f2, ...} be the set of database fragments
Let Unassignedi ⊆ F be the set of unassigned database fragments
for query sequence qi

Let W = {w1, w2, ...} be the set of workers in this partition
Let Di ⊆ W be the set of workers that cached fragment fi

Let Ci ⊆ F be the database fragments cached by worker wi

Let assignmenti refer to the assignment to the ith worker
Require: |W | "= 0

while not all query sequences have been finished do
if number of all unassigned fragments in QL < |W | then

Issue segment prefetching request to supermaster
end if
if Received a query segment QS from supermaster then

for qi ∈ QS do
Append qi to QL
Unassignedi ← F

end for
end if
Receive task request from worker wj

qc ← QL.head
assignmentj ← < ∅, 0 >
while qc "= QL.tail and assignmentj = < ∅, 0 > do

if ∃fi ∈ Unassignedc and wj ∈ Di then
Find fk such that k = argmin

k
(|Dk|)

and wj ∈ Dk and fk ∈ Unassignedc

assignmentj ← < qc, fk >
else

if sharing mode is used then
Find fk such that k = arg min

k
(|Dk|)

and fk ∈ Unassignedc

assignmentj ← < qc, fk >
end if

end if
if |Unassignedc| = 0 then

QL.head ← QL.head.next
end if
qc ← qc.next

end while
end while

In the above design, the size of a prefetched query
segment (Sq) is configurable. Using a smaller Sq can yield
better load balancing results, but it increases the number
of messages sent to the supermaster. In practice, Sq can
be configured to an arbitrarily small value as long as the

supermaster is not overloaded by the prefetching messages.
Based on our experiments on the System X cluster (config-
uration details will be described in Section 4.1) using 1024
processors, for typical BLAST searches the supermaster is
not a performance bottleneck even when the Sq is set to
1. In our previous study that used a similar scheduling
algorithm on the IBM Blue Gene/P system [37], we found
that a Sq value of 5 was sufficient to scale across 32,768
processing cores.

Within each partition, workers periodically report to the
master for assignments when idle. Upon receiving a task
request from an idle worker (wj), the master scans QL to
determine a task for wj as follows. For the current query
sequence being examined (qc):

1) If wj has cached some database fragments that have
not been searched against qc, the cached fragment that
is least distributed (i.e., cached by fewest workers) in
the partition will be assigned to the worker.

2) If wj has not cached any unsearched fragment of
query sequence qc and the sharing mode is used, the
least-distributed fragment is assigned to wj , who will
then load the assigned fragment from the shared file
system into its local cache before the computation.

Here data locality is taken into account to reduce data
movements and keep partition-wide data distribution to a
minimum under the sharing mode. If no tasks can be found
for this worker, the scheduling algorithm moves on to the
next query in QL. The same scheduling procedures are
repeated until a task is decided for the idle worker or until
all unfinished query sequences in QL have been examined,
in which case the worker has finished its own portion of
work. By allowing incomplete tasks to be independently
scheduled to any worker that has cached the corresponding
database fragments, our scheduling algorithm helps bal-
ance the workload among workers even when execution
times of different search tasks are highly skewed.

3.3 Scalable Distributed Result Processing
While most existing studies on parallel sequence search
have focused on parallelizing the computational part of
sequence search, we have found that the efficient handling
of output data is crucial in sustaining parallel execution
efficiency on large-scale systems. In this section, we identify
several performance issues in mpiBLAST’s original proto-
col for processing results. We then present a lightweight
alternative for mpiBLAST-PIO. The new protocol can signif-
icantly reduce the non-search overhead of sequence-search
tools using the database segmentation approach and enable
efficient processing of output-intensive queries.

As discussed in Section 2.3, mpiBLAST originally
adopted a centralized result-processing approach to merge
the results that are generated by different workers. Specif-
ically, in mpiBLAST, a worker produces result alignments
after searching a query sequence against a database frag-
ment. Each result alignment is a piece of the intermediate
result, which describes a hit area identified from an in-
database sequence. Information regarding an alignment,
such as sequence IDs, E-values, and the locations of the
hit are stored in a per-alignment data structure. Fig. 2(a)

6

TopAlign 1

TopAlign 2

TopAlign 3

Master

Format

Worker 1

Worker 2

Worker n

...

...

TopAlign n

Write

B1 B2 B3

AlignmentsSeq Data

... ...

Output File

(a) Centralized Processing of Results

LocalAlign 1.1

LocalAlign 1.2

LocalAlign 1.3

B1.1 B1.2 B1.3

Worker 1

Format

Write

LocalAlign 2.1

LocalAlign 2.2

LocalAlign 2.3

B2.1 B2.2 B2.3

Worker 2

Format

Write

...

LocalAlign n.1

LocalAlign n.2

LocalAlign n.3

Bn.1 Bn.2 Bn.3

Worker n

Format

Write

B2.1 B1.2B1.1 B2.2 B2.3Bn.1

Master

Block Meta WriteOffsets

Output File

(b) Distributed Processing of Results

Fig. 2. A comparison of centralized versus distributed result processing. In the centralized design, the master serially
formats and writes the globally top-ranked result alignments (e.g., TopAlign 1). In the distributed design, individual
workers concurrently format locally top-ranked alignments (e.g., LocalAlign 1.1) into output blocks (e.g., B1.1). The
workers then coordinate and write the output blocks to the file system with parallel I/O.

depicts the procedures of centralized result processing.
When a search task is finished, the worker sends the result
alignments together with the corresponding sequence data
to the master. The result alignments belonging to the same
query will be merged into a list in the order of their
E-values, and the corresponding sequence data will be
buffered and used later in the result formatting step. A
query is ready for output when the result alignments of
all database fragments have been received. The result data
of multiple ready queries are processed and written in their
submission order. To process a ready query, the master
calls the output routine of NCBI BLAST, which in turn,
formats each qualified alignment (in the top k range of the
alignment list) and appends the corresponding result data
block to the output file.

The above centralized design assumes that the re-
sult formatting and writing can be easily handled by a
single compute node. This assumption, however, is not
valid given the ever-growing scale of sequence databases,
query workloads, and parallel computers. For example,
researchers have found that searching individual “hard”
queries against large DNA sequence databases could yield
gigabytes of output data [5]. As a result, centralized re-
sult merging and formatting becomes the major scalability
bottleneck in mpiBLAST. Fig. 3 shows the execution break-
down of searching 300 nr sequences against the database
itself with mpiBLAST v1.4 on System X at Virginia Tech
(configurations to be described in Section 4). The “search
time” refers to the average time spent on the actual BLAST
search algorithm by each worker. The “other time” includes
all parallel overhead, which is dominated by the result
processing cost at the scale of our experiments. As shown
in Fig. 3, the search time decreases near-linearly as more
workers are used, but the non-search overhead also in-
creases rapidly. Consequently, the overall execution time
stops decreasing even when at 32 workers.

Several reasons account for the poor scalability of cen-
tralized result processing. First, all result alignments need
to be buffered at the master before output, imposing a
high memory demand on this single node, causing se-
rious performance degradation, or simply forbidding the
completion of certain output-intensive queries. Second, the
result formatting and writing are performed sequentially,
making the master a potential performance bottleneck in
handling a bulky result volume. Finally, the result sequence
data need to be sent over the network to the master for
preparing output, adding high message-passing cost to the
application-visible overhead.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

4 8 16 32

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Workers

search time
other time

Fig. 3. Performance of mpiBLAST-v1.4 with centralized
result processing design

To address these problems, mpiBLAST-PIO adopts a
distributed result processing design to enhance its scala-
bility in searching both individual and multiple queries on
a large number of processors. Figure 2(b) illustrates this
new output workflow. First, after generating local result
alignments, workers take one more step to format the
alignments into output blocks and store them in memory
buffers. Each output block is stored with the E-value of
the corresponding alignment. Next, workers submit block

7

metadata, which consists of the E-value and size of each local
output block, to the master. The master then merges and
filters output blocks of unqualified alignments according
to their E-values. When the block metadata of all workers
have been received for one query, the master calculates the
in-file offsets of globally qualified output blocks and sends
those back to the workers who buffered corresponding
output blocks. Now knowing the subset of their qualified
local output blocks, the workers write the output buffers
that they already prepared to the file system. These write
operations can be carried out in parallel using several
strategies, to be discussed in Section 3.4. Note that the
workers will proceed with searching new query sequences
when the output offsets of a searched query sequence are
not readily computed on the master. Thus, output process-
ing on the master is overlapped with search computing on
the workers without incurring visible synchronization cost.

The above distributed result processing greatly reduces
the parallel overhead compared to the centralized scheme.
First, it improves the level of parallelism by shifting the
bulk of work in result formatting from the master to
the workers and allows concurrent output preparation.
Second, it alleviates the memory space bottleneck at the
master node by having all workers collaboratively buffer
intermediate results. Third, only a small amount of data
(i.e., E-values, sizes and write offsets of output blocks)
needs to be exchanged between the master and the workers,
dramatically reducing the system communication volume.

It is worth noting that the E-value calculation is af-
fected by the database size. As such, earlier versions of
mpiBLAST generate inaccurate E-values because the size
of a database fragment is smaller than that of the entire
database. mpiBLAST-PIO solves this issue by broadcasting
the global database information to all workers and having
workers use those information to perform E-value calcula-
tion. By doing so, mpiBLAST-PIO can generate exactly the
same results as NCBI BLAST does.

3.4 Parallel Output Scheduling
Our dynamic computation scheduling and distributed re-
sult processing leave each involved worker a set of noncon-
tiguous output data blocks to write to disjoint ranges in the
output file. Efficiently writing those output data to the file
system is another challenge to sustaining high sequence-
search throughput that needs to be overcome.

Optimization of noncontiguous I/O operations has been
well-studied for parallel numerical simulations, which of-
ten possess predictable data access patterns and balanced
computation models. However, in our situation, the unique
aspects of parallel sequence-search applications complicate
the I/O design in several ways:

• The output data distribution is fine-grained and irreg-
ular, varying from one query to another depending on
its search results [5]. Straightforward, uncoordinated
I/O can result in poor I/O performance.

• Unlike in timestep simulations, where the compu-
tation time is well-balanced across processes, here,
computation time could be significantly imbalanced
across workers searching the same query on different

database fragments. In addition, there is no inher-
ent synchronization in the computation core between
searching different queries. Synchronous parallel I/O
techniques may incur high parallel overhead and have
negative impacts on our load balancing algorithms.

The above observations suggest that traditional noncon-
tiguous I/O optimization techniques, specifically data siev-
ing and collective I/O (described in Section 2.5), may not
be suitable for massively parallel sequence search. In this
paper, we investigate an alternative I/O optimization that
employs an asynchronous, two-phase writing technique.
We compare it with existing parallel I/O optimizations by
evaluating four output strategies: WorkerIndividual, Worker-
Collective, MasterMerge and WorkerMerge (as illustrated side-
by-side in Fig. 4). Among them, the first three are based on
existing I/O techniques, and the last one (WorkerMerge) is
based on our proposed I/O optimization.

3.4.1 WorkerIndividual
As described in Section 3.3, once the workers receive write
offsets of buffered output blocks from the master, they can
go ahead and issue write requests to the shared file system
to write out the buffered output blocks. Fig. 4(a) depicts
the procedure of the WorkerIndividual strategy with an
example setting consisting of three workers, assuming the
database is also segmented into three fragments. Whenever
a worker finishes a search assignment, it checks with the
master to receive offset information for previously com-
pleted queries. If such information arrives, the worker will
first write local qualified output blocks to the shared file
system before searching its next assignment. Note that as
the result merging cannot be finalized until all workers
complete searching the query sequence qi, a worker likely
will not be able to proceed with output right after it finishes
searching this query. Instead of blocking this worker until
the write offsets for qi are released by the master, the
scheduler lets the worker go ahead and request the next
query sequence, qi+1 and start computation again.

The writing of noncontiguous output data can be done
in two ways. The intuitive way is to perform a seek-and-
write operation for every block via POSIX I/O calls. This is
a slow solution as it will result in many small I/O requests,
unfavored by typical file systems. An alternative way is to
use the noncontiguous write method provided by MPI-IO
[49]. Each worker first creates a file view that describes the
locations to be written, then just calls MPI_File_write()
to issue writes of all output data at once. MPI-IO libraries
such as ROMIO [19] provide optimizations for this kind
of noncontiguous write with data sieving [50]. In our
experiments, MPI-IO calls will be used when data sieving
is supported by the underlying file system, otherwise we
fall back to seek-and-write with POSIX functions.

The major advantage of WorkerIndividual is that it does
not introduce any synchronization overhead in the I/O
phase. Because the output processing/writing of previous
query sequences can be well overlapped with the compu-
tation for later query sequences, workers alternate between
computation and I/O without wasting time waiting for
other workers. This strategy is expected to work efficiently
if the noncontiguous writing performance is well sustained

8

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

Worker 1 Worker 2 Worker 3 Master

qi+2

qi

qi+1

qi+2

qi

qi+1

qi+2

Search

Merge

1 Send evalue+size

1

2 Send offsets

3 Write data

1

1

2

2

2

3

3

3 3

Output of qi Output of qi+1
Output File

(a) WorkerIndividual

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

Output of qi Output of qi+1

qi

qi+1

qi+2

qi

qi+1

qi+2

1

1
1

2

2

2

Search

Merge

1 Send evalue+size

2 Send offsets

3

Write data4

Exchange data

3 3

Wait

4 4 4

qi+2

Worker 1 Worker 2 Worker 3 Master

Output File

(b) WorkerCollective

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

qi+2

qi

qi+2

qi

qi+1

qi+2

1

1
1

2

2

2

4

Output of qi Output of qi+1

Search

Merge

1 Send evalue+size

2 Offsets

3

3
3

Worker 1 Worker 2 Worker 3 Master

qi+1

Output File

3

Write data4

Exchange data

(c) MasterMerge

qi

Merge blocks
info

qi+1

Calculate
offsets of qi

qi+2

qi

qi+1

qi+2

qi

qi+1

qi+2

1

1
1

2

2

2

4

Output of qi Output of qi+1

Search

Merge

1 Send evalue+size

2 Offsets

3

3

Worker 1 Worker 2 Worker 3 Master

Output File

3

Write data4

Exchange data

(d) WorkerMerge

Fig. 4. Four output strategies compared in this study.

by the underlying file system. The disadvantage, however,
is that the noncontiguous accesses may be inefficient. Even
with data sieving, the concurrent irregular I/O requests
from multiple workers generate much contention on the
file system, leading to undesirable I/O performance.

3.4.2 WorkerCollective
Collective I/O appears to be a natural solution when we
have a large number of small, noncontiguous I/O requests
accessing a shared file with an interleaving pattern. A
corresponding output strategy for parallel sequence search,
which we call WorkerCollective, lets the workers coordinate
their write efforts into larger requests. As illustrated in Fig.
4(b), after receiving write offsets from the master, rather
than performing individual writes, the workers will issue
an MPI-IO collective write request. Like in the case of
WorkerIndividual, the result merging of qi likely will not
be done right after the search of this query is completed.
To overlap the master’s result processing with workers’
searching, all the workers involved in searching qi continue
with query processing, until between assignments they find

that the file offset information regarding qi has arrived.
At this point, a worker will enter the collective output
call for qi. The advantage of this strategy lies in its better
I/O performance compared to the noncontiguous write
approach, by combining many small write requests into
several large contiguous ones through extra data exchange
over the network. However, even with the overlap dis-
cussed above, this strategy still incurs frequent synchro-
nization, as collective I/O calls are essentially barriers that
force workers to wait for each other (as shown with the
white boxes in Fig. 4(b)). While very suitable for time-
step simulations, this communication pattern is undesirable
for parallel sequence-searches, which are known to have
imbalanced computation.

3.4.3 MasterMerge
Another intuitive solution, especially considering the popu-
lar use of Network File System (NFS) servers on commodity
clusters, is to let the master handle all the output. We
call this the MasterMerge. With MasterMerge, the workers
proceed as in the previous two schemes, until the result

9

merging outcome is communicated back to the workers. At
this point, rather than writing qualified local output blocks
to the shared file, the workers forward them to the master.
The master then merges the output data in its memory and
issues large, sequential write requests to the output file.
Fig. 4(c) shows the output process using MasterMerge. This
approach avoids concurrent I/O by many workers on a
system with limited parallel I/O support and merges small
I/O requests without enforcing synchronization on work-
ers. However, the master can easily become a bottleneck on
large-scale systems.

In implementing this strategy, the master’s memory con-
straint has to be taken into account. We defined a maximum
write buffer size (MBS) in the master to coordinate incre-
mental output communication, similar to the scheme used
in common two-phase I/O implementations [18]. That is,
only MBS amount of data will be collected and written at
each operation.

3.4.4 WorkerMerge
Recognizing the limitations of the aforementioned ap-
proaches, we propose WorkerMerge, an output strategy
that performs asynchronous, two-phase writes with merged
I/O requests. With this strategy, after the master finishes
result merging for query qi, it appoints one of the workers
to be the writer for this query. To minimize data com-
munication, we select the worker with the largest volume
of qualified output data to play the writer role, who will
collect and write the entire output for this query. The
workers involved in searching qi are notified about the
output data distribution and the writer assignment, and
send their output data for qi to the writer. In the example
depicted in Fig. 4(d), worker 2 is selected as the writer
for query qi. After receiving output offsets, worker 1 and
worker 3 send their output blocks to worker 2 using non-
blocking MPI sends, then continue with the next search
assignment. After worker 2 finishes searching query qi+1,
it receives output blocks sent by worker 1 and 3, then
performs a contiguous write.

In our implementation, the same incremental communi-
cation strategy used in MasterMerge is adopted here to
guard against buffer space shortage. Such data collection
is conducted using non-blocking MPI communication to
overlap with search computations. A writer checks the
status of the collection between searching two assignments.
Whenever the data is ready, it issues an individual write call
to output a large chunk of data. One may be concerned that
in the extreme case, all writes will be handled by a worker if
the fragments on this worker always generate more output
data than other fragments for all queries. This extreme case
rarely happens in reality. In addition, even in that extreme
case, the write duties will be shared by multiple workers in
a partition that cache the same set of database fragments.

The WorkerMerge strategy takes advantage of collective
I/O and removes the synchronization problem. Meanwhile,
it resolves the bottleneck problem of MasterMerge by
offloading output gathering and writing to workers. It
seamlessly works with our dynamically load-balanced com-
putation scheduling algorithm and allows a large number
of workers to be efficiently supervised by a master.

One may argue that the MPI-IO standard does provide
asynchronous collective I/O with split collective read/write
operations [49]. The split collective operations allow the
overlap of I/O and computation by separating a single
blocking collective call into a pair of “begin” and “end”
operations. However, our framework cannot benefit from
them for two reasons. First, split collective I/O is not
yet supported in popular MPI-IO libraries [19]. Second,
in our target scenario, the data distribution (in terms of
an MPI file view) is computed dynamically depending on
the local result merging process, therefore a new file view
needs to be constructed for each query’s output. Since the
MPI File set view call has only a blocking form, there is
no way to remove inter-worker synchronization even with
split collective write functions.

In our current design, the result from each query is
written by one writer process. For queries that generate
large amounts of output data, using multiple writers may
be beneficial. Our work targets large BLAST jobs processing
many queries on supercomputers. With a large number of
concurrent groups working on queries and our proposed
asynchronous writing, the underlying I/O parallelism in
the system is expected to be well utilized. Therefore, the
main issue here is whether the individual writers will have
enough memory space to buffer the single-query output,
which can be addressed by our incremental buffering and
writing design.

4 PERFORMANCE EVALUATION
4.1 Experiment Setup
To evaluate the computation and I/O scheduling ap-
proaches presented earlier in this paper, we perform ex-
tensive experiments with mpiBLAST-PIO on three clusters
with varying sizes, architectures, interconnection types,
operating systems, and file systems, as described below.

Jacquard: Jacquard is a 356-node Opteron cluster located
at National Energy Research Scientific Computing Center
(NERSC). Each node has dual Opteron 2.2 GHz processors
and 6 GB of physical memory. The nodes are interconnected
with a high-speed InfiniBand network. Shared file storage
is provided by the GPFS filesystem [51]. The MPI library is
MVAPICH version 0.9.5-mlx1.0.1.

IA64: IA64 is a distributed/shared memory hybrid of
commodity systems based on the Intel Itanium 2 processor.
It is located at Ohio Supercomputer Center (OSC). The
partition used in our experiments consists of 110 com-
pute nodes, each has two 1.3 Gigahertz Intel Itanium 2
processors and 4 GB of physical memory. The nodes are
interconnected with Myrinet and Gigabit Ethernet. Shared
file storage is provided by a PVFS filesystem. The operating
system is Linux and the MPI library is a version of MPICH
optimized for the Myrinet high-speed interconnect.

System X: System X is a 1100-node Mac OS cluster located
at Virginia Tech (VT). Each node consists of two 2.0-GHz
IBM PowerPC 970 CPUs and 4 GB of physical memory.
System X uses two interconnection fabrics, InfiniBand and
Gigabit Ethernet. Shared file storage is provided by a
ZFS [52] distributed filesystem. The MPI library is a cus-
tomized version of MPICH 1.2.5.

10

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500

16 32 64 128

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Workers

WorkerIndividual
WorkerCollective

MasterMerge
WorkerMerge

(a) Jacquard@NERSC

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

16 32 64 128

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Workers

WorkerIndividual
WorkerCollective

MasterMerge
WorkerMerge

(b) IA64@OSC

 0

 1000

 2000

 3000

 4000

 5000

 6000

16 32 64 128

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Workers

WorkerIndividual
MasterMerge
WorkerMerge

(c) System X@VT

Fig. 5. Node scalability results of searching 1000 randomly sampled nt sequences on a different number of workers.

It is worth noticing that due to a special combination
of the file system (ZFS) and the MPICH customization,
MPI-IO (especially collective I/O) is not well supported on
System X. Therefore for all experiments on System X, we
only show results of the three output strategies other than
WorkerCollective.

The experiment database is nt, a nucleotide sequence
database that contains the GenBank, EMB L, D, and PDB se-
quences. At the time when our experiments are performed,
the nt database contained more than 5 million sequences
with a total raw size of about 20GB and a formatted size
of about 6.5GB. To stress test the scalability of mpiBLAST-
PIO, we use sequences randomly sampled from nt itself as
queries because these queries are guaranteed to find close
matches in the database.

In our experiments, mpiBLAST-PIO is configured to run
in the sharing mode on IA64 and System X, where the
database is predistributed to the local disks of compute
nodes to save the database redistribution time in consec-
utive runs. The execution times reported on these systems
do not include the database distribution time. On Jacquard,
the program is configured to run in the non-sharing mode
as this platform does not provide per node local storage for
applications. The sequence database is distributed to the
memory of all processors using the replication approach
described in Section 3.1 at each run, and this overhead is
included in the overall execution time.

4.2 Scalability Comparison of Output Strategies
In this section we evaluate the scalability of four output
strategies discussed in Section 3.4 with regard to both
system sizes and output sizes. The experiment query set
consists of 1000 randomly sampled nt sequences sized 5KB
or less3. The sequences within this length range account
for 96% of overall sequences in the database. Our past ex-
periences suggested that searching these sequences incurs
high I/O demands. For all experiments in this section, we
configured mpiBLAST-PIO to use only one partition. Here
we are only looking at I/O scaling, in the next sections
we will evaluate load balancing and the overall program
scaling. The nt database is partitioned into 32 fragments.

3. mpiBLAST failed to complete this search job because the amount
of data required to be buffered on the master node exceeded the node
memory size.

These fragments are distributed on every 8 workers in a
Round-Robin fashion. This configuration works well for the
BLAST search jobs used in the experiments according to our
experiences. All experiments are repeated three times and
the average results are reported. The result variances are
less than 5% in these experiments, hence the error bars are
not included in the figures.

Fig. 5 shows the node scalability test results, where we
plot the overall execution time of searching the given query
set against nt as a function of the number of workers.
We find that across all three platforms, the WorkerMerge
approach works consistently the best. Overall, its winning
margin increases as the number of workers grows. With
128 workers, it outperforms the WorkerInidividual strategy
by an average factor of 1.8 over the three test systems,
WorkerCollective by 5.4, and MasterMerge by 1.7. In ad-
dition, WorkerMerge achieves near-linear scaling from 16
to 128 workers on all three tested platforms. As expected,
it outperforms other strategies by adopting distributed,
merged I/O without enforcing additional synchronization
that slows down query processing.

For the two systems that have collective I/O support, the
WorkerCollective approach gives the worst performance.
This is due to the synchronization cost associated with peri-
odic collective I/O operations. Interestingly, the differences
between the other three approaches look very different on
the three platforms. Most notably, the WorkerIndividual,
MasterMerge, and WorkerMerge strategies yield very sim-
ilar performance on the IA64 system. One major reason is
that the CPU frequency on this machine is relatively low
(1.3GHz), while the interconnection bandwidth and the I/O
bandwidth are high. Overall this results in a lower pressure
on the output components, as results are generated rather
slowly but consumed fast. On Jacquard, it is evident that
WorkerMerge outperforms MasterMerge, and MasterMerge
outperforms WorkerIndividual.

Next, we perform a set of output scalability tests. By
default, NCBI BLAST reports the matches between a query
sequence and the top 500 database sequences that are closed
to the query based on the alignment results. This configu-
ration is used in the previous group of tests. In the output
scalability tests, we vary the output size by configuring
BLAST to report the top 250, 500, 1000, and 2000 result
database sequences. The corresponding total output sizes
are 428MB, 768MB, 1.4GB, and 2.4GB, respectively. The

11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

250 500 1000 2000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Output Sequences per Query

WorkerIndividual
WorkerCollective

MasterMerge
WorkerMerge

(a) Jacquard@NERSC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

250 500 1000 2000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Output Sequences per Query

WorkerIndividual
WorkerCollective

MasterMerge
WorkerMerge

(b) IA64@OSC

 0

 500

 1000

 1500

 2000

250 500 1000 2000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Output Sequences per Query

WorkerIndividual
MasterMerge
WorkerMerge

(c) System X@VT

Fig. 6. Output scalability results of searching 1000 randomly sampled nt sequences with different amount of output data.

total number of workers used here is fixed at 128. The
rationale behind the output scalability tests is that as paral-
lel computers become more powerful and databases grow
larger, the I/O-to-computation ratio of genomic sequence-
searches is expected to increase in the near future. By
varying the amount of output data, our tests arguably
evaluate how well different output strategies accommodate
the performance trend of future sequence-search jobs. In
addition, our tests address users’ needs for gathering large
amounts of results; according to the feedbacks provided
in mpiBLAST users’ mailing list, it is not unusual that
nowadays BLAST users choose to have several thousands
of result sequences reported.

Fig. 6 shows the results of the output scalability tests,
where we plot the overall execution time as a function of
the number of reported result sequences. The advantage
of WorkerMerge over the other strategies is more evident
than in the node scalability tests. When reporting 2000 re-
sult sequences, WorkerMerge outperforms the second best
strategy by a factor of 2.4, 1.8 and 1.3 on Jacquard, IA64 and
System X respectively, and outperforms the worst strategy
by a factor of 4.9, 8.8, and 2.1. In addition, the performance
curves of WorkerMerge are much flatter than those of the
other three strategies, suggesting that WorkerMerge is less
sensitive to the growth of output sizes than the others.

Overall the relative performance differences between
various strategies are similar to those in the node scal-
ability tests. A new observation is that on Jacquard, the
performance of WorkerIndividual degrades fast as more
results are reported, causing a worse execution time than
WorkerCollective at 2000 result database sequences. The
scalability of WorkerIndividual is much better on IA64 and
System X. One explanation is that the noncontiguous write
approach used in WorkerIndividual is better supported
by the file systems on the two platforms. In particular,
PVFS (on IA64) provides special optimization for this write
pattern with LIST I/O technique [21].

It is clear that for both types of scalability tests, Worker-
Merge greatly outperforms the other strategies on all three
tested platforms. Therefore, we will configure mpiBLAST-
PIO to use WorkerMerge in the rest of the experiments.

4.3 Fine-grained Dynamic Load Balancing
In Section 3.2 we presented the details of our fine-grained,
dynamic load-balancing algorithm. A key factor of the

design is to minimize the scheduling overhead by having
masters proactively prefetch query segments from the su-
permaster. In this section, we evaluate the efficacy of query-
segment prefetching with two synthesized workloads that
have different balancing sensitivity to the task granularity.

The first workload uses a query set consisting of 1000
randomly sampled nt sequences sized 1KB or less. Our
past experiences suggest that the search time distribution is
relatively balanced for these sequences. For this workload,
the load balance results are relatively insensitive to the
task granules. For the second workload, we purposely
synthesize a query set with a skewed search time distri-
bution, where the load balancing results are highly sen-
sitive to the task granules. We mixed expensive queries
with inexpensive ones in terms of their search times as
follows. According to our previous study [5], expensive
query sequences in the nt database are likely to be larger
than 5KB. With this hint, we first randomly sample 10,000
query sequences under 50KB from the nt database. These
sequences are separated into two groups, with the first
group consisting of sequences larger than 5KB and the
second group consisting of the rest. Then we extract 10%
of the most expensive sequences out of group one and
put them together with 10% sequences randomly extracted
from group two. This results in a 1000-sequence query set
with expensive ones in the beginning.

Fig. 7(a) gives the Cumulative Distribution Function
(CDF) plot of the processing time of each query sequence in
the above two workloads when searched on 32 processors
on System X. We label the first and the second workloads
with “Balanced” and “Skewed,” respectively. As can be
seen, 98.8% of query sequences in the first workload can
be processed within 10 seconds, and the longest processing
time is only 50 seconds. In the second workload, most of
the query sequences (96.9%) can still be processed within
10 seconds. However, the rest of the sequences are much
more expensive, with processing times ranging from 40 to
400 seconds.

We search the two workloads on System X using 166
processors configured into 5 partitions, with each consist-
ing of 32 workers. The nt database is partitioned and
predistributed in the same way as in the scalability tests.
Each experiment is repeated three times and the average
numbers are reported. Again, the result variance are quite
small (less than 5%), so we do not include the error bars in

12

the result figures.
Fig. 7(b) shows the results of searching the balanced

workload with and without query-segment prefetching on
various task granules (i.e., query segment sizes). The overall
execution time is reported as it measures the comprehen-
sive performance impacts and matters the most to the end
users. As expected, our prefetching design can significantly
reduce the scheduling overhead when using small task
granules compared to the non-prefetching design. Specif-
ically, without prefetching of query segments, the overall
execution time increases by a factor of 1.4 when the query
segment size drops from 5 to 1. This is because when the
task granule is small, there is not enough work in a query
segment to balance loads across workers in the partition,
causing worker idleness. In contrast, with prefetching, the
overall execution time is about the same across different
segment sizes. We further measure the worker idle time
by subtracting the average time that the workers spend on
doing useful work (i.e., searching, processing and writing
results) from the overall execution time. As shown in
Table 1, non-prefetching configurations incur significantly
higher idle time than the prefetching counterparts for small
segment sizes. In particular, the idle time of the non-
prefetching configuration is more than 10-fold higher than
that of the prefetching configuration for segment size 1.

The results of searching the skewed workload are quite
different than those of the balanced workload, as shown
in Fig. 7(c). For this heavy-headed query set, a large query
segment size can cause significant imbalance in the process-
ing times of individual segments. As a result, in general the
overall execution time increases as the query segment size
grows. However, without prefetching, using segment size 5
delivers better performance than using segment size 1. The
reason is when the segment size is 1, the overhead caused
by the worker idleness offsets the gain of fine-grained
load balancing. The worker idle issue is greatly resolved
with prefetching of query segments. Consequently, with
prefetching, the system achieves the best performance at
the smallest task granule (query segment size 1), where the
advantage of fine-grained load balancing is fully taken. In
particular, the best prefetching case (query segment size 1)
outperforms the best non-prefetching case (query segment
size 5) by a factor of 1.4.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

128 256 512 1024

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of Processors

P32
P64

P128
PALL

Fig. 8. Scalability of searching 5000 nt sequences with
various partition sizes on System X.

4.4 Overall System Scalability
In order to evaluate the scalability of our integrated
scheduling approach on massively parallel machines, in
this experiment we benchmark mpiBLAST-PIO with up to
1024 processors on System X. We vary the system size to
include from 128 to 1024 processors. To see how different
partition sizes will affect the system throughput, for each
system size, we perform multiple tests by configuring
mpiBLAST-PIO to use 4 different partition sizes (in terms of
number of workers): 32, 64, 128 and the system size (PALL).
Note that when the partition size equals the system size
(e.g., using 128 as the partition size on 128 processors),
there is only one master process. The query set consists
of 5000 randomly sampled nt sequences sized 5KB or
less. The database is partitioned and distributed as other
experiments presented previously. The prefetching query
segment size is set to one.

Segment Size 1 5 10 20
Prefetch 26.27 20.37 33.79 45.95
NoPrefetch 279.15 99.58 71.64 54.54

TABLE 1
Worker idle time (measured in seconds) comparison for the

balanced workload.

The performance results are shown in Fig. 8. The first
observation is that the execution times decrease nicely for
all configurations as the system size grows. Surprisingly,
even with a single master (labeled PALL), mpiBLAST-
PIO scales well to 1024 processors, which suggests that
our inner-partition scheduling algorithm is highly efficient.
However, the benefit of hierarchical scheduling on large
system size is evident. With 512 processors and above,
PALL is significantly slower than all other three configura-
tions, simply because the master will become a performance
bottleneck when managing too many workers.

The performance impacts of using different partition
sizes are affected by a combination of several factors. On
the one hand, using larger partition sizes can save the
number of master processes and give more horse power to
the actual search computation. On the other hand, larger
partition sizes could overburden the master process with
increasing loads of scheduling and output coordination,
and consequently incur higher parallel overhead. Table 2
shows the measured processing time on the master node,
including scheduling and output coordination for various
partition sizes on 1024 processors. Clearly, the master load
increases noticeably as the partition size grows. Interest-
ingly, P32 and P64 deliver almost identical performance.
This suggests that when partition size increases from 32 to
64, the saving in search computation time is counteracted
by the parallel overhead increase. Nonetheless, mpiBLAST-

Partition Size 32 64 128 1024
Master Processing Time (s) 91.20 161.31 302.91 902.15

TABLE 2
Master processing time with different partition sizes.

13

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 50 100 150 200 250 300 350 400

Cu
m

ul
at

ive
 P

er
ce

nt
ag

e

Query Processing Time (secs)

Balanced
Skewed

(a) CDF

 0

 200

 400

 600

 800

 1000

1 5 10 20

Ex
ec

ut
io

n
Ti

m
e(

s)

Query Segment Size (#sequences)

Prefetch
NoPrefetch

(b) Balanced Workload

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 5 10 20

Ex
ec

ut
io

n
Ti

m
e(

s)

Query Segment Size (#sequences)

Prefetch
NoPrefetch

(c) Skewed Workload

Fig. 7. Performance impacts of query segment prefetching.

PIO achieves almost linear speedup up to 1024 processors
when the partition size is set to 64, with a parallel efficiency
of 92% on 1024 processors as shown in Fig. 9.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

Sp
ee

du
p

Number of Processors

linear speedup
P64

Fig. 9. Speedup of searching 5000 nt sequences on
System X with hierarchical scheduling (partition size 64).

5 CONCLUSION
We consider large-scale genomic sequence-search as a class
of parallel applications that possess highly irregular run-
time behaviors in both computation and I/O. We identify
that for this type of application, the incoordination between
the I/O optimizations and the computation scheduling
could result in serious performance degradations. Conse-
quently, we propose an integrated scheduling approach that
nicely coordinates dynamic computation load-balancing
and high-performance non-contiguous I/O for maximiz-
ing the sequence search throughput. We implemented our
optimizations on mpiBLAST and developed a research
prototype named mpiBLAST-PIO. The experimental results
on multiple platforms demonstrate that our integrated
scheduling approach allows large-scale sequence search
to efficiently scale on general parallel computers. In the
future, we plan to generalize our study to other scientific
applications with irregular computation and I/O patterns
such as parallel HMMER [53] and large-scale protein family
identification [54].

ACKNOWLEDGMENTS
This work is in part supported by the following funding
sources: 1) DOE ECPI Award (DE-FG02-05ER25685); 2)

NSF CAREER Award (CNS-0546301); 3) Dr. Xiaosong Ma’s
joint appointment between NC State University and Oak
Ridge National Laboratory; 4) Scientific Data Management
Center (https://sdm.lbl.gov/sdmcenter/) under the DOE’s
Scientific Discovery through Advanced Computing Pro-
gram; 5) Los Alamos National Laboratory contract W-7405-
ENG-36. We are grateful to Virginia Tech Advanced Re-
search Computing, Ohio Supercomputing Center and High
Performance Computing Center at North Carolina State
University for granting us access to their supercomputing
resources. This research also used resources of the National
Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S. DOE un-
der Contract No. DE-AC02-05CH11231. The authors thank
Jeremy Archuleta and Tom Scogland for their constructive
feedbacks on the manuscript.

REFERENCES
[1] D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, and

D. Wheeler, “GenBank,” Nucleic Acids Res, vol. 36, January 2008.
[2] J. Ostell, “Databases of Discovery,” ACM Queue, vol. 3, no. 3, 2005.
[3] National Research Council, The New Science of Metagenomics: Re-

vealing the Secrets of Our Microbial Planet. National Academy
of Sciences, 2007.

[4] S. Schwartz, J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. Hardison,
D. Haussler, and W. Miller, “Human-Mouse Alignments with
BLASTZ,” Genome Res., vol. 13, 2003.

[5] M. Gardner, W. Feng, J. Archuleta, H. Lin, and X. Ma, “Par-
allel Genomic Sequence-Searching on an Ad-Hoc Grid: Experi-
ences, Lessons Learned, and Implications,” in Proceedings of the
ACM/IEEE SC2006 Conference on High Performance Networking and
Computing, 2006.

[6] A. Ching, W. Feng, H. Lin, X. Ma, and A. Choudhary, “Exploring
I/O Strategies for Parallel Sequence Database Search Tools with
S3aSim,” in Proceedings of the International Symposium on High
Performance Distributed Computing, June 2006.

[7] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic
Local Alignment Search Tool,” Journal of Molecular Biology, vol.
215, no. 3, 1990.

[8] S. Altschul, T. Madden, A. Schffer, J. Zhang, Z. Zhang, W. Miller,
and D. Lipman, “Gapped BLAST and PSI-BLAST: A New Genera-
tion of Protein Database Search Programs,” Nucleic Acids Research,
vol. 25, no. 17, 1997.

[9] M. Warren and J. Salmon, “A Parallel Hashed Oct-Tree N-
body Algorithm,” in Supercomputing ’93: Proceedings of the 1993
ACM/IEEE Conference on Supercomputing. New York, NY, USA:
ACM, 1993.

[10] J. Chen and V. Taylor, “Mesh Partitioning for Distributed Systems:
Exploring Optimal Number of Partitions with Local and Remote
Communication,” in PPSC, 1999.

14

[11] K. Schloegel, G. Karypis, and V. Kumar, “Dynamic Repartitioning
of Adaptively Refined Meshes,” in Supercomputing ’98: Proceedings
of the 1998 ACM/IEEE conference on Supercomputing. Washington,
DC, USA: IEEE Computer Society, 1998.

[12] A. Sohn and H. Simon, “S-HARP: A Scalable Parallel
Dynamic Partitioner for Adaptive Mesh-based Computations,” in
Proceedings of Supercomputing 98, Orlando, Florida, 1998. [Online].
Available: citeseer.ist.psu.edu/article/sohn98sharp.html

[13] S. Hummel, E. Schonberg, and L. Flynn, “Factoring: A Method for
Scheduling Parallel Loops,” Commun. ACM, vol. 35, no. 8, 1992.

[14] S. Hummel, J. Schmidt, R. Uma, and J. Wein, “Load-Sharing
in Heterogeneous Systems via Weighted Factoring,” in SPAA
’96: Proceedings of the Eighth Annual ACM Symposium on Parallel
Algorithms and Architectures. New York, NY, USA: ACM, 1996.

[15] I. Banicescu and S. Hummel, “Balancing Processor Loads and Ex-
ploiting Data Locality in N-body Simulations,” in Supercomputing
’95: Proceedings of the 1995 ACM/IEEE Conference on Supercomput-
ing. New York, NY, USA: ACM, 1995.

[16] I. Banicescu and V. Velusamy, “Load Balancing Highly Irregular
Computations with the Adaptive Factoring,” in IPDPS ’02: Pro-
ceedings of the 16th International Parallel and Distributed Processing
Symposium. Washington, DC, USA: IEEE Computer Society, 2002,
p. 195.

[17] I. Banicescu, V. Velusamy, and J. Devaprasad, “On the Scalability
of Dynamic Scheduling Scientific Applications with Adaptive
Weighted Factoring,” Cluster Computing, vol. 6, no. 3, 2003.

[18] R. Thakur and A. Choudhary, “An Extended Two-Phase Method
for Accessing Sections of Out-of-Core Arrays,” Scientific Program-
ming, vol. 5, no. 4, 1996.

[19] R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO
Portably and with High Performance,” in Proceedings of the Sixth
Workshop on I/O in Parallel and Distributed Systems, May 1999.

[20] ——, “Optimizing Noncontiguous Accesses in MPI-IO,” Parallel
Computing, vol. 28, no. 1, January 2002.

[21] A. Ching, A. Choudhary, W. keng Liao, R. Ross, and W. Gropp,
“Noncontiguous I/O through PVFS,” in CLUSTER ’02: Proceedings
of the IEEE International Conference on Cluster Computing. Wash-
ington, DC, USA: IEEE Computer Society, 2002.

[22] A. Ching, A. Choudhary, K. Coloma, W. keng Liao, R. Ross,
and W. Gropp, “Noncontiguous I/O Accesses Through MPI-IO,”
in CCGRID ’03: Proceedings of the 3st International Symposium on
Cluster Computing and the Grid. Washington, DC, USA: IEEE
Computer Society, 2003.

[23] F. Isaila and W. Tichy, “View I/O: Improving the Performance of
Non-Contiguous I/O,” Cluster Computing, 2003. Proceedings. 2003
IEEE International Conference on, Dec. 2003.

[24] A. Darling, L. Carey, and W. Feng, “The Design, Implementation,
and Evaluation of mpiBLAST,” in Proceedings of the ClusterWorld
Conference and Expo, in conjunction with the 4th International Con-
ference on Linux Clusters: The HPC Revolution, 2003.

[25] T. Smith and M. Waterman, “Identification of Common Molecular
Subsequences,” J. Mol. Biol.s, vol. 147, pp. 195–197, 1981.

[26] S. Needleman and C. Wunsch, “A General Method Applicable to
the Search for Similarities in the Amino Acid Sequence of Two
Proteins,” J. Mol. Biol.s, vol. 48, 1970.

[27] D. Lipman and W. Pearson, “Improved Tools for Biological Se-
quence Comparison,” Proc Natl Acad Sci, vol. 85, no. 8, 1988.

[28] R. Luthy and C. Hoover, “Hardware and Software Systems for
Accelerating Common Bioinformatics Sequence Analysis Algo-
rithms,” Biosilico, vol. 2, no. 1, 2004.

[29] C. White, R. Singh, P. Reintjes, J. Lampe, B. Erickson, W. Dettloff,
V. Chi, and S. Altschul, “BioSCAN: A VLSI-Based System for
Biosequence Analysis,” in ICCD ’91: Proceedings of the 1991 IEEE
International Conference on Computer Design on VLSI in Computer &
Processors. Washington, DC, USA: IEEE Computer Society, 1991.

[30] “Bioccerator,” http://eta.embl-heidelberg.de:8000/, 1994, Com-
pugen Ltd.

[31] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett, and
C. Roberts, “Parallelization of local blast service on workstation
clusters,” Future Gener. Comput. Syst., vol. 17, no. 6, 2001.

[32] N. Camp, H. Cofer, and R. Gomperts, “High-throughput BLAST,”
http://www.sgi.com/industries/sciences/chembio/resources/
papers/HTBlast/HT Whitepaper.html.

[33] E. Chi, E. Shoop, J. Carlis, E. Retzel, and J. Riedl, “Efficiency of
Shared-Memory Multiprocessors for a Genetic Sequence Similar-

ity Search Algorithm,” Technical Report TR97-005, University of
Minnesota, Computer Science Department, 1997.

[34] R. Bjornson, A. Sherman, S. Weston, N. Willard, and J. Wing,
“TurboBLAST(r): A Parallel Implementation of BLAST Built on
the TurboHub,” in Proceedings of the International Parallel and
Distributed Processing Symposium, 2002.

[35] D. Mathog, “Parallel BLAST on Split Databases,” Bioinformatics,
vol. 19, no. 14, 2003.

[36] H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova,
“Efficient Data Access for Parallel BLAST,” in Proceedings of the
19th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS’05). Washington, DC, USA: IEEE Computer Society,
2005.

[37] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W. Feng, “Massively
Parallel Genomic Sequence Search on the Blue Gene/P Architec-
ture,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’08), 2008.

[38] H. Rangwala, E. Lantz, R. Musselman, K. Pinnow, B. Smith, , and
B. Wallenfelt, “Massively Parallel BLAST for the Blue Gene/L,”
in High Availability and Performance Workshop, 2005.

[39] C. Oehmen and J. Nieplocha, “ScalaBLAST: A Scalable Implemen-
tation of BLAST for High-Performance Data-Intensive Bioinfor-
matics Analysis,” IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 8,
2006.

[40] J. Nieplocha, R. Harrison, and R. Littlefield, “Global Arrays:
A Nonuniform Memory Access Programming Model for High-
Performance Computers,” The Journal of Supercomputing, vol. 10,
no. 2, 1996.

[41] O. Thorsen, K. Jian, A. Peters, B. Smith, H. Lin, W. Feng,
and C. Sosa, “Parallel Genomic Sequence-Search on a Massively
Parallel System,” in ACM International Conference on Computing
Frontiers, 2007.

[42] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[43] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and
D. Thain, “All-Pairs: An Abstraction for Data-Intensive Comput-
ing on Campus Grids,” IEEE Trans. Parallel Distrib. Syst., vol. 21,
no. 1, pp. 33–46, 2010.

[44] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: Combin-
ing mapreduce and virtualization on distributed resources for
bioinformatics applications,” in ESCIENCE ’08: Proceedings of the
2008 Fourth IEEE International Conference on eScience. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 222–229.

[45] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.

[46] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and S. Kudi-
tipudi, “Passion: Optimized I/O for Parallel Applications,” IEEE
Computer, vol. 29, no. 6, June 1996.

[47] J. May, Parallel I/O for High Performance Computing. Morgan
Kaufmann Publishers, 2001.

[48] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “Plfs: a checkpoint filesystem
for parallel applications,” in SC ’09: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis.
New York, NY, USA: ACM, 2009, pp. 1–12.

[49] MPI-2: Extensions to the Message-Passing Standard, Message Passing
Interface Forum, Jul. 1997.

[50] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective
I/O in ROMIO,” in Proceedings of the 7th Symposium on the Frontiers
of Massively Parallel Computation, February 1999.

[51] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for
Large Computing Clusters,” in Proceedings of the First Conference
on File and Storage Technologies, 2002.

[52] “ZFS at OpenSolaris.org,” http://www.opensolaris.org/os/
community/zfs/.

[53] K. Jiang, O. Thorsen, A. Peters, B. Smith, and C. P. Sosa, “An
Efficient Parallel Implementation of the Hidden Markov Methods
for Genomic Sequence-Search on a Massively Parallel System,”
IEEE Transactions on Parallel and Distributed Systems, vol. 19, pp.
15–23, 2007.

[54] C. Wu and A. Kalyanaraman, “An Efficient Parallel Approach
for Identifying Protein Families in Large-scale Metagenomic Data
Sets,” in Proceedings of the 2008 ACM/IEEE Conference on Super-
computing. Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–10.

