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Abstract—A number of network path delay, loss, or band-
width inference mechanisms have been proposed over the past
decade. Concurrently, several network measurement services
have been deployed over the Internet and intranets. We consider
inference mechanisms that use O(n) end-to-end measurements
to predict the O(n2) end-to-end pairwise measurements among
n nodes, and investigate when it is beneficial to use them in
measurement services. In particular, we address the following
questions: (1) For which measurement request patterns would
using an inference mechanism be advantageous? (2) How
does a measurement service determine the set of hosts that
should utilize inference mechanisms, as opposed to those that
are better served using direct end-to-end measurements? We
explore three solutions that identify groups of hosts which are
likely to benefit from inference. We compare these solutions in
terms of effectiveness and algorithmic complexity. Results with
synthetic datasets and datasets from a popular peer-to-peer
system demonstrate that our techniques accurately identify host
subsets that benefit from inference, in significantly less time than
an algorithm that identifies optimal subsets. The measurement
savings are large when measurement request patterns exhibit
small-world characteristics, which is often the case.1

Index Terms—Internet measurement, delay inference

1 INTRODUCTION

An important class of network inference mecha-
nisms estimate the properties (e.g., delay or loss)
of a large number of end-to-end network paths by
measuring some subset thereof.2 This class of mech-
anisms is designed to reduce the amount of injected

1. Part of this work (focusing on one of three solutions presented
in this paper) appeared in [1].

2. The terms inference or tomography are also used to refer to the
inference of properties of internal (router-to-router) links from purely
end-to-end (i.e., host-to-host) measurements. Such mechanisms are
not under discussion in this paper.

active measurement probe traffic and effort required
to collect a large set of measurements, usually at the
expense of measurement accuracy. For example, the
Azureus BitTorrent client can use inferred network
delay information to select peers from which to
transfer data [2]. Another example application is the
UUSee television streaming service [3].

A network measurement service, which provides
measurement results to applications upon request, is
uniquely suited to utilize network inference mech-
anisms. Examples of network measurement ser-
vices include ScriptRoute [4], the Scalable Sensing
Service (S3) [5], iPlane [6], and the system by
Calyam et al. [7]. Because a measurement service
has knowledge of a larger number of network mea-
surements than individual applications, it is in a
position to determine when inference can be used to
reduce the total number of measurements required
to satisfy a particular demand from applications.
To accomplish this, the service must quantify the
measurement load required to operate a network in-
ference mechanism, and compare this load to that of
direct measurement of the requested properties [8].

In this paper, we predict the network traffic
injected by inference mechanisms, and use this
knowledge to replace direct measurement traffic by
inference when the cost of direct measurement ex-
ceeds that of inference. After setting up an inference
mechanism, continuing measurements typically re-
quire O(n) probes to estimate properties of O(n2)
paths [9], [10], [11], [12]. Our work hinges on the
two observations that (1) there is a hidden constant
for the O(n) probes, which can be large, and that
(2) oftentimes, not all the O(n2) path properties are
requested.
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We present three efficient methods for identifying
opportunities when inference induces less traffic
than a given pattern of direct measurements, allow-
ing for small compromises in measurement accuracy
to be traded for a reduction in measurement traffic
load. We compare the three methods in terms of
effectiveness and algorithmic complexity. Our meth-
ods are not themselves inference mechanisms, but
tools for deploying existing inference mechanisms
dynamically on hosts where their use is advanta-
geous.

The remainder of this paper is organized as
follows. Section 2 defines the terminology we use
throughout the paper. Section 3 defines the problem
that we are addressing. Section 4 gives our solu-
tions and their analysis. Section 5 discusses results
from our experiments with both real and synthetic
datasets. Finally, Section 6 summarizes our results
and directions for future work.

2 TERMINOLOGY

When we discuss measurements, we mean active
network measurements that require injecting probe
packets into the network, e.g., ping packets to
measure end-to-end delay. A measurement service
is a network service that accepts requests for the
results of active measurements from applications
on-demand, schedules measurement tools, and ul-
timately returns the results from these tools to the
applications. A measurement host, or simply host,
is an infrastructure host in the measurement service
that invokes measurement tools and records their
output, to be delivered to applications. Measurement
endpoints are the hosts which source and/or sink
traffic when performing a given measurement. We
assume that the cost of contacting a measurement
infrastructure is acceptable. For most situations, this
cost should be comparable to, or less than, the cost
of performing the measurement in question.

We consider inference mechanisms which have a
cost linear in the number of hosts participating in the
inference, after startup (startup costs may be higher).
Reference-node-based inference mechanisms utilize
measurements to a small set of reference nodes
(which may or may not be the same set for each
participating host). While inference mechanisms ca-
pable of inferring various network properties have
been introduced in the literature, the most popular
and mature inference mechanisms infer path latency.

Our methods are, however, suitable for any infer-
ence mechanism whose costs can be approximated
as discussed in Section 3.

3 WHEN TO USE INFERENCE?
Using an inference mechanism implies a potential
sacrifice in the accuracy of measurement results.
For example, the Vivaldi and GNP latency infer-
ence mechanisms achieve a relative error of 50%
or better for 80% and 90% of network paths,
respectively [10], [9]. The median error achieved
by Vivaldi over all network paths in the same set
of experiments was about 11% [10]. Due to the
potential error introduced by inference mechanisms,
inference may not be an appropriate choice for all
measurement scenarios. Determining the suitability
of inference for particular applications is outside the
scope of this paper. For those applications which
can tolerate some error in measurement results, this
error can be traded for reduced network load.

Most reference-node-based inference mecha-
nisms require a number of measurements that scales
linearly with the number of hosts participating in
the inference. Some mechanisms perform a constant
number of measurements per host, e.g., [10], [11].
Others perform varying numbers of measurements
per host, but average a constant number per host,
e.g., [9], [12]. In this latter group, typically the
majority of hosts participate in a constant number of
measurements, and a constant number of hosts (such
as the so-called landmarks in GNP [9]) participate
in a large number of measurements (linear in the
number of hosts). Some of the algorithms have
an additional cost for initial construction, which
we will not consider in this paper. Initial cost can
include all-pairs measurements among a subset of
hosts [9], or per-host measurements larger than
steady-state operating costs [10].

Assume that we can identify or approximate the
constant in an inference mechanism that requires,
on average, a constant number of network mea-
surements per host to infer all-pairs measurements
among participating hosts. We will call this constant
k, call the number of hosts participating in the
inference n, and call such an inference mechanism
a kn-cost inference. The authors of the GNP delay
inference mechanism, for example, recommend that
hosts take measurements to 15 landmarks [9], and
the authors of the Vivaldi delay inference mech-
anism find that a selection of 32 neighbors [10]
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yields accurate results in their study. For these two
systems, under their recommended configurations, k
would be 15 and 32, respectively. The cost incurred
by each non-landmark GNP host is k measurements,
and the cost incurred by each landmark host is kn
measurements. Fig. 4 of Ng and Zhang [9] identifies
this cost. For Vivaldi, startup costs may be high, but
new hosts joining the system need take only a small
constant number of measurements to accurately
place themselves, as discussed in Section 4.4 of
Dabek et. al [10]. Observe that the constant k is dic-
tated by the workings of the inference mechanism
under consideration, and is not a tunable parameter
in our work. Given a set of measurements requested
from a measurement service and the constant k, we
can determine the tipping point at which the number
of requested measurements exceeds the number of
measurements required to perform inference. In this
case, using inference can reduce the total load on
the network (at the cost of reduced accuracy).

If we only use inference when the total number
of requested measurements exceeds kn, we will
miss key opportunities when inference is beneficial.
This is because some hosts may be participating
in measurements to a large number of hosts, while
others may be involved in very few measurements.
Consider a situation where n hosts are interested
in performing delay measurement to at least one
endpoint. Assume that m out of the n hosts are
performing a complete all-pairs measurement mesh,
where each of the m hosts measures delay between
it and the other m − 1 hosts. Additionally, n − m
hosts are measuring delay to only one endpoint
each. We therefore have O(m2 +n−m) total mea-
surements. If m <

√
n and k ≥ 3, comparing total

numbers indicates that direct measurement requires
fewer total measurements than inference. However,
if m > 2k+1, performing inference on the subset of
m hosts, and direct measurements for the remaining
hosts, would require fewer total measurements than
only using direct measurements.

Fig. 1 illustrates this scenario with n = 12
and m = 8. We represent each host requesting
measurement(s) as a node in a graph. A requested
measurement between two hosts is represented as
an undirected edge in that graph. When k = 3, this
graph (which has 32 edges) superficially appears to
see no benefit from inference, as 32 < 3n = 36.
However, by performing inference among the eight
nodes marked in black, we reduce the number of

measurements taken to 3 × 8 + 4 = 28, realizing
savings of four measurements.

Fig. 1. Graph benefiting from partial-graph in-
ference when k = 3.

If, given a set of requested measurements, we
wish to determine whether or not inference can save
effort over any subset of the participating hosts, we
have to answer a slightly different question. For
any subset of hosts of size n performing measure-
ments among themselves, if the total number of
measurements being performed is greater than kn,
then a kn-cost inference mechanism requires fewer
total measurements than direct measurement. Using
our measurement request graph above, determining
whether inference can reduce the total number of
measurements is a matter of finding subgraphs for
which the number of measurements within each
subgraph is greater than k multiplied by the number
of nodes in the subgraph. Replacing the direct
measurements in these subgraphs with inference
will yield a smaller total number of measurements
performed.

In other words, given a graph G = (V, E),
our goal is to transform it into another graph
G′ = (V, E ′) such that we minimize |E ′|, where
0 ≤ |E ′| ≤ |E| (all direct measurements) and
0 ≤ |E ′| ≤ k|V | (k|V | is the cost of inference
on the entire graph, using one of the inference
mechanisms in the literature). The only transfor-
mation operation allowed on G is replacement of
all edges among subsets Vi of V by k|V i| edges
(i.e., employing an inference mechanism on subsets
Vi of vertices, while using direct measurements for
remaining edges). Note that a vertex in one of
the Vi subsets can still be an endpoint in a direct
measurement, as long as the other endpoint does
not belong to a subset Vi.

4 SOLUTIONS AND ANALYSIS

A k-regular graph is a graph in which each node has
a degree of exactly k. An undirected graph where
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each node has a degree of exactly 2k involves kn
total measurements, and thus represents the tipping
point for a set of hosts using a kn-cost inference.
Unfortunately, showing that a general graph con-
tains a k-regular subgraph has been shown to be NP-
complete [13]. Therefore, we must find a solution
that trades off optimality for tractable computational
complexity.

To identify the subgraphs that have sufficient
“density” so that replacement of their direct mea-
surements with a kn-cost inference will result in
a net reduction, we investigate the following ap-
proximations. First, in Section 4.1 we use a set of
minimum spanning forests to identify edges in the
request graph (as described in Section 3) that are
likely to be a part of low-edge-count cuts of the
graph, and prune them. The nodes of the connected
components which remain are assumed to be hosts
which would benefit from participating in inference.
We then explore, in Section 4.2, algorithms which
use the degree of individual vertices to select high-
degree vertices for inclusion in inference. Finally,
we present a hybrid algorithm in Section 4.3 which
uses spanning forests to identify likely candidate
vertices, and then prunes this set of vertices based
on individual vertex degrees.

4.1 The Spanning Forest Algorithm

The pseudocode for an algorithm to identify groups
of hosts which may benefit from inference is pre-
sented in Fig. 2. The algorithm takes three pa-
rameters as input. The first, G, is an unweighted,
undirected3 graph representing measurement hosts
and requested measurements, as described in Sec-
tion 3. The second and third parameters, f and s, are
integer arguments representing parameters for the
heuristic we use. Let f be the number of spanning
forests used by the algorithm, which balances the
tradeoff between computation time and accuracy of
the algorithm. Let s be a threshold score used to
identify edges which are assumed to be part of a
low-edge-count cut of the graph G. As we will show
later, the value of s is a function of f and of the
constant k of the inference algorithm.

Let V (G) represent the vertices of G, and E(G)
represent the edges of G. Let vw represent an edge

3. We consider only undirected graphs in this work. The algorithm
presented generalizes readily to directed graphs, at the expense of
clarity.

from vertex v to vertex w. Let wt(·) represent the
weight of the edge given as its argument.

We first construct a set of f graphs {G1, . . . , Gf},
identical to the unweighted graph G, except that
each edge in these graphs is assigned a weight
from a uniform random distribution. We then find
a minimum spanning forest Fi for each such graph
Gi via the function MSF(·) (using, e.g., Kruskal’s
algorithm). Next, we define a score for each edge
in G as follows:

score(e) =
f

∑

i=1

{

1 : e ∈ Fi

0 : e 6∈ Fi

Any edge in G having a score greater than the
threshold score s is then removed from G. The
connected components of G are calculated by the
function components(·), and each connected com-
ponent is assumed to represent a set of hosts which
would benefit from having measurements internal
to the set replaced with inference. Additionally, any
two components that were connected via an edge in
the original graph are merged into a single compo-
nent. This is because using inference on the merged
graph incurs no additional cost (as the merged graph
includes no additional vertices). Generation of the
weighted graphs and computation of their spanning
forests is an easily parallelizable operation, as each
graph is treated separately during this stage of the
algorithm.

def inference groups by forest(G, f, s)
for i ∈ 1..f do

let V (Gi) = V (G)
let E(Gi) = E(G)
for e ∈ E(Gi) do

let wt(e) = random()
let Fi = MSF(Gi)

for e ∈ E(G) do
if score(e) > s then

let E(G) = E(G)\e
return components(G)

Fig. 2. Pseudocode for probabilistic spanning
forest selection of nodes for inference.

4.1.1 Bounds on the Expected Score
The motivation for using minimum spanning forests
with random edge weights is that we want a quick
method for estimating edge-connectivity in a graph.
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For any edge in the graph, we are able to lower-
bound the probability that a given edge will be
in a most constricting cut that contains that edge,
which leads to a lower bound on the expected score
for that edge. In addition, we can upper-bound the
probability that the actual score for the edge falls
significantly below the lower bound on its expected
score.

Let e = v1v2 be an edge in G, and let (V ′, E ′) be
the connected component of G that contains edge
e. Define vertex sets V1 and V2 = V ′ −V1 such that
v1 ∈ V1 and v2 ∈ V2 and c(V1, V2) is minimized,
where c(V1, V2) is the number of edges uw in G
such that u ∈ V1 and w ∈ V2.

Lemma 1: The probability that edge e is an edge
in Fi is at least 1/c(V1, V2), and the expected score
for e is thus at least f/c(V1, V2). Furthermore,
Pr(score(e) ≤ f/c(V1, V2) − α

√
f) ≤ exp(−2α2)

for any constant α.
Proof. Consider any of the graphs Gi. Whenever

all edge weights in Gi are distinct, an edge in Gi

that is of minimum cost among all edges between
V1 and V2 will be in the minimum spanning forest
Fi.

Since the weights of all edges in Gi are chosen
randomly, the probability that edge e = v1v2 is of
minimum cost among all edges between V1 and V2

is 1/c(V1, V2). Thus e appears in Fi with probability
at least 1/c(V1, V2).

For i = 1, 2, . . . , f , let Xi be a random variable
with Xi = 1 if e has minimum weight among
all edges uw between V1 and V2, and Xi = 0
otherwise. Clearly, the Xi are independent random
variables. Let S = X1 + X2 + . . . + Xf . Then E[S]
= f/c(V1, V2). Let X ′

i be variables, with X ′

i = −Xi.
Let S ′ = −S. Similarly the X ′

i are (amongst
themselves) independent random variables.

By Hoeffding’s inequality [14], Pr(S ′ − E[S ′] ≥
t) ≤ exp(−2t2/f). Then

Pr(S ′ − E[S ′] ≥ t) = Pr(−S + E[S] ≥ t)

= Pr(S − E[S] ≤ −t)

= Pr(S ≤ f/c(V1, V2) − t)

≤ exp(−2t2/f).

Choosing t = α
√

f gives the claimed result. Note
that score(e) ≥ S, since edge e might not have the
smallest weight of edges between V1 and V2 and yet
still be in Fi.

As clear from this lemma, the expected score is
a function of both c(V1, V2), which depends on the
structure of the graph, and of the number of forests
f , which balances the tradeoff between complexity
and accuracy. Based on the bounds on the expected
score, the value of the threshold score s must
be essentially proportional to f . Additionally, the
threshold s must be inversely related to the constant
k of the inference algorithm. This is because the
higher the value of k, the higher the overhead of
the inference mechanism, and therefore the more
aggressively we want to prune edges so that direct
measurements rather than inference are used in
relatively sparse areas of the graph. Reducing the
value of s increases the number of pruned edges,
thus increasing the number of direct measurements
that will be performed. The relationship between
s, f , k, and the structure of the graph is further
explored in our experiments in Section 5.

4.1.2 Complexity

To be useful for on-demand measurement requests
in an Internet-scale system, the decision to use
inference or take direct measurements must be made
rapidly. Traditional methods of computing minimum
spanning trees run in O(|E| log |E|) time (e.g.,
Kruskal’s algorithm or Prim’s algorithm), which, for
large systems with thousands or tens of thousands
of measurement hosts and measurements being re-
quested many times per second, are too expensive
to compute for every measurement request entering
the system.

In order to make this solution feasible for on-
demand measurements, we plan to turn to algo-
rithms that maintain the minimum spanning forest of
a graph in the face of dynamic updates in amortized
time O(log4 |V |) per insertion or deletion [15], or
worst-case O(|V |1/2) time per operation [16], [17].4

Efficient handling of on-demand measurements will
be a subject of future work.

4.1.3 The Girvan-Newman Algorithm

Our algorithm bears some similarity to the
Girvan-Newman algorithm for community identi-
fication [18], but there are some important dif-
ferences. The Girvan-Newman algorithm uses all-
pairs shortest paths, rather than minimum spanning

4. We note that |V |1/2 ≤ log4 |V | whenever |V | ≤ 1012 .
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forests, and iteratively removes edges using a sim-
ilar weighting method to our algorithm, in order
to partition the graph into communities of vertices
within which the edge density is higher than the
density between communities. The Girvan-Newman
algorithm has a higher algorithmic complexity of
O(|E|2|V |).

An important distinction between our algorithm
and Girvan-Newman lies in the algorithms’ respec-
tive goals. The Girvan-Newman algorithm places
every vertex in a community, based on its connectiv-
ity, regardless of the absolute density of its connec-
tions to that community. This means that even very
sparse graphs form communities, and vertices which
are sparsely connected to the graph as a whole will
be grouped with some community. These properties
can interact to form legitimately densely-connected
communities with a number of sparsely-connected
outliers. In contrast, our algorithm aims to select
only areas of the graph of high absolute density (that
depends on the parameter k), and to exclude vertices
of low degree and areas of low overall density en-
tirely. This edge connectivity-based approach stems
from the intuition that subgraphs of high absolute
edge connectivity are more likely to represent k-
regular or denser subgraphs.

4.2 Selection by Degree
A straightforward approach to identifying hosts
which could benefit from inclusion in a kn-cost
inference is to select all hosts which have a degree
greater than or equal to some threshold, e.g., k.5 A
pseudocode of this algorithm is given in Fig. 3. We
use the same notation as in Section 4.1, with the
addition of degree(v), which returns the degree of
a node. The algorithm simply selects high degree
nodes and the edges incident upon these nodes as
components to use inference on. This algorithm has
the apparent benefit that node selection is solely
based on information known at the node in question.

While our experiments show that this approach
works well on many graphs, there are graphs for
which it fails. One graph structure for which this
method fails is depicted in Fig. 4. This graph
consists of a number of highly connected nodes

5. We use a threshold of k since we are examining the benefit to an
individual vertex. We experimented with higher threshold values and
found that, as graph density increases, results are not highly sensitive
to the specific threshold value within the [k, 2k] range. There is no
particular value that was clearly superior for all graphs.

def inference groups by degree(G, k)
let V (G′) = ∅
for v ∈ V (G) do

if degree(v) ≥ k then
let V (G′) = V (G′) ∪ v

for vw ∈ E(G) do
if v ∈ V (G′) and w ∈ V (G′) then

let E(G′) = E(G′) ∪ vw
return components(G′)

Fig. 3. Pseudocode for selection of nodes for
inference by node degree.

Fig. 4. Highly connected nodes separated by
sparsely connected nodes.

separated by nodes of low degree, such that there
exist no large clusters of highly connected nodes.
A simple selection on node degree for k = 3
will select the nodes marked in black for inference,
despite the fact that this yields a larger total num-
ber of measurements than direct measurement. In
contrast, employing the spanning forest algorithm
across two by two and three by three lattices of the
structure in the dotted box from Fig. 4 (arranged
as in Fig. 4, as well as short linear “chains” of the
same structure attached between the black nodes of
degree six) yields the optimal result of no vertices
recommended for inference for values of f as low
as 35, with s = f/k = 11. As expected, decreasing
f decreases the accuracy of the algorithm, and for
smaller values of f , some vertices are recommended
for inference for values of s ≤ f/k.

Selection by degree can be used to correctly
identify vertices which benefit from inference on
the graph in Fig. 4 by simply taking a second pass
across the vertices selected as above, and retaining
only the selected vertices which have at least k
selected neighbors. However, it can be easily shown
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Fig. 5. Graph requiring 2n/k iterations of
degree-based vertex selection to determine that
no inference is warranted for k = 4. Ver-
tices eliminated in the first three iterations are
marked.

that there exist graphs for which this method is
insufficient. These graphs could require as many
as O(n/k) iterations to correctly identify those
vertices which benefit from inference. In addition,
this iteration process complicates distribution of the
algorithm, as all rounds of selection after the first
require information which is not necessarily known
at the node being selected.

An example graph which requires 2n/k itera-
tions is shown in Fig. 5. This particular graph is
constructed for k = 4 and n = c × k + 1 for
any c ≥ 1. Using similar patterns, graphs for any
k ≥ 3 and n > k + 1 can be constructed. Each
graph is constructed by chaining bn/kc components
consisting of k + 1 vertices and k(k − 1)/2 − 2
edges each, except the “leftmost” and “rightmost”
components. Each of these components forms a
fully-connected subgraph less any two edges, with
the leftmost component missing only one edge, and
the rightmost component consisting of only n mod
k fully connected vertices less one edge. These
components are then connected together in a chain
with two edges connecting each adjacent pair, one
edge connecting each of the two endpoints of a
“missing” edge from the component on each side.

Fig. 6 presents an algorithm which iterates the
process discussed above until no more vertices are
removed. Starting with a graph G′ that includes
all vertices and edges in the original measurement
request graph, the outer loop in this algorithm
removes those vertices which have degree less than
or equal to the threshold (k in this case) in graph
G′, and all edges incident upon them. This loop
terminates when no vertices are removed for one
full iteration.

This algorithm results in a set of vertices
and edges representing the k-core of the input
graph [19]. Note that this algorithm does not select
vertices having a degree of precisely k for inference;

def inference groups by kcoreness(G, k)
let V (G′) = V (G)
let E(G′) = E(G)
do

let Vprev = |V (G′)|
for v ∈ V (G′) do

if degree(v) ≤ k then
let V (G′) = V (G′)\v

for w ∈ neighbors(v) do
let E(G′) = E(G′)\vw

while Vprev 6= |V (G′)|

return components(G′)

Fig. 6. Pseudocode for selection of nodes by
k-coreness.

Fig. 7. Graph for which no inference
should be performed if k = 3, but
inference groups by kcoreness() recommends
inference on the entire graph.

it requires that vertices have a degree greater than
k.6 While this algorithm correctly computes the
optimal inference groups for a graph such as that
described in Fig. 5 (which is to say, it recommends
that no inference be performed), it does not correctly
compute inference for all possible graphs. Fig. 7
depicts a graph where, for k = 3, it will recommend
inference on the entire graph; however, this yields a
total of 24 measurements, whereas the measurement
request graph contains only 16 edges.

While the complexity of the algorithm in Fig. 6 is
O(|V | × |E|), the literature gives algorithms which
compute k-cores in O(|E|) time [20].

6. Omitting vertices with degree k will not increase the number
of measurements taken; their inclusion can cause graph areas of
marginal density to be included in inference which should in fact
participate in direct measurements.
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def inference groups by hybrid(G, k)
let C = inference groups by forest(G, k)
let V (G′) = ∅
let E(G′) = ∅
let V (G′) =

⋃

C′∈C V (C ′)
let E(G′) = ∅
for vw ∈ E(G)

if v ∈ V (G′) and w ∈ V (G′)
let E(G′) = E(G′) ∪ vw

return inference groups by degree(G′, k)

Fig. 8. Pseudocode for selection of nodes by
the hybrid algorithm.

4.3 The Hybrid Algorithm

The final approach we investigate is a hybrid
combination of the two algorithms previously dis-
cussed. Fig. 8 presents pseudocode for this algo-
rithm. Recall that inference groups by forest re-
turns the connected components of its input graph
which are recommended for inference. The hy-
brid algorithm takes these components and, based
on the edges internal to these components in the
original input graph, prunes those vertices which
are of degree less than k. Defining this algo-
rithm in terms of inference groups by forest and
inference groups by degree, we take the output of
inference groups by forest and build a graph from
the components that it outputs. This graph consists
of all vertices in those components and all edges
from the input graph internal to this vertex set. Any
vertices having a degree less than the threshold k in
this constructed graph are then eliminated.

This single pass on the results provided
by inference groups by forest eliminates vertices
which clearly do not benefit from joining an in-
ference group. This pass is taken after computing
candidate inference groups, rather than before, as
the connectivity of individual vertices to other ver-
tices participating in inference is in question, rather
than the connectivity to other vertices in the original
complete graph. Pruning before the computation
of candidate inference groups would prune based
on the latter property. Pruning both before and
after incurs extra cost, and Section 5 will show
that the spanning forest algorithm performs well in
eliminating vertices with poor global connectivity in
the course of its operation, making an early pruning
pass unnecessary.

The calculation of vertex degrees and vertex
pruning in this algorithm require time O(|V |+ |E|),
which is bounded above by the computation time for
the spanning forests in inference groups by forest
at O(f ×|E| log |E|), as discussed in Section 4.1.2,
so the asymptotic running time remains unchanged.
We are currently investigating whether the hybrid
algorithm can be computed as efficiently as the
spanning forest algorithm in Section 4.1 in the face
of dynamic updates.

5 EXPERIMENTAL EVALUATION

We experimentally evaluate the algorithms given in
Section 4.1, Section 4.2, and Section 4.3 on graphs
of various structure. As a baseline, we evaluate
our methods on a set of simple synthetic topolo-
gies, including graphs having uniform random edge
placement. Additionally, we utilize graphs based on
real datasets from a large-scale peer-to-peer system:
the popular UUSee streaming television service [3].
These graphs represent a typical scenario where
users select peers or servers with which to commu-
nicate based on measured network path properties.

The key measure of comparison for this study
is the amount of reduction in measurements re-
quired between hosts in the graph if we employ
inference on the subgraphs (components(·)) that our
algorithms output and direct measurements on the
remaining edges, compared to performing all the
requested direct measurements. We also report the
cost of performing a single inference on the entire
graph. We give the running time of the spanning
forest algorithm, and investigate the values of its two
key parameters (number of forests f and threshold
score s). We also study the relationship between s
and the constant k of the inference mechanism.

5.1 Synthetic Topologies
Fig. 9 depicts a synthetic topology having two
complete subgraphs of 8 vertices each, connected by
a “bridge” consisting of two edges and a separating
vertex. For a kn-cost inference with k = 3, an op-
timal solution identifies the nodes marked in black
as candidates for inference, and the node marked
in white would participate only in direct measure-
ments. Nodes participating in inference make up
two connected components, with a single uncon-
nected vertex left over. The direct measurement
request graph in Fig. 9 has 58 edges. Performing
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inference separately on each of the two clusters
costs 8k = 24 edges each. Adding the two di-
rect measurements yields 50 edges. Observe that
performing inference on the entire graph using an
inference algorithm with k = 3 costs kn = 51.
The savings over this full-graph inference increase
with increasing k, and increase when graphs contain
more sparse areas (as opposed to the single “bridge”
in Fig. 9). It is important to note that inference
comes at the cost of reduced accuracy, so using it
when unnecessary is highly undesirable.

Fig. 9. A two-cluster measurement request
topology with optimal kn-cost inference groups
for k = 3 marked in black.

A graph of this general form (densely connected
areas separated by sparse regions) is interesting
because it is a case when inference is beneficial, but
full-graph inference is not the right choice. More
importantly, it is a typical measurement request
graph according to the characteristics of today’s
distributed systems. For example, the two clusters
in the graph can represent viewers of two peer-
to-peer video streaming channels, or downloaders
of two files, with only a few users simultaneously
participating in more than one streaming channel
or download session. This type of topology where
channels or downloads are largely, but not com-
pletely, disjoint has often been observed in real
application scenarios [3], [21]. Many video stream-
ing systems have an option, picture-in-picture, that
allows viewing one channel at a high resolution,
while viewing small window(s) showing (an)other
channel(s).

Evaluation on this sample graph illustrates that,
even for small values of f (stable results appear
at f = 5), the spanning forest algorithm identifies
the correct subgraphs as candidates for inference.
Fig. 10 shows the average value of s above which
the correct subgraphs benefiting from inference are
identified in every case, for increasing values of f .
The figure illustrates that, as expected, s scales sub-
linearly with f (at about 0.24f for the plotted values

of f ). For each value of f , we plot the minimum
and maximum values of s where correct subgraphs
were always identified in our experiments. It can be
seen that the values of s are stable, and fall within
a narrow range of about 0.02f .
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f
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Average

Fig. 10. Number of forests (f ) versus the
threshold score (s) in the spanning forest al-
gorithm required to identify correct inference
components, averaged over 10 runs. Min. and
max. s also plotted.

The degree algorithm and k-coreness algorithm
identify the optimal solution for this graph (yielding
the nodes marked in black), so results for these
algorithms are not shown. The curves for the hy-
brid algorithm corresponding to those in Fig. 10
are identical to the curves for the spanning forest
algorithm.

Computing the optimal inference groups for any
given graph is NP-hard, as discussed in Section 4.
Computation of optimal inference groups on this 17-
node topology takes about 450 ms on a 1.8 GHz
processor; by comparison, the spanning forest algo-
rithm takes about 5 ms. As the graph grows, this
difference in computation time becomes larger. For
a graph of only 32 nodes, the optimal algorithm re-
quires 14 hours and 52 minutes of processing, while
the running time of the spanning forest algorithm is
still a few milliseconds.

The graph in Fig. 9 is an interesting case study,
but presents a trivial case for the spanning forest
algorithm, since both edges of the bridge between
the two fully connected subgraphs will always have
a score equal to f . To further explore the relation-
ship between f , s, and k, we build a number of
graphs on the pattern in Fig. 9, but with a variable
number of bridges between the two fully connected
subgraphs. Each bridge is configured analogous to
the white node in Fig. 9, having two adjacent edges,
one rooted in each of the fully connected subgraphs.
No pair of nodes is directly connected by more than
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Fig. 11. Number of bridges between fully-
connected subgraphs vs. range of s values
yielding an optimal recommendation.

one bridge. Fig. 11 illustrates the average values
of s bracketing the correct inference recommen-
dation for f = 50 and k = 3. For reference,
s = 17 = f/k is depicted as well. This graph shows
that, as each bridge becomes relatively lighter in
weight for a given value of f (due to the effect
of additional bridges between the fully connected
subgraphs), the range of values of s yielding a
correct recommendation converges toward a value
near f/k. As mentioned above, the total savings
in measurements compared to full-graph inference
grows linearly with the number of bridges in the
graph, at kn − (2km + 2 × bridges), or one edge
per bridge for k = 3. The value 2km in this
computation represents inference on the two fully
connected subgraphs of m nodes each. In the graph
having 16 such bridges, this represents a savings
of 16 measurements over full-graph inference, or
a 17% savings in measurements (80 versus 96
measurements).

As in the previous example with only one bridge,
both the degree algorithm and k-coreness algorithm
discard the bridge vertices and arrive at an optimal
solution for these graphs. However, we see a diver-
gence in the behavior of the spanning forest and
hybrid algorithms. The hybrid algorithm produces a
lower curve identical to that in Fig. 11, but due to
its elimination of vertices of degree less than k, the
upper curve is pushed up to s = f for all values of
f . In other words, for small values of s, the hybrid
algorithm may fail to select some vertices which
would optimally be included in the inference, but
the bridge vertex will be discarded even for values
of s approaching f as its degree is less than k.

5.2 Single Channel UUSee Topologies

The Magellan project [3] characterized the connec-
tions between peers of the UUSee live streaming
video service, which is highly popular in China.
They found that the UUSee graphs exhibit small-
world properties. A small-world graph is charac-
terized by two important properties: (1) a small
average path length between any pair of nodes,
and (2) a relatively large clustering coefficient,
indicating that there is high connectivity between
neighboring nodes. Studies of the Gnutella peer-to-
peer network have also shown that it exhibits small-
world characteristics in client peering [21].

Magellan found that the topology representing all
UUSee channel viewers included around 100,000
viewers, with approximately one third of these be-
ing stable. The average path length in the UUSee
topologies of stable viewers of all channels was
close to 5 hops, while the clustering coefficient was
close to 0.3, which is more than an order of mag-
nitude higher than typical clustering coefficients of
random graphs. The graphs of the different channels
(up to 800 channels) were reported to be largely
disjoint [3].

We generate topologies using the small-world
topology generator described by Jin and Bestavros
in [22]. We use the node degree distribution infor-
mation of the UUSee service reported in [3], and
set the local preference parameter p to 0.5. Our
topologies correspond to viewers of a typical UUSee
channel. In [3], one channel was reported to have
about 2500 viewers. We validated the clustering
coefficient of our graphs, which was found to be ap-
proximately 0.25, and the average path length which
was close to 2.3. Each UUSee-inspired topology
used in our experiments in this section had 2500
vertices and in the neighborhood of 53,000 edges.
We also experimented with smaller topologies, and
with graphs representing multiple channels as dis-
cussed in Section 5.3.

Fig. 12 depicts the number of measurements
required to fulfill the mixture of inference and direct
measurement recommended by the spanning forest
and k-coreness algorithms. Each plot is an average
over ten random UUSee topologies. The y axis of
these plots is truncated; for very small values of
s, no inference is recommended or inference is
recommended on very small clusters of vertices,
and thus the number of edges in the resulting graph
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Fig. 12. UUSee topologies: Total measure-
ments taken (edges) using the spanning forest
algorithm for three values of k. To compare f
and s together, the x axis gives s/f . A verti-
cal line is marked on each plot at x = 1/k.
The measurements recommended by the k-
coreness algorithm for each graph are plotted
for comparison.

approaches the 53,000 edges of the original topol-
ogy. The figure illustrates substantial savings over
the original 53,000-edge topology. Savings over
performing inference on the entire graph increase as
k increases. The number of edges is slightly lower
(and the range of s values yielding a lower number
of edges broader) with larger values of f , validating
the hypothesis that increasing f increases spanning
forest algorithm accuracy, at the cost of increased
computation time. The k-coreness algorithm does
not take parameters f and s, so its recommendation
is plotted as a horizontal line.

As seen in the figure, for each value of k,
the total number of measurements required when
using the recommendation of the spanning forest
algorithm falls rapidly as s approaches somewhat
less than f/k. The number of measurements climbs
toward kn as s approaches f and the algorithm

recommends that nearly all vertices participate in
inference. The minimum number of resulting mea-
surements occurs for all three values of k (as well
as other values of k not depicted here) at a value of
s slightly smaller than f/k. This coincides with the
finding of Section 5.1, where s of at least 0.24f
yielded correct results on the synthetic topology
with one bridge for k = 3. The result also agrees
with the discussion in Section 4.1.1, suggesting that
s must increase with increasing values of f , and
decrease with increasing values of k.

Fig. 13 compares the spanning forest, k-coreness,
and hybrid algorithms on the same input graphs as
the bottom plot of Fig. 12. The minimum values
for the spanning forest and k-coreness results are
comparable. The hybrid algorithm performs some-
what better than both. The minimum for the hybrid
algorithm occurs at a value of s somewhat larger
than f/k, whereas the minimum for the spanning
forest algorithm is at a value somewhat smaller
than f/k. The relationships between these three
curves are similar for the other values of k plotted
in Fig. 12 (we omit the graphs for brevity), with
the exception that the spanning forest algorithm
performs somewhat better than k-coreness for small
values of k, as previously seen. The relationship
between s, f , and k remains similar between the
spanning forest and hybrid algorithms for other
values of f and k.

The absolute difference in number of measure-
ments required for the three algorithms in Fig. 13
is small for reasonably-tuned values of s. It amounts
to about 1.8% of the best figure for all three
algorithms, which occurs at s = 11, f = 100 for
the hybrid algorithm. The primary advantage of the
hybrid algorithm over the spanning forest algorithm,
therefore, appears to be its relative robustness to the
chosen value of s.

In order to investigate the impact of our selection
of p = 0.5 for topology generation, we examined
a number of graphs having values of p varying
(in increments of 0.05) from 0.05 to 1.0. We plot
the number of edges in the mixed inference and
direct measurement schedule recommended by the
spanning forest algorithm over an average of ten
graphs per value of p. As Fig. 14 illustrates, the
value of p (for values other than p = 1.0) makes
a difference of only 31 edges in the computed
topology from least to greatest. The savings increase
for a graph with p = 1.0, which creates a graph with
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Fig. 13. Average measurements recommended
by the spanning forest, k-coreness, and hybrid
algorithms on ten 2500-vertex UUSee topolo-
gies for k = 15. The spanning forest and hybrid
algorithms are plotted for f = 100. The x axis
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maximum locality and a minimum of “long” edges
between neighborhoods.
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Fig. 14. Spanning forest algorithm performance
for various values of the local preference param-
eter p. Here, k = 3.

Computation time for all algorithms is quite man-
ageable for these topologies. For f = 20, executing
the spanning forest algorithm on the same 1.8 GHz
processor referenced in Section 5.1 takes about
six seconds. For f = 50, computation takes about
15 seconds, and f = 100 takes about 30 seconds.
As discussed in Section 4.1.2, this is tractable com-
putation in comparison to the optimal algorithm for
the NP-hard problem. However, it underscores the
need for incremental computation with on-demand
measurement requests.

5.3 Multiple Channel UUSee Topologies
We examine topologies created by joining multiple
UUSee channel graphs as described in the previous
section. We create ten UUSee channels of between

500 and 3000 hosts each, uniformly distributed, and
then join them with twenty edges, as follows: a
vertex is selected from a uniform random distribu-
tion of all vertices in the ten channels, and then
a second vertex is selected from a uniform random
distribution of the nine channels of which this vertex
is not a member. The two selected vertices are
then merged into one vertex having a neighbor set
which is the union of the two selected vertices’
neighbor sets. The resulting graph is used for our
experiments. Note that this resulting graph need not
be connected, and in practice often consists of 2 or
more connected components.
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Fig. 15. Multi-channel UUSee topologies: Total
measurements taken (edges) for three values of
k for the spanning forest, hybrid, and k-coreness
algorithms. For consistency with other plots, the
x axis gives s/f . A vertical line is marked on
each plot at x = 1/k.

We execute the spanning forest, k-coreness, and
hybrid algorithms on ten such graphs, and present
results based on the average of the results from
these ten graphs. Due to the increased number of
random variables in the creation of these graphs,
their metrics vary somewhat more widely than the
graphs in Section 5.2. The number of total vertices
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in each graph varies from 16, 333 to 20, 479, with an
average of 20, 479. The number of edges varies from
323, 112 to 408, 319, with an average of 375, 087.

Fig. 15 shows the results on these multi-channel
graphs when s and f are varied. The behavior of
the algorithms is consistent with that witnessed in
Section 5.2, with the minimum total number of
measurements required for the spanning forest al-
gorithm occurring at a value of s somewhat smaller
than f/k, and the hybrid algorithm at a value
of s somewhat larger than f/k. As in the single
channel case, the absolute difference in number of
measurements required for the three algorithms is
small for reasonable values of s. Once again, for
graphs of this density, mixing inference and direct
measurements allows us to achieve a total measure-
ment load which is lighter than the total number of
direct measurements requested for all three values
of k and lighter than performing inference on the
entire graph.

5.4 Uniform Random Edge Placement

In this section, we consider graphs which have
uniform random edge placement. For each pair
of vertices in the graph, an edge is present with
probability 0 < p ≤ 1. Such graphs exhibit roughly
uniform edge density across all vertices and all
subsets of vertices, and, as such, tend to either not
benefit from inference at all, or benefit from a full-
graph inference including all vertices.

A graph created in this fashion with the same
number of vertices and a similar number of edges to
the UUSee topologies in Section 5.2 has 2,500 ver-
tices and p = 0.017. This graph is sufficiently dense
that for all values of s greater than about 0.05f
across a broad range of values for k, our algorithm
(correctly) recommends full-graph inference.

Fig. 16 shows the results of the spanning for-
est, k-coreness, and hybrid algorithms on 1,000
node graphs with uniform random edge placement
across a range of values of p. The x-axis gives the
probability p that any of the possible n(n − 1)/2
edges appears in the graph, and the y-axis gives the
measurement edges (with k = 3) for no inference
and the recommended inference for each algorithm.
The plot illustrates the transition from edge density
less than full-graph inference to density greater
than full-graph inference. The value of s for the
spanning forest and hybrid algorithms is selected,
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Fig. 16. Uniform random graphs: Measure-
ments taken as edge density increases for a
graph of 1,000 nodes.

in this example, to be f/k with f = 50 and hence
s = 17. As depicted in the figure, all algorithms
correctly recommend mostly direct measurements
for graphs with low density. All algorithms also
rapidly converge toward full-graph inference (which
results in 3,000 edges) for graphs with higher
density, saving only a few measurements here and
there. In between, there is a brief region of over-
estimation, where inference is recommended for
borderline regions of the graph which do not quite
have edge densities meriting inference.7 This over-
estimation is minor for the k-coreness algorithm,
and greater for the spanning forest and hybrid algo-
rithms, although the hybrid algorithm over-estimates
by a somewhat lower amount than the pure spanning
forest algorithm.

6 CONCLUSIONS AND FUTURE WORK

We have investigated the network load induced by
inference mechanisms, and presented efficient algo-
rithms to identify subgraphs where replacing direct
measurements with inference is most advantageous.
Our results show that we achieve significant mea-
surement savings with small-world graphs, which
represent popular peer-to-peer and distributed sys-
tem measurement request patterns. We demonstrate
the ability to identify subgraphs of measurement
graphs which see no cost benefit from inference, and
accordingly use more accurate direct measurements

7. Note that the entire plot represents 0.0015 ≤ p ≤ 0.01, and
hence many of the graphs toward the lower end of the plot are
disconnected.
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in those subgraphs. We analyze the performance of
our algorithms, and make recommendations for the
discretionary parameter s provided to the spanning
forest and hybrid algorithms based on both theory
and empirical results.

Our three algorithms, the spanning forest algo-
rithm in Section 4.1, the k-coreness algorithm in
Section 4.2, and the hybrid algorithm in Section 4.3,
achieve the same goal but have different properties.
The k-coreness algorithm can be executed in O(|E|)
time, making it asymptotically faster than both the
spanning forest and hybrid algorithms, each requir-
ing O(|E| log |E|) computation. However, for small
values of k, the latter two algorithms outperform
k-coreness, and for large values of k, the hy-
brid algorithm outperforms both k-coreness and the
spanning forest algorithm. Choosing between the
algorithms therefore represents a tradeoff between
time and accuracy. In the spanning forest and hybrid
algorithms, the discretionary parameter f represents
a similar tradeoff, with small values of f requiring
far less computational effort, and larger values of
f providing not only better results, but increased
robustness to the choice of the value of s.

Our future work plans include conducting addi-
tional experiments on graphs of other sizes, struc-
tures, and dynamics. We will also investigate in-
cremental computations, e.g., as discussed in [15].
Finally, we plan to investigate inference mecha-
nisms with different linear constants, e.g., GNP [9],
Vivaldi [10], and DMAPS [11], and include their
startup costs in our analysis.
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