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Supporting Scalable and Adaptive Metadata
Management in Ultralarge-Scale File Systems
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Abstract—This paper presents a scalable and adaptive decentralized metadata lookup scheme for ultralarge-scale file systems (more
than Petabytes or even Exabytes). Our scheme logically organizes metadata servers (MDSs) into a multilayered query hierarchy and
exploits grouped Bloom filters to efficiently route metadata requests to desired MDSs through the hierarchy. This metadata lookup
scheme can be executed at the network or memory speed, without being bounded by the performance of slow disks. An effective
workload balance method is also developed in this paper for server reconfigurations. This scheme is evaluated through extensive
trace-driven simulations and a prototype implementation in Linux. Experimental results show that this scheme can significantly improve
metadata management scalability and query efficiency in ultralarge-scale storage systems.
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1 INTRODUCTION

METADATA management is critical in scaling the overall
performance of large-scale data storage systems [1]. To
achieve high data throughput, many storage systems
decouple metadata transactions from file content accesses
by diverting large volumes of data traffic away from
dedicated metadata servers (MDSs) [2]. In such systems, a
client contacts MDS first to acquire access permission and
obtain desired file metadata, such as data location and file
attributes, and then directly accesses file content stored on
data servers without going through the MDS. While the
demand for storage increases exponentially in recent years,
exceeding Petabytes (10'%) already and reaching Exabytes
(10'®) soon, such decoupled design with a single metadata
server can still become a severe performance bottleneck. It
has been shown that metadata transactions account for more
than 50 percent of all file system operations [3]. In scientific
or other data-intensive applications [4], the file size ranges
from a few bytes to multiple terabytes, resulting in millions
of pieces of metadata in directories [5]. Accordingly, scalable
and decentralized metadata management schemes [6], [7],
[8] have been proposed to scale up the metadata throughput
by judiciously distributing heavy management workloads
among multiple metadata servers while maintaining a single
writable namespace image.
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One of the most important issues in distributed metadata
management is to provide efficient metadata query service.
Existing query schemes can be classified into two cate-
gories: probabilistic lookup and deterministic lookup. In the
latter, no broadcasting is used at any point in the query
process. For example, a deterministic lookup typically
incurs a traversal along a unique path within a tree, such
as a directory tree [9] or an index tree [10]. The probabilistic
approach employs lossy data representations, such as
Bloom filters [11], to route a metadata request to its target
MDS with a very high accuracy. Certain remedy strategy,
such as broadcasting or multicasting, is needed for
rectifying incorrect routing. Compared with the determi-
nistic approach, the probabilistic one can be much easily
adopted in distributed systems and allows flexible work-
load balance among metadata servers.

1.1 Motivations

We briefly discuss the strengths and weaknesses of some
representative metadata management schemes to motivate
our research. Existing schemes can be classified into hash-
based, table-based, static and dynamic tree partitions, and
Bloom-filter-based structures, as shown in Table 1.

e Lustre [12], Vesta [13], and InterMezzo [14] utilize
hash-based mappings to carry out metadata alloca-
tion and perform metadata lookups. Due to the
nature of hashing, this approach can easily achieve
load balance among multiple metadata servers,
execute fast query operations for requests, and only
generate very low memory overheads. Lazy Hybrid
(LH) [2] provides a novel mechanism by allowing for
pathname hashing with hierarchical directory man-
agement, but entails certain metadata migration
overheads. This overhead is sometimes prohibitively
high when an upper directory is renamed or the total
number of MDSs is changed. In these cases, hash
values have to be recomputed to reconstruct the
mapping between metadata and their associated
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TABLE 1
Comparison of G-HBA with Existing Structures Where n and d are the
Total Numbers of Files and Partitioned Subdirectories, Respectively

Examples Load Migration | Lookup Memory Directory | Recovery | Scalability
Balance Cost Time Over- Opera-
head tions
Hash-based mapping Lustre, Vesta, | Yes Large o(1) 0 Medium Lustre Lustre
InterMezzo & Inter-
Mezzo
Table-based Mapping | xFS, zFS Yes 0 O(logn) O(n) Medium Yes Yes
Static Tree Partition NFS, AFS, | No 0 O(logd) o(1) Fast Yes Medium
Coda,  Sprite, (Farsite: (Coda &
Farsite small) Sprite:
High)
Dynamic Tree Partition | OBFS, Ceph | Yes Large O(logd) o(d) Fast Yes Yes
(Crush) (Ceph:
small)
Bloom Filter-based HBA, Yes 0 o(1) O(n) Fast No Yes
Summary
Cache, Globus-
RLS
G-HBA Yes Small o(1) O(n/m) Fast Yes Yes

servers, and accordingly, large volumes of metadata
might need to be migrated to new servers.

e xFS [15] and zFS [16] use table-based mapping,
which does not require metadata migration and can
support failure recovery. In large-scale systems, this
approach imposes substantial memory overhead for
storing mapping tables, and thus often degrades
overall performance.

e Systems using static tree partition include NFS [17],
AFS [18], Coda [19], Sprite [20], and Farsite [21].
They divide the namespace tree into several non-
overlapped subtrees and assign them statically to
multiple MDSs. This approach allows fast directory
operations without causing any data migration.
However, due to the lack of efficient mechanisms
for load balancing, static tree partition usually leads
to imbalanced workloads, especially when access
traffic becomes highly skewed [22].

e Dynamic subtree partition [23] is proposed to
enhance the aggregate metadata throughput by
hashing directories near the root of the hierarchy.
When a server becomes heavily loaded, some of its
subdirectories automatically migrate to other servers
with light load. Ceph [24] maximizes the separation
between data and metadata management by using a
pseudorandom data distribution function (CRUSH)
[25], which is derived from RUSH (Replication
Under Scalable Hashing) [26] and aims to support
a scalable and decentralized placement of replicated
data. This approach works at a smaller level of
granularity than the static tree partition scheme, and
might cause slower metadata lookup operations.
When an MDS joins or leaves, all directories need to
be recomputed to reconstruct the tree-based direc-
tory structure, potentially generating a very high
overhead in a large-scale file system.

e  Bloom-filter-based approaches provide probabilistic
lookup. A Bloom filter [11] is a fast and space-
efficient data structure to represent a set. For each

object within that set, it uses k£ independent hash
functions to generate indices into a bit array and set
the indexed bits in that array to 1. To determine the
membership of a specific object, one simply checks
whether or not all the bits pointed by these hash
functions are 1. If not, this object is not in the set. If
yes, the object is considered as a member. A false
positive might happen, i.e., the object is considered
as a member of the set, although it is not actually.
However, the possibility of false positives is con-
trollable and can be made very small. Due to high
space efficiency and fast query response, Bloom
filters have been widely utilized in storage systems,
such as Summary Cache [27], Globus-RLS [28], and
HBA [29]. However, these schemes use Bloom filters
in a very simple way, where each node indepen-
dently stores as many Bloom filters as possible in
order to maintain the global image locally. Without
coordination, these simple approaches can generate
large memory overhead and reduce system scal-
ability and reliability.

As summarized in Table 1 and discussed above, although
each existing approach has its own advantages in some
aspects, they are weak or deficient in some other aspects, in
terms of performance metrics such as load-balance, migra-
tion cost, lookup time, memory overhead, directory opera-
tion overhead, scalability, etc. To combine their advantages
and avoid their shortcomings, we propose a new scheme,
called Group-based Hierarchical Bloom filter Array (G-HBA),
to efficiently implement a scalable and adaptive metadata
management for ultralarge-scale file systems. G-HBA uses
Bloom filter arrays and exploits metadata access locality to
achieve fast metadata lookup. It incurs small memory
overheads and provides strong scalability and adaptability.

Specifically, the proposed scheme, called G-HBA, has
performance advantages over other state-of-the-art schemes,
in terms of memory space savings, fast query response, low
migration costs, and strong scalability. The main reasons for
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these advantages of G-HBA are fourfold. First, G-HBA makes
use of fast and space-efficient Bloom filters to construct the
indexing structure, which only needs to perform constant-
time O(1) hashing to determine membership of queried files.
Second, one essential characteristic of G-HBA is its ability to
dynamically aggregate metadata servers into groups. The
aggregation significantly decreases migration costs, since
most associated metadata operations can be completed
within one group. Third, in G-HBA, each group serves as a
global mirror, and thus, data stored in a failed server can be
easily reconstructed from its adjacent groups. Finally, the G-
HBA scale can be resized dynamically via light-weight
insertions and deletions. An insertion or deletion only
requires one of the servers in a group to be updated.

1.2 Contributions

The proposed scheme in this paper, called G-HBA,
judiciously utilizes Bloom filters to efficiently route requests
to target metadata servers. Our G-HBA scheme exploits a
Bloom-filter-based architecture, and considers dynamic and
self-adaptive characteristics in ultralarge-scale file systems.
Our main contributions are summarized below:

o We present a scalable and adaptive metadata
management structure, called G-HBA, to store many
metadata and support fast metadata lookups in an
ultralarge-scale file system with multiple MDSs. The
query hierarchy in G-HBA consists of four levels:
local Least Recently Used (LRU) query and local
query on an MDS, group multicast query within a
group of MDSs, and global multicast query among
all groups of MDSs. The multilevel file query is
designed to be effective and accurate by capturing
the metadata query locality and by dynamically
balancing load among MDSs.

e We present a simple but effective group-based
splitting scheme to improve file system scalability
and maintain information consistency among multi-
ple MDSs. This scheme adaptively and dynamically
accommodates the addition and deletion of an
MDS, in order to balance the load and reduce
migration overheads.

e We design efficient approaches to querying files
based on a hierarchical path. Note that the issue of
membership query in metadata management, a focus
of this paper, answers the most fundamental ques-
tion, i.e., “which metadata sever in an ultralarge-
scale distributed file system stores the metadata of
the queried file?”. Since this question helps to
quickly access the target file data, fast membership
queries based on G-HBA can directly reduce the time
of accessing file data, especially in ultralarge-scale
distributed file systems.

e We examine the proposed G-HBA structure through
extensive trace-driven simulations and experiments
on a prototype implementation in Linux. We examine
operation latency, replica migration cost, and hit rate.
Results demonstrate that our G-HBA design is highly
effective and efficient in improving performance and
scalability of file systems, and can provide scalable,

reliable, and efficient service for metadata manage-
ment in ultralarge-scale file systems.

The rest of the paper is organized as follows: Section 2
presents the basic scheme of G-HBA. Section 3 discusses
some detailed design and optimization issues. The perfor-
mance evaluation based on trace-driven simulations and
prototype implementation can be given in Section 4 and
Section 5, respectively. Section 6 summarizes related work,
and Section 7 concludes the paper.

2 G-HBA DESIGN

This section presents the design of G-HBA that supports fast
membership queries in ultralarge-scale file systems.

2.1 Dynamic and Adaptive Metadata Management

We utilize an array of Bloom filters on each MDS to support
distributed metadata lookup among multiple MDSs. An
MDS, where a file’s metadata reside, is called the home MDS
of this file. Each metadata server constructs a Bloom filter to
represent all files whose metadata are stored locally, and
then replicates this filter to all other MDSs. A metadata
request from a client can randomly choose an MDS to
perform membership query against its Bloom filter array
that includes replicas of the Bloom filters of the other
servers. The Bloom filter array returns a hit when exactly
one filter gives a positive response. A miss takes place when
zero hit or multiple hits are found in the array. Since, we
assume that the original metadata for any file can be stored
in only one MDS, multiple hits, meaning that the original
metadata of a file are found in multiple MDSs, potentially
indicate a query miss.

The basic idea behind G-HBA in improving scalability
and query efficiency is to decentralize metadata manage-
ment among multiple groups of MDSs. We divide all N
MDSs in the system into multiple groups, with each group
containing at most M MDSs. Note that, we represent the
actual number of MDSs in a group as M’. By judiciously
using space-efficient data structures, each group can
provide an approximately complete mapping between
individual files and their home MDSs for the whole storage
system. While each group can perform fast metadata
queries independently to improve the metadata through-
put, all MDSs within one group only store a disjointed
fraction of all metadata, and they cooperate with each other
to serve an individual query.

G-HBA utilizes Bloom filter (BF) based structures to
achieve strong scalability and space efficiency. These
structures are replicated among MDS groups, and each
group contains approximately the same amount of replicas
for load balancing. While each group maintains file
metadata location information of the entire system, each
individual MDS only stores information of its own local
files and BF replicas from other groups. Within a given
group, different MDSs store different replicas and all
replicas in this group collectively constitute a global mirror
image of the entire file system. Specifically, a group
consisting of M’ MDSs needs to store a total of N — M’ BF
replicas from the other groups, and each MDS in this group
maintains approximately 2= replicas plus the BF for its
own local file information.
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Fig. 1. The group-based HBA architecture allowing the multilevel query. (a) LRU and segment Bloom filter arrays allowing the L1 and L2 queries.

(b) L3 and L4 queries, respectively, in a group and entire system.

A simple grouping in G-HBA may introduce large query
costs and does not scale well. Since, each MDS only
maintains partial information of the entire file system, the
probability of successfully serving a metadata query by a
single metadata server will decrease as the group size
increases. Accordingly, an MDS has to multicast query
requests more frequently to other MDSs, incurring higher
network overheads and resulting in longer query delays.

Therefore, more effective techniques are needed to
improve the scalability of the group-based approach. G-
HBA addresses this issue by taking advantage of the locality
widely exhibited in metadata query traffic. Specifically, each
MDS is designed to maintain “hot data,” i.e., home MDS
information for recently accessed files, which are stored in an
LRU Bloom filter array. Since “hot data” are typically small
in size, the required storage space is relatively small.

2.2 Group-Based HBA Scheme

Fig. 1 shows a diagram of the G-HBA scheme. A query
process at one MDS may involve four hierarchical levels:
searching the locally stored LRU BF Array (L1), searching
the locally stored Segment BF Array (L2), multicasting to all
MDSs in the same group to concurrently search all Segment
BF Arrays stored in this group (L3), and multicasting to all
MDSs in the system to directly search requested metadata
(L4). The multilevel metadata query is designed to be
effective by judiciously exploiting access locality and
dynamically balancing load among MDSs, as discussed in
detail in Section 3.

Each query is performed sequentially in these four levels.
A miss at one level will lead to a query to the next higher
level. The query starts at the LRU BF array (L1), which aims
to accurately capture the temporal access locality in
metadata traffic streams. Each MDS maintains an LRU list
that includes the most recently visited files whose metadata
are maintained locally on that MDS. We further make use of
the LRU BF to represent all the files cached in this LRU list.
The LRU BF is then globally replicated to all MDSs of the
entire system. As a replacement occurs in the LRU list on an
MDS, corresponding insertion and deletion operations are
then performed by this MDS to update its LRU BF. The LRU
BF is then replicated to all the other MDSs when the amount

of changes, in terms of the percentage of flipped bits,
exceeds some threshold. The inconsistency can potentially
lead to false positives, but not false negatives. The penalty
of a false positive includes a waste of query message to the
indicated MDS. On the other hand, a miss on LRU BF
requires a query on local MDSs that must contain the
queried file, thus avoiding any false negative.

If the query cannot be successfully served at L1, the
query is then performed at L2, as shown in Fig. la. The
Segment BF array (L2) stored on an MDS i includes only 6;
BF replicas, with each replica representing all files whose
metadata are stored on that corresponding MDS. Suppose
that the total number of MDS is N, typically 6; is much
smaller than N. And we have Zgl 0; = N, where 0; is the
number of BF replicas stored on MDS i. In this way, each
MDS only maintains a subset of all replicas available in the
systems. A lookup failure at L2 will lead to a query
multicast among all MDSs within the current group (L3),
as shown in Fig. 1b. At L3, all BF replicas present in this
group will be checked. At the last level of the query
process, i.e., L4, each MDS directly performs a lookup by
searching its local BF and disk drives. If the local BF
responds negatively, the requested metadata are not stored
locally on that MDS, since the local BF has no false
negatives [30]. However, if the local BF responds posi-
tively, a disk access is then required to verify the existence
of the requested metadata, since the local BF can poten-
tially generate false positives.

2.3 Critical Path for G-HBA Multilevel Query Service

The critical path of a metadata query starts at L1. When the
L1 Bloom filter array returns a unique hit for the member-
ship query, the target metadata are then most likely to be
found at the server whose LRU Bloom filter generates such
a unique hit. If zero or multiple hits take place at L1,
implying a query failure, the membership query is then
performed on the L2 Bloom filter array, which maintains
the mapping information for a fraction of the entire storage
system by storing 6 = [2L] replicas. A unique hit in any
L2 Bloom filter array does not necessarily indicate a query
success, since 1) Bloom filters only provide probabilistic
membership query, and a false positive may occur with a
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very small probability, and 2) each MDS only contains a
subset of all replicas, and thus, is only knowledgeable of a
fraction of the entire file-server mapping. The penalty for a
false positive, where a unique hit fails to correctly identify
the home MDS, is that a multicast must be performed
within the current MDS group (L3) to solve this misidenti-
fication. The probability of a false positive from the segment
Bloom filter array of one MDS, f, is given as below:

fy = (f) fo(1 = fo)"™ = 6(0.6185)™" (1 — (0.6185)"/™)" ",

(1)

where 6 is the number of BF replicas stored locally on one
MDS, m/n is the Bloom filter bit ratio, i.e., the number of bits
per file, and f; is the optimal false rate in standard Bloom
filters [30]. By storing only a small subset of all replicas, and
thus achieving significant memory space savings, the group-
based approach (segment Bloom filter array) can afford to
increase the number of bits per file (m/n) so as to
significantly decrease the false rate of its Bloom filters, hence
rendering f,” sufficiently small.

When the segment Bloom filter of an MDS returns zero
or multiple hits for a given metadata lookup, indicating a
local lookup failure, this MDS then multicasts the query
request to all MDSs in the same group, in order to resolve
this failure within this group. Similarly, a multicast is
necessary among all other groups, i.e., at the L4 level, if the
current group returns zero or multiple hits at L3.

2.4 Updating Replicas

Updating stale Bloom filter replicas involves two steps:
replica identification (localization) and replica content
update. Within each group, a BF replica resides exclusively
on one MDS. Furthermore, the dynamic and adaptive nature
of server reconfiguration, such as MDS insertion into or
deletion from a group (see Section 3.1), dictates that a given
replica must migrate from one MDS to another within a
group from time to time. Thus, to update a BF replica, we
must correctly identify the target MDS in which this replica
currently resides. This replica location information is stored
in an identification (ID) Bloom Filter Array (IDBF A) that is
maintained in each MDS. A unique hitin /DBF A returns the
MDS ID, thus allowing the update to proceed to the second
step, i.e., updating BF replica at the target MDS. Multiple hits
in IDBF Alead to a light false-positive penalty, since a falsely
identified target MDS can simply drop the update request
after failing to find the targeted replica. The probability of
such a false positive can be extremely low. A counting Bloom
filter [27] replaces each bit in a standard Bloom filter with a
counter to support deletion operation. Each indexed counter
is incremented when adding an element, and is decremented
when removing an element. In our design, when a server
departure occurs, we hash the server ID into the IDBFA, and
the hit counters are then decreased by 1 to remove the server.
Since IDBF A only maintains the information about where a
replica can be accessed, the total storage requirement of
IDBFA is negligible. For example, when the entire file
system contains 100 MDSs, IDBF A only takes less than
0.1 kB of storage on each MDS.

G-HBA does not use modular hashing to determine the
placement of the newest replica within one MDS group.
One main reason is that, this approach cannot efficiently
support dynamic MDS reconfiguration, such as an MDS
joining or leaving the storage system. When the number of
servers changes, the hash-based recomputations can poten-
tially assign a new target MDS for each existing replica
within the same group. Accordingly, the replica would
have to be migrated from the current target MDS to a new
one in the group, potentially incurring prohibitively high
network overheads.

3 DynAmic AND ADAPTIVE GROUP
RECONFIGURATIONS

In this section, we present our design to support dynamic
group reconfiguration and identify the optimal group
configuration.

3.1 Lightweight Migration for Group
Reconfiguration

Within each group, IDBF' A can facilitate load balance and
support lightweight replica migration during group
reconfiguration. When a new MDS joins the system, it
chooses a group that has less than M MDSs, acquires an
appropriate amount of BF replicas, and offloads some
management tasks from the existing MDSs in this group.
Specifically, each existing MDS can randomly offload
Number(CurrentReplicas) — [(N — M')/(M' +1)] replicas
to the new MDS. Meanwhile, the MDS IDs of replicas
migrating to the new MDS need to be deleted from their
original ID Bloom filters and inserted into the ID Bloom
filter on the new MDS. Any modified Bloom filter in
IDBFA also needs to be sent to the new MDS, which
forms a new IDBFA containing updated information of
replica location. This new IDBFA is then multicast to
other MDSs. In this way, we can implement a lightweight
replica migration and achieve load balance among multi-
ple MDSs of a group.

Due to system reconfiguration by the system adminis-
trator, an MDS departure triggers a similar process but in a
reverse direction. It involves 1) migrating replicas pre-
viously stored on the departing MDS to the other MDSs
within that group, 2) removing its corresponding Bloom
filter from the IDBF A on each MDSs of that group, and
3) sending a message to the other groups to delete its
replica. The network overhead of this design is small, since
group reconfiguration happens infrequently and the size of
IDBFA is small.

3.2 Group Splitting and Merging

To further minimize the replica management overhead, we
propose to dynamically perform group splitting and
merging. When a new MDS is added to a group G that
already has M’ = M MDSs, a group split operation is then
triggered to divide this group into two approximately
equal-sized groups, A and B. The split operation will be
performed under two conditions: 1) each groups must still
maintain a global mirror image of the file system, and
2) workload must be balanced within each group. After
splitting, A and B consist of M — |M/2| and |[M/2] +1
MDSs, respectively, for a total of (M +1) MDSs. The
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TABLE 2
Symbol Representations
[ Symbol | Description |

Prry Unique hit rate in the LRU Bloom filters

Pry Unique hit rate in the 2nd level Bloom filters
Diry Latency in the LRU Bloom filters

Dpo Latency in the 2nd level Bloom filters
Dgroup Latency in one group

Dyt Latency in entire multicast network

group splitting process is equivalent to deleting |M /2]
MDSs from G by applying the aforementioned MDS
deletion operation |M/2| times. Each deleted MDS from
G is then inserted into group B.

Inversely, whenever the total size of two groups is equal
to or less than the maximum allowed group size M due to
MDS departures, these groups are then merged into a single
group by using the lightweight migration scheme. This
process repeats until no merging can be performed.

3.3 Optimal Group Configuration

One of our key design issues in G-HBA is to identify the
optimal M, i.e., the maximum number of MDSs allowed
in one group. M can strike different tradeoffs between
storage overhead and query latency. As M increases, the
average number of replicas stored on one MDS, represented
as 25M is reduced accordingly. A larger M, however,
typically leads to a larger penalty for the cases of false
positives as well as zero or multiple hits at both the L1 and L2
arrays. This is because multicastis used to resolve these cases,
and typically takes longer when more hops are involved. We
discuss how to find the optimal M in the following.

To identify the optimal M, we use a simple benefit
function that jointly considers storage overheads and
throughput. Specifically, we aim to optimize the throughput
benefits per unit memory space invested, a measure also
called the normalized throughput. The throughput benefit
Uc-upa(throu.) is represented by taking into account the
latency that includes all delays of actual operations along the
critical path of a query, such as queuing, routing, and
memory retrieval. Equation (2) shows the function to
evaluate the normalized throughput of G-HBA:

. UG_HBA(thTOU.) . 1
Ug-npa(space)  Ug-gpa(laten.) x Ug-ppa(space)’

(2)

where Ug-ppa(space) and Ug-ppa(laten.) represent the
storage overhead and operation latency, respectively.

The storage overhead for G-HBA is represented in (3),
which is associated with the numbers of stored replicas on
each MDS

r

N-M 3
—r (3)

We then examine the operation latency, shown in (4), for
G-HBA, by considering multilevel hit rates that may lead to
different delays. Definitions for the variables used in (4) are
given in Table 2.

Uc-npa(space) =

TABLE 3
Scaled-Up RES and INS Traces

| [ RES (TIF=100) | INS (TIF=30) |

hosts 1300 570

users 5000 9780
open (million) 497.2 1196.37
close (million) 558.2 1215.33
stat (million) 7983.9 4076.58

Uc-upa(laten.) = Dy + (1 — Prry)Dro

Py
+ (1 - PLRU) (1 - ﬁ) Dgroup (4)

P\ v
+ (1 — Prro) (1 - ﬁ) Dy,

The optimal value for M, thus, is the one that maximizes
the T function in (2).

4 PERFORMANCE EVALUATION

We examine the performance of G-HBA through trace-
driven simulations and compare it with HBA [29], the state-
of-the-art BF-based metadata management scheme, and one
that is directly comparable to G-HBA. We use three publicly
available traces, i.e., Research Workload (RES), Instructional
Workload (INS) [3], and HP File System Traces [31]. In
order to emulate the I/O behaviors in an ultralarge-scale
file system, we choose to intensify these workloads by a
combination of spatial scale-up and temporal scale-up in
our simulation, and also, in prototype experiments pre-
sented in the next section. We decompose a trace into
subtraces and intentionally force them to have disjoint
group ID, user ID, and working directories by appending a
subtrace number in each record. The timing relationships
among the requests within a subtrace are preserved to
faithfully maintain the semantic dependencies among trace
records. These subtraces are replayed concurrently by
setting the same start time. Note that the combined trace
maintains the same histogram of file system calls as the
original trace, but presents a heavier workload (higher
intensity) as shown in [29], [32]. As a result, the metadata
traffic can be both, spatially and temporally scaled-up by
different factors, depending on the number of subtraces
replayed simultaneously. The number of subtraces replayed
concurrently is denoted as the Trace Intensifying Factor (TIF).
The statistics of our intensified workloads can be summar-
ized in Tables 3 and 4. All MDSs are initially populated

TABLE 4
Scaled-Up HP Trace

| | Original | TIF=40 |

request (million) 94.7 3788
active users 32 1280
user accounts 207 8280
active files (million) 0.969 38.76
total files (million) 4.0 160.0
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Fig. 2. Normalized throughput of G-HBA when the total number of MDSs
is 30 and 100 MDSs, respectively.

randomly. Each request can randomly choose an MDS to
carry out query operations. In addition, we use eight hash
functions in Bloom filters to guarantee the false positive
probability 0.039 percent.

The INS and RES traces are collected in two groups of
Hewlett-Packard series 700 workstations running HP-UX
9.05. The HP File System trace is a 10-day trace of all file
system accesses with a total of 500 GB of storage. Since, the
three traces above have collected all I/O requests at the file
system level, we filter out requests, such as read and write,
which are not related to the metadata operations.

We have developed a trace-driven simulator to emulate
dynamic behaviors of large-scale metadata operations and
evaluate the performance in terms of hit rates, query
delays, network overheads of replica migrations, and
response times for updating stale replicas. The simulation
study, in this paper, will focus on the increasing demands
for ultralarge-scale storage systems, such as Exabyte-scale
storage capacity, in which a centralized BF-based ap-
proach, such as the HBA scheme [29], will be forced to spill
significant portions of replicas into the disk space as the
fast increasing number of replicas overflows the main
memory space.

HBA is, as its name suggests, a hierarchical scheme that
maintains two-level BF arrays to support membership
queries in a file system by exploiting the temporal access
locality of file access patterns. Specifically, the first level
represents the metadata location of most recently visited
files on each MDS, and the second level maintains metadata
distribution information of all files. The first level contains
only very “hot” files’ location information, but uses higher
bit/item ratio in its BF to achieve lower false-hit rate of the
BF, thus increasing query accuracy. The second level, on
the other hand, contains location information of “all” files in
the system, and thus, uses a lower bit/item ratio in its BF to
increase space efficiency without significantly sacrificing
query accuracy, since this level of BF array is much less
frequently queried than the first level due to access locality.

4.1 Impact of Group Size M/ on G-HBA Performance
In this section, we present the details of identifying the
optimal value of group size M by optimizing the normalized
throughput of G-HBA given in (2) in Section 3.3. We generate
the normalized throughput with the aid of simulation results,
including hitrates and latency of multilevel query operations.
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Fig. 3. Optimal group size as a function of the number of nodes.

Other simulation results are directly measured by statistical
average values from 20 simulation runs.

The maximum group size, M, can potentially impose
significant impact on the system performance of G-HBA, in
terms of hit rates and query latency. While a larger M may
save more memory space, as each MDS in G-HBA only
needs to store &M BF replicas, it can increase the query
latency, since fewer Bloom filters on each MDS can reduce
local query hit rates at the L2 level. Therefore, an optimal M
has to be identified.

Fig. 2 shows the normalized throughput as a function
of M when the number of MDSs is 30 and 100,
respectively, under the intensified HP, RES, and INS
workloads. The optimal M is 6 for HP and INS, and 5 for
RES when the number of MDSs is 30. The optimal A is 9
for HP and INS, and 8 for RES trace when the number of
MDSs is scaled-up to 100.

Fig. 3 further shows the relationship between the optimal
group size M and the total number of MDSs. We observe
that M is not very sensitive to the workloads studied in this
paper. In addition, when the number of MDSs is large, the
optimal M value does not change significantly. These
observations give us useful insights when determining
the logical grouping structure for ultralarge-scale storage
systems. It is recommended that some predefined M
be used initially, and this suboptimal M be deployed until
the total number of MDSs reaches some threshold.

4.2 Average Latency

Figs. 4, 5, and 6 plot the average latency of metadata
operations as a function of the operation intensity (number
of operations) under the HP, RES, and INS workloads,
respectively. We utilize different memory sizes to evaluate
the operation latency. With large memory, such as 800 MB
in Fig. 4, 900 MB in Fig. 5, and 1.2 GB in Fig. 6, HBA
outperforms G-HBA slightly since HBA, being able to store
all the replicas in the main memory, is able to complete all
operations within the memory locally, while G-HBA must
examine replicas stored in other MDSs of the same group.
However, as the available memory size decreases, more and
more BF replicas are spilled into the hard disks, causing the
average latency of the HBA scheme to increase rapidly since
more disk accesses are involved in storing or retrieving BF
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Fig. 4. Average latency comparisons of HBA and G-HBA with different
memory sizes under the RES trace.

replicas in the hard disks. In contrast, G-HBA demonstrates
the advantage of its space efficiency, as each MDS only
needs to maintain a small subset of all replicas, i.e., 2=
replicas, enabling most, if not all, of the replicas to be stored

in the memory, and thus outperforming HBA significantly.

4.3 Overhead of MDS Group Reconfiguration

Fig. 7 shows the overhead of adding a new MDS to the
system, in terms of the amount of replica migration traffic
for the HBA, hash-based placement, and G-HBA schemes.
When a new MDS joins a system with N MDSs, HBA needs
to migrate all existing N replicas to the new MDS, to
maintain a global mirror image containing all metadata
location information of the entire file system.

Hash-based placement, as discussed in Section 2.4, needs
to recompute the locations (target MDSs) for (N — M')
replicas. Whenever the new position differs from the
current one, a migration has to be performed. The number
of replicas that need to be migrated is bounded by
(N — M'). When the number of MDSs increases, the
probability of mismatch also increases, resulting in more
replicas being migrated. G-HBA only needs to migrate -2
replicas to the newly inserted MDS, and thus significantly
reduces network overheads in ultralarge-scale file systems.
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Fig. 5. Average latency comparisons of HBA and G-HBA with different
memory sizes under the INS trace.
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Fig. 6. Average latency comparisons of HBA and G-HBA with different
memory sizes under the HP trace.

4.4 Latency of Updating Stale Replicas

Figs. 8 shows the average latency of updating stale replicas
under these three workloads. In HBA, a replica update,
initiated from any MDS, triggers a system-wide multicast to
update all MDSs in the system. In G-HBA, however, we only
need to update the stale replica in each group (i.e., one MDS
in each group), making G-HBA faster and more efficient.

4.5 Multilevel Query Hit Rate and Latency

Fig. 9 shows the hit rates of G-HBA as the number of MDSs
increases. We examine the hit rates based on the four-level
query critical path, presented in Section 2.3. A query checks
L1 first. If zero or multiple hits occur, L2 is checked. A miss
in L2 will lead to a lookup in L3. Finally, if the query against
L3 still fails, we multicast the query message within the
entire file system (i.e., L4) to obtain query results where
every MDS in the system checks the query against its local
Bloom filter. Since L1, i.e., the LRU Bloom filter array, is
able to efficiently exploit the temporal locality of file access
patterns, a large number of queries to the other levels are
filtered out by L1. Our experiments show that more than
80 percent of query operations can be successfully served by
L1 and L2. With the help of L3, more than 90 percent
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Fig. 7. Number of migrated replicas using HBA, hash-based placement,
and G-HBA schemes.



588 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.22, NO. 4, APRIL 2011

80 [-| @ HBA(N=100) et
- [ |—=— G-HBA(N=100, M=9) e
» 70 |-|-®-HBA(N=30) .
3 | | —=— G-HBA (N=30, M=6) s
5 80 ,...v..lr’"l(
c I P
o 50 -
= b .4
Y 40 +
B o y |
g 30 o
20 raw
< o
10 ;o i
0

0 10 20 30 40 50 60 70 80 20

Number of update requests
(a)

80

e HBA(N=100)
70 || —<— G-HBA (N=100, M=9) -
-~ -~ HBA (N=30) rs
g 60 |-{—=— G-HBA(N=30, M=6) b
E -
=
g 50 o ®
P
2 ,r"’/.
« 40 e
e
(]
g 30 L o
] "
> 20 e
10 o Y S S e
(] = :
0 10 20 30 40 50 60 70 8 90
Number of update requests
(b)
20 H i
80 |-|-—®— HBA(N=100)
. —o— G-HBA (N=100, M=9) o
® 70 || = HBA(N=30) T
£ —+—— G-HBA (N=30, M=5) e
5 60 ,«»"""" -
c o
o 50 . &
© e
- 40 .
) »
2
g g
I 20
10 — o
S S b o—a—o—=¢
ok e

0 10 20 30 40 50 60 70 80 90

Number of update requests

(©

Fig. 8. Latency of updating stale replicas of HBA and G-HBA schemes
using HP, RES, and INS traces. (a) HP trace. (b) INS trace. (c) RES
trace.

requests are absorbed internally within one group, even
with a system of 100 MDSs.

It is also observed that the percentage of queries served by
L4 increases as the number of MDSs increases. This is because
false positives and false negatives increase in a large system
due to the large amount of stale replicas under the same
constraints of network overheads [32]. The staleness is caused
by nonreal-time updating in real systems. Here, a false
positive occurs when a request returns an MDS ID that
actually does not have the requested metadata. A false
negative means that a query request fails to return an MDS ID
that actually holds the requested metadata.

The final L4 query can provide guaranteed query
services by multicasting query messages within entire
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Fig. 9. Percentage of queries successfully served by different levels.

system. Since the operations take place in local MDSs, there
are no false positives and negatives from stale data in
distributed environments. Thus, if we still have multiple
hits, they must come from Bloom filters themselves.
Associated operations in a local MDS need to first check
local Bloom filters that reside in memory, to determine
whether the MDS may obtain the query result. If a local hit
takes place, further checking may involve accessing the disk
to conduct lookups on real metadata. Or else, we definitely
know the queried data are nonexisting. Although the L4
operations require more costs, the probability of resorting to
L4 is very small, as shown in our experiments.

Our design can provide failure-over support when an
MDS departs or fails. Once an MDS failure is detected, the
corresponding Bloom filters are removed from the other
MDSs to reduce the number of false positives. This design is
desirable in real systems, since the metadata service still
remains functional when some MDSs fail, albeit at a
degraded performance and coverage level.

In addition, we further test the query latency required by
different levels, as shown in Fig. 10. We observe that the
latency in L1 and L2 is much smaller than that in L3, since
the latter needs to multicast query requests within one group
to perform memory query. The L4 level produces the
maximum latency due to multicasting within entire file
system that involves all metadata servers. Therefore, G-HBA
can obtain quick query response, since most query requests
are satisfied at L1 or L2 level.
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Fig. 10. Query latency in different levels.
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TABLE 5
Scaled-Up EECS Trace

| Original | TIF=300 |

file system size (GB) 42 12600

active files (million) 0.17 51

total files (million) 0.57 171
number of metadata ops (million) 6.5 1950

5 PROTOTYPE IMPLEMENTATION AND EVALUATION

We have implemented a prototype of G-HBA in the Linux
kernel 2.4.21 environment that consists of 60 nodes, each
with Intel Core 2 Duo CPU and 1 GB memory. Each node in
the system serves as an MDS. The prototype contains the
functional components for handling multilevel query,
splitting/merging, updating, and migration. All these
components are implemented in the user space. A client
captures the file system operations from the user traces and
then delivers the query requests to the MDSs. Both, clients
and servers, use multiple threads to exchange messages and
data via TCP/IP. The IP encapsulation technique helps
forward the query requests among multilevel MDSs, as
shown in Section 2.3.

Since the HP trace contains more metadata operations
and is more recent than the other two traces (i.e., INS and
RES), we choose to use the HP trace that is scaled-up with
an intensifying factor of 60, using the scaling approach
described in Section 4.

We also use the I/O traces collected on the EECS NFS
server (EECS) at Harvard [33], to evaluate our G-HBA
performance. The EECS workload is dominated by meta-
data requests, and has a read/write ratio of less than 1.0. It
has a total of 4.4 million operations, in which there are more
than 75 percent metadata operations, such as lookup,
getattr, and access calls. The total size of all traces is
more than 400 GB, and only 42 GB traces (14 days) are
randomly selected in our evaluation, as shown in Table 5.
We further divide the storage system into groups based on
the optimal M values, obtained through the optimal value
calculation, described in Section 4.1, i.e., the optimal group
size is 7 for both HP and EECS traces when the total number
of MDSs is 60.

Our implementation experiments focus on evaluating the
dynamic operations, which are rarely studied by other
related research works. We use the traces to initialize our
grouping scheme, and we artificially insert the node
insertion and deletion requests within the uniform temporal
intervals to trigger the associated MDS insertion and
deletion operations. In addition, we use bit/file (b/f) ratios
of 8 for HP trace and 10 for EECS trace.

5.1 Lookup Latency

Fig. 11 shows the experimental results in terms of query
latency under the intensified HP trace. The results from our
prototype implementation, consistent with the simulations
in Section 4.2, further prove the efficiency of our proposed
G-HBA architecture. G-HBA can decrease the query latency
of HBA by up to 48.6 percent under the heaviest workload
in our experiments, demonstrating its scalability. We also

40
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Fig. 11. Average query latency using intensified HP trace.

evaluate the lookup latency through examining EECS trace,
where G-HBA obtains 41.5 percent latency saving under the
heaviest workload, as shown in Fig. 12.

5.2 Overhead of Adding/Deleting MDSs

We evaluate the overhead of dynamic operations for adding
new nodes and deleting existing nodes by examining the
number of messages, generated during the process of MDS
insertion and deletion. When adding a new node to a group,
the group can directly accept it, if the group size has not
reached the limit. Otherwise, the group is split into two, as
shown in Section 3.2. After adding a node, the BF replica of
the new node needs to be multicast to other groups in the
system. Furthermore, some replicas of the existing MDSs
within the same group need to be migrated to the new MDS
to keep load balanced. In this experiment, we randomly
choose a group to add a new node, which may or may not
cause the group to be split. The operations of adding and
deleting MDSs are associated with group-based reconfi-
guration, i.e., group splitting and merging.

Since each node in the HBA scheme maintains a global
mapping image of the entire system, an MDS insertion or
deletion requires it to exchange its own Bloom filter replica
with all other MDSs. In contrast, G-HBA’s simple and
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Fig. 12. Average query latency using intensified EECS trace.
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Fig. 13. The message numbers when adding and deleting nodes using
HP trace. (a) Inserting nodes. (b) Deleting nodes.

efficient group-based operations entail multicasting the BF
replica of the new MDS to only one node of each group,
achieving significant message savings.

Fig. 13 shows the number of messages, generated during
the MDS insertion and deletion. The target node is selected
randomly. We collect the number of total messages
associated with all dynamic operations, including possible
group splitting and merging. We observe that G-HBA
outperforms HBA in terms of required messages, obtaining
significant bandwidth savings. Table 6 further presents the
message overheads of inserting and deleting nodes when
using EECS trace.

5.3 Reconfiguration Latency Per Node

In this section, we examine the latency of adding or deleting
one node as the system scales-up its size. In large-scale
systems, the insertion of a node entails first executing the
associated operations with a chosen group, including
possible group splitting, and then multicasting the new

TABLE 6
The Message Numbers when Adding and
Deleting Nodes Using EECS Trace

| | | L [ 2 [3 [4]5[6]7|

HBA 136 | 253 | 381 | 507 | 631 | 746 | 852
Insertion | G-HBA 73 136 192 | 261 317 | 371 | 428
HBA 82 159 | 231 | 306 | 372 | 446 | 535
Deletion | G-HBA 46 81 118 | 159 | 187 | 212 | 257

—i— Insertion (HP)
—@— Deletion (HP)

Average Latency (ms)

10 20 30 40 50 60

Number of MDSs
(a)
220
m 200 | —#— Insertion (EECS)
£ 180 | —@— Deletion (EECS)
§ 160 |-
o 140
2
8 120 | b
)
g 100
s 80 |
)
2 60
40
20
10 20 30 40 50 60
Number of MDSs

(b)

Fig. 14. Average latency when adding and deleting one node using HP
and EECS traces. (a) HP trace. (b) EECS trace.

message to all other groups of the entire system. The node
deletion follows the similar operations but may trigger
group merging operations. Fig. 14 shows the average
latency when one node is added and deleted under the G-
HBA scheme when using HP and EECS traces. The deletion
operation produces smaller latency than node insertion,
since the latter needs to first choose a group to obtain the
given node, which is not required by the former.

5.4 Memory Overhead Per MDS

We utilize the memory requirement, normalized to a pure
Bloom Filter Array (BFA) with bit/file (b/ f) ratios of 8 and
10, respectively, for HP and EECS traces to evaluate the
memory overhead. The baseline system is to build only a
Bloom filter for each MDS to represent all files stored
locally, and then replicate this filter to all other MDSs. In the
baseline system, each MDS stores a BFA that consists of all
Bloom filters, including its local filter and the replicas of the
Bloom filters from all other MDSs. A metadata request can
obtain its lookup results from a randomly selected MDS,
based on the membership query on all Bloom filters. This is
the basic approach adopted by HBA, where an additional
LRU Bloom filter array is incorporated to exploit the
temporal locality of file access patterns to reduce the
metadata operation time.

Each BFA maintains a global image of the entire system,
and HBA needs to maintain an extra LRU Bloom filter
array. G-HBA utilizes the group-based scheme to reduce
space overhead and MDS insertion/deletion overhead. HP
and EECS traces share the same group setting, and thus,
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TABLE 7
Relative Space Overhead Normalized to BFA with One and Two
Bit/File Ratios in HP and EECS Traces

Server # | BFA BFA HBA G-HBA
(b/f) (2b/f)

20 1.0 2.0 1.0002 0.2002

40 1.0 2.0 1.0004 0.1670

60 1.0 2.0 1.0006 0.1434

80 1.0 2.0 1.0008 0.1258

100 1.0 2.0 1.0010 0.1121

they have the same overheads of relative space. Table 7
shows a comparison among BFA with (b/f), BFA with
(2b/f), HBA and G-HBA, in terms of normalized memory
requirement per MDS as a function of the number of MDSs.
Clearly, G-HBA has a significantly lower memory overhead
than both BFA and HBA, and its relative memory overhead
decreases as the number of MDSs increases.

6 RELATED WORK

Current file systems, such as OceanStore [34] and Farsite [21],
can provide highly reliable storage, but cannot efficiently
support fast query services of namespace or directory, when
the number of files becomes very large due to access
bottlenecks. Parallel file systems and platforms based on
the object-based storage paradigm [35], such as Lustre [12],
Panasas file system [36], and zFS [16], use explicit maps to
specify where objects are stored at the expense of high
storage space. These systems offer only limited support for
distributed metadata management, especially in environ-
ments where workloads must rebalance, limiting their
scalability and resulting in load asymmetries.

In large-scale storage architectures, the design for
metadata partitioning among metadata servers is of critical
importance for supporting efficient metadata operations,
such as reading, writing, and querying items. Directory
subtree partitioning (in NFS [17] and Coda [19]) and pure
hashing (in Lustre [12] and RAMA [37]) are two common
techniques used for managing metadata. However, they
suffer from concurrent access bottlenecks. Existing parallel
storage systems, such as PVFS [38] and Galley [39], can
support data striping among multiple disks to improve data
transfer rates, but lack efficient support for scalable
metadata management, in terms of failure recovery and
adaptive operations. Spyglass [40] utilizes namespace
locality and metadata skewed distribution to carry out the
mapping from namespace hierarchy into a multidimen-
sional K-D tree to support fast metadata searching service.
XFS [41], running on large SMPs, uses B" tree to increase
the scalability of file systems and reduce algorithmic
complexity from linear to logarithmic. The main advantage
of Bloom filters over distributed hashing or B tree is the
space saving, which allows us to place more file metadata
into high-speed memory and decrease bandwidth costs in
updating replicas.

Metadata management in large-scale distributed systems
usually provides query services to determine whether the
metadata of a specific file reside in a particular metadata

server, which, in turn, helps locate the file itself. Bloom filter
[11], as a space-efficient data structure, can support query
(membership) operations with O(1) time complexity, since a
query operation needs to probe constant-scale bits. Standard
Bloom filters [11] have inspired many extensions and
variants, such as the compressed Bloom filters [42], the
space-code Bloom filters [43], the spectral Bloom filters [44],
the distributed Bloom filters [45], and the beyond Bloom
filters [46]. The counting Bloom filters [27] are used to
support the deletion operation and represent a set that
changes over time. Multi-Dimension Dynamic Bloom Filters
(MDDBF) [47] can support representation and membership
queries based on the multiattribute dimension. We have
developed a novel Parallel Bloom Filters (PBF) and an
additional hash table [48] to maintain multiple attributes of
items and verify the dependency of multiple attributes,
thereby significantly decreasing false positive rates.

Existing state-of-the-art work motivates our work that
further improves upon them. Compared with existing
work, G-HBA exhibits different characteristics from existing
schemes in terms of function, data structure, and I/0
interface, except HBA. Both, HBA and G-HBA, are designed
to support membership queries to determine which MDS
stores the queried file metadata. Note that these two
schemes can determine the ID of the home MDS in which
the file metadata reside, not its actual address. In addition,
both HBA and G-HBA make use of the same data structure,
i.e., Bloom filters, to obtain space savings and provide fast
query response. Furthermore, the inputs in both HBA and
G-HBA are the query requests for files and the outputs are
the MDS ID of the MDS that stores the queried files. Finally,
the general-purpose G-HBA and HBA are orthogonal to the
existing schemes in that they are not designed to totally
replace the latter but to improve their query performance
and to provide good compatibility by using simple 1/O
interfaces. Based on the above reasons, we argue that it
would be more objective and meaningful to compare G-
HBA with HBA.

In addition, compared with the conference version in
[49], this paper presents detailed comparisons against other
state-of-the-art architectures of metadata management in
terms of multiple metrics, describes dynamic operations,
and shows extensive experimental results.

7 CONCLUSION

This paper presents a scalable and adaptive metadata
lookup scheme, called G-HBA, for ultralarge-scale file
systems. G-HBA organizes MDSs into multiple logic groups
and utilizes grouped Bloom filter arrays to efficiently direct
a metadata request to its target MDS. The novelty of G-HBA
lies in that it judiciously confines most of metadata query
and Bloom filter update traffic to a single server group.
Compared with HBA, G-HBA is more scalable due to the
facts that: 1) G-HBA has a much less memory space
overhead than the former, and, thus, can potentially avoid
accessing disks during metadata lookups in ultralarge-scale
storage systems. 2) G-HBA significantly reduces the amount
of global broadcast among all MDSs, such as that induced
by Bloom filter updates. 3) G-HBA supports dynamic
workload rebalancing when the server number changes,
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by using a simple but efficient migration strategy. Extensive
trace-driven simulations and a real implementation show
that our G-HBA is highly effective and efficient in
improving the performance, scalability, and adaptability
of the metadata management component for ultralarge-
scale file systems.
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