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Abstract—The widely deployed Virtual Private Network (VPN) technology allows roaming users to build an encrypted tunnel to a VPN

server, which, henceforth, allows roaming users to access some resources as if that computer were residing on their home

organization’s network. Although VPN technology is very useful, it imposes security threats on the remote network because its firewall

does not know what traffic is flowing inside the VPN tunnel. To address this issue, we propose VGuard, a framework that allows a

policy owner and a request owner to collaboratively determine whether the request satisfies the policy without the policy owner

knowing the request and the request owner knowing the policy. We first present an efficient protocol, called Xhash, for oblivious

comparison, which allows two parties, where each party has a number, to compare whether they have the same number, without

disclosing their numbers to each other. Then, we present the VGuard framework that uses Xhash as the basic building block. The

basic idea of VGuard is to first convert a firewall policy to nonoverlapping numerical rules and then use Xhash to check whether a

request matches a rule. Comparing with the Cross-Domain Cooperative Firewall (CDCF) framework, which represents the state-of-the-

art, VGuard is not only more secure but also orders of magnitude more efficient. On real-life firewall policies, for processing packets,

our experimental results show that VGuard is three to four orders of magnitude faster than CDCF.

Index Terms—Virtual private networks, privacy, network security.
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1 INTRODUCTION

1.1 Background and Motivation

VIRTUAL Private Network (VPN) is a widely deployed
technology that allows roaming users to securely use a

remote computer on the public Internet as if that computer
were residing on their organization’s network, which,
henceforth, allows roaming users to access some resources
that are only accessible from their organization’s network.
VPN works in the following manner. Suppose IBM sends a
field representative to one of its customers, say Michigan
State University (MSU). Assume that MSU’s IP addresses
are in the range 1.1.0.0-1.1.255.255 and IBM’s IP addresses
are in the range 2.2.0.0-2.2.255.255. To access resources (say,
a confidential customer database server with IP address
2.2.0.2) that are only accessible within IBM’s network, the
IBM representative uses an MSU computer (or his laptop)
with an MSU IP address (say, 1.1.0.10) to establish a secure
VPN tunnel to the VPN server (with IP address 2.2.0.1) in
IBM’s network. Upon establishing the VPN tunnel, the IBM
representative’s computer is temporarily assigned a virtual
IBM IP address (say, 2.2.0.25). Using the VPN tunnel, the
IBM representative can access any computer on the Internet
as if his computer were residing on IBM’s network with IP
address 2.2.0.25. The payload of each packet inside the VPN
tunnel is another packet (to or from the newly assigned IBM
IP address 2.2.0.25), which is typically encrypted. Fig. 1

illustrates an example packet that traverses from the IBM
representative’s computer on MSU’s network to the
customer database server in IBM’s network.

While the VPN tunnel is very useful for the IBM
representative, it imposes security threats on MSU’s net-
work because MSU’s firewall does not know what traffic is
flowing inside the VPN tunnel. For example, if MSU’s
firewall blocks access to a remote site (say, www.malicious.-
com) or disallows machines to run peer-to-peer applications
due to copyright concerns, MSU’s firewall cannot enforce its
policies on the IBM representative’s computer although that
computer is physically on MSU’s network. Thus, the VPN
tunnel opens a hole to MSU’s firewall that may allow
unwanted traffic to flow in and out. Having such a hole is
very dangerous because viruses or worms could flood in
through it to the IBM representative’s computer first and
then further spread to other computers on MSU’s network.

1.2 Technical Challenges

This problem is technically challenging. First, MSU cannot
simply block VPN connections because, otherwise, the
IBM representative may fail to perform his duties. Second,
MSU cannot share its firewall policy with IBM. Firewall
policies are typically kept confidential due to security and
privacy concerns. Knowing the firewall policy of a
network could allow attackers to easily spot the security
holes in the policy and launch corresponding attacks. A
firewall policy also reveals the IP addresses of important
servers, which are usually kept confidential to reduce the
chance of being attacked. Furthermore, from a firewall
policy, one may derive the business relationship of the
organization with their partners. Third, IBM cannot share
the traffic in its VPN tunnel with MSU due to security and
privacy concerns. For example, IBM may want to keep the
IP address of its customer database server confidential to
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reduce the likelihood of being attacked. One main purpose
of VPN is to achieve such confidentiality.

The fundamental problem in the above application is:
How can we collaboratively enforce firewall policies in a privacy
preserving manner for VPN tunnels in an open distributed
environment? A satisfactory solution to this problem should
meet the following three requirements: 1) the request owner
cannot gain any more knowledge on the policy after any
number of runs of the protocol than they would by brute
force probing of the policy. We refer to this requirement as
policy privacy. 2) It should be computationally infeasible for
the policy owner to reveal a request. We refer to this
requirement as request privacy. 3) The overhead of the
solution should be marginal. Timely processing of every
request (or packet) is critical for distributed applications.
We refer to this requirement as protocol efficiency. Through-
out this paper, we use “MSU” to represent the policy owner
and “IBM” to represent the request owner.

1.3 Limitations of Prior Art

Although this is a fundamentally important problem, it is
largely underinvestigated. The state-of-the-art on this
problem is the seminal work in [5], where Cheng et al.
proposed a scheme called CDCF. However, CDCF is
vulnerable to selective policy updating attacks, by which
the policy owner can quickly reveal the request of the other
party. Furthermore, CDCF is inefficient because it uses
commutative encryption functions (such as the Pohlig-
Hellman Exponentiation Cipher [13] and Secure RPC
Authentication (SRA) [16]), which are extremely expensive
in nature, as the core cryptography primitive.

1.4 Our Solution

In this paper, we present VGuard, a secure and efficient
framework for collaborative enforcement of firewall poli-
cies. In VGuard, different from CDCF, the policy owner
does not know which rule matches which request; thus, it
makes the selective policy updating attacks infeasible.
Furthermore, unlike CDCF, VGuard obfuscates rule deci-
sions, which prevents MSU from knowing the decision for
the given packet. To make VGaurd efficient, we propose a
new oblivious comparison scheme, called Xhash, which
uses XOR and secure hash functions. Xhash is three orders
of magnitude faster than the commutative encryption
scheme used in CDCF. Moreover, VGuard uses decision
diagrams to process packets, which is much faster than the
linear search used in CDCF. By side-by-side comparison,
our experimental results show that VGuard is 552 times
faster than CDCF on MSU side and 5,035 times faster than
CDCF on IBM side.

1.5 Key Contributions

We make the following three key contributions in this paper:
First, we propose Xhash, a very efficient oblivious compar-
ison scheme that simply uses XOR and secure hash functions.
Second, we propose VGuard, a privacy preserving frame-
work for collaborative enforcement of firewall policies.
Third, we implement both VGuard and CDCF and perform
extensive experiments to evaluate their performance.

1.6 Structure of Supplemental Material

Due to the space limitation, we present four sections:
Background, Discussion, Related Work, and Experimental
Results in the supplemental material (which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2010.155). In the
Background section, we formally define the concepts of
fields, packets, firewall rules, and firewall policies. In the
Discussion section, we discuss the eight remaining issues,
firewall updates, decision caching, decision obfuscation
versus decision encryption, special treatment of IP ad-
dresses, etc. In the Related Work section, we review the
previous research of CDCF framework, secure function
evaluation, and secure queries. In the Experimental Results
section, we evaluated the performance of our schemes on
both real-life and synthetic firewall policies, and compared
our schemes with CDCF side by side.

2 THREAT MODEL

First, we assume that the two parties of policy owner MSU
and request owner IBM are semihonest; that is, they follow
the preestablished VGuard protocol, but the policy owner
may attempt to reveal the request and the request owner
may attempt to reveal the policy. In particular, the
enforcement party IBM does enforce the decision made by
MSU. The assumption that the two parties follow the
VGuard protocol can be realized by the service level
agreement between MSU and IBM. Furthermore, we
assume that neither MSU nor IBM has the computational
power to break secure hash functions such as HMAC-MD5
or HMAC-SHA1 [7], [10], [14]. Second, we assume that
there exists a third party that facilitates the execution of our
protocol. This third party shares a secret key with MSU. We
assume that this third party follows our protocol and will
collude with neither MSU nor IBM. Third, we assume that
between any two of the three parties, MSU, IBM, and the
third party, there exists a reliable and secure channel. These
channels can be established using protocols such as SSL.
Our VGuard protocol runs inside these channels. Thus, we
do not consider the network level attacks on the commu-
nication channels that VGuard is built upon.

3 OBLIVIOUS COMPARISON

In this section, we consider the following oblivious compar-
ison problem. Suppose we have two parties, denoted MSU
and IBM, where MSU has a private number N1 and IBM has
a private number N2. MSU wants to compare whether
N1 ¼ N2; however, neither MSU nor IBM wants to disclose
its number to others. If N1 6¼ N2, no party should learn the
value of the other party. This is a technically challenging
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problem because MSU needs to have some information
about N2 to enable the comparison; yet, such information
about N2 should not allow MSU to reveal the value of N2.
Next, we introduce the concept of oblivious comparison
functions and an oblivious comparison protocol based on
such functions.

3.1 Oblivious Comparison Functions

Two functions f1 and f2 are called a pair of oblivious
comparison functions if and only if they satisfy the
following four properties:

1. Secrecy: neither f1ðx;KÞ nor f2ðx;KÞ reveals the
values of x and K.

2. Nondeducibility: given x and f2ðx;KÞ, it is compu-
tationally infeasible to compute K.

3. Commutativity: for any x, K1, K2, we have
f2ðf1ðx;K1Þ; K2Þ ¼ f2ðf1ðx;K2Þ; K1Þ.

4. Distinguishability: for any x, y, and K, if x 6¼ y, then
we have f1ðx;KÞ 6¼ f1ðy;KÞ and f2ðx;KÞ 6¼ f2ðy;KÞ.

Here f1 is called the inner oblivious comparison function and
f2 is called the outer oblivious comparison function. We discuss
the construction of f1 and f2 later.

3.2 Oblivious Comparison Protocol

Assuming that we have a pair of oblivious comparison
functions f1 and f2, MSU and IBM can achieve oblivious
comparison in the following three steps: Assume that MSU
has a secret key K1 and IBM has a secret key K2. First, MSU
computes f1ðN1; K1Þ and sends the result to IBM. Because of
the secrecy property of f1, IBM cannot reveal the values of
N1 and K1. Second, after receiving f1ðN1; K1Þ from MSU,
IBM computes f2ðf1ðN1; K1Þ; K2Þ and sends the result to
MSU. Because of the nondeducibility property of f2, MSU
cannot compute the value of IBM’s secret keyK2. Third, IBM
computes f1ðN2; K2Þ and sends the result to MSU. Because
of the secrecy property of f1, from f1ðN2; K2Þ, MSU cannot
reveal the values of N2 and K2. After receiving f1ðN2; K2Þ
from IBM, MSU computes f2ðf1ðN2; K2Þ; K1Þ and compares
the result with f2ðf1ðN1; K1Þ; K2Þ, which was received from
IBM in the second step. Because of the commutativity and
distinguishability properties of f1 and f2, N1 ¼ N2 if and
only if f2ðf1ðN1; K1Þ; K2Þ ¼ f2ðf1ðN2; K2Þ; K1Þ. Fig. 2 shows
the oblivious comparison protocol.

3.3 The Xhash Protocol

We propose a simple and efficient protocol, called Xhash,
to achieve oblivious comparison. Xhash works as follows:
first, MSU sends N1 �K1 to IBM. Then, IBM computes
HMACkðN1 �K1 �K2Þ and sends the result to MSU.
Second, IBM sends N2 �K2 to MSU. Third, MSU
computes HMACkðN2 �K2 �K1Þ and compares it with

HMACkðN1 �K1 �K2Þ, which was received from IBM.
Finally, the condition N1 ¼ N2 holds if and only if
HMACkðN2 �K2 �K1Þ ¼ HMACkðN1 �K1 �K2Þ. Fig. 3
illustrates the Xhash protocol.

The above function HMAC is a keyed-Hash Message
Authentication Code, such as HMAC-MD5 or HMAC-
SHA1, which satisfies the one-wayness property (i.e., given
HMACkðxÞ, it is computationally infeasible to compute x
and k) and the collision resistance property (i.e., it is
computationally infeasible to find two distinct numbers x
and y such that HMACkðxÞ ¼ HMACkðyÞ. Note that the key
k is shared between MSU and IBM. Although hash
collisions for HMAC do exist in theory, the probability of
collision is negligibly small in practice. Furthermore, by
properly choosing the shared key k, we can safely assume
that HMAC has no collision.

To prevent brute force attacks, we need to choose keyK to
be sufficiently long. In our implementation, we choose K to
be 128 bits. Note that in our framework, x is at most 38 bits. To
meet the length of K such that x can be XORed with K, we
first use a pseudorandom generation function R to generate
x1 ¼ RðxÞ. Second, we apply R to x1 to generate x2 ¼ Rðx1Þ.
Repeat this process until we can concatenate x; x1; x2; . . . to
form a bit string that meets the length of K. Extra bits in the
concatenation beyond the length of K are discarded.

The correctness of Xhash follows from the commutative
property of XOR operation (i.e., x�K1 �K2 ¼ x�K2 �K1)
and the one-wayness and collision resistance properties of
HMAC functions.

3.4 Nondeducibility Property of f1

Note that if f1 does not satisfy the nondeducibility property,
when N1 ¼ N2, MSU is able to compute K2 because MSU
knows both f1ðN2; K2Þ and N2. This is fine if MSU and IBM
only want to compare two numbers where K2 will be used
only once. However, in VGuard, MSU and IBM need to
compare MSU’s firewall with all the packets in the VPN
tunnel rather than comparing two numbers. IBM will apply
f1 to all the packets with its key K2. In this case, as long as
MSU reveals K2, it can compute the plaintext of all these
packets. To address this issue, we have two options. The first
option is that we can introduce a third party to prevent MSU
from knowing f1ðN2; K2Þ such that MSU cannot reveal K2.
The second option is that instead of introducing the third
party, we find a function f1 that satisfies the nondeducibility
property. To our best knowledge, the only function that
satisfies the nondeducibility property and the four proper-
ties of oblivious comparison functions is the commutative
encryption function such as the Pohlig-Hellman Exponen-
tiation Cipher [13]. A commutative encryption function
satisfies the following four properties, where ðxÞK denotes
the encryption of x using key K:
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1. given x and ðxÞK , it is computationally infeasible to
compute the value of K.

2. Given x, K1, and K2, we have ððxÞK1
ÞK2
¼ ððxÞK2

ÞK1
.

3. Given x, y, and K, if x 6¼ y, we have ðxÞK 6¼ ðyÞK .
4. Given K, ðxÞK can be decrypted in polynomial time.

However, such commutative encryption functions are

computationally too expensive. Thus, we choose the first

option in our VGuard framework. We defer the discussion

of preventing MSU from knowing K2 in Section 5.

4 BOOTSTRAPPING PROTOCOL

In the bootstrapping protocol, MSU first converts its firewall

policy to a set of nonoverlapping prefix rules. Second, MSU

converts each prefix to a number. Third, MSU applies an

XOR operation to every number using its secret key K1.

Finally, MSU sends the anonymized policy to IBM. IBM then

applies XOR and HMAC operations to every number in the

received policy using its secret key K2, obfuscates the

decision of each rule, and shuffle the resulting rules. To

complete the process, IBM sends the resulting policy back to

MSU. Fig. 4 illustrates the bootstrapping protocol.
Converting a firewall policy to a set of nonoverlapping

prefix rules consists of four steps: FDD construction, range

conversion, prefix numericalization, and rule generation.

4.1 FDD Construction

In this step, MSU converts its firewall policy to an equivalent

Firewall Decision Diagram (FDD) [8]. An FDD with a decision

set DS and over fields F1; . . . ; Fd is an acyclic and directed

graph that has the following five properties:

1. There is exactly one node that has no incoming
edges. This node is called the root. The nodes that
have no outgoing edges are called terminal nodes.

2. Each node v has a label, denoted F ðvÞ. If v is a
nonterminal node, then F ðvÞ 2 fF1; . . . ; Fdg. If v is a
terminal node, then F ðvÞ 2 DS.

3. Each edge e:u! v is labeled with a nonempty set of
integers, denoted IðeÞ, where IðeÞ is a subset of the
domain of u’s label (i.e., IðeÞ � DðF ðuÞÞ).

4. A directed path from the root to a terminal node is
called a decision path. No two nodes on a decision
path have the same label.

5. The set of all outgoing edges of a node v, denoted
EðvÞ, satisfies the following two conditions:

a. consistency: IðeÞ \ Iðe0Þ ¼ ; for any two distinct
edges e and e0 in EðvÞ.

b. Completeness:
S
e2EðvÞ IðeÞ ¼ DðF ðvÞÞ.

Fig. 5a shows an example firewall policy over two fields F1

and F2, where the domain of each field is ½0; 15�. The FDD

that is semantically equivalent to this firewall policy is

shown in Fig. 5b. Note that in labeling terminal nodes, we

use “a” as a shorthand for “accept” (i.e., “permit”) and “d”

as a shorthand for “discard” (i.e., “deny”). The algorithm for

converting a firewall to an FDD is in [11].

4.2 Range Conversion

For every edge e in the FDD, MSU converts its label IðeÞ to

the minimum set of prefixes whose union is equal to IðeÞ.
As one prefix can be converted to one range, a range may be

converted to multiple prefixes. In converting a range to

prefixes, we want to find the minimum set of prefixes such

that the union of the prefixes is equal to the range. For

example, given the range [0001, 1110], the corresponding
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minimum set of prefixes would be 0001; 001�; 01 � �; 10 � �;
110�; 1110. The minimum number of prefixes for represent-
ing an integer interval ½a; b�, where a and b are two numbers
of w bits, is at most 2w� 2 [9]. We call such FDDs, where
each edge is labeled by a set of prefixes, prefix FDDs. Fig. 5c
shows the prefix FDD converted from the FDD in Fig. 5b.

4.3 Prefix Numericalization

In this step, MSU converts each prefix in the FDD to a concrete
number. This process is called prefix numericalization. A prefix
numericalization function f needs to satisfy the following
two properties: 1) for any prefix P, fðPÞ is a binary string;
2) for any two prefixesP1 andP2, fðP1Þ ¼ fðP2Þ if and only if
P1 ¼ P2. There are many ways to do prefix numericalization.
We use the prefix numericalization scheme used in [4]. Given
a prefix b1b2 � � � bk � � � � � ofw bits, we first insert 1 after bk. The
bit 1 represents a separator between b1b2 � � � bk and � � � � � .
Second, we replace every � by 0. Note that if there is no � in a
prefix, we add 1 at the end of this prefix. For example, 101 � is
converted to 10110. After prefix numericalization, the FDD in
Fig. 5c becomes the one in Fig. 5d.

4.4 Applying XOR by MSU

After prefix numericalization, MSU applies XOR to every
number in the numericalized FDD using its secret key K1.
Fig. 5e shows the numericalized and XORed FDD. Then,
MSU generates nonoverlapping rules from the numerica-
lized and XORed FDD. From each decision path in the FDD,
MSU generates a set of nonoverlapping rules. For example,
from the left-most decision path in Fig. 5e, MSU generates
the following four nonoverlapping rules:

F1 2 01100�K1 ^ F2 2 00100�K1 ! a;

F1 2 01100�K1 ^ F2 2 01010�K1 ! a;

F1 2 10100�K1 ^ F2 2 00100�K1 ! a;

F1 2 10100�K1 ^ F2 2 01010�K1 ! a:

Fig. 5f shows the disjoint rules generated from the FDD in
Fig. 5e.

After nonoverlapping rules are generated, MSU sends the
resulting policy to IBM. If MSU needs to prevent IBM from
knowing the number of nonoverlapping prefix rules that
MSU’s firewall is converted to, MSU can randomly insert
some dummy rules formulated by out-of-range dummy
numbers and random decisions into the set of nonoverlap-
ping numerical rules before applying XOR. An out-of-range
dummy number is a number that corresponds to no prefix.
Thus, no packet will match a dummy rule that consists of at
least one out-of-range dummy number. According to our
prefix numericalization scheme, there is only one dummy
number in which every bit is 0. To create more dummy
numbers, we can simply add extra bits. Note that IBM
knowing the number of converted rules is not much a
concern. As we will show in the experimental results, the
number of nonoverlapping prefix rules that a firewall is
converted to far exceeds the number of original rules.

4.5 Applying XOR and HMAC by IBM

Upon receiving a sequence of nonoverlapping numerical
rules from MSU, IBM further applies XOR and HMAC to
every number in the received policy using its secret key K2.

To destroy the correspondence between the rules after
applying XOR and HMAC and the rules received from
MSU, IBM randomly shuffles the resulting rules after
applying XOR and HMAC. To prevent MSU from knowing
the decision of IBM’s packet, IBM obfuscates the decision of
each rule by mapping each decision to another distinct
decision. More formally, the decision obfuscation is a one-
to-one mapping function f from the set of all decisions to
the same set of all decisions. IBM stores the mapping
function f in its decision obfuscation table and replaces the
decision of each rule in ri, say di, by fðdiÞ. To prevent MSU
from statistically discovering the obfuscation mapping
function f , for any decision di, IBM needs to ensure that
the number of rules that have decision di is the same. This
can be easily achieved by adding dummy rules. Due to the
rule shuffling and decision obfuscation, MSU cannot
correlate the received rules with the original rules, and also
cannot identify the decision of each rule. Fig. 6b shows the
rules after IBM applies XOR and HMAC, and Fig. 6c shows
the rules after IBM shuffles rules and obfuscates decisions.
The obfuscation mapping function is shown in Fig. 6d. Note
that in these figures, h denotes the HMAC function. Finally,
IBM sends the resulting rules to MSU.

5 FILTERING PROTOCOL

In the filtering protocol, each time IBM receives a packet that

originated from or was sent to its representative, IBM first

converts the packet to prefixes and then further converts

each prefix to a number using the same prefix numericaliza-

tion scheme. Then, IBM XORs every number in the packet

with its secret key K2, and then sends the resulting packet to

the third party. The third party further applies XOR and

HMAC to the received packet with the secret key K1. Note

that the third party and MSU share key K1. Then, the third

party sends the resulting packet to MSU. MSU then searches

the obfuscated decision for the packet using the received

firewall policy from IBM in the bootstrapping protocol.

Finally, MSU sends the obfuscated decision to IBM and IBM

finds the original decision using its decision obfuscation

table. Fig. 7 shows the filtering protocol.
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5.1 Address Translation

When the IBM VPN server sends (or receives) a packet on
behalf of its representative in MSU, the source (or
destination) IP address of the packet is an IBM IP address
that the IBM VPN server assigned to the IBM representa-
tive’s computer in MSU. To inquiry the decision for this
packet from MSU, IBM needs to replace the source (or
destination) IP address in the packet by the IBM represen-
tative’s MSU IP address. Otherwise, it is likely that the MSU
firewall policy blocks all incoming packets that are not sent
to MSU and all outgoing packets that are not originated
from MSU. Take the example in Fig. 1, the packet that IBM
should ask MSU for a decision has a source IP 1.1.0.10 and a
destination IP 2.2.0.2.

5.2 Prefix Membership Verification

We first define two concepts: k�prefix and prefix family.
We call the prefix f0; 1gkf�gw�k with k leading 0s and 1s
followed by w� k � s a k�prefix. If a value x matches a
k�prefix, the first k bits of x and the k�prefix are the same.
For example, if x 2 01 � � (i.e., x 2 ½0100; 0111�), then the first
two bits of x must be 01. Given a binary number b1b2 � � � bw
of w bits, the prefix family of this number is the set of wþ 1
p r e f i x e s fb1b2 � � � bw; b1b2 � � � bw�1�; � � � ; b1 � � � � �; � � . . . �g,
where the ith prefix is b1b2 � � � bw�iþ1 � � � � � . We use PF ðxÞ
to represent the prefix family of x. For example,
PF ð0101Þ ¼ f0101; 010�; 01 � �; 0 � ��; � � ��g. Based on the
above definitions, it is easy to draw the following conclu-
sion: given a number x and a prefix P, x 2 P if and only if
P 2 PF ðxÞ.

5.3 Packet Preprocessing by IBM

For each of the d fields of a packet, IBM first generates its
prefix family. Second, IBM converts each prefix to a number
using the same prefix numericalization scheme in the
bootstrapping protocol. Third, IBM applies XOR to each
number using its secret key K2. Last, IBM sends a sequence
of d sets of numbers, which corresponds to the d fields of
the packet, to the third party. For example, given a packet
(0101, 0011) as shown in Fig. 8a, the prefix family of each
field is shown in Fig. 8b. The result of prefix numericaliza-
tion is shown in Fig. 8c. The final two sequences of numbers
are shown in Fig. 8d.

5.4 Packet Preprocessing by the Third Party

Upon receiving the packet as d sequences of numbers from
IBM, the third party further applies XOR using key K1 and

HMAC to each number and then sends the resulting packet
to MSU. Here, we choose the third party, instead of MSU, to
apply XOR and HMAC for the purpose of preventing MSU
from knowing the IBM’s XOR results (i.e., Fig. 8d) before
applying HMAC. Otherwise, MSU may break IBM’s secret
key K2 and further reveal packet headers. If MSU knows
IBM’s XOR results, to break K2, MSU first stores its rules
before anonymization in the bootstrapping protocol (e.g.,
the rules generated from Fig. 5d). Let hr1; . . . ; rni denote
these rules, where each rule rjð1 � j � nÞ is in the form
ðmj

1; . . . ;mj
dÞ ! hdecji. In the filtering protocol, when MSU

finds that a packet ðp1; p2; . . . ; pdÞ matches a rule, according
to the property of prefix membership verification, for each
1 � i � d, there must be a number ni in PF ðpiÞ that is equal
to one number in the set fm1

i ; . . . ;mn
i g. Third, for each

1 � i � d, MSU XORs ni �K2 received from IBM with
every number in the set fm1

i ; . . . ;mn
i g. Because one of the

numbers in fm1
i ; . . . ;mn

i g is equal to ni, the resulting set,
denoted Si, must contains K2. For example, if m1

i ¼ ni, then
m1
i � ni �K2 ¼ K2. Thus, for each packet P , we can
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Fig. 7. The filtering protocol.

Fig. 8. Example of packet preprocessing.



compute a set SðP Þ ¼ S1 \ � � � \ Sd, which contains K2.
When MSU receives a large set of packets P1; . . . ; Pg, the set
SðP1Þ \ � � � \ SðPgÞ may only contain K2. After finding K2,
MSU can reveal packet headers by applying XOR to every
number of packets received from IBM using K2. However,
in VGuard, using the third party to apply XOR and HMAC
to packets eliminates this possibility.

5.5 Packet Processing by MSU

Upon receiving the packet from the third party, MSU searches
the obfuscated decision for the packet using the resulting
firewall rules from the bootstrapping protocol. Recall that
each rule is represented as d numbers and an obfuscated
decision. A packet ðp1; . . . ; pdÞmatches a rule ðm1; . . . ;mdÞ !
hobfuscated decisioni if and only if the condition m1 2
PF ðp1Þ ^ � � � ^md 2 PF ðpdÞ holds. Therefore, MSU can use
the linear search to find the first rule that the packet matches.
Then, MSU sends the obfuscated decision to IBM and IBM
finds the original decision using its decision obfuscation
table. Because all the firewall rules resulted from the
bootstrapping protocol are nonoverlapping, there exists one
and only one rule that the packet matches. For example, given
the resulting firewall rules in Fig. 6c and the preprocessed
packet in Fig. 8e, the only rule that matches the packet is
ðhð01100�K2 �K1Þ; hð00100�K2 �K1ÞÞ ! d.

To improve search efficiency, MSU can use the following
two techniques: decision tree and hash table. First, MSU
converts the nonoverlapping rules resulted from the boot-
strapping protocol to an equivalent decision tree. For
example, Fig. 9 shows the decision tree constructed from
the firewall in Fig. 6c. Thus, MSU can search the decision for
a packet using the decision tree. Second, for the basic
operation of testing mi 2 PF ðpiÞ, MSU builds one hash
table for each PF ðpiÞ and then tests whether mi is in the
hash table that constructed from PF ðpiÞ.

6 VGUARD FOR DEEP PACKET INSPECTION

With the growing need to filter malicious packets, advanced
firewalls, as well as intrusion detection/prevention systems
such as Snort [15], Bro [12], 3Com’s TippingPoint X505 [2],
and a variety of Cisco Systems [1], examine not only packet
headers but also packet payload by checking whether its
payload contains some predefined strings in a signature
database. More formally, given a string a1a2 � � � an and a
packet payload s1s2 � � � sm where each ai (1 � i � n) and sj
(1 � j � m) are characters, we want to check whether the
string s1s2 � � � sm contains the substring skþ1skþ2 � � � skþn that
is the same as the string a1a2 � � � an. If so, the packet payload
s1s2 � � � sm matches the string a1a2 � � � an.

We can adapt our VGuard framework to deal with the
cases where MSU’s firewall performs deep packet inspec-
tion. The basic idea is that MSU and IBM apply Xhash

protocol to each character of every string in the signature
database and each character of the packet payload, and
check whether the resulting packet payload contains the
resulting string.

6.1 The Bootstrapping Protocol

In the bootstrapping protocol, MSU first applies XOR to
every character of the strings in its signature database using
its secret keyK1, and then sends the resulting strings to IBM.
To prevent IBM from knowing the number of strings in its
signature database, MSU adds some random strings and
XORs them withK1. Upon receiving the anonymized strings
from MSU, IBM further applies XOR and HMAC operations
to each character using its secret key K2. To prevent MSU
from identifying the original string that a packet matches by
comparing the number of characters in each resulting string
with that in each original string, IBM adds some dummy
strings and XORs them with its secret key K2. Then, IBM
obfuscates the decision associated with each string and
shuffles the strings. At last, IBM sends the resulting strings
back to MSU. Note that all the random strings added by
MSU and the dummy strings added by IBM should have the
default action, which is “permit.” Fig. 10 shows the
bootstrapping protocol for deep packet inspection. Suppose
an intrusion detection system has n rules and the ith
(1 � i � n) rule has ci characters. In the bootstrapping
protocol, the computation overhead of MSU and IBM is
Oð
Pn

i¼1 ciÞ, and the communication overhead between MSU
and IBM is also Oð

Pn
i¼1 ciÞ.

Considering three strings “eb, ebf , ecg” in Fig. 11a, Fig. 11b
shows the anonymized string s after MSU applies XOR to
these strings. Fig. 11c shows the resulting strings after MSU
adds the random string r1r2, where r1 and r2 denote two
random characters. Fig. 11d shows the resulting strings after
IBM adds the dummy string d1d2, where d1 and d2 denote two
random characters. Fig. 11e shows the strings after IBM
applies XOR and HMAC, and Fig. 11f shows the strings after
IBM shuffles rules and obfuscates decisions.

As the dummy strings that IBM generated are unlikely to
match any packet, MSU may identify them and then delete
them. To prevent MSU from identifying such strings, IBM
can generate fake packets that match the dummy strings
and periodically send them to MSU.

6.2 The Filtering Protocol

In the filtering protocol, each time IBM receives a packet
originated from or sent to its representative, IBM first
applies XOR to every character in the packet payload using
K2 and sends the resulting packet to the third party, which
further applies XOR and HMAC to the packet payload using
key K1 and then sends the resulting packet to MSU. String
matching algorithms have been investigated for many years
and several famous algorithms have been proposed, such as
Aho-Corasick algorithm [3] and Commentz-Walter algo-
rithm [6]. MSU can use these algorithms to search the
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Fig. 9. Decision tree constructed from Fig. 6c.

Fig. 10. Bootstrapping for deep packet inspection.



obfuscated decision for the packet based on the received
strings from IBM in the bootstrapping protocol. Finally,
MSU sends the obfuscated decision to IBM and IBM finds
the original decision using its decision obfuscation table.

For example, given a packet that contains strings “ebkf”
as shown in Fig. 12a, the packet payload after IBM applies
XOR is in Fig. 12b. Fig. 12c shows the result payload after
the third party applies XOR and HMAC. For the resulting
strings in Fig. 11f, the only string in the signature database
that matches the packet payload is hðe�K1 �K2Þ,
hðb�K1 �K2Þ ! d.

7 SUMMARY OF EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our schemes
on both real-life and synthetic firewall policies. In parti-
cular, we implemented our schemes without and with
adding dummy rules. For ease presentation, we use VGuard
and VGuard+ to denote our schemes without and with
adding dummy rules, respectively. Then, we compared
VGuard, VGuard+, and CDCF, side by side. We imple-
mented VGuard, VGuard+, and CDCF using Java 1.6.3. Our
experiments were carried out on a desktop PC running

Windows XP SP2 with 3G memory and dual 3.4 GHz Intel
Pentium processors. On real-life firewall policies, for
processing packets, our experimental results show that
VGuard is 552 times faster than CDCF on MSU side and
5,035 times faster than CDCF on IBM side; VGuard+ is 544
times faster than CDCF on MSU side and 5,021 times faster
than CDCF on IBM side. On synthetic firewall policies, for
processing packets, our experimental results show that
VGuard is 252 times faster than CDCF on MSU side and
5,529 times faster than CDCF on IBM side; VGuard+ is 248
times faster than CDCF on MSU side and 5,513 times faster
than CDCF on IBM side.

8 CONCLUDING REMARKS

In this paper, we propose VGuard, a privacy preserving
framework for collaborative enforcement of firewall poli-
cies. In terms of security, compared with the state-of-the-art
CDCF scheme, VGuard is more secure because of two major
reasons. First, VGuard converts a firewall policy of an
ordered list of overlapping rules to an equivalent non-
ordered set of nonoverlapping rules, which enables rule
shuffling and, consequently, MSU cannot identify which
original rule matches the given packet. Second, VGuard
obfuscates rule decisions, which prevents MSU from
knowing the decision for the given packet. In terms of
efficiency, compared with the state-of-the-art CDCF
scheme, VGuard is hundreds of times faster than CDCF in
processing packets because of two reasons. First, VGuard
uses a new oblivious comparison scheme proposed in this
paper, which is three orders of magnitude faster than the
commutative encryption scheme used in CDCF. Second,
VGuard uses firewall decision diagrams for processing
packets, which is much faster than the linear search used in
CDCF. We want to emphasize that the VGuard framework
can be applied to other types of security policies as well. It
is also worth noting that the Xhash scheme can be used for
other applications that require oblivious comparison.
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