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Abstract

Matrix languages, including MATLAB and Octave, are established standards for applications
in science and engineering. They provide interactive programming environments that are easy to
use due to their scripting languages with matrix data types. Current implementations of matrix
languages do not fully utilise high-performance, special-purpose chip architectures such as the IBM
PowerXCell processor (Cell), which is currently used in the fastest computer in the world.

We present a new framework that extends Octave to harness the computational power of the
Cell. With this framework the programmer is relieved of the burden of introducing explicit notions
of parallelism. Instead the programmer uses a new matrix data-type to execute matrix operations
in parallel on the synergistic processing elements (SPEs) of the Cell. We employ lazy evaluation
semantics for our new matrix data-type to obtain execution traces of matrix operations. Traces are
converted to data dependence graphs; operations in the data dependence graph are lowered (split
into sub-matrices), scheduled and executed on the SPEs. Thereby we exploit (1) data parallelism,
(2) instruction level parallelism, (3) pipeline parallelism and (4) task parallelism of matrix language
programs. We conducted extensive experiments to show the validity of our approach. Our Cell-
based implementation achieves speedups of up to a factor of 12 over code run on recent Intel Core2
Quad processors.

1 Introduction

Matrix languages including MATLAB [36] and Octave [17] are established standards for rapid-proto-
typing in scientific and engineering domains. One of the main reasons for the widespread adoption of
these languages is their ease of use. They provide interactive execution of code and simple, high-level
syntax for matrix calculations. Complex scientific and engineering problems are solved with a few
lines of code because there exists a cornucopia of commercial and open source libraries for standard
mathematical problems.

Despite their ease of use, matrix languages traditionally have sequential execution semantics and
utilise a single thread of execution only [38]. While the performance growth of single-core processors
is reaching its limits [51], scientists and engineers have increasingly large data-sets which must be
processed efficiently [21]. Thus, the use of matrix languages will plateau in the near future if not
adapted to modern parallel computer architectures.

With the advent of hardware accelerators for high-performance computing such as General Pur-
pose Graphics Processors (GPGPUs) [40] and the Cell Broadband Engine [19], significant performance
boosts over single-core architectures are possible. However, harnessing their computational power is
challenging in the context of matrix languages. Hardware accelerators for high-performance computing
are attributed to having non-uniform memory accesses and complex parallel programming patterns.
Extending matrix languages to execute on high-performance, accelerator architectures can be achieved
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by adopting either (1) an explicit parallel programming model which requires users to manually intro-
duce a notion of parallelism in their matrix language program, or (2) an implicit parallel programming
model in which parallelism is elicited from a matrix language program with little user intervention.
The explicit model contradicts the initial design goals of matrix languages as the users of these lan-
guages are most often untrained in concurrent programming. Hence, it is of paramount importance to
the continued success of matrix languages that an implicit model is adopted which is capable of fully
utilising the computational power of modern accelerator architectures for high-performance computing.

A large body of research [8, 30, 14, 53, 52, 47, 11, 12] already exists on how matrix languages can be
parallelised for distributed parallel architectures that were popular before the turn of last century. Some
of the parallel extensions developed are reported to offer good performance, however this performance
gain was often paid at the expense of ease of use by the programmer [8]. Little research has been
conducted in how matrix languages can be parallelised for modern accelerator architectures which
present very different challenges in achieving good performance. Current state of the art techniques
(e.g. those employed in MATLAB) for parallelisation on multicore CPUs involve using parallel math
libraries [55] to exploit data parallelism within matrix operations. Several emerging projects [1, 37]
have investigated using simple bindings to execute MATLAB functions on GPGPUs, again exploiting
data parallelism in matrix operations. However, these projects offer a näıve approach, neglecting other
types of parallelism that exist in matrix language programs and resulting in under-utilisation of their
target architectures.

In this paper, we introduce a new framework for the automatic parallelisation of matrix languages
which is specifically targeted towards modern hardware accelerators for high-performance computing.
We have implemented this framework as an extension to the Octave interpreter running on the Cell
Broadband Engine. The Cell Broadband Engine is a heterogeneous multicore architecture, which is
currently deployed in the fastest computer in the world [6], as well as the Sony Playstation 3 computer
games console. The Cell consists of a PowerPC core that is connected to several Synergistic Processing
Elements (SPEs) via a high-speed interconnect double ring bus. The PowerPC unit is an in-order RISC
processor with two hyper-threads, whereas the SPEs are small-sized vector (i.e. SIMD) machines with
256kB of local memory that is shared for data and instructions. Each SPE delivers approximately
25 GFLOPs peak performance for fused multiply-add operations [24].

GNU Octave is an open source alternative to MATLAB (a commercial product developed by
MathWorks). Octave mimics MATLAB’s syntax and has been used in our work because MATLAB
does not support PowerPC-based architectures such as Cell Broadband Engine.

Our framework exploits several types of parallelism in an Octave program to obtain high utilisation
of the Cell processor:

1. Data parallelism is exploited by partitioning large matrices into sub-matrices and executing
operations on the sub-matrices in parallel,

2. Instruction level parallelism is exploited by executing matrix operations of an execution trace
in parallel if there is no data dependence between them,

3. Pipeline parallelism is exploited by overlapping communication between cores with computa-
tion of matrix operations,

4. Task parallelism is exploited by overlapping execution of the Octave interpreter, construction
of the schedule, and execution of the matrix operations on the SPEs.

Lazy evaluation is used to generate execution traces of matrix operations by deferring their compu-
tation until a result is required. A key feature of our framework is that partitioned matrix operations
are scheduled among the parallel execution elements of the Cell processor in a way that satisfies inter-
operation data dependencies, prior to execution of the trace. Using estimates of the execution time for
each operation, operations can be scheduled such that the utilisation of parallel elements is improved
and the total execution time (makespan) is reduced.
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We perform an extensive evaluation of our framework using 9 Octave benchmark programs. The
execution time of these benchmarks running on our framework with the Cell processor is compared with
their execution time on a default installation of Octave on an Intel Core2 Quad processor. Comparisons
are also made with several other configurations. Furthermore, we perform experiments to evaluate the
benefits of scheduling matrix operations and to determine the extent to which the Cell architecture is
utilised.

The contributions of this work are as follows:

1. We introduce a framework for the execution of matrix languages on modern parallel architec-
tures. Our framework exploits both data parallelism and instruction level parallelism of matrix
programs. Instruction level parallelism is achieved through lazy evaluation of matrix operations.

2. We provide a ≈7000 line C/C++ implementation of this framework for the Octave programming
language on the Cell Broadband Engine architecture.

3. We provide a novel, efficient technique for partitioning matrix operations to maximise the par-
allelism available within an execution trace.

4. We develop accurate time models for estimating the execution times of matrix operations through
multivariate regression analysis.

5. We introduce a new heuristic scheduling for scheduling matrix operations among parallel pro-
cessing elements. The algorithm takes into account the estimated execution times of operations
and the pipelined nature of processing elements.

6. We formulate the scheduling problem as an integer linear program and compare the obtained
optimal solution with the solution produced by the heuristic scheduling algorithm.

This paper is organised as follows: In section 2 we survey related work on (1) parallelising matrix
languages and (2) the scheduling problem for precedence constrained tasks on multiprocessors. In
section 3 we give an overview of our framework and describe each of the major components. In section 4
we describe a motivating example that illustrates how an Octave program is executed in parallel with
our framework. In section 5 the lowering process is explained which decomposes operations on large
matrices into operations on smaller matrices. In section 6 we describe the scheduling problem and
provide a heuristic algorithm as well as an integer linear programming formulation which yields the
optimal solution. In section 7 we give an overview of the Cell Broadband Engine architecture and we
discuss the implementation of our framework on this architecture. In section 8 we describe details of
the development, testing and optimisation of our framework. In section 9 we present the experimental
results and discuss the observed performance of our framework. We summarise our work and draw
our conclusions in section 10.

2 Related Work

2.1 Parallel MATLAB

There are a variety of extensions for MATLAB designed to utilise parallel computers. The methods
of achieving parallelism, the target architecture and the extent to which the parallelisation process
is automated vary from extension to extension. In our work we present a new parallel system for a
matrix language with two identifying goals:

1. It allows automatic parallelisation of code with no intervention from the programmer.

2. It is designed specifically to achieve high performance on modern hardware accelerator architec-
tures.
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Choy and Edelman provide a survey [8] of 27 projects that extend matrix languages with parallel
features. The survey classifies the projects in four main categories:

• Embarrassingly parallel: These projects make use of multiple MATLAB processes running
simultaneously. There is only communication involved when a new process is spawned or a process
has completed its task. These parallel extensions for MATLAB are limited to applications that
can adopt an embarrassingly parallel programming scheme.

• Message passing: These projects provide message passing functionality between MATLAB
processes. The complexity of these extensions varies from simple wrappers for MPI functions [49]
to higher level abstractions. The programmer has to express the parallelism explicitly.

• MATLAB compilers: These projects compile MATLAB scripts into an executable form, either
directly or through the use of an intermediate language such as Fortran or C. Some of these
projects link their executables with parallel math libraries while others generate code that utilises
MPI.

• Backend support: These projects use a single MATLAB process as a front-end, which generates
jobs that are submitted to a computation engine and executed in parallel, often using numerical
libraries like ScaLAPACK.

We now examine the key parallel MATLAB systems in each of these categories. We have chosen to
include systems that we believe are representative of the current state of research including several
which are more recent than the survey provided by Choy and Edelman.

2.1.1 Message Passing and Embarrassingly Parallel Extensions

MatlabMPI [30] is an implementation of the Message Passing Interface (MPI) for MATLAB, developed
at MIT. MatlabMPI works by spawning several MATLAB processes that communicate via a shared
file system. A sender process writes a variable to a data file on the file system and touches (creates)
a lock file when the send is complete. A receiver polls for the existence of the lock file and when
it exists, reads in the data file and does any necessary cleanup. The system consists of 350 lines of
pure MATLAB code which makes it very portable. There are several similar projects in existence
which aim to provide pure message passing functionality in MATLAB including the MPI Toolbox
from the University of Granada [14]. They provide flexibility and control in parallelising a program.
The performance of MatlabMPI is also reported to approach that of equivalent C MPI code for large
messages. However, these systems do not reduce the complexity of concurrent programming for a user
and can perform very poorly for certain workloads.

In recognition of the need to reduce this complexity for the typical user, Bliss and Kepner developed
pMATLAB [53] which built upon MatlabMPI. Rather than requiring users to perform communication
between MATLAB processes explicitly, pMATLAB allows users to declare distributed numerical arrays
(or matrices) and an associated mapping of these arrays to available processors in the style of High
Performance Fortran (HPF) [29]. A map consists of a grid specifying the partitioning of the array
as well as a list of processor IDs that define the processors that will hold the data. Given this data
partitioning the program is automatically parallelised. Overloaded MATLAB functions, which take
distributed arrays as arguments, automatically perform the required message passing to coordinate
computation on these arrays in parallel. Bliss and Kepner report comparable performance to C MPI
code for some benchmarks, with a greatly reduced amount of code. A user study they have performed
indicates that there is not a steep learning curve for converting a MATLAB application to a pMATLAB
application and less than 1% of code requires modification. The HPF programming model limits the
applications which can benefit from this type of parallelisation to those which have regular data access
patterns. Irregular access patterns on distributed matrices can result in significant slow downs.

The team at MIT build upon pMATLAB again with pMapper [52]. pMapper provides fully auto-
mated parallelisation of MATLAB code by generating the array distribution maps for pMATLAB. A
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heuristic approach is taken to produce maps at run-time. One feature of pMapper is that it is designed
to be independent of any single parallel architecture or parallel library. Instead, when pMapper is in-
stalled on a system it performs an initialisation phase which generates a performance model for the
system. This performance model contains timing information for parallel functions with different input
sizes. The performance model is then used to generate maps specific to an architecture. pMapper is
designed specifically for signal processing applications and the benchmark results are largely due to
simulations.

The company MathWorks (the vendor of MATLAB) provides parallel extensions for MATLAB
in the form of a commercial Parallel Computing Toolbox [47]. The toolbox has been designed with
a heavy focus on an explicit parallel programming model. They achieve this by introducing several
extensions to the MATLAB language including parallel loops, distributed arrays and message passing
functions. The basic structure of the system uses several worker processes which can communicate
with each other and the client MATLAB process. The client formulates computations as a series of
jobs which are submitted to a scheduler, executed on workers and return a result. The toolbox allows
up to 8 workers to be running locally on a single machine and can be scaled to multiple computers in
a cluster with the use of MATLAB Distributed Computing Server. The toolbox draws from several
other pieces of software such as MPI libraries and parallel math libraries. It is worth mentioning that
MathWorks conducted a survey and found that “reusability of existing MATLAB code was cited as
the most important feature of any parallel computing toolset”, however they have introduced several
new constructs to the language which must be used in order to achieve high levels of parallelism.

With reference to the goals of our framework, they are largely unaddressed by message passing
approaches to parallel MATLAB. Firstly, existing systems are targeted toward distributed parallel
architectures. Although they can achieve parallelism on some modern accelerator architectures for
high-performance computing, communication overheads can restrict even moderate utilisation of the
processing elements. In MatlabMPI, for example, inter-process communication is achieved through
the file system which is going to be many orders of magnitude slower than specific communication
means on modern accelerator hardware. Secondly, as noted most message passing systems require a
large amount of intervention from the programmer in order to achieve parallelism.

2.1.2 Compilers

FALCON [11, 12] is a programming environment developed at the University of Illinois designed to
support the development of optimised numerical applications and libraries. The input language is
MATLAB which is translated to the target language, Fortran 90, in three stages. The first stage,
program analysis, constructs an Abstract Syntax Tree (AST) and determines the type and shape of
variables. As with any untyped language, in order to compile the code, the types of variables must
first be inferred. This can not always be done statically, so FALCON utilises both static and dynamic
analysis, combined with user input to determine variable types. The next stage uses a collection
of transformation rules to restructure the code in order to perform optimisations. This phase is
fully interactive with optimisations suggested by FALCON and selected by the programmer. Finally,
the code generation stage uses information collected during the analysis phase to produce Fortran
90 code. This code is annotated with compiler directives which allow automatic parallelisation by
Polaris [7], a parallelising Fortran compiler. Despite achieving speedups of up to 1000 times over the
MATLAB interpreter the work presented in FALCON focuses mainly on producing high-performance
sequential Fortran code. Parallelisation of this code is left largely uninvestigated and as future work
with no results reported for benchmarks on multiprocessor machines. Unfortunately this project is
now seemingly dormant.

Work from FALCON continued with a MATLAB Just-In-Time (JIT) compiler called MaJIC [4].
In JIT compilation no static analysis of the code is done. Instead, portions of the code are compiled
at run time in order to achieve better performance than that of purely interpreted code. Although
this project did not explore program parallelisation in the compilation process it remains interesting
since, as far as the authors are aware, it is the only research project that uses JIT compilation for
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MATLAB. JIT compilation is desirable for two reasons. Firstly, it allows MATLAB to remain an
interpreted (and untyped) language which is important in facilitating rapid prototyping. Secondly, it
means that optimisations can be applied at run time that may not be apparent at compile time. In our
work we adopt JIT compilation techniques to efficiently schedule matrix operations on the PowerXCell
architecture.

Otter [44, 45] is another MATLAB compiler developed at Oregon State University. Unlike FAL-
CON which translates MATLAB scripts first to sequential Fortran code and then parallelises that
code, Otter translates MATLAB code directly to parallelised C code with calls to MPI and existing
parallel numerical libraries. The translation process used in Otter to generate C code is based on the
translation process developed for FALCON. However, extra compilation passes are used to introduce
parallelism. Calls to the Otter run-time library are inserted to provide a means of communication
between processors or utilise existing numerical libraries, such as ScaLAPACK when possible. Otter
is advantageous as it provides completely automatic parallelisation of general code and is portable
between all architectures supporting MPI. A limitation, as with pMATLAB, is that it again achieves
parallelism through distributed arrays which require regular data access patterns to achieve good per-
formance. Also, it is bound to the usage of numerical libraries and thus the matrix distributions
associated with those libraries. While these compilers provide some automated parallelisation of code,
they are once again focused toward parallelism on distributed architectures.

MATCH [5] is another MATLAB compiler however, unlike FALCON and Otter, it is targeted to-
ward heterogeneous parallel architectures. These architectures consist of an interconnection of various
processing components such as embedded processors, digital signal processors and commercial off-the-
shelf components, each of which can perform certain types of computation very efficiently. Despite
being developed nearly a decade ago, MATCH is relevant in the context of our research because the
heterogeneous architectures presented resemble modern parallel architectures in some ways. In par-
ticular these heterogeneous architectures use a single general purpose processor (the MicroSPARC-II
in this case) to handle the control flow of the program and specialised units perform computation-
intensive portions of the program more efficiently. This can be compared to the Cell processor which
has a PowerPC processor to handle control flow and several Synergistic Processing Elements (SPEs)
optimised for computation. MATCH works by first producing an abstract syntax tree, as is done in
FALCON and Otter. The AST is then partitioned into sub-trees whose nodes correspond to library
functions in MATLAB. Each sub-tree is mapped to a given processing resource depending on how ef-
ficiently that portion of the program can be executed on the resource. This mapping can be produced
automatically by MATCH using timing information and a mixed integer linear programming approach,
however user guided mappings are also possible. Code is then generated for each partition of the AST,
depending on the architecture to which the partition is mapped. Built-in MATLAB functions, such
as matrix multiplies, are pre-compiled in architecture specific libraries. Distributed arrays are again
used to generate parallel code on target architectures for user defined functions.

2.1.3 Backend Support

Our framework falls into the category of backend support as it has a computation engine that receives
matrix operations from the Octave interpreter, executes the operations and returns the result to the
client.

Jacket [1] is a MATLAB backend that runs on General Purpose Graphic Processing Units (GPG-
PUs). It is a commercial product developed by Accelereyes and few details are available about its
design. It is one of several systems that have emerged recently for the acceleration of MATLAB code
on GPGPUs [37, 56]. In Jacket, the programmer casts matrices into GPU matrices, which are trans-
ferred to GPU memory. Operations on GPU matrices are executed on the GPGPU by compiling code
on-the-fly with the NVIDIA/CUDA [40] infrastructure. Jacket also provides some syntax extensions
for executing for-loops with parallel semantics. Though Jacket provides a high level of abstraction
from the details of parallelism, the programmer still requires knowledge of the underlying GPGPU
architecture to write efficient Jacket/MATLAB code as they must understand the overheads involved
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in transferring data between main memory and the device memory of the GPGPU. Furthermore, it ap-
pears that Jacket essentially provides MATLAB bindings to CUDA functions and as such, instruction
level parallelism is not exploited by the system.

Star-P [27] is another commercial product which began as a research project at MIT in 1998 and
was commercialised in 2004. It involved the same authors who conducted the parallel MATLAB survey
discussed previously and incorporates ideas from several existing parallel MATLAB systems. From
a user’s perspective, Star-P behaves in a similar way as Jacket. Programmers denote a distributed
variable by tagging it with the characters ∗p, converting it to a custom data type. Star-P then provides
overloaded versions of standard MATLAB functions which operate on the custom data type in parallel.
Star-P targets a distributed computing environment. The main purpose of the MATLAB client is to
distribute tasks to a cluster running the Star-P server, which will run computations and deliver results.
The server software is a general purpose computation engine which is not specific to MATLAB and
supports clients running many different languages, including Python. It utilises existing math libraries
to perform parallel computations on each server.

2.2 Task Scheduling

In our work we attempt to improve utilisation of modern accelerator architectures by scheduling matrix
operations among parallel execution elements. We wish to schedule operations such that (1) the data
dependencies between operations are satisfied, i.e. an operation can only begin execution after its
operands have been computed, and (2) the total time of execution (makespan) is minimised. This
problem is well explored in literature [34], with two main formulations — the delay model [22] and the
malleable tasks model [54].

2.2.1 The Delay Model

In the delay model we are given a precedence graph G(V,E) as the input to the problem along with
a number of available processors p. G is a directed acyclic graph (DAG) whose vertices V represent
the tasks and directed edges E represent the dependencies between tasks. There is an arc from a node
s ∈ V to a node t ∈ V if task t depends on task s. Vertices are annotated with the cost of executing
the task. An edge from s to t is annotated with the cost of communication between the tasks s and t.

The goal is to find a legal schedule that minimises the makespan. A schedule consists of a start
time for each task and the processor to which it is assigned. Note that a scheduled task must be
executed completely on the processor it has been assigned without interruption.

Our problem of scheduling matrix operations on SPEs resembles this problem. Matrix operations
become the vertices in the precedence graph and the data dependencies between operations form the
edges. The costs of operations can be estimated by using a time model that is obtained by profiling
and regression analysis.

It has been proven that finding an optimal solution to the scheduling problem with the delay model
is NP-complete [16]. As such, work has been done on finding optimal, polynomial time solutions for
simplified versions of the problem. Hu [22] addresses a variation of the problem in which the task
precedence graph is assumed to have a tree structure, tasks are assumed to have unit execution
costs and communication costs are ignored. A simple, list scheduling algorithm is proposed to find
the optimal solution in polynomial time. List scheduling algorithms are a common approach to the
scheduling problem that order tasks in a list according to some heuristic. The heuristic typically
ensures a topological ordering of the task precedence graph. Tasks are then iteratively removed from
the list in order and assigned to the processor allowing the earliest start time. Hu uses a heuristic in
which tasks are ordered by their distance from the root of the tree in the task precedence graph.

Coffman and Graham [9] also propose a polynomial time, optimal algorithm with the simplify-
ing assumptions that there are only 2 processors, unit execution costs and no communication costs.
Papadimitriou and Yannakakis [42] propose a polynomial time, optimal algorithm with the simplify-
ing assumption that there are unit execution costs and the precedence graph is interval ordered. In
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our work we must schedule operations that have arbitrary precedence constraints over more than 2
processors. Hence, the above mentioned algorithms cannot be used.

Recognising the difficulty of finding an optimal solution for the general problem, many heuristic
algorithms [34] have arisen which are usually variations of the list scheduling approach. Adam et al. [2]
performed a simulated analysis of these algorithms and found that a Highest Level First with Estimated
Times (HLFET) heuristic gave the best results for the chosen benchmarks. In this approach, tasks are
ordered by the cost of the longest path to an exit task (a sink node) in the precedence graph. This value
is known as the b-level of the task. Tasks with a larger b-level are scheduled first. Using this approach
ensures that tasks along the critical path of the graph will be scheduled first. The critical path is the
longest path through the precedence graph from an entry node (source) to an exit node (sink) and is
important as it represents the minimum length of an optimal schedule. It was shown that this approach
can produce near-optimal schedules and has a run-time of O(n2) for n tasks. Graham [18] showed that
the schedule length, SL, generated using level-based, list-scheduling algorithms such as HLFET was
no more than twice the length of the optimal schedule, SLopt, such that SL ≤ (2 − 1

p
)SLopt where p

is the number of processors.
When communication costs are allowed to be arbitrary, several other algorithms have been pro-

posed. A well known algorithm in this category is the Insertion Scheduling Heuristic (ISH) [33]. It
works in a similar way to HLFET by using the b-level of a task as its priority in a list scheduling
algorithm. However, while HLFET may leave gaps in the schedule, ISH seeks to fill these gaps and
thus reduce the schedule length. Every time a gap is introduced in the schedule, ISH examines un-
scheduled tasks which are ready to be scheduled and attempts to use them to legally fill the gap. The
time complexity of ISH is O(n2).

Another category of algorithms are proposed for scheduling tasks with arbitrary precedence con-
straints which allow task duplication. These algorithms recognise that by redundantly duplicating
tasks, the time waiting for a parent task to complete might be reduced which may reduce the overall
time of the schedule. The Duplication Scheduling Heuristic (DSH) [32] is a representation of such
algorithms. It works by iteratively attempting to duplicate a tasks ancestors on a processor if it allows
the task to be scheduled at an earlier start time. The time complexity of the algorithm is O(n4) which
may be unsatisfactory for applications with a limited time budget for scheduling.

More recently, polynomial time approximation algorithms have been proposed for the general case
of the delay model scheduling problem, with communication costs considered. These yield a solution of
bounded quality. One such algorithm [39] gives an approximation guarantee of 2.33− 1.33m where m
is the number of edges in the task precedence graph. The algorithm is based on rounding of a relaxed
linear programming solution to find a schedule with minimum makespan on an unbounded number of
processors. A list scheduling algorithm is then used to produce an optimal schedule for a finite number
of processors. Due to the use of linear programming, these algorithms can again be impractical for
time-critical applications.

2.2.2 The Malleable Tasks Model

The malleable tasks model is a more recent model than the delay model and as such, there is less
work on it. It is similar to the delay model but with two main differences. Firstly, communication
costs are incorporated in the execution cost of each task. Secondly, tasks in this model do not have
to execute on a single processor but can be divided up and executed over several processors with a
reduced execution time. As such vertices in the precedence graph are not merely labelled with a single
execution cost but instead a cost function, c(k), which is dependent on the number of processors, k,
which the task is assigned to. A schedule that satisfies the problem consists of a start time for each
task and a number of processors over which each task is to execute.

We could apply the malleable task scheduling problem to our framework because the tasks in our
framework are matrix operations. These can be divided into operations on sub-matrices which can be
executed across several processing elements.

It has been proven that the scheduling problem for malleable tasks with arbitrary precedence
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constraints is NP-hard with only 3 processors [13]. Even the problem of finding an optimal schedule
for malleable tasks without precedence constraints has been shown to be NP-hard with 5 or more
processors [13].

Despite the hardness of the problem there has been some recent work on approximation algorithms.
Lepre et al. [35] present a polynomial time approximation algorithm for scheduling malleable tasks
under precedence constraints with an approximation ratio of 3 +

√
5 ≈ 5.23006. Their algorithm is

developed by identifying the relationship between the scheduling problem and the allotment problem,
which is approximated by rounding the solutions of a linear programming relaxation [48]. This is
combined with a list scheduling algorithm to provide the final approximation algorithm. Jansen and
Zhang [28] improve on the work of Lepre et al., with an approximation ratio of 100/43+ 100(

√
4349−

7)/2451 ≈ 4.730598. Existing approximation algorithms for the malleable tasks scheduling problem
may not be viable in time-critical situations. This is due to their use of linear programming which has
polynomial time complexity, but high overheads in practice.

3 System Overview

Our framework is a system extension for Octave. It takes the form of a shared library that is loaded by
the Octave interpreter at runtime. The framework automatically parallelises matrix instructions for
the Cell Broadband Engine and only requires minimal changes to existing Octave code when deployed.
These changes consist of casting all matrix declarations to a new Octave data type called p matrix.
Standard operators, such as +, - and *, as well as built-in functions, such as sin and round, have been
overloaded to operate on the p matrix data type (see section 8).

The underlying idea of our framework is to execute several matrix instructions at the same time
to optimally harness the computational power of the Cell Broadband Engine. However, the sequential
execution semantics of matrix languages do not provide the notion of concurrent execution of matrix
instructions, besides dividing matrix instructions into sub-operations which are distributed among
parallel processing elements. To further increase the parallelism in Octave programs, we employ lazy
evaluation of matrix instructions. Lazy evaluation delays the execution of matrix instructions until
the result of an instruction is required. This concept is heavily used in functional programming
languages and has numerous applications there, including avoiding unnecessary computations and
error conditions, being able to operate on infinite data structures, and defining control flow structures
in the language itself [23].

Our framework uses lazy evaluation to collect a trace of matrix instructions. The overloaded
functions of the new data type facilitate the construction of the trace which is then analysed to
determine the data dependencies between operations. The data dependencies in the trace loosen
the strict sequential ordering of instructions to a partial ordering that allows independent matrix
instructions to be executed in parallel. A data dependence graph G(I, E) is constructed for the trace
where I is the set of nodes in the graph representing instructions in the trace, and E is the set of data
dependencies between pairs of matrix instructions. For example, the lazily evaluated statement A =
B ∗C imposes two directed edges (B,A) and (C,A) because the result A of the matrix multiplication
depends on the matrix operands B and C, as shown in Figure 1. The source nodes in this graph
(i.e. in-degree of 0) are typically constant or computed matrices, whose value is already available.

Our framework constructs the data dependence graph on the fly when matrix instructions are
lazily evaluated. Note that the constructed graph is acyclic even for loops. A matrix instruction
that is executed multiple times inside a loop is represented by a set of nodes in the graph. For each
execution instance of the matrix instruction there exists exactly one node in the graph.

A trace will continue to grow in length as the program is executed until either (1) a statement is
reached that requires the result of an unexecuted matrix operation in the trace and cannot be lazily
evaluated, e.g., displaying the value of a matrix, or (2) the length of the trace has reached a certain
threshold, i.e., it becomes opportunistic to execute the matrix operations in parallel. If either of these
criteria are met, execution of the data dependence graph is triggered.
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Figure 1: A data dependence graph for the statement A = B ∗C. A depends on the values of matrices
B and C so there is a directed edge in the graph from B to A and from C to A.

df

time

df

df

ex
ex

ex

wb
wb

wb

Figure 2: Pipelined execution of matrix instructions. There are 3 stages in the pipeline: data fetch
(df), execution (ex) and write back (wb), each of which can be overlapped.

The first step in execution of the data dependence graph is lowering the graph. The memory of the
SPEs on the Cell architecture is at a premium, i.e., code and data share the same memory which is
limited to 256kB. To be able to compute larger matrices, the framework decomposes matrix instructions
into matrix instructions that operate on sub-matrices. This decomposition of the instructions not only
enables the execution of matrix instructions on the parallel processing elements of the Cell but also
exposes data parallelism in the matrix instructions. We refer to this process of decomposing the
instructions of the data dependence graph into instructions that operate on sub-matrices as lowering
(see section 5). The lowering process rewrites the original data dependence graph into a lowered data
dependence graph, which has an increased number of operations and dependencies.

The lowered data dependence graph is then scheduled among the parallel processing elements in the
underlying architecture (see section 6). Scheduling assigns each parallel processing element a subset of
the lowered operations which have a specified order in which they are to be executed. The scheduling
is performed in a way that satisfies the data dependencies between operations and minimises the total
execution time (makespan) of the trace. Execution times of matrix operations are estimated using
time-models constructed from profiling data. This ensures that an accurate schedule is produced.
Since the scheduling of operations happens at run-time it is also important that a schedule is produced
quickly.

In the final step, the lowered matrix instructions are executed on the parallel processing elements
according to the schedule. This component of the framework is referred to as the computation en-
gine. The computation engine is abstracted from the details of the underlying architecture and instead
viewed only as an asynchronous, pipelined, Multiple-Instruction/Multiple-Data (MIMD) architecture
with a shared memory. The architecture executes matrix instructions concurrently in an asynchronous
fashion. To hide the communication between memory and the processing element, the architecture
utilises a pipeline. The pipeline stages of a single matrix instruction are assumed to be timely inter-
leaved as depicted in Figure 2, which is an idealised scenario assuming that the durations of the stages
have the same duration and there are no “bubbles” or gaps in the pipeline. We employ the following
pipeline stages in our computation engine:

1. Data Fetch (df): The operands of the matrix instruction are loaded from main memory into
the memory of the parallel processing element,

2. Execute (ex): The matrix instruction is executed on the parallel processing element,
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Lowered Data 
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Instruction Schedule

Figure 3: The main software components of the framework. These are: (1) the p matrix data type
extension to the Octave interpreter, (2) the lowerer for partitioning matrix operations, (3) the scheduler
for scheduling matrix operations among the parallel execution elements of the architecture, and (4)
the computation engine which executes the partitioned matrix operations.

3. Write Back (wb): the result of the matrix instruction is written back to main memory.

In contrast to a super-pipelined, super-scalar CPU [43], the matrix instructions are not assumed to be
synchronised, i.e., there is no global clock that triggers a new step with a constant period.

This abstraction from the details of the underlying parallel architecture allows the framework to be
easily ported to many different architectures (such as GPGPUs or multi-core CPUs) by customising
the computation engine. In this work, we implement a computation engine for the Cell Broadband
Engine architecture (see section 7). Each of the SPEs in the Cell processor acts as a processing element
and executes a sequence of matrix instructions. We call the program that runs on the SPEs a Matrix
Execution Unit (MEU). The MEUs need to be synchronised globally. An execution control mechanism
guarantees that a matrix instruction on an MEU is only executed if its operands are already available
in main memory. The execution control is run on the PowerPC Processing Element (PPE) of the Cell.

After the completion of the execution of lowered operations, the results are made available for use
by the Octave interpreter.

The software components of our framework are depicted in Figure 3. The first component is a
data type extension to the Octave interpreter called p matrix. The operators for the new data type
are overloaded to perform lazy evaluation and to obtain the execution trace. From this, the data
dependence graph of operations in the trace is computed, on the fly. The data dependence graph
is passed on to the lowerer which decomposes matrix instructions into instructions that operate on
sub-matrices. The scheduler computes the schedule for the computation engine. Finally, the matrix
instructions are executed on the computation engine according to the schedule. All four components
can be executed in parallel, i.e., the Octave interpreter, the Lowerer, the Scheduler and the computation
engine are executed in separate execution threads allowing overlapped execution of all four components.

4 Motivating Example

Assume we want to compute the value of B = Ai using an Octave script, where A is a square matrix
of dimensions n× n and i is a positive integer. For the purpose of this example we let A be a random
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✞
1 A = rand ( 1 0 0 ) ;
2 i = 3 ;
3

4 B = A;
5 for k = 1 : i−1
6 B = B ∗ A;
7 end
8

9 disp (B) ;
✡✝ ✆

Figure 4: Octave script for the computation of
B = Ai.

✞
1 A = p matrix (rand ( 1 0 0 ) ) ;
2 i = 3 ;
3

4 B = A;
5 for k = 1 : i−1
6 B = B ∗ A;
7 end
8

9 disp (B) ;
✡✝ ✆

Figure 5: Parallel data type modifications for B =
Ai.

B0 = A;

B1 = B0 ∗A;
B2 = B1 ∗A;

Figure 6: The trace of lazily evaluated matrix operations.

100× 100 matrix and i = 3. A näıve Octave implementation for calculating matrix B and displaying
its value to the screen is given in Figure 4.

To use our framework, the Octave programmer converts matrix declarations to the custom p matrix

Octave data type by wrapping them with the p matrix function. In our example program, the only
matrix declaration is for the matrix A in line 1 of Figure 4. The modified code that uses our framework
is shown in Figure 5. Note that a user does not have to decide which matrices should be converted to
this new data type (all matrices can be safely converted), and the need for this additional data type
could be completely eliminated with alterations to the Octave interpreter.

When the script in Figure 5 is executed in the Octave interpreter, matrix operations involving
operands of the type p matrix are lazily evaluated by our framework. In the example program, the
only such matrix operation is the multiplication B = B ∗ A, in line 6 of Figure 5. The result of this
operation (the matrix B) is never required inside the for-loop. Hence, rather than eagerly executing
this operation each time it is reached inside the loop (as would be the case when executing in a default
installation of Octave), lazy evaluation defers execution of the operation. Instead, the operation is
recorded in an execution trace (shown in Figure 6). The trace is kept as an internal data structure
and a data dependence graph of the trace is constructed on the fly. The data dependence graph shows
which operations depend on the results of other operations and determines a partial order in which
operations must be executed to yield a correct result. This partial order enables the parallel execution
of matrix operations in contrast to strict sequential execution of matrix languages.

Let Bk denote the value of B in the k’th iteration of the for-loop. Execution of the example
program from Figure 5, construction of the trace (Figure 6) and construction of the data dependence
graph (Figure 7) proceeds as follows:

1. Matrix A in line 1 is declared. The conversion of the random matrix to type p matrix causes our
framework to add the matrix to the data dependence graph as a constant matrix (Figure 7(a)).
Note that constant matrices (like A) are not true matrix operations as their result is already
available and they do not need to be executed. Instead they are added to the data dependence
graph to denote the dependence of another operation on that matrix.

2. Matrix A is assigned to variable B0 in line 4. Again this causes a constant matrix to be added
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A

(a) Data dependence
graph after execution
of line 1.

B0A

(b) Data dependence
graph after executing
line 4.

B0A

B1
×

(c) Data dependence
graph after executing
line 6 in the first iter-
ation.

B2
×

B1
×

B0A

(d) Data dependence
graph after executing
line 6 in the second it-
eration.

Figure 7: Showing the construction of the data-dependence graph as the program listed in Figure 6
is executed. Red nodes represent constant matrices and blue nodes represent matrix multiplication
operations.

to the data dependence graph (Figure 7(b)). Note that a deep copy of matrix A is not made
upon assignment to B0. For the sake of simplicity, we represent them separately in the data
dependence graph.

3. In the first iteration of the for-loop, B0 is multiplied by A and the result stored in B1. The
result of this operation is not yet required in the program. Hence, execution is deferred and a
multiplication operation is added to the trace and data dependence graph (Figure 7(c)). The
operation depends on 2 values — matrix A and matrix B0. Arcs (A,B1) and (B0, B1) denote
these dependencies in the dependence graph.

4. In the second iteration of the for-loop, B1 is multiplied by A and the result stored in B2. Again,
the result of the multiplication is not required immediately, so another multiplication operation
is added to the trace and data dependence graph (Figure 7(d)). The operation depends on 2
values — matrix A and the result of the previous matrix multiplication operation, B1. Arcs
(A,B2) and (B1, B2) denote these dependencies in the dependence graph.

5. The terminating condition of the for-loop is reached.

The final statement of the program to be executed is given in line 9 of Figure 5. It requests that
the value of B2 be printed to the screen. However, the value of B2 has not yet been computed due to
lazy evaluation. This causes execution of the Octave program to be halted while the data dependence
graph from Figure 7(d) is executed to obtain the required result. Note that in this example, execution
of the trace was forced by a required value. The other cause of executing a trace is that the length of
the trace becomes too large. If that is the case then execution of matrix operations and execution of
the Octave interpreter are performed concurrently.

The first step in execution of the data dependence graph is lowering the graph (see section 5).
Lowering partitions matrix operations on large matrices into operations on sub-matrices. This is
necessary because some matrices may be too large to fit into the memory of parallel execution elements
(e.g., with the Cell architecture), but it has the beneficial side-effect of exposing data parallelism
in matrix operations. Assume that the parallel elements have enough memory to store operands of
dimensions 50×50, however, the matrices in the example are of dimensions 100×100. We can partition
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the 100 × 100 matrices into four 50 × 50 blocks, and use block matrix multiplication to perform the
multiplication operations in our program. Block matrix multiplications works in the same way as
regular matrix multiplication, except that instead of multiplying and adding the scalar elements of the
two operands, we multiply and add the partitioned sub-matrices of the operands. Figure 8 shows how
this partitioning occurs for the first multiplication operation, B0A.

Note that a single matrix operation in our original dependence graph will result in many lowered
operations after partitioning. These operations form a new data dependence graph, called the lowered
data dependence graph. The lowered data dependence graph for our example is shown in Figure 9.

Once lowering is complete, operations are scheduled among the execution elements of the underlying
architecture (see section 6). The aim of scheduling is to assign operations to processors in such a way
that minimises the total execution time (makespan) of the operations but also ensures that the data
dependencies between operations are enforced: an operation cannot execute before the results of all
its operands are available.

Without specific reference to the details of the underlying architecture, it is viewed as a pipelined
architecture in which each processor can overlap computation of a matrix operation with data transfers
to and from main memory. There are three pipeline stages that are considered — data fetch (df),
execution (ex) and write back (wb). The execution stage of an operation can only begin after the
completion of the data fetch of that operation and the write back stage can only begin after the
completion of the execution stage. To produce an effective schedule, it is necessary to estimate the
time that each of these stages will take for each operation that is to be executed.

A heuristic algorithm uses these execution time estimates to schedule the operations among the
execution elements. The heuristic works by selecting the unscheduled operation whose operands have
been scheduled to complete at the earliest point in time and assigning that operation in the earliest
available slot on a processor. A partial schedule of lowered operations from the example is given in
Figure 10. Note that the constant matrices (red nodes) are not scheduled as they do not need to
be executed (their result is already available). In this case, all of the sub-operations for operation
B1 have been scheduled already. By examining the lowered data dependence graph from Figure 9, it
can be seen that the next operations that are ready to be scheduled (i.e. whose operands have been
scheduled already) are operations: (B2)1,1a, (B2)1,1b, (B2)1,2a, (B2)1,2b, (B2)2,1a, (B2)2,1b, (B2)2,2a
and (B2)2,2b. Each of these operations depends on one of the constant sub-matrices in A: A1,1, A1,2,
A2,1, A2,2; as well as one of the addition sub-operations in B1: (B1)1,1, (B1)1,2, (B1)2,1, (B1)2,2. The
addition operation from B1 that has been scheduled to complete at the earliest point in time is (B1)1,2
and we can consider all of the constant matrix operations from A to have been scheduled at time 0.
Hence, our heuristic algorithm will choose one of the operations (B2)1,2a or (B2)2,2a (which depend on
(B1)1,2) to be scheduled next. These operations will complete earliest if scheduled on Processor 2 (as
shown in Figure 10) so the heuristic would schedule the operation there. This process continues until
all operations have been scheduled.

Once the schedule is produced, the operations are executed on the underlying architecture accord-
ingly. In the implementation of the framework for the Cell Broadband Engine (see section 7), each of
the SPEs acts as a processing element which is capable of executing lowered matrix operations. Each
SPE runs a specially designed, small virtual machine program called a Matrix Execution Unit which is
optimised for computing matrix operations. An execution control mechanism runs on the PPE of the
Cell processor. It delivers lowered operations to the MEUs according to the schedule. It also ensures
that an operation does not begin execution until all of its operands have finished being computed.

When all operations have completed execution, execution of the Octave program resumes and our
example program completes.
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=

[
(B0)1,1 (B0)1,2
(B0)2,1 (B0)2,2

] [
A1,1 A1,2

A2,1 A2,2

]

=

[
(B0)1,1A1,1 + (B0)1,2A2,1 (B0)1,1A1,2 + (B0)1,2A2,2

(B0)2,1A1,1 + (B0)2,2A2,1 (B0)2,1A1,2 + (B0)2,2A2,2

]

Figure 8: Partitioning (lowering) for multiplication operation B0A from Figure 6: block-partitioning
divides each 100× 100 operand into four 50× 50 sub-matrices. Block matrix multiplication is used to
multiply sub-matrices. Each block of the result matrix is computed using two multiplications and one
add operation.

B2

B0

1,1 1,2 2,1 2,2 1,1 1,2 2,1 2,2

1,1
+

1,2
+

2,1
+

2,2
+

1,2 b
×

1,2 a
×

2,1 b
×

2,1 a
×

2,2 b
×

2,2 a
×

1,1 b
×

1,1 a
×

1,1
+

1,2
+

2,1
+

2,2
+

1,2 b
×

1,2 a
×

2,1 b
×

2,1 a
×

2,2 b
×

2,2 a
×

1,1 b
×

1,1 a
×

A

B1

Figure 9: The data dependence graph of lowered operations for the example program in Figure 6. Red
nodes represent constant matrices, blue nodes represent matrix multiplication operations and green
nodes represent matrix addition operations. Each of the operations from the original data dependence
graph in Figure 7 corresponds to several operations in the lowered graph (which are grouped in the
shaded areas of the diagram). A single matrix multiplication operation (e.g. B1) is lowered to a series
of multiplications which are summed to produce the final result. Partitioning of matrices is preserved
across operations, leading to increased opportunities for parallelism.
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Figure 10: A partial schedule of the operations from the lowered data dependence graph from Figure 9.
The sub-operations of operations B1 have all been scheduled. This schedule has been produced by the
heuristic scheduling algorithm described in subsection 6.3. The operation whose operands have been
scheduled to complete execution at the earliest point in time will be scheduled in the earliest available
time-slot on any processor. All three stages of the pipeline must be considered for each processor —
data fetch (df), execution (ex) and write back (wb). These stages can have different durations for
different operations, such as multiplication and addition, as shown on the right. Red arrows show gaps
in execution which we want to avoid to minimise the makespan. t1 marks the point in time where the
write back of operation (B1)1,2 finishes. Thus, operation (B2)1,2a or (B2)2,2a (which depend only on
(B1)1,2 and the constant matrix A) can be scheduled to begin their data fetch stage any time after
this point. The unlabelled blue rectangles on the end of the schedule show the result of scheduling
one of these multiplication operations on each of the processors. It can be seen that the operation will
complete earlier if scheduled on Processor 2, so the heuristic will choose to schedule it on Processor 2.

5 Lowering

Matrices can be partitioned into sub-matrices called blocks. A matrix can be partitioned across rows
and columns as depicted by the dashed lines in the following example:

A =





a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3



 =

[
A1,1 A1,2

A2,1 A2,2

]

.

Matrix A above is thereby partitioned into a 2× 2 matrix whose entries A1,1, A1,2, A2,1 and A2,2 are
blocks.

Operations on partitioned matrices can be performed by treating blocks as numerical entries. A
single operation on the original matrix will be converted into several operations on blocks. This tech-
nique has been employed in the past in languages such High Performance Fortran [29] for distributing
matrix operations among the nodes of a distributed computing environment. Matrix partitioning is
important for two reasons: (1) it enables us to perform matrix operations on matrices that are too big
to fit as a whole into the local stores of processing elements, and (2) it exposes data parallelism that
allows many processing elements to work on the same matrix operation simultaneously.

In general, an n × m matrix A is partitioned into p rows and q columns of blocks. Ai,j is the
block in the i’th row and j’th column and it has ki rows and lj columns. If two matrices, A and B
are said to have the same partitioning, it implies that pA = pB, qA = qB , ∀1≤i≤pA

: kiA = kiB and
∀1≤j≤qA: kjA = kjB . Similarly, if the columns of matrix A are said to have the same partitioning as the
row of matrix B, it implies that qA = pB, and ∀1≤i≤qA : liA = kiB . We use this notation throughout
the remainder of this section.
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Here we describe (1) the types of matrix operations which we focus on in our work and how those
operations are converted to operate on blocks, (2) the major concerns when developing a partitioning
scheme, and (3) a new partitioning scheme we developed called lowering.

5.1 Block Matrix Operations

In our work we focus on three types of matrix operations: (1) unary element-wise operations, (2) binary
element-wise operations, and (3) matrix multiplication. We choose to focus on this subset of matrix
operations because they represent commonly used operations that fit the scope of the project. For a
complete list of the block matrix operations we implemented in our framework, refer to Appendix C.

Unary element-wise operations have a single matrix operand. The result of these operations is
computed by applying a mathematical function to every scalar element of the operand. The result
matrix has the same dimensions as the operand. Thus, these operations have the form:

g(A) =






f(a1,1) . . . f(a1,m)
...

...
f(an,1) . . . f(an,m)






where g is the operation, f is the mathematical function applied by g, A is the n×m operand and
ai,j are its elements.

Examples of this type of operation are matrix-scalar addition, rounding the elements of a matrix,
finding the sine of each matrix element, and so on. In the case of matrix-scalar addition, the function
f simply adds a constant value c to each of the matrix elements, i.e. f(ai,j) = ai,j + c.

These operations can be trivially modified to work on partitioned matrices because each element
of the result matrix depends only on the corresponding element of the operand. Thus we can partition
the matrix in any way we want and apply the operation to each of the sub-matrices. Say we partition
matrix A into 3 rows and 2 columns of blocks:

A =





A1,1 A1,2

A2,1 A2,2

A3,1 A3,2





operation g can be applied to all 6 sub-matrices separately:

g(A) =





g(A1,1) g(A1,2)
g(A2,1) g(A2,2)
g(A3,1) g(A3,2)





Thus, the resulting matrix has the same partitioning as the matrix operand.
Binary element-wise operations are similar to unary element-wise operations but have two matrix

operands. The result of the operation is computed by applying a mathematical function to corre-
sponding scalar elements of the two operands. Hence, it is a requirement of these operations that
both matrix operands have the same dimensions, and the resulting matrix will also have the same
dimensions as the operands. These operations have the form:

g(A,B) =






f(a1,1, b1,1) . . . f(a1,m, b1,m)
...

...
f(an,1, bn,1) . . . f(an,m, bn,m)






where g is the operation, f is the mathematical function applied by g, A is the first n×m operand
with elements ai,j and B is the second n×m operand with elements bi,j .

Examples of this type of operation are matrix-matrix addition, matrix-matrix subtraction and
element-wise multiplication. In the case of matrix-matrix addition, f would be defined as f(ai,j , bi,j) =
ai,j + bi,j .
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These operations can also be trivially modified to work on partitioned matrices because each element
of the result matrix depends only on the corresponding elements of the operands. In order for the
operands A and B to be compatible with this operation they must have the same partitioning so that
corresponding blocks have the same dimensions. Say we partition operands A and B into 3 rows and
2 columns of blocks:

A =





A1,1 A1,2

A2,1 A2,2

A3,1 A3,2



B =





B1,1 B1,2

B2,1 B2,2

B3,1 B3,2





operation g can be applied to all 6 corresponding sub-matrices separately:

g(A,B) =





g(A1,1, B1,1) g(A1,2, B1,2)
g(A2,1, B2,1) g(A2,2, B2,2)
g(A3,1, B3,1) g(A3,2, B3,3)





Thus, the resulting matrix has the same partitioning as A and B.
The final type of operation we consider is matrix multiplication, which is more complex than the

previous two types of operation. Matrix multiplication has two matrix operands, A and B, which are
required to have the same inner dimensions. That is, if matrix A is of dimension n×m, B must be of
dimensions m× k. Each element of the result matrix can then be defined by the following summation

g(A,B)i,j = (AB)i,j =

m∑

r=1

ai,jbi,j

with a dimensions of n×m.
A technique called block matrix multiplication is used to allow multiplication of partitioned matri-

ces. This is the same technique employed in fast matrix multiplication algorithms such as the Strassen
algorithm [50] and the Coppersmith-Winograd algorithm [10] (the fastest known algorithm). Block
matrix multiplication works in the same way as regular matrix multiplication but treats blocks of the
partitioned operands as scalar elements. In order for the operands A and B to be compatible for block
matrix multiplication, the column partitioning of matrix A must match the row partitioning of matrix
B. If the operands are partitioned as follows:

A =





A1,1 A1,2

A2,1 A2,2

A3,1 A3,2



B =

[
B1,1 B1,2

B2,1 B2,2

]

then block matrix multiplication would multiply these matrices as follows:

C = AB =





A1,1B1,1 +A1,2B2,1 A1,1B1,2 +A1,2B2,2

A2,1B1,1 +A2,2B2,1 A2,1B1,2 +A2,2B2,2

A3,1B1,1 +A3,2B2,1 A3,1B1,2 +A3,2B2,2



 .

Instead of one matrix multiplication AB on the individual matrix elements of matrices A and B, we
now have 12 multiplications and 6 addition operations on the blocks of A and B. In general, each
block of the result matrix is defined by

C = (AB)i,j =

qA∑

r=1

Ai,r Br,j. (1)

The resulting matrix has the same row partitioning as matrix A and the same column partitioning as
matrix B.

Block matrix multiplication can result in many addition operations on blocks to compute each block
of the result matrix (denoted by the summation in Equation 1). These additions can be performed
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in any order because of the associative property of matrix addition. We use pairwise summation to
compute these additions in order maximise parallelism. This allows several addition operations to be
computed in parallel. For example, if we had to add four matrix blocks together:

Z = Y1 + Y2 + Y3 + Y4

we could do it in several ways. A näıve technique would be to compute them in a sequential order as
follows. The operations in the innermost parentheses are computed first:

Z = (((Y1 + Y2) + Y3) + Y4)

However, this neglects parallelism available in the summation. If we instead, add the blocks as follows:

Z = ((Y1 + Y2) + (Y3 + Y4))

Then, the additions (Y1 + Y2) and (Y3 + Y4) are computable in parallel, which reduces the execution
time of the matrix multiplication. Figure 11 illustrates the improvement in performance that can be
gained by using pairwise summation to add 8 matrix blocks together.

Algorithm 1 shows how we construct matrix instructions that compute the blocks of matrix C
as stated in Equation (1) using pairwise summation. Therein statement MatrixMult() constructs
a matrix multiplication operation from two matrix block operands, and MatrixAdd() constructs a
matrix addition operation.
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Figure 11: Sequential and parallel (pairwise) sum computations for matrix block Ci,j =
∑qA=8

r=1 Ai,r Br,j . Sequential computation of the sum of products Ci,j as depicted in subfigure (a)
requires N − 1 steps for N operands. Provided we have enough parallel execution elements we can
reorder the summations as depicted in subfigure (b) where we sum in pairs, reducing the computation
to ⌈log2 N⌉ steps. Algorithm 1 applies pairwise sums to increase parallelism with matrix multiplica-
tions on partitioned matrices.

There are known algorithms for more complex matrix operations on blocks, such as matrix in-
verse [57] however we have not considered these in our work so far.

5.2 Partitioning Schemes

A partitioning scheme determines how a matrix is split into blocks. Developing an automatic par-
titioning scheme can be a non-trivial exercise. We recognise four main concerns when developing a
partitioning scheme for modern accelerator architectures (summarised in Figure 14):

1. Operations should be divided into approximately equal sized portions such that the load on
processing elements is evenly balanced. This can reduce the makespan of execution, as illustrated
in Figure 12.

19



Algorithm 1 Construction of instructions that compute the sum of products of matrix blocks Ci,j

using pairwise summation.

1 for all i ∈ {1, . . . , pA}
2 for all j ∈ {1, . . . , qB}
3 new queue q
4 for all r ∈ {1, . . . , qA}
5 q.push back (new MatrixMult (Ai,r, Br,j))
6 while q.size() > 1
7 s1 = q.pop front()
8 ss = q.pop front()
9 q.push back (new MatrixAdd (s1, s2))

P1

P2

Makespan

(a) In this case, the operand A of the operation
is partitioned unevenly. This results in an uneven
load on the processing elements and an increased
makespan.

P1

P2

Makespan

(b) In this case, the operand A of the operation
is partitioned evenly. This results in a balanced
load on the processing elements and a reduced
makespan.

Figure 12: Partitioning matrices evenly improves the makespan. Assume we are given the Octave code
B = A / 2;. To compute B, A is partitioned into two blocks which can be operated on by two different
processing elements. Two different partitionings of A and their resulting schedules are given.

2. The small memory available on the parallel execution elements should be maximally utilised.
This criteria is specific to architectures like the Cell whose SPEs have a small 256kB local store
(see section 7). Peak performance is only obtained when this local store is fully utilised.

Other architectures whose parallel elements have access to a large amount of memory have a
different concern which is to determine the number of blocks which a matrix should be partitioned
into in order to obtain the best performance. In this case, there is a tradeoff between the number
of processors utilised to execute the operation and the execution time of the operation. As a
result, the partitioning of operations becomes related the scheduling of operations. This problem
has been studied and is known as the problem of scheduling malleable tasks under precedence
constraints. A description of the problem and proposed solutions is provided in the related work
in section 2, however we do not address this concern in our scheme as we focus on the Cell
architecture.

3. The number of synchronisation points in a trace should be minimised. Synchronisation points
arise in a trace when two operands of an operation have an incompatible partitioning. For
example, the subtraction of two matrices C = A − B requires that both matrices have the
same partitioning (as described in subsection 5.1 of this section). Figure 13(a) shows a situation
where the matrices A and B were the result of other matrix operations and do not have the same
partitioning. Thus, one of them must be re-partitioned in order to make them compatible. In this
case, matrix B is re-partitioned into the matrix B′ so that its blocks are the same dimensions as
A. This allows the blocks of C to then be computed in parallel. However, this re-partitioning has
a negative side-effect of reducing the amount of parallelism in a trace. Each block in B′ contains
elements from every block of the matrix B. Thus, in order to perform the re-partitioning, we
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must wait for all of the blocks of B to be computed. This can introduce gaps in the schedule
and result in an increased makespan, as shown in Figure 13(b).

In contrast, if A and B already have the same partitioning (as shown in Figure 13(c)) then no
artificial synchronisation points are introduced. In this case, each block of C depends only on
the corresponding blocks of A and B. For example, C1 depends only on blocks A1 and B1. So
we can begin computing the result of C1 as soon as A1 and B1 are available. We do not have to
wait until all of the blocks in A or B have been computed. This results in increased parallelism
in the trace and a reduced makespan, as shown in Figure 13(d).

In order to avoid synchronisation points in a trace, we want to ensure that the operands of
a matrix operation have a compatible partitioning, even if the operand is a result of another
operation in the trace.

4. Partitioning should be efficient. Since partitioning occurs at run-time, it is crucial that dividing
operations does not incur a large amount of overhead.

These concerns can be in conflict with one another, making it difficult to produce a good partitioning
scheme. For example, a näıve solution is to consider each of the matrix operations in a trace separately
and determine an individual partitioning for its operands. We can optimise for concerns (1) and (2)
of Figure 14 by defining the partitioning problem as a least squares fitting. We want minimise the
difference between the integer-valued block-sizes ki× lj and the real-valued ideal blocks of size nm

pq
≈ S

as follows:

min f =
∑

i,j

(
nm
pq
− kilj

)2

s.t. 1 ≤ kilj ≤ S i ∈ [1 . . p], j ∈ [1 . . q]
nm
pq
≈ S

kilj ≈ S

li ≥ 0 i ∈ [1 . . p]

kj ≥ 0 j ∈ [1 . . q]
∑p

i=1 li = n
∑q

j=1 kj = m.

However, finding choices of p, q, ki and lj that optimally satisfy these criteria for each operation
neglects concern (3). That is, it produces an optimal partitioning only for the operands of a single
matrix operation meaning that every operation may require operands with a different partitioning. This
would cause the need for re-partitioning of matrices resulting in degraded performance. Furthermore,
it could be computationally expensive to find these optimal values which neglects concern (4).

Another alternative would be to examine the data dependence graph, assuming that the graph
is a tree, and choose a partitioning for the leaf nodes in the graph. This partitioning could then be
propagated up the tree. This approach would help to satisfy concern (3) by reducing the need for
synchronisation points through the re-use of partitionings. However the problem with this approach is
that the partitioning of inner nodes in the graph is determined by the partitioning of their descendants.
This could lead to a partitioning for inner nodes which is unbalanced or does not fully utilise the
memory of the processing elements (neglecting concerns (1) and (2)). In the worst case, this could lead
to a partitioning where each block of an inner node is a single element of a matrix, which would result
in very poor performance. Furthermore, in general the data dependence graph is a directed acyclic
graph so propagation of partitionings could result in an operation whose partitioning is determined by
several different partitionings. In this case a barrier must be introduced to resolve the conflict.
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B′3
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B1 B2 B3

Repartitioning
′

(a) Operands A and B have a different partitioning. B is re-partitioned.

...

1 A1

2 B1

A2

A3

time

B2

B3

C1

C3

C2

Repartitioning

(b) A barrier results from the re-
partitioning of B, increasing the
makespan of the schedule.

C3

C2

C1

A3
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B3
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B1

(c) Operands A and B have the same partitioning.

...

1 A1

2 B1

A2

A3

time

B2

B3

C1

C3

C2

(d) No barrier is introduced and there is
an improved schedule due to increased
parallelism.

Figure 13: Re-partitioning matrices can degrade performance. A matrix subtraction C = A − B
is being computed. Figure 13(a) shows a situation where the operands A and B have a different
partitioning and thus are incompatible. B is re-partitioned to B′ to match A’s partitioning. This
allows computation of C to proceed in parallel. However, each block of B′ depends on every block of
B. This acts as a barrier, forcing computation of the entire B matrix before computation of C can
begin. This reduces potential parallelism in the trace, as shown in Figure 13(b). In contrast, if A and
B have the same partitioning we can avoid re-partitioning and no barriers are introduced, resulting in
an improved makespan of the schedule, as shown in Figures 13(c) and 13(d).
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1. Blocks should be of approximately equal size.

2. Blocks should be close to the buffer size, S.

3. Synchronisation points should be minimised.

4. Partitioning should be efficient.

Figure 14: A summary of the four concerns which are important for a matrix partitioning scheme.

5.3 A New Partitioning Scheme

In this work, we introduce a new technique called lowering for partitioning matrix operations in an
execution trace. The main benefit of our partitioning scheme is that all operands of an operation in
a trace are guaranteed to have a compatible partitioning with each other, without ever needing to
re-partition matrices. This maximises the amount of parallelism available in the trace. Our parti-
tioning scheme also finds a uniform partitioning of matrices, such that all blocks in a matrix are of
approximately the same size. Finally, since partitioning of a matrix relies solely on the dimensions
of that matrix, no other operations need to be examined in order to compute the partitioning (i.e.
partitioning is local to every matrix). This leads to an efficient algorithm which examines each matrix
in the execution trace only once. Thus, we satisfy concerns (1), (3) and (4) from Figure 14. The only
disadvantage of our partitioning scheme is that in certain cases it can lead to sub-matrices which are
smaller than the capacity of the memory on the SPEs. This can result in under utilisation of the SPEs.
Thus there are situations where we fail to address concern (2).

To be applicable to a wider range of architectures, our partitioning scheme abstracts from the
underlying hardware, but only to the extent that performance is not sacrificed. We were able to reduce
the dependencies of our partitioning scheme to two quantities from the underlying Cell Broadband
Engine architecture:

1. The maximum number of matrix elements S we can store in a single matrix block. The local store
of a Cell SPE provides 256kB of memory to be shared by program code and data. We use a small
(≈26kB) kernel program on each SPE to execute matrix operations. The remaining 230kB of
the local store is available for matrix blocks. Because of Cell-related implementation techniques
discussed in subsection 7.3, we can devote up to 38kB to a single matrix block, which amounts
to S = 9216 single precision floating point matrix elements, or S = 4608 matrix double precision
floating point elements per block in.

2. A divisor δ for the number of rows and columns of a block. For several Cell-related reasons
discussed in subsection 7.3, the number of rows and columns in a block must be a multiple of
δ = 4 with single precision and a multiple of δ = 2 with double precision. To guarantee that each
block has has a multiple of δ rows and columns, it may be necessary to pad rows and columns
of a matrix with zero elements. An n × m matrix may require up to δ − 1 additional rows
and/or columns of zeroes, as shown in Figure 15(b). The number of elements of the resulting
n′ ×m′ matrix is bound by n×m+ (δ − 1)(n+m) ≥ n′ ×m′.

Figure 15(b) shows how we partition an n × m matrix A into p rows and q columns of blocks.
Block Ai,j of this partition has ki rows and lj columns. The underlying idea of our partitioning

scheme is that we limit the shape of a matrix block to a maximum of
√
S rows and columns. When

the divisor δ is also taken into account, each sub-matrix is limited further to δ⌊
√
S
δ
⌋ rows and columns.

Making this assumption about the maximum number of rows and columns in each block allows us to
determine the number of rows of blocks p and columns of blocks q which are required for a matrix:
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B a1,1 a1,2 a1,3 a1,4 · · · a1,m−2 a1,m−1 a1,m
B + sm a2,1 a2,2 a2,3 a2,4 · · · a2,m−2 a2,m−1 a2,m

B + 2sm a3,1 a3,2 a3,3 a3,4 · · · a3,m−2 a3,m−1 a3,m
...

...
...

...
... · · ·

...
...

...
B + (n− 1)sm an,1 an,2 an,3 an,4 · · · an,m−2 an,m−1 an,m

(a) Memory layout of an n × m matrix in row-major order: the
leftmost column depicts the starting address of each row. An n×m

matrix has a stride of s·m between adjacent rows of matrix elements
of size s (s = 4 bytes for single precision values and s = 8 bytes for
double precision values).

B a1,1 · · · a1,l1 a1,l1+1 · · · a1,l1+l2 · · · a1,m−lq+1 · · · a1,m 0 · · · 0
B + sm′ a2,1 a2,l1 a2,l1+1 · · · a2,l1+l2 · · · a2,m−lq+1 · · · a2,m 0 · · · 0

...
...

...
...

...
...

...
...

...
B + (k1 − 1)sm′ ak1,1 · · · ak1,l1 ak1,l1+1 · · · ak1,l1+l2 · · · ak1,m−lq+1 · · · ak1,m 0 · · · 0

...
...

...
...

...
...

...
...

...
... an−kp+1,1 · · · an−kp+1,l1 an−kp+1,l1+1 · · · an−kp+1,l1+l2 · · · an−kp+1,m−lq+1 · · · an−kp+1,m 0 · · · 0
...

...
...

...
...

...
...

...
...

... an,1 · · · an,l1 an,l1+1 · · · an,l1+l2 · · · an,m−lq+1 · · · an,m 0 · · · 0
B + nsm′ 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0

...
...

...
...

...
...

...
...

...
B + (n′ − 1)sm′ 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0

A1,1
A1,2 A1,q

Ap,1 Ap,2 Ap,q

(b) The above n × m matrix partitioned into p × q blocks Ai,j . Block Ai,j has ki rows and
lj columns. Cell-specific implementation issues (see subsection 7.3) require the number of rows
and columns of each block to be a multiple of four with single precision and a multiple of two
with double precision. This may require padding of outer-most blocks with zeroes. For a matrix
operation A = B · C, padding matrix B with p additional columns requires padding of matrix C

with p additional rows. To achieve maximum DMA transfer rates on the Cell, transfer sizes must
be multiples of 128 bytes, which may require further padding. The individual rows of a block are
transferred to an SPE using a DMA list transfer. For block A1,1 we have k1 list entries, consisting
of the memory addresses B, B + sm′,. . . ,B + (k1 − 1)sm′. Each list entry describes one row of
block A1,1, as depicted by the dotted rectangles.

Figure 15: Memory layout of unpartitioned and partitioned padded matrices in row-major order.

p =

⌈ ⌈
n
δ

⌉

⌊√
S
δ

⌋

⌉

, and q =

⌈ ⌈
m
δ

⌉

⌊√
S
δ

⌋

⌉

.

Therein ⌈n
δ
⌉ is the number of groups-of-δ-rows of a partition, and ⌊

√
S
δ
⌋ is the number of groups-of-δ-

rows that fit in a single matrix block. Dividing the former by the latter yields the number of rows p
of blocks in a partitioning. Likewise for the number of columns q.

Once we have determined the number of rows of blocks p, we divide the rows of the original matrix
into those blocks. This ensures that each block in the matrix has approximately the same number of
rows. Doing the same for the columns results in each block of the matrix having approximately the
same number of elements, leading to a balanced partitioning (satisfying concern (1)). The number of
rows ki and columns lj of a block are given by

ki = δ

(⌊⌈n
δ
⌉

p

⌋

+ ri

)

and lj = δ

(⌊⌈m
δ
⌉

q

⌋

+ sj

)

,
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When the number of rows in a matrix does not divide evenly into p, there will be left-over rows. These
are distributed among the existing row partitions. If a left-over row is included in a block, it is denoted
by the inclusion of a non-zero ri term in the calculation of ki. Likewise for left-over columns. ri and
sj are chosen such that

∑p
i=1 ri = ⌈n

δ
⌉ mod p where ri ∈ {0, 1}, and

∑q
j=1 sj = ⌈m

δ
⌉ mod q where

sj ∈ {0, 1}. For consistency across matrices we set ri = 1 and sj = 1 for the smallest indices i and j
of blocks Ai,j of a matrix partition.

Note that the number of rows in a block, ki depends on the divisor δ, the number of rows in the
original matrix n, the number of rows of blocks p and its position i in the partitioning (due to the
left-over rows). p depends on n, δ and S, the buffer size. Assuming δ and S are constants, this means
that ki depends only on i and n and likewise for the columns. Thus, our partitioning scheme ensures
that if two matrices A and B have the same number of rows and columns, they will be partitioned in
the same way. It also guarantees that if the number of columns in A is equal to the number of rows B
then the column partitioning of A will match the row partitioning of B.

With our partitioning scheme, we claim that matrices never have to be re-partitioned. This implies
that only the constant matrices in a trace are partitioned. Matrices that result from other operations
must be guaranteed to be compatible in any operation in which they are used. Thus, in our example
in Figure 3, A and B must be guaranteed to have the same partitioning, even if they are the results
of other operations in the trace. This is further complicated by the fact that A and B might be the
operands of more than one operation.

To show this, we first show that if the operands of a matrix operation have been partitioned accord-
ing to our partitioning scheme then the operands are guaranteed to be compatible. The requirements
for compatibility are described in subsection 5.1 of this section. We must do this for each type of
operation we consider in our framework:

1. Unary Element-wise Operations Trivially compatible because these operations do not have
any requirement on the partitioning of the single operand.

2. Binary Element-wise Operations These operations have two operands A and B which are
required to have the same partitioning to be compatible. This is ensured for our scheme because
A and B are of the same dimensions, thus they will have the same partitioning.

3. Matrix Multiplication This operation has two operands, A and B. The column partitioning
of A must match the row partitioning of B for these to be compatible. This is ensured for our
scheme because the number of columns in A matches the number of rows in B.

We now show that if the operands of an operation have been partitioned according to our parti-
tioning scheme, then the result of the operation will also be partitioned according to our scheme. The
partitioning of the results of operations is also described in subsection 5.1 of this section. We must do
this for each type of operation we consider in our framework:

1. Unary Element-wise Operations: The result matrix has the same partitioning as the input
matrix. Thus it will be partitioned according to our scheme.

2. Binary Element-wise Operations: The result matrix has the same partitioning as both input
matrices. Thus it will be partitioned according to our scheme.

3. Matrix Multiplication: The result matrix has same number of rows and row-partitioning
as first operand. It also has same number of columns and column-partitioning as the second
operand. Thus it will be partitioned according to our scheme.

Now recall that the data dependence graph of operations is a directed acyclic graph, whose source
nodes are constant matrices. Thus, every operation either depends on constant matrices, or on other
operations which in turn depend on constant matrices. Since the constant matrices are partitioned
with our scheme, the results of other operations will be partitioned according to our scheme. This
means that every matrix operand in the trace will be partitioned according to our scheme and so
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operands will always be compatible with each other. So re-partitioning is never needed, satisfying
concern (3).

The only downside of this partitioning scheme is that for very small-sized matrices and vectors,
the partitioning can lead to under-utilisation of the buffer. For example, assume δ = 1 (for simplicity)
and we wish to partition a row vector of dimensions 1 ×m with a buffer size of S. The partitioning
occurs as follows:

1. The number of rows p of sub-matrices and columns q of sub-matrices is given by:

p =

⌈
1√
S

⌉

= 1

q =

⌈
m√
S

⌉

2. If we ignore the spare rows ri and spare columns sj , the number of rows per sub-matrix ki and
columns per sub-matrix lj is given by:

ki =

⌊
1

p

⌋

≤ 1

lj =

⌊
m

q

⌋

≤ m
⌈

m√
S

⌉

≤
√
S

Thus, the number of elements in a block is kilj ≤
√
S. So only a square-root of the buffer size

is used at most. This results in poorer performance for operations with these kinds of matrices as
operands due to the increased number of sub-operations and relative overhead to computation ratio.
This could be improved by using a different partitioning for these kinds of matrices, however this would
force barriers to be introduced when the partitioning changes. We leave this consideration as future
work.

The output of the lowering process is a lowered data dependence graph. This graph is produced
through a graph transformation of the original data dependence graph. The transformation algorithm
examines each operation in the original graph in a topological order, partitions its matrix operands
and produces several new operations which operate on the blocks of the partitioned matrices. Data
dependencies are updated according to the partitioned operations. Hence the lowered graph typically
has an increased number of nodes (operations) and edges (dependencies) over the original graph.

6 Scheduling

The task of the scheduler is to distribute matrix operations among the processing elements of the
parallel architecture. The input of the scheduler is the lowered dependence graph annotated with
estimated time durations for each pipeline stage of an operation. The objectives of the scheduler are:

1. to produce a feasible schedule, i.e., operands of a matrix operation must not be scheduled after
the operation,

2. to generate the schedule for the MEUs as fast as possible, and
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3. to minimise the makespan, i.e., the wall-clock time needed to execute the parallel schedule on
the MEUs.

The second and third objectives are hard to achieve because scheduling is an NP-hard problem [16].
Recognising the difficulty of finding an optimal solution for the general problem, many heuristics have
arisen, as described in subsection 2.2 of the Related Work.

Our scheduling problem is a variant of the static scheduling problem with arbitrary task prece-
dence constraints, arbitrary execution times for tasks, and uniform workers/processors, as described in
subsection 2.2.1. The data dependence graph in our framework resembles the task precedence graph,
the workers are the MEUs and the time durations are estimated ahead of time for each lowered matrix
instruction. Although there exists approximation algorithms for this problem (see subsection 2.2) they
are based on rounding of a relaxed linear programming solution with high practical run-times. Thus,
they are not viable for our framework which needs to incur a low overhead. Furthermore, existing
algorithms do not take into account the notion of a pipeline for each of the workers where execution of
tasks and communication between processors can be overlapped. Thus, using these algorithms would
lead to imprecision in the modelling: the communication overheads of matrix instructions would be
ignored and the pipeline might stall because of imprecise modelling of matrix operations.

In the following we discuss (1) how to find a time model to accurately estimate the durations of
each pipeline stage of a lowered matrix operation, (2) a mathematical program for computing the
optimal schedule for the pipelined scheduling problem with task precedence constraints, and (3) a new
greedy algorithm for solving the scheduling problem efficiently.

An accurate time model for the scheduling is crucial to find an effective schedule. The mathematical
program for finding schedules is not practical but for small problem sizes it gives us a yardstick to
compare how good our greedy algorithm performs in comparison to the optimal solution. Because the
problem is intractable, we cannot hope for computing schedules with the mathematical program for
problems with medium to larger size. Results of the accuracy of time models and the performance of
the heuristic scheduling algorithm are provided in section 9.

6.1 Time Model

We compute a time model for each type of matrix instruction in our framework, and we use multi-
variate polynomial functions for the time model that depend on the number of rows and columns of
the input and output matrices. The coefficients of the multi-variate polynomial are computed using
profiling and Ordinary Least Square (OLS) method.

For scheduling we require an accurate time model that estimates the durations of the three phases
of a matrix instruction before executing it. Recall from section 3 that we model three pipeline stages
for a matrix instruction executing on a processing element:

1. Data Fetch (df): The operands of the matrix instruction are loaded from main memory into
the memory of the parallel processing element,

2. Execute (ex): The matrix instruction is executed on the parallel processing element,

3. Write Back (wb): the result of the matrix instruction is written back to main memory.

For computing the time model we instrument the virtual machine that runs on the SPEs (called
MEUs). As a side-effect of execution we obtain profiling information. The instrumented version of
the MEUs is only executed for profiling purposes to obtain the execution times for each pipeline stage
of an instruction. Furthermore, we have a carefully crafted input program that executes each type of
matrix instruction for every possible input problem size several times. Note that it is feasible to profile
every input problem size since the matrices are limited by the SPE’s small data and program memory
of 256kB.

The Cell Broadband Engine offers hardware counters [24] for performing the measurements with
very high precision. The execution time measurements on the SPEs have little variation due to the lack
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of data caches. However, we observed a higher volatility in the measurements for the data fetch and
write back stages which is not surprising since the ring-bus of the Cell that connects SPEs, memory
and the PPE, is shared.

The coefficients of the multivariate polynomial are chosen such that the deviation of the polynomial
function from the measured time durations is minimised. Assume we have l time measurements
obtained by profiling one type of matrix operation (such as matrix addition). For the k-th measurement
we are given a vector ~nk describing the input problem size and the durations ∆df(k), ∆ex(k), and ∆df(k)
for each phase of the pipeline. The input problem size vector typically describes the dimensions of the
operands of the instruction. For example a matrix addition has two elements in the input problem size
vector describing the number of rows and columns of the two matrices which are to be added together.

We seek a multivariate polynomial for each pipeline phase of each type of matrix instruction:

tξ(~n) =
∑

k

akgk(~n) (2)

where gk(~n) is a multivariate term of the multivariate polynomial and a0, . . . , an are the coefficients
such that the error

Rξ =

l∑

k=1

(tξ(~nk)−∆ξ(k))
2 (3)

becomes minimal (where ξ is either df, ex or wb).
In the following table we give the multivariate polynomials used for estimating the execution times

of some types of matrix instructions, the data fetch, and write back duration. Note that the data fetch
and write back phases do not depend on the type of operation being executed.

tξ(~n) Operation
a0 + a1n1 + a2n2 data fetch and write back
a0 + a1n1n2 scalar instr. execution
a0 + a2n1 + a1n1n2n3 matrix multipl. execution

The variables n1, n2 and n3 represent the rows and columns of the input matrices which form the
problem size vector ~n. For matrix multiplications we do not need to specify the number of rows of the
second matrix because it is equal to the number of columns of the first matrix. Furthermore, we add
an additional term a2n1 to account for the overhead of the inner-most loop in the matrix calculation
to obtain a better fit of the profile data. We used standard methods to obtain the coefficients [31].

For the remainder of the section, we use tξ(i) to denote the function tξ(~n) where ~n is the problem
size vector of instruction i.

6.2 Mathematical Program

We develop an integer linear program that computes an optimal schedule for a given problem instance
that consists of the set of matrix instructions I = {1, . . . , n}, their data dependencies E ⊆ I × I where
(i, j) ∈ E denotes that j depends on i, and the time parameters tdf(i), tex(i), and twb(i) for instructions
i ∈ I. For the model we introduce the following variables,

xij ∈ {0, 1} i, j ∈ I

ti ∈ R
+ i ∈ I

z ∈ R
+

where z is the makespan of the schedule, ti is the start time of an instruction and xij are elements of
an adjacency matrix for the schedule graph which is a directed rooted graph which forms the schedule
of operations executed by each processing element.

The structure of a schedule graph is depicted in Figure 16. It is defined to have a dedicated start
node s, with at most p outgoing edges, and no incoming edges. The time parameters of the start node
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are all zero and the start node is not a matrix instruction that is executed on a processing element.
The remaining nodes in the schedule graph represent matrix instructions that will be executed. Each
of these nodes has exactly one predecessor node and at most one successor node. The successor
and predecessor node must not be the node itself, i.e., in the graph we do not allow self-loops. The
successors nodes of the start nodes (e.g. v1 and v3 from Figure 16) represent the first nodes that will
be executed by each processing element. Their successor nodes (v2 and v4) are the second instructions
that will be executed, and so on.

We have at most p outgoing edges for the start node s and hence at most p processing elements.
The linear constraints that ensure that elements xij of the adjacency matrix form a schedule graph,
are given below:

∑n
i=1 x1i ≤ p

xi1 = 0 i ∈ I
n∑

j=1

xij ≤ 1 i ∈ I \ {1}

n∑

j=1

xji = 1 i ∈ I \ {1}

xii = 0 i ∈ I \ {1}

For the task precedence relation E we introduce the time constraints

ti + tdf(i) + tex(i) + twb(i) ≤ tj (i, j) ∈ E

that forces an instruction j ∈ I to be scheduled after its operands i : (i, j) ∈ E are completed. The
time ti is a global time for all matrix execution units, i.e., operands may be scheduled on different
matrix execution units and all matrix execution units have the same wall-clock time.

For two subsequent instructions on a processing element, the durations of the three pipeline stages
(data fetch, execute, and write back) cannot overlap. To ensure this, a time constraint is introduced

s

v1 v3

v2 v4

︸ ︷︷ ︸

p

Figure 16: Schedule Graph: the start node s has at most p outgoing edges and no incoming edges;
every other node in the schedule graph has at most one outgoing edge and exactly one incoming edge;
self-loops are not permitted. s is a artificial instruction which is not executed. A line of nodes in
the schedule graph represents the sequence of instructions that are executed by one of the processing
elements. For example, instructions v1 and v2 are executed by the first processing element, in that
order. v3 and v4 are executed by the second processing element, and so on.
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for each pipeline stage:

n∑

i=1

(ti + tdf(i))xij ≤ tj j ∈ I

n∑

i=1

(ti + tdf-ex(i))xij ≤ tj + tdf(j) j ∈ I

n∑

i=1

(ti + tdf-ex-wb(i))xij ≤ tj + tdf-ex(j) j ∈ I

where tdf-ex(i) = tdf(i) + tex(i) and tdf-ex-wb(i) = tdf(i) + tex(i) + twb(i) for all i ∈ I. The left-hand
side of the constraints is a summation of the time duration multiplied with xij over all predecessors.
However, in a schedule graph there exists at most one predecessor modelled by the constraints for the
schedule graph.

The expansion of above constraints have a non-linear term tixij which we linearise by introducing
a new variable yij . This new variable replaces the quadratic term tixij , and we add linear constraints
to the program that force the equivalence. The linear constraints are developed by using standard
techniques [3], i.e.,

yij ∈ R
+ i, j ∈ I

yij ≤ Uxij i, j ∈ I

ti + Uxij − U ≤ yij ≤ ti i, j ∈ I

where U is the sum of all time parameters, which is an upper bound for yji and tji.
The set of constraints for the makespan can only be greater than the completion time of all in-

structions in I, i.e.,
ti + tdf-ex-wb(i) ≤ z i ∈ I (4)

and the objective function of the mathematical program is to minimise the makespan z. The integer
linear program is given at a glance in Appendix A and its implementation as an AMPL [15] script is
given in Appendix B.

6.3 Greedy Algorithm

The integer linear programming formulation (described previously) of the task-precedence scheduling
problem for an asynchronous super-pipelined, super-scalar matrix engine is intractable. To overcome
this problem, we devise a simple heuristic as shown in Algorithm 2 which exhibits a worst-case runtime
of O(n log n+m) where n is the number instructions and m is the number of dependencies in the task
precedence graph. In the algorithm, the sets d−(i) and d+(i) denote the predecessor and successor
sets of an instruction i ∈ I in the task precedence graph.

The algorithm is based on a list scheduling approach (see subsection 2.2.1 of the related work).
The list scheduling algorithm uses a heuristic to order tasks in a list and then greedily distribute them
among processors. The underlying idea of the heuristic is to find a topological order for the acyclic
data dependence graph G(I, E). This total order (i1, . . . , in) for the instructions I has the property
that for each data dependence (i, j) ∈ E instruction j is listed after instruction i in the total order.
The topological order ensures that instructions never deadlock in its execution, i.e., the operands are
either available or the instructions have to wait a finite amount of time for their operands to become
available. The topological order is computed with the counter ci for an instruction i ∈ I. Initially, the
counters are set to the number of incoming edges, i.e., |d−(i)|. Only instructions with counter values of
zero can be scheduled, and are maintained in a priority queue (min-heap). The priority is determined
by the earliest point in time when an instruction can be scheduled. After scheduling an instruction i
on one of the processing elements, the counters of its successors j ∈ d+(i) in the task precedence graph
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Algorithm 2 Heuristic Scheduler: earliest instruction in earliest stream.

1 for all k ∈ {1, . . . , p}
2 sdf(k)← 0
3 sex(k)← 0
4 swb(k)← 0
5 for all i ∈ I
6 ci ← |d−(i)|
7 ei ← 0
8 if |d−(i)| = 0
9 queue i with cost 0

10 while queue not empty
11 dequeue i
12 k ← minargr{h(i, r)}
13 ti ← h(i, k)
14 add i to stream k
15 sdf(k)← ti + tdf(i)
16 sex(k)← ti + tdf-ex(i)
17 swb(k)← ti + tdf-ex-wb(i)
18 for all j ∈ d+(i)
19 cj ← cj − 1
20 ej ← max(ej , ti + tdf-ex-wb(i))
21 if cj = 0
22 enqueue j with cost ej

are decremented by one. The successors are scheduled (put into the queue) as soon as their operands
have been allocated to a processing element.

From the set of instructions whose operands have been scheduled (or do not have operands) we
choose the instruction that can be scheduled the earliest on the time line. The earliest scheduling time
ei of an instruction i ∈ I is determined by the completion time of the instruction’s operands. When an
instruction is scheduled, the earliest scheduling time of its dependent instructions is updated (cf. line
20 in Algorithm 2).

For each instruction we have exactly one enqueue and one dequeue from the priority queue resulting
in a worst-case complexity of O(n logn). We also need to update the earliest scheduling time ei of
every instruction which has a worst-case complexity of O(m). Thus, the worst-case runtime complexity
of the algorithm given in Figure 2 is O(n logn + m). Note that we have the underlying assumption
that the number of processors p is constant in this analysis.

Once the earliest instruction is selected we choose to schedule the instruction on the processing
element that can execute the instruction at the earliest point in time. For the selection of the processing
element, we use a slot function h(i, k) which computes the earliest possible start of instruction i on
processing element k. The slot function takes into account the completion times of the data fetch,
execute, and write back phase of the previous instruction. We keep track of the completion time of the
last scheduled instruction on processing element k for each of the pipeline stages. These are denoted
by sdf(k), sex(k), and swb(k) for data fetch, execution and write back, respectively. The slot function
is given by

h(i, k) =max(max(max(ei, sdf(k)) + tdf(i), sex(k)) + tex(i), swb)− (tdf(i) + tex(i))

and depicted in Figure 17. For an instruction, i being scheduled on processing element k, the start
time of each of its pipeline stages could be limited by two things. The first is the completion of i’s
operands, i.e. i cannot begin data fetch until its operands are complete. The second is the completion
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Figure 17: Example input for slot function h(i, k). h(i, k) is the earliest point in time when instruction
i can be scheduled. sdf(k), sex(k), and swb(k) denote the last completion times of each phase of
the last instruction scheduled on a processing element. The start time of the data fetch of i is not
limited by the completion time of its operands e(i) but instead the completion of the data fetch of the
previous instruction sdf (k). The execution phase is also limited by the completion of the execution
of the previous instruction. The start time of the write back of i is limited by the completion of the
execution of i. From the estimated start time of the write back operation, we subtract tdf(i) + tex(i)
to yield h(i, k) which is the earliest time at which i can begin. of the execution of i pipeline.

of the previous instruction on processing element k, i.e. i cannot begin its data fetch phase until the
data fetch of the previous instruction on k is complete (and likewise for the execution and write back
phases). The three max functions here are used to determine which of these is the limiting factor in
determining the start time of i.

In the example in Figure 17 the earliest execution time e(i) of instruction i is before the completion
of the data fetch stage of the previous instruction sdf. Thus, the completion of the data fetch stage
of the previous instruction is taken as the earliest start time for the data fetch of i. We add to this
point in time the estimated duration of data fetch for i and compare it with the completion of the
execution stage of the previous instruction, sex. This allows us to determine the earliest point in time
for commencing the execution stage of i. In the example, the completion of the execution stage of
the previous instruction takes longer and hence determines the earliest starting time for the execution
of i. We add to this point in time the duration of the execution phase of i and compare it with the
completion of the write back phase of the previous instruction, swb. This allows us to determine at
what time the operation can begin its write back. In this case, the write back stage is limited by the
completion of the execution phase of i. Finally, from the point in time that the write back of i will
finish, we subtract the duration of data fetch and execute stage to obtain the earliest point in time to
slot instruction i into processing element k.

7 Cell Computation Engine

7.1 The Cell Broadband Engine

The Cell Broadband Engine architecture (Cell) is a heterogeneous multicore architecture that was
jointly developed by IBM, Sony and Toshiba [19]. The structure of the Cell is shown in Figure 7.1.
It consists of a 64-bit PowerPC core (PPE), eight SIMD cores called Synergistic Processing Elements
(SPEs), a memory interface controller and an I/O controller. The PPE and SPEs communicate
through a high-speed Element Interconnect Bus (EIB). At a 3.2 GHz clock rate, the theoretical peak
performance for a single SPE with single-precision floating-point operations is 25.6 GFLOPS, yield-
ing an overall performance of 204.8 GFLOPS for 8 SPEs. For double-precision the theoretical peak
performance for a single SPE is 12.8 GFLOPS, and 102.4 GFLOPS aggregate. The EIB supports a
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Figure 18: A die photo of the Cell Broadband Engine [19]. This shows the main components of the
processor: (1) the Power Processor Element (PPE), (2) the 8 Synergistic Processing Elements (SPEs),
and (3) the Element Interconnect Bus (EIB).

peak bandwidth of 204.8 GB/s for on-chip data transfers between the PPE, SPEs, memory interface
controller and I/O controller. The memory interface controller provides 25.2 GB/s peak bandwidth to
main memory.

The PPE is the Cell’s main processor, designated to run the operating system, coordinate the
SPEs and perform the control-intensive part of applications. The PPE’s memory hierarchy is similar
to conventional processors, with 32kB level-1 instruction and data caches and a 512kB level-2 cache.

SPEs are designed for high-performance data-streaming and for data-intensive computations. Their
memory hierarchy consists of a 128x128-bit SIMD register file, 256kB of local store memory and the off-
chip main memory shared with the PPE. SPEs can run SIMD operations at four different granularities:
16-way 8-bit integers, 8-way 16-bit integers, four-way 32-bit integers, four-way single-precision floating-
point numbers, or two-way 64-bit double precision floating point numbers. The 256kB local store of an
SPE is shared for code and data. Each SPE can only access the code and data in its own local store.
DMA transfers are used to move data between the local store of an SPE and main memory, as well
as between the local stores of different SPEs. DMA transfers are asynchronous and enable SPEs to
overlap computation with communication. Unlike caches, SPE local stores must be explicitly managed
by software.

Additionally, a mailbox mechanism is provided for communication between the PPE and each of
the SPEs. This acts as a queue which the PPE can enqueue data items onto and the target SPE can
dequeue values from. Each mailbox is capable of holding up to four 32 bit data items at any instant. If
a PPE attempts to enqueue more than four data items, one data item will be overwritten or execution
will be blocked until an item is dequeued.

7.2 Matrix Execution Units

As mentioned in section 3, we implement the computation engine component of our framework for
the Cell architecture. At the core of the Cell computation engine are the Matrix Execution Units
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(MEUs). An MEU is a small virtual machine which runs on an individual SPE and executes matrix
operations. There is one MEU running on each of the SPEs available in the Cell processor (typically
8). The fact that there are multiple MEUs capable of executing matrix instructions concurrently gives
our framework a superscalar property. Each MEU idles on its SPE, waiting to be notified by the PPE
that there are matrix operations ready for execution. The PPE uses the mailbox mechanism available
in the Cell processor to inform an MEU of the memory location of such a ready operation.

After receiving this message, the MEU uses Direct Memory Access (DMA) list commands to transfer
the operands involved in the matrix operation from main memory to the local store of the SPE on
which the MEU is running. Once the transfer is complete, the MEU executes the matrix operation
and again uses DMA list commands to transfer the result of the operation back to main memory. This
process repeats for each matrix operation that has been assigned to the MEU.

In order to achieve high performance on the Cell Broadband Engine Architecture, the latency of
memory transfers between main memory and an SPE’s local store must be hidden by overlapping them
with computation. This technique is known as multi-buffering and is facilitated in the Cell processor
by non-blocking DMA commands. When an SPE uses a DMA command to transfer data between its
local store and main memory, the transfer is carried out by a separate processor known as the Memory
Flow Controller (MFC) and execution can continue on the SPE. The SPE can then issue a further
DMA command which will force completion of the transfer, when required.

The Cell Matrix Engine uses a form of multi-buffering known as triple-buffering to hide data transfer
latencies. Three buffers are allocated on the local store of each SPE. At any point in time, exactly one
of the following data items will be stored in each of the buffers:

1. The operands of the current operation being executed.

2. The result of the current operation being executed.

3. The result of the last operation that was executed as it is transferred out or the operands of the
next operation to be executed as they are transferred in.

The use of this triple-buffering technique results in pipelined execution of operations on each of the
MEUs. These pipeline stages are taken into account by our scheduling algorithm and were described
in section 6. However, here we describe them again in the context of the Cell implementation. There
are three pipeline stages:

1. Data Fetch (df): The operands of an operation are loaded from main memory into the local
store of an SPE. We use the notation dfstart(op,Bi) to denote the initiation of a DMA transfer
of operation op’s operands into buffer Bi on an SPE. This is a non-blocking call. We use the
notation dffinish(op,Bi) to denote a blocking call that ensures the completion of the same transfer.

2. Execute (ex): The operation is executed on an SPE. We use the notation ex(op,Bi, Bj) to
denote the execution of operation op whose operands are contained in buffer Bi and whose result
is to be placed in buffer Bj.

3. Write Back (wb): The result of the operation is transferred from the local store of an SPE
back to main memory. We use the notation wb(op,Bj) to denote a non-blocking call to initiate
the transfer of op’s result which is stored in buffer Bj back to main memory. Note that this call
also issues a barrier command which means that the write back transfer must be fully complete
before any further DMA commands to buffer Bj can begin. This prevents the chance of race
conditions.

Figure 19 describes the triple buffering process for executing three matrix operations: op1, op2 and
op3. Algorithm 3 shows pseudocode of the execution loop which runs on the MEU virtual machines
and facilitates triple buffering. Therein, the variable in is the number of the buffer containing the
operands of the current operation being executed, out is the number of the buffer containing the result
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SPE

B0

Main Memory

dfstart(op1, B0)

B1 B2

dfstart(op2, B1)

(a) Initially the execution pipeline is empty, and all buffers on the SPE
are empty. The first operation, op1 is offered from the PPE and its
operands are fetched from main memory into buffer B0. As there is no
operation that is ready to execute, the SPE initiates transfer of the next
operations (op2’s) operands into the second buffer, B1.

Main Memory

op1

dfstart(op2, B1)

ex(op1, B0, B2)SPE

B0 B1 B2

(b) Execution on the SPE blocks until the completion of the data transfer
of op1’s operands. When the transfer is completed, execution of op1
begins and the result is placed into buffer B2.

Main Memory

ex(op2, B1, B0)

op2 op1

wb(op1, B2)

SPE

B0 B1 B2

(c) The transfer of the result of op1 back from B2 to main memory is
initiated. A DMA barrier command is placed after the write back op-
eration and the data fetch of the next operation (op3) into B3 is also
requested. However, this transfer does not begin until the write back of
op1 is complete due to the barrier. Execution on the SPE is blocked until
transfer of op2 is complete and then the execution of op2 begins, with the
result being placed in B0.

Main Memory

ex(op2, B1, B2)

op2

dfstart(op3, B2)

SPE

B0 B1 B2

(d) Once the write back of op1 is complete, the data fetch of op3 into
buffer B2 begins. Execution of op2 continues. We have now filled the
execution pipeline and are in the pipeline state as in Figure 19(b).

Figure 19: An illustration of the triple buffering process on the SPEs. Each SPE has 3 buffers labelled
B0, B1 and B2. Three matrix operations, op1, op2 and op3 are executed.

35



Algorithm 3 Execution loop for the MEUs which facilitates triple buffering.

1 i← 0
2 loop
3 in← i mod 3
4 next← (i+ 1) mod 3
5 out← (i+ 2) mod 3
6 opnext ← read mailbox
7 if opnext = terminate
8 exit
9 dfstart(opnext, Bnext)

10 dffinish(opin, Bin)
11 ex(opin, Bin, Bout)
12 wb(opin, Bout)
13 i = i+ 1

of the current operation and next is the number of the buffer containing the operands of the next
operation to be executed.

The matrix operations in the MEUs, such as matrix multiplication and matrix addition, must have
implementations that are highly optimised for the SPEs in order to obtain the best performance. There
are several considerations when optimising algorithms for the SPEs [24]. SIMD (Single Instruction,
Multiple Data) instructions must be used to exploit the 128-bit wide vector processing capabilities
of the SPEs. Branches must be eliminated to reduce the chance of costly branch misprediction and
loops should be unrolled to expose a maximum amount of instruction-level parallelism and utilise both
execution pipelines of the SPEs.

These factors make writing optimised operations for the SPEs a challenging and time-consuming
task. Where possible, we utilise the optimised libraries provided with the Cell SDK to perform oper-
ations on the SPEs. For example, the Large Matrix Library [25] and SPE BLAS library [25] provide
optimised matrix multiplication implementations which are used by our framework.

Where existing library functions were not available, we implemented our own operations. While
not heavily optimised, these operations utilise the SIMD instructions through the vector intrinsics
provided in the Cell toolchain to yield moderate performance.

7.3 Partitioning, Alignment and Padding of Matrices

The small local stores of SPEs, coupled with the triple buffering technique described in subsection 7.2
limit the size of matrices that can be operated on by the SPEs. As mentioned in subsection 7.1, the
local store of an SPE provides 256kB of memory which is shared for code and data. The MEU virtual
machine program is approximately 26kB in size, leaving 230kB of space for matrices. Triple buffering
divides this space further into 3 buffers of size ≈76kB, each of which should be capable of storing the
operands of a single matrix operation. We assume that each matrix operation can have up to two
operands, giving each matrix block a maximum size of ≈38kB. Given that single and double precision
floating point numbers occupy 4 and 8 bytes of memory respectively, the maximum number of matrix
elements that will fit in the buffer of an SPE is S = 9728 single precision elements or S = 4864 double
precision elements. However, the partitioning scheme described in section 5 results in blocks that are

up to δ⌊
√
S
δ
⌋ × δ⌊

√
S
δ
⌋ in dimensions, where δ = 4 for single precision and δ = 2 for double precision

(for reasons described below). This results in an effective buffer size for each operand of S = 9216 for
single and S = 4864 for double precision elements, as stated in section 5.

Each block of a matrix is transferred to the local store of an SPE using a DMA list transfer (a
group of individual DMA commands). Each list entry transfers a single row of the matrix block as
shown in Figure 15(b) of section 5. In the Cell architecture, DMA commands can only operate on
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memory sizes which are multiples of 16 bytes [24]. The partitioning scheme described in section 5
ensures that the number of columns and rows in a block is always a multiple of δ. Hence, we choose
the divisor to be δ = 4 for single precision and δ = 2 for double precision which guarantees that each
row of a block is a multiple of 16 bytes.

Optimal DMA performance is seen when transfer sizes are multiples of 128 bytes [24]. The maxi-
mum length of a row in a block (using our partitioning scheme) is 384 bytes. Thus blocks that reach
this maximum will achieve optimal transfer performance. A value for the divisor could be chosen such
that row lengths are always a multiple of 128 bytes (δ = 32 for single precision and δ = 16 for double
precision). Unfortunately, this would result in additional overhead in the extra padding of matrices.
For example, if a single precision matrix had 4 columns, a value of δ = 32 would force 28 extra columns
of padding to ensure that the length of each row is 32 elements.

Block dimensions which are a multiple of 16 bytes are also necessary in order to easily utilise the
SIMD operations on the SPEs which operate on 128 bit (16 byte) vectors. For the same reason, the
matrix libraries provided for the SPEs require matrices to be of these dimensions.

A further requirement of DMA commands is that memory is aligned to at least a 16 byte bound-
ary [24]. The beginning of matrix arrays are aligned to 128 byte boundaries in main memory using the
malloc align() function call provided in the Cell SDK. Since the partitioning scheme results in row
lengths guaranteed to be a multiple of 16 bytes (as described above), this means that a partitioned
block always begins on a 16 byte boundary in memory. Optimal DMA performance is seen when
source and destination addresses are aligned to 128 byte boundaries (one cache-line) [24], which is
again ensured for all blocks with an appropriate choice for the divisor δ.

7.4 Execution Control

A fast and efficient execution control mechanism must be used to deliver scheduled operations from
the PPE to the SPEs and track the completion of operations. On the PPE, each SPE is modelled as
an execution queue. The PPE enqueues operations on to the end of an execution queue if they are
to be executed by the SPE represented by that queue. Once an SPE has finished execution of the
operation, the PPE can dequeue the operation from the execution queue and register it as complete.
At any point in time, the execution queue contains three kinds of operations (Figure 20):

1. Unexecuted operations: A number of operations that the PPE has offered to the SPE but
which the SPE has not yet acknowledged.

2. Executing operations: A number of operations that the SPE has acknowledged and started
data transfer or execution of.

3. Executed operations: A number of operations which the SPE has finished executing and
whose result has been returned to main memory, but which the PPE has not yet acknowledged
as complete.

Unexecuted 
Operations (max. 4)

PPE PPE

Executing Operations
Executed 

Operations

Figure 20: Matrix execution queue.

In order to enqueue an unexecuted operation, opu, onto the execution queue, two criteria must be
met. Firstly, the number of unexecuted operations already in the execution queue must be less than 4.
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This is because the mailbox mechanism of each SPE which is used to deliver operations from the PPE
to SPEs can only hold up to four 32 bit values. Secondly, all of opu’s operands must be available in
main memory. This means that if opu depends on the results of other operations, these must be fully
computed by an SPE and returned to main memory prior to opu being added to the execution queue.

Ideally, the scheduler would produce a schedule which includes the exact wall-clock time at which
opu can begin executing. However, indeterminisms in the architecture can cause variations in the
actual execution times of operations, which cannot be anticipated by the scheduler. To ensure that
all operands of an operation are available prior to its execution, we introduce a guard count value to
each operation. The guard count is an integer value which represents the number of operands of an
operation which have not yet been computed. Before the execution of any operation, every operation’s
guard count is equal to the total number of operands that the operation has. For example, a matrix
addition operation has 2 operands (the matrices to be added) so its guard count is initially 2. When
an executed operation, ope, has been acknowledged by the PPE as being complete, the guard count of
all the operations which depend on ope are decremented by 1. This means that it is safe to place an
unexecuted operation on the execution queue when its guard count is zero.

In order to signal the PPE to the completion of an operation, the SPE uses DMA commands to
write a counter value to a pre-determined location in main memory. The PPE polls this memory
location and when it changes, knows that an operation is complete and it is safe to dequeue the
instruction from the execution queue. This interprocessor communication technique is chosen over
other techniques because it provides better performance [24]. It is important that the PPE is notified
of completed operations as quickly as possible, as this allows dependant operations to begin execution
sooner.

The execution control process consists of the PPE examining each of the execution queues in turn.
It enqueues as many unexecuted operations as possible on to the execution queue, in the order that they
are specified in the processors schedule. The SPE is notified of these operations through the mailbox
mechanism. The PPE then dequeues any complete operations from the execution queue, decrementing
the guard count of dependant operations by 1. This process continues until all operations in the current
schedule have completed execution.

8 Implementation Details and Tuning

The implementation of our framework has ≈7000 lines of C and C++ code. The code consists of
two separately compiled programs: one written for the PPE and one written for the SPEs. The
SPE program consists of the implementation of the Matrix Execution Units (MEUs) as described in
section 7. Although this component is smaller (in lines of code) than the PPE program, it is crucial
that it achieves high performance and does not consume a significant portion of the small local store
of the SPEs. Thus, it is written in C code. The PPE program consists of the implementation of the
remainder of the framework, i.e. the Octave extension, the lowerer, scheduler and execution control.
It is written in C++ and performance is mostly not as critical as the SPE program.

The development of the software was performed on a conventional x86-based processor running
Fedora Core 9 and the latest version of the Cell SDK (3.1.0) [24]. The code for the Cell can be compiled
on this standard architecture by using cross-compilation tools included in the Cell SDK. Testing was
initially performed with the Sony Playstation 3 games console that runs a Cell Broadband Engine
processor. However, the Playstation 3 is limited to 256MB of memory which impeded development
and limited the size of test cases that could be run. Later in the project we obtained access to a
BladeCenter QS22 server, as described in subsection 9.1. Although the QS22 has the same Cell-based
processor as the Playstation 3, it offers 32GB of memory allowing large test case to be executed without
causing memory swapping and distorting time measurements.

Here we describe implementation issues with regard to (1) debugging and testing our framework,
(2) details of the implementation of the Octave extension, and (3) details of the performance tuning
we performed.
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8.1 Debugging and Testing

Debugging on the Cell processor is difficult for several reasons. Firstly, concurrent programming on any
architecture is challenging and the Cell processor is no exception. Our framework has several threads
of execution running simultaneously on the PPE, as well as each of the 8 SPEs running a separate
thread. There is no easy method for finding race conditions or dead locks between these threads.
Secondly, standard memory debugging tools such as Valgrind cannot be used on the Cell architecture
because DMA memory transfers between the SPEs and main memory interfere with their operation.
This makes debugging memory issues difficult, even when confined to the PPE. Furthermore, the low-
level programming model employed on the Cell processor makes programming a highly error-prone
exercise. This is particularly true when programming for the SPEs.

We used a few techniques to alleviate this issue. Firstly, we wrote our C++ framework in a
platform independent way. Only one component of the framework, the computation engine, contained
hardware-specific code (see the system overview in section 3). We wrote versions of the computation
engine for the Cell processor, but also for a standard x86 architecture. The x86 implementation is
sequential and was not designed for performance but instead for debugging purposes. It contains very
simple, näıve implementations of matrix operations. This allowed us to test our framework on a more
conventional architecture before having to deal with the idiosyncrasies of the Cell architecture. We
were able to use standard debugging tools, including Valgrind, on the x86 to eliminate errors in all
components of our framework, besides the Cell computation engine. If we experienced anomalies when
running the framework with the Cell architecture that were not experience on the x86 architecture,
we could narrow the bug to the Cell implementation of the computation engine. This dual-platform
testing testing technique greatly reduced the time spent on debugging.

As a precursor to the integration of our framework with Octave, we developed a more simple
interface to our framework. This was in the form of a simple trace language which allowed a user
to to enter a trace of matrix operations to be executed. The language does not have any control-
flow mechanisms (like loops or if-statements). An example of a script for this language is shown in
Figure 21. This script simply defines two matrices and adds them together. This interface allowed
us to concentrate on the implementation of the back-end components of our framework prior to the
integration with Octave. However, this also served as another debugging tool, allowing us to determine
whether there was an issue with the Octave extension or with a different component of the framework.
An automatic test generator was written to generate random test traces for this front end based on
a number of parameters such as trace length and matrix dimensions. This further assisted us in
debugging and testing our framework, particularly with larger traces which would take too long to
write by hand.

Debugging tools provided by the Cell SDK were also used to assist in finding bugs in Cell specific
components. We used the GNU debugger (gdb) designed for the Cell processor that facilitates tracing
the execution of the program on both the PPE and SPEs simultaneously.

Regression testing was employed throughout the project to reduce the chance of introducing bugs
and also to reduce debugging time. For every matrix operation that was implemented in the framework,
several tests were written. Initially these tests were written for our simple trace language interface
but later they were crafted as Octave scripts. Octave contains several functions designed specifically
for testing purposes, such as the assert function. An example of a simple Octave script for testing a
matrix addition operation is included in Figure 22.

The debugging and testing techniques as mentioned above, gave us a high level of confidence in the
quality and correctness of our implementation.

8.2 Octave Extension

GNU Octave [17] is a scripting language and programming environment designed for scientists and
engineers. The programming environment consists of a command line interface in which users execute
scripts or individual statements interactively. As Octave is an open-source project, its C++ source
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✞
1 # de f in e matrix A
2 A = [ 1 , 2 , 3 , 4 ;
3 5 , 6 , 7 , 8 ;
4 9 , 10 , 11 , 12 ;
5 13 , 14 , 15 , 1 6 ] ;
6

7 # de f in e matrix B
8 B = [ 1 , 2 , 3 , 4 ;
9 5 , 6 , 7 , 8 ;

10 9 , 10 , 11 , 12 ;
11 13 , 14 , 15 , 1 6 ] ;
12

13 # add both matr ices
14 C = MADD(A, B) ;

✡✝ ✆

Figure 21: A script written for our simple trace language
interface. It declares two matrices A and B and adds them
together, storing the result in C.

✞
1 % Matrix add i t i on
2 x = p matrix ( [ 1 , 2 ; 3 , 4 ] ) ;
3 y = p matrix ( [ 1 , 2 ; 3 , 4 ] ) ;
4 z = x + y ;
5 a s s e r t ( ! h a s r e s u l t ( z ) ) ;
6 a s s e r t ( z , p matrix ( [ 2 , 4 ; 6 , 8 ] ) ) ;
7 a s s e r t ( h a s r e s u l t ( z ) ) ;
✡✝ ✆

Figure 22: An Octave test script for matrix addition. The as-
sert function is built into Octave and checks whether a con-
dition is satisfied or that two results match. The has result

function is provided by our framework to determine whether
a result has been computed by lazy evaluation or whether its
execution is still outstanding.

code is freely available for download and compilation.
Octave has been designed in a way that facilitates the development of extensions without the need to

re-compile the Octave interpreter. This is achieved by using shared libraries for extensions, which can
be loaded dynamically by the Octave interpreter at run-time. Extensions are called Oct-Files and can
be written in C/C++ or FORTRAN. They are compiled by a utility program included with Octave
called mkoctfile. This utility is a wrapper for the gcc compiler which ensures that the necessary
compilation flags and linker options are provided.

Octave permits extensions in the form of user-defined functions as well as user-defined data types.
An example of a simple user-defined function for printing a message to the interpreter console is shown
in Figure 23. The Oct-File is pure C++ code however numerous macros are provided by the Octave
system in order to simplify access to data types and the declaration of functions.

We extended Octave by introducing a user-defined data type called p matrix. This is a custom
matrix data type which can be used as a replacement for the default Octave matrix data type. In
order to cast standard Octave matrices to the p matrix type, users call a function called p matrix()

with the standard matrix as an argument. For example, line 1 of the Octave code shown in Figure 24
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✞
#include <octave / oct . h>

DEFUN DLD ( he l lowor ld , args , nargout , ) {
int narg in = args . l ength ( ) ;
o c tave s tdout << ”He l lo World has ” << narg in

<< ” input arguments and ”
<< nargout << ” output arguments .\n” ;

return o c t a v e v a l u e l i s t ( ) ;
}

✡✝ ✆

Figure 23: An example of a user-defined function written as an extension for Octave. Although this
is pure C++ code, macros and variables are provided by Octave to assist with proper integration of
the extension. Here, a function called helloworld is defined which merely prints the number of input
and output arguments to the interpreter console. The DEFUN DLD macro inserts the appropriate C++
code to allow helloworld to be called from inside of Octave.

✞
1 A = [10 20 30 ; 40 50 70 ; 70 80 9 0 ] ;
2 A = p matrix (A) ;
3 B = A + 5 ;
4 C = B;
5 disp (B( 5 ) ) ;
✡✝ ✆

Figure 24: Simple Octave script which uses our framework.

creates a 3×3 standard Octave matrix with the given elements. A user could then call the p matrix()

function, as shown in line 2, to convert the matrix to our custom data type. This is the only user
intervention necessary to use our framework. By replacing the standard Octave matrix data type with
our own, no user intervention would be required but this would necessitate modifying and re-compiling
the Octave source code which we wanted to avoid.

User defined data types in Octave are implemented as C++ classes which inherit from the
octave base value class [41]. Operators such as + and *, as well as built-in functions such as sin and
round can be overloaded to behave as required for custom data types.

Our p matrix data type is implemented in a C++ class called octave p matrix. For a complete
list of the Octave operators and functions that were implemented for the p matrix data type refer
to Appendix C. When a variable of type p matrix is created in Octave, a corresponding C++ oc-

tave p matrix object is generated. In line 2 of the example code in Figure 24, the p matrix() function
is called to cast the matrix A to our custom data type. Thus, an octave p matrix object is generated
by Octave. Our framework also constructs a ConstantMatrix object to represent A. This merely has
a pointer to the memory location of the matrix A. The ConstantMatrix object is added to the data
dependence graph in our framework. This is illustrated in Figure 25.

When a user performs an operation on a p matrix variable, the overloaded operators for the type
p matrix defer execution of the operation. For example, when a user executes line 3 of the Octave
code in Figure 24 the value of B is not computed immediately. Instead, we have overloaded the +
operator for p matrix to create a new ScalarAddition C++ object in our framework to represents
the addition of 5 to B. The ScalarAddition object contains a pointer to the ConstantMatrix to
denote that A is the operand of B, as shown in Figure 25. This addition operation is also added to
the data dependence graph in our framework, with a data dependency on the matrix, A. Another
octave p matrix object is generated by Octave to represent the B variable. This contains a pointer
to the ScalarAddition object in our framework, as depicted in Figure 25.
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Figure 25: The memory layout of C++ objects in Octave and our framework. This shows the state
of memory after executing line 4 of the Octave script in Figure 24. Every time a p matrix variable is
created in Octave, an object of the type octave p matrix is constructed. An object is also constructed
by our framework to represent that operation. When matrix A is cast to the p matrix type in line
2, a ConstantMatrix object is created in our framework. This merely has a pointer to the memory
location of the matrix A. The operation is also added to a data dependence graph on the fly. When
the variable B is declared in line 3, another octave p matrix object is constructed by Octave. The
operation to compute B is not executed immediately. Instead, a ScalarAddition object is created by
our framework representing the addition of the scalar value 5 to the matrix A. This contains a pointer
to the matrix A, the operand of the operation. B is also added to the data dependence graph, with a
dependency on A. In line 4, B is assigned to C. Copy-on-write is used to prevent the execution of B
being forced and also to prevent making an unneeded deep copy of B. Instead, C has a pointer to the
same ScalarAddition object which computes its result.

To improve performance of the framework, we employ copy-on-write semantics. If a matrix of the
type p matrix is assigned to another variable, no deep copy of that matrix is made. For example, in
line 4 of Figure 24, the variable B is assigned to the variable C. Producing a deep copy of matrix
B here would negatively impact performance in two ways. Firstly, we do not need to make a copy
of B because B and C point to the exact same matrix value. Thus, making a copy would introduce
unnecessary overhead in memory copying operations. Secondly, if we were to make a deep copy of B
here, it would require the the value of B be evaluated. Because of lazy evaluation, B has not been
computed at this point. Forcing the computation of B would unnecessarily shorten the length of the
trace of matrix operations and reduce the amount of parallelism to be exploited by our framework.
Instead of making a deep copy, the octave p matrix object representing C is assigned a reference
to the same ScalarAddition operation as B in our framework. This is shown in Figure 25. If the
matrices B or C are modified, for example by changing the value of an element, then the operation is
forced to be computed and a deep copy of the matrix is made.

Our framework continues to accumulate matrix operations until the result of one of those operations
is needed. Results of operations are typically needed when a user wants to print a matrix to the screen
or access particular elements of a matrix. Thus, we have overloaded the subscript operators on matrices,
as well as the disp function such that these trigger the execution of outstanding operations in the
framework. For example, in the last line of code in Figure 24, the the 5’th element of B is printed
to the screen. A call to our overloaded subscript operator is made. This first determines whether the
ScalarAddition operation to yield the value of B has been computed yet. In this case it has not
so execution of the outstanding trace of operations in the framework is initiated, and continues as
described in section 4. Once the result of B has been computed, it is made available to the Octave
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script and execution of the script can continue. This technique gives our framework its lazy evaluation
semantics.

Octave automatically handles garbage collection of its variables but this must be tied to our frame-
work so we can do the appropriate de-allocation of resources. When a p matrix variable is garbage
collected in Octave, the destructor of the corresponding octave p matrix object is called. This will
de-allocate the matrix operation object in our framework which is tied to that variable. In the ex-
ample code in Figure 24 garbage collection of the variable B will result in the de-allocation of the
ScalarAddition operation tied to B. However, we must be careful not to garbage collect operations
or matrices that are still needed. If the matrix A was garbage collected prior to the evaluation of
B then our framework would not de-allocate B. This could occur, for example, if the code clear A
was called before line 5 of Figure 24. Our framework recognises that the matrix A is still needed to
compute B. Thus, it will not be de-allocated until execution of the next trace is complete.

8.3 Performance Tuning

It was necessary to optimise our framework to obtain the high performance reported in the experimental
subsection (see section 9). In order to identify bottlenecks in the framework, we profiled the code using
the performance counters available in the Cell processor [24]. These are highly accurate timers which
operate at the time-base frequency of the architecture implementation (26664325Hz for the BladeCenter
QS22 implementation). All components of the framework were instrumented with profiling code in
both the PPE and SPE programs. A breakdown of time spent in each component of the framework
was obtained through use of this profiling and is shown in section 9. A compile time option was used
in our framework to enable or disable profiling as required.

A large bottleneck we discovered through profiling was in the time spent making virtual function
calls. For example, matrix operation classes in our framework are implemented with an inheritance
hierarchy. There is a virtual method implemented by each operation for obtaining the estimated data
fetch, execution and write back times for that operation. The heuristic scheduler made many calls
to this virtual function for each operation in order to compute the schedule. We were able to reduce
the number of calls to once for each operation in a trace which resulted in an improvement in the
time spent scheduling operations. This change alone led to a performance improvement of 20% in the
scheduling process.

Using appropriate data structures had a significant impact on performance. Profiling allowed us
to determine that the scheduling of operations was initially dominating the execution time of a trace
for some benchmarks. That is, scheduling was taking longer than the actual execution time. After
investigating this, we found that it was due to the use of an array for storing ready operations in the
scheduler. This array has to be iterated over to find the earliest operation that could be scheduled
and this has to be done for every operation in the schedule (see section 6). By using a min-heap
priority queue instead of the array, we were able to reduce the O(n2) complexity of this portion of the
algorithm to O(n logn). This had a large impact when there were many operations in the trace and
reduced the average time spent scheduling operations to less than 15% of the total execution time of
the trace.

Another area where we made improvements was with memory fragmentation. Originally, we just
used the standard malloc function to allocate memory for each matrix operation object in our frame-
work. However, as can be seen in section 9, benchmark traces could contain over 600000 matrix
operations. This led to high fragmentation of memory and had a negative impact on performance.
We used memory pooling to pre-allocate large contiguous blocks of memory at once. From these large
blocks, matrix operation objects were allocated.

Memory pooling was also used to improve the performance of the allocation of matrices. During
the execution of matrix multiplication operations, many temporary matrices are used to perform
the summation of blocks (described in section 5). Allocation of these temporary matrices degraded
performance. Instead of allocating each matrix with a separate malloc call, we again used a pool of
contiguous memory. Not only did this improve the time spent allocating matrices, but also deallocating

43



them because returning memory to the pool is a very cheap operation.
Finally, the execution control mechanism (described in section 7) was another area where improve-

ments were made. By instrumenting the SPEs with profiling code, we were able to compute the idle
time spent by each SPE. By simplifying the execution control loop, which delivers operations to the
SPEs, it was able to service them more quickly. This resulted in up to a 30% decrease in the idle time
of SPEs for some benchmarks.

9 Experimental Results

In the experimental evaluation of our framework we focused on the performance improvements that
users can expect from running Octave application code with our framework running on the Cell pro-
cessor. We compared our framework with three other typical system configurations:

1. A default installation of Octave on a contemporary Intel Core2 Quad processor.

2. A default installation of Octave on the Cell processor.

3. A default installation of MATLAB on an Intel Core2 Quad processor.

In addition to these comparisons, we also investigated our approach with respect to:

1. Its scalability to a larger number of SPEs.

2. The accuracy of our time models for estimating the execution time of matrix operations.

3. The quality of schedules derived by our heuristic scheduling algorithm.

4. The extent to which our framework was able to utilise the Cell SPEs.

9.1 Experimental Setup and Benchmark Suite

For the experiments, a BladeCenter QS22 server was used to run our framework. The details of its
configuration are summarised in Table 1. The BladeCenter QS22 is comprised of two IBM PowerXCell
8i processors (3.2GHz/ 1MB L2) and has 32GB DDR2 memory. We used only one out of the two Cell
processors available on the BladeCenter due to non-uniform-memory-access (NUMA) issues which
complicated use of the second processor (though our framework could be configured to work with an
arbitrary number of SPEs). We utilise all 8 of the SPEs as well as the PPE available in the Cell
processor (refer to section 7).

Originally, we intended to perform the experiments on the Cell processor found in the Playstation 3
games console. Despite both the the BladeCenter QS22 and Playstation 3 being based on the same
Cell Broadband Engine architecture with the same capabilities, the Playstation 3 has only ≈200MB
of accessible RAM. Thus the BladeCenter QS22 was used to alleviate this limitation on the size of
benchmark inputs.

Blade model: IBM BladeCenter QS22
Number Cell processors: 1 (8 SPEs, 1 PPE)
Memory: 32GB DDR2
Linux distribution: Red Hat EL Server 5.4
Linux kernel: 2.6.18
IBM Cell SDK: 3.1.0
GCC: 4.1.1
GCC optimisation flags: O3
Octave: 3.0.3

Table 1: Experimental setup.
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Figure 26: Configuration 1: Speedup of our framework on the Cell processor over a default Octave
installation on an Intel Core2 Quad processor for the 9 benchmark programs.

The following benchmarks were selected to evaluate the performance of our framework:

1. dft Computation of the Discrete Fourier Transform (DFT) of a series of signals.

2. synth A synthetically constructed benchmark with many small, independent matrix multiplica-
tions.

3. hill Encryption and decryption using Hill ciphers.

4. hits Computation of the Hyperlink-Induced Topic Search (HITS) algorithm for estimating the
importance of a web-page.

5. kmeans Computation of the k-means clustering of a 2D point set.

6. leontief Computation of a Leontief input-output model, used to predict performance of economies.

7. markov Computation of a Markov chain.

8. neural Training of a single-layer neural network.

9. reachability Computation of the reachability matrix of a graph.

These benchmarks were chosen to represent commonly used kernel programs from scientific, engi-
neering and computer science domains.

9.2 Speedups and Scalability

We first compared our framework on the Cell processor with a default Octave installation on an Intel
Core2 Quad Q9550 2.83GHz processor. We chose the Intel Core2 Quad architecture for comparison
because it represents a contemporary and frequently used microprocessing architecture which is more
modern than the Cell processor. The standard Octave installation on the Intel Core2 Quad uses
single-threaded ATLAS BLAS libraries for some matrix operations [55]. These libraries utilise the
SSE3 multimedia extensions of the processor for performance.

As depicted in Figure 26, our framework achieves speedups of up to a factor of 12 times over
standard Octave on the Intel Core2 Quad. For most benchmarks we achieve speedups of over 7. The
k-means clustering (“kmeans”) and neural network (“neural”) benchmarks achieve lower speedups.
These lower speedups can be attributed to two factors. Firstly, the time models for some matrix
operations in these benchmarks may not be accurate. There is further evidence for this provided in
subsection 9.3. Inaccurate time models would lead to inaccurate estimation of the execution times of
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Figure 27: Configuration 2: Speedup of our framework on the Cell processor over a default Octave
installation on the BladeCenter QS22 for the 9 benchmark programs.

operations which could result in degraded schedules. Fine-tuning of time-models could see improved
performance. The second reason for lower speedups is that these benchmarks contain many matrix
operations on vectors. The partitioning scheme employed in our framework results in sub-matrices
which are very small, as described in section 5. This results in under-utilisation of the SPEs in the
Cell processor and poorer performance. This could be improved by modifying the partitioning scheme
for vector operations.

The second configuration that we compared our framework to was a default installation of Octave
on the BladeCenter QS22. That is, we compared the runtime of the benchmarks BladeCenter server
with and without our extension switched on in Octave. It should be noted that the default Octave
installation utilises hardware-specific BLAS libraries which are provided with the IBM Cell SDK.
These libraries are highly optimised for the Cell architecture [46] and can utilise both Cell processors
available in the QS22 (a total of 16 SPEs).

With this configuration we achieved the speedups depicted in Figure 27. It can be seen that our
framework achieves a speedup with all benchmarks (though some are lower than others). One may
expect our framework to perform worse than the default installation which uses highly optimised
BLAS libraries. However, the BLAS libraries do not accelerate all Octave functions. For example,
computation of the sin function of elements in a matrix is not a standard BLAS operation. As a result,
the PPE is used to compute such functions, which can be relatively slow. Our framework can utilise
the SPEs for all operations that we have implemented and thus see an improvement in performance
for these operations.

Furthermore, the Cell BLAS libraries exploit only the data parallelism of matrix operations whereas
our framework also exploits instruction level parallelism. This is emphasised with the “synth” bench-
mark. This benchmark has a large amount of instruction level parallelism because it contains many
matrix multiplications which are independent of each other. However, because each matrix multipli-
cation operates only on small matrices, there is no benefit in dividing an operation among SPEs. This
causes BLAS to confine computation of the operations to the PPE only. Each operation is computed
sequentially by the default installation of Octave leading to a very high runtime with this benchmark.
In contrast, our framework recognises that although it is not worth dividing up individual operations
among SPEs, the multiplications can be executed concurrently. This allows our framework to obtain
high utilisation of the Cell processor and explains the speedup of over 200 times for this benchmark.

The seemingly erratic speedups across benchmarks in this configuration (i.e. speedups vary from
1.1 times to 214 times) can be explained with the same reasoning. That is, the speedup of our
framework depends heavily on how much instruction level parallelism is available in a benchmark, as
well as the proportion of matrix operations in the benchmark which can be executed by the optimised
BLAS libraries in the default Octave installation.
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Figure 28: Configuration 3: Speedup of our framework on the Cell processor over a default MATLAB
installation on an Intel Core2Quad processor for the 9 benchmark programs.

In a variation of this configuration, we forced the default installation of Octave to utilise only the
PPE of the Cell processor (and not the SPEs). Our framework achieved speedups of several hundred
times in this case.

The third and final configuration that we compared our framework with was a default installation
of MATLAB running on an Intel Core2 Quad processor. Since MATLAB is a commercial product,
it is likely to be more optimised than Octave, its open-source equivalent. However, we wanted to
compare our framework with MATLAB because it is more frequently used than Octave and represents
the current state of the art in high-level scientific computing. MATLAB and Octave have very similar
syntax and the benchmark programs required no changes for them to run on MATLAB.

In this experiment, we used the latest version of MATLAB (version 7.8) which was found to utilise
all four cores of the Intel Core2 Quad processor in the execution of matrix operations. Again, we found
we were able to achieve speedups for all benchmarks and up to 8 times in the best case, as shown in
Figure 28. However, these speedups were lower than those from the first configuration which confirmed
our suspicions that MATLAB provides better performance than Octave.

Again, the speedups of our framework can be attributed to the exploitation of instruction level
parallelism and the scheduling of operations among the parallel processing elements of the Cell archi-
tecture to improve utilisation. Neither of these are currently performed by Octave or MATLAB on
any architecture.

In the next set of experiments, we investigated how the performance of our framework scaled with
the number of SPEs utilised on the Cell processor. The results for each of our benchmarks are shown
in Figure 29. As can be seen, performance deviates from linear speedup depicted by the dotted line.
This can be explained by considering the proportion of sequential and parallelisable work for each
benchmark, as shown in Table 2. These values were estimated by measuring the time taken by each
component of the framework when utilising only 1 SPE. The proportion of time spent in lowering and
scheduling on the PPE could not be parallelised. However the proportion of time spent executing
matrix operations on the SPEs could be parallelised by increasing the number of SPEs used.

When the amount of sequential work in each benchmark is taken in to consideration, the theo-
retically achievable speedup with 8 processors can be computed using Amdahl’s law [20]. This states
that the maximum speedup achievable is given by 1

(1−P )+ P
N

where P is the parallelisable portion of

the program as a fraction and N is the number of processors used (8 in this case). These values for
each benchmark, along with the observed speedups are also shown in Table 2. It follows that most
benchmarks do not deviate significantly from the maximum theoretical speedup, indicating that to
obtain better performance it is necessary to further optimise the sequential portion of the workload,
i.e., the lowering and scheduling components.

Any deviations between the maximum theoretical speedups and the observed speedups shown in
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Figure 29: Performance scalability of the proposed framework on the IBM BladeCenter QS22. This
shows the speedup achieved for each benchmark by varying the number of SPE cores utilised from 1
to 8.

Table 2 are due to deficiencies that arise as the number of processors increases. For example, the Cell’s
EIB communications bus will have to cope with a higher load when the number of SPEs increases.
The PPE will also face increasing workloads as it has to service more SPEs. Further optimisations
to the execution control mechanisms could help reduce this observed deviation from the maximum
theoretical speedup by allowing SPEs to be serviced more quickly.

9.3 Time Model

For computing an effective schedule, it is important that the estimated execution times of operations
are accurate (see subsection 9.3 of the scheduling section). To verify the accuracy of our time models,
we compared the estimated makespan of a trace with the real, run-time makespan of the same trace.
The estimated makespan is calculated by the heuristic scheduler using the time models of operations.
The real makespan of the trace was measured by timing the execution phase of operations in the trace
using the hardware performance counters on the Cell processor. We did this for many different data
dependence graphs and computed the deviation between the two makespans.

A histogram of these deviations is shown in Figure 30. The majority of deviations are close to 0%,
indicating accurate time modelling. The median of the deviations is 1.3% and the skewness is -0.54,
meaning that the the distribution is slightly skewed towards the right. The skewness of the distribution
is caused by the overhead of the execution control mechanism described in section 7. This mechanism
is responsible for synchronising the execution of matrix operations and the overheads involved are not
taken into account in the estimated makespan of a trace. Thus the heuristic scheduler underestimates
the makespan accordingly.

Note that Figure 30 includes deviations for data dependence graphs generated by all benchmarks
except for benchmarks “neural” and “kmeans”. We excluded those benchmarks because there was
found to be large deviations between the estimated and actual makespans (up to 300%). This provides
evidence that the time models for some operations in these benchmarks are inaccurate and need further
fine tuning.

9.4 Scheduling

As a further experiment, we wanted to investigate the quality of our heuristic scheduler by comparing
the makespan of the heuristic with the makespan of the optimal solution. The number of operations
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Benchmark Sequential (%) Parallelisable (%) Theoretical Speedup Observed Speedup

dft 5.2 94.8 5.9 4.9
synth 7.8 92.2 5.2 4.5
hill 4.3 95.7 6.1 5.1
hits 3.7 96.3 6.3 5.9

kmeans 5 95 5.9 3.2
leontief 3.8 96.2 6.3 5.5
markov 3.5 96.5 6.4 5.5
neural 17.5 82.5 3.6 1.4

reachability 3.6 96.4 6.4 5.1

Table 2: Sequential and parallelisable portions of benchmark programs are measured by running the
benchmarks on a single SPE. The sequential portion is the time that is spent lowering and scheduling
operations, allocating memory and performing cleanup. The parallelisable portion is the time spent
in the actual execution of operations on the SPEs which can be reduced by utilising more SPEs. The
maximum theoretical speedups are computed for 8 SPEs using Amdahl’s law. This states that the
maximum speedup achievable is given by 1

(1−P )+ P
N

where P is the parallelisable portion of the program

as a fraction and N is the number of processors used (8 in this case). The maximum speedup that
each benchmark was observed to achieve on our framework with 8 SPEs is also shown for comparison.
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Figure 30: The distribution of deviations between the estimated makespan of the schedule produced
by our heuristic algorithm and the observed makespan measured using performance counters on the
Cell. Deviations are computed for over 100 traces produced by all benchmarks except “kmeans” and
“neural”. Most deviations are close to 0% indicating that our time models for matrix operations are
accurate.
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Figure 31: Time taken to schedule and execute matrix operations using two scheduling algorithms:
our heuristic algorithm and a näıve approach which balances the number of operations on each SPE.
Note that although the time spent scheduling operations using our heuristic is much longer than the
time spent scheduling using the näıve approach, the total execution time is lower for most benchmarks.

and dependencies in each of the benchmark programs used to compute the speedups of our framework
(see subsection 9.2) are shown in Table 3. The heuristic scheduling algorithm was able to compute
schedules for these problem sizes in less than a second in all cases. However, these problem sizes were
too large to compute an optimal solution using the mathematical program described in subsection 6.2.
Thus, we had to reduce the input size of these benchmarks greatly, as listed in Table 4. CPLEX
10.0 [26] was able to solve these smaller problem sizes within an hour.

In all cases, the makespan of the heuristic schedule was within 1% of the makespan of the optimal
schedule. However, where the mathematical program took up to 40 minutes to produce a solution, the
time to compute the heuristic schedule was too small to be measured (for these problem sizes). This
indicates that the heuristic is efficient and effective. Unfortunately, these small problem size instances
may not offer enough degrees of freedom to see a large deviation between the heuristic and the optimal
solution. We were not able to increase the problem sizes without making the problems intractable to
be solved by CPLEX.

Another method we used to evaluate the heuristic scheduling algorithm was to compare it to other
heuristic scheduling techniques. Figure 31 shows the time spent scheduling and executing matrix
operations for two different scheduling techniques. The first is our heuristic scheduling algorithm and
the second is a very näıve scheduling algorithm (simple scheduling) which merely distributes operations
evenly and in a topological order among the SPEs. This is done in a round-robin fashion such that each
SPE has roughly an equal number of operations to execute. It can be seen that the simple scheduling
algorithm spends almost no time scheduling operations. However, the time taken to execute the
operations exceeds the sum of the scheduling and execution times using our heuristic algorithm (for
most benchmarks). This shows that our scheduling algorithm has a worthwhile impact on the overall
execution time of a trace, even though it does incur noticeable overhead. By reducing the overheads
of scheduling with further optimisations the benefits of our scheduling algorithm would be even more
substantial. It also shows that, in general, scheduling is important in obtaining good performance on
modern accelerator architecture. Common, näıve approaches, such as the one described, can lead to
poor performance.

Two of the benchmarks execute more quickly with the näıve scheduling as shown in Figure 31.
The first is the “synth” benchmark. This is an expected result for this benchmark because every
matrix operation in the benchmark is independent and the same size. Hence, as long as operations
are distributed evenly among processors, an optimal schedule will be produced. So both scheduling
algorithms produce the same schedule, however the näıve algorithm does so much more quickly and a
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Original Lowered

Nodes Edges Nodes Edges

dft 9 9 72384 141284

synth 60003 120000 60003 120000

hill 9 8 73684 140608

hits 50 98 319950 639450

kmeans 34 23 137764 252743

leontief 204 402 129152 254720

markov 52 100 93400 186580

neural 10012 12489 231784 410151

reachability 960 1912 119600 239000

Table 3: Number of operations (nodes) and dependencies (edges) in the original and lowered depen-
dence graphs for each of the benchmarks used in the experiments described in subsection 9.2.

Nodes Edges Time (mins:secs)

dft 34 44 0:02

synth 17 32 1:49

hill 28 32 0:28

hits 40 72 0:06

kmeans 79 64 < 0:01

leontief 46 88 0:06

markov 48 84 2:47

neural 38 35 0:04

reachability 53 104 41:19

Table 4: Number of operations (nodes) and dependencies (edges) in the largest problem sizes that the
integer linear programming solver could compute a solution for within 1 hour. Also included is the
time taken by the solver to produce a solution.
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Cleanup (2.74%)

Execution (75.59%)

Allocation (0.83%)

Scheduling (11.40%)

Lowering (9.44%)

Figure 32: Breakdown of execution time into phases, measured with the performance counters available
on the Cell. 8 SPEs were used during these measurements. The majority of the time executing a trace
is spent executing the matrix operations.

corresponding drop in the execution time is observed.
The “neural” benchmark also runs more quickly with the näıve algorithm. This provides further

evidence to support the suggestion that some operations in the benchmark have a time model that
is inaccurate. This would cause a degraded schedule to be produced by our heuristic algorithm and
increase the execution time of the operations as a result.

An online scheduling approach was also experimented with, in which a pool of operations which
were ready to be executed was kept. SPEs selected an operation from this pool arbitrarily. Similar
results to the näıve scheduling algorithm were observed.

9.5 Utilisation of Parallel Execution Elements

In the remaining set of experiments we investigated the extent to which our framework utilised the
parallel execution elements (SPEs) of the Cell. Figure 32 shows a breakdown of execution time spent
for the different phases of our framework. These numbers are averaged across all benchmarks when
run with 8 SPEs. It follows that the majority of time (more than 75%) is spent executing matrix
operations on Cell SPEs. The remaining 24.41% is mainly spent on scheduling (11.4%) and lowering
of matrices into blocks (9.44%). Only 0.83% of time is spent on matrix allocation, and 2.74% on
deallocation and other cleanup.

In another experiment, we measured the time that the SPEs spent idle during the execution phase
of the framework. The results of this experiment are shown in Figure 33. The idle time is composed
of the time the SPEs spent waiting for tasks to be offered by the PPE (“Task”) and the time spent
waiting for the completion of DMA transfers (“DMA”). Again these numbers were determined for
8 SPEs. It follows from Figure 33 that with the “synth” benchmark we approached the Cell’s peak
performance, which is manifested in idle times close to zero.

The remaining benchmarks incur idle times as a result of three main factors. Firstly, operations
such as matrix addition are memory-bound (rather than computationally bound). Although our triple
buffering technique overlaps computation with communication, memory-bound operations can still
induce DMA waiting times because memory transfers for these operations are more expensive than
computation of the result.

The second reason for idle times is that certain traces may contain a large number of data depen-
dencies which reduce the amount of instruction level parallelism for execution. This can result in idle
time spent waiting for the operands of an operation to become available. Thirdly, if operations are
computed too quickly by the SPEs, the execution control mechanism may not be able to service them

52



    
    

    
    

dft

    
    

    
sy

nth

    
    

    
   h

ill

    
    

    
   h

its

    
    

  k
means

    
    

  le
ontie

f

    
    

 m
arko

v

    
    

  n
eura

l

re
ach

abilit
y0

20

40

60

80

100

Id
le

 ti
m

e 
(%

)

DMA
Task

Figure 33: The percentage of time that SPEs spent idle during each benchmark. 8 SPEs were used for
this experiment. Idle time is broken into two components: “DMA” idle time is the time spent waiting
for the completion of DMA transfers and “Task” time is the time spent waiting for an operation to be
sent by the PPE. The “synth” benchmark exhibits close to 0% idle time and reaches close to the peak
performance of the Cell processor.
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Figure 34: Speedups achieved by overlapping the scheduling, lowering and execution phases of a trace,
versus sequential execution of those phases.

fast enough, resulting in time spent waiting for a task to be offered by the PPE. The impact of this
could be reduced by aggregating several operations into a single operation which takes a longer time
to execute.

The final experiment we measured the impact of overlapping scheduling of operations, lowering
of operations and execution of operations. As described in section 3, if the size of a trace reaches a
maximum threshold value, execution of the Octave interpreter will continue while the trace is executed.
Scheduling of the trace, lowering of the trace and operation execution are executed in separate threads.
Thus it is possible for multiple traces to be in execution concurrently. Figure 34 shows the speedup in
the execution time of each benchmark when these separate threads are used versus each of the stages
being executed in sequence. Most benchmarks achieve a speedup when compared with sequential
execution. Those that do not, such as “kmeans” and “neural” may not produce traces that are large
enough to allow any extra parallelism to be exploited and instead, the overhead of using several threads
for execution causes a slowdown. Fine tuning of the threshold at which execution of a trace is triggered
may result in further speedups from using this technique.
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10 Conclusion

In this work we developed a new framework for fully utilising the performance of modern accelerator
architectures in the execution of matrix languages. We provide an implementation of the framework
for executing Octave programs on the Cell Broadband Engine architecture.

The framework is very easy to use, with only minor changes needed to existing Octave code in
order to take advantage of the parallel architecture. As opposed to existing systems, which typically
only take advantage of the data parallelism of matrix operations, our framework additionally exploits
instruction level parallelism, pipeline parallelism and task parallelism to obtain better performance.

Lazy evaluation is used to extract a trace of matrix operations from a program at run-time. The
data dependencies of operations in a trace are examined to elicit instruction level parallelism. A novel
partitioning scheme, called lowering, is used to divide operations on matrices in a way that maximises
the parallelism available in a trace. A new heuristic scheduling algorithm is then used to schedule
operations among the processing elements in a way that improves their utilisation and reduces the
execution time of a trace. In order to produce an accurate schedule, we employ time modelling of
matrix operations to estimate their execution times.

We performed an extensive evaluation of our framework with positive results. Octave benchmarks
executing on our framework for the Cell Broadband Engine architecture are up to a factor of 12 faster
than execution on standard Octave on more recent and expensive Intel Core2 Quad processors. Our
framework also out-performed an out-of-the box installation of Octave running on the Cell processor,
as well as an installation of MATLAB running on an Intel Core2 Quad processor.

We also evaluated a new heuristic scheduling algorithm by comparing the schedules it produced
with the optimal schedules produced by a mathematical program we developed. We found that the
makespan of the optimal schedule deviated no more than 1% from the makespan of the schedule
produced by the heuristic algorithm, for all computable problem sizes.

Further evaluation of our framework revealed that partitioning and scheduling of operations did
not incur a significant amount of overhead and one of our benchmark programs was able to reach the
peak performance obtainable on the Cell Broadband Engine Architecture.

Though it is widely believed that automatic parallelisation techniques for imperative programs are
infeasible, we showed that automating the parallelisation of sequential matrix language programs is
achievable for modern accelerator architectures. Speedups of several magnitudes are possible when var-
ious kinds of parallelism, including instruction level, data, pipeline and task parallelism, are exploited.
We showed that the main contributors to these speedups are instruction level and data parallelism
that are obtained through novel lazy evaluation and lowering techniques.
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A Integer Linear Programming Model

min z

s.t.
∑n

i=1 x1i ≤ p

xi1 = 0 i ∈ I
n∑

j=1

xij ≤ 1 i ∈ I \ {1}

n∑

j=1

xji = 1 i ∈ I \ {1}

xii = 0 i ∈ I \ {1}
n∑

i=1

(yij + tdf(i)xij) ≤ tj j ∈ I

n∑

i=1

(yij + tdf-ex(i)xij) ≤ tj + tdf(j) j ∈ I

n∑

i=1

(yij + tdf-ex-wb(i)xij) ≤ tj + tdf-ex(j) j ∈ I

yij ≤ Uxij i, j ∈ I

ti + Uxij − U ≤ yij ≤ ti i, j ∈ I

ti + tdf-ex-wb(i) ≤ z i ∈ I

ti ∈ R
+ i ∈ I

xij ∈ {0, 1} i, j ∈ I

yij ∈ R
+ i, j ∈ I

z ∈ R
+
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B AMPL Script

###############################################################################
## Input Sets and Parameters
##

# set o f matrix i n s t r u c t i o n s
s e t I ;

# s e t o f task precedences
s e t E within I c ro s s I ;

# time parameters f o r i n s t r u c t i o n s

# time durat ion f o r data f e t ch s tage
param t d f { I } ;

# time durat ion f o r execute
param t ex { I } ;

# time durat ion f o r execute
param t wb{ I } ;

# number of p r oce s s o r s
param num processors ;

###############################################################################
## Set and Parameters f o r Model
##

# synthe t i c s t a r t task
param s t a r t symbol ic ;

# s e t o f matrix i n s t r u c t i on with s t a r t task
s e t IS := I union { s t a r t } ;

# s e t adjacency elements that are not
s e t A := {( i , j ) in ( IS c ro s s I ) : i <> j } ;

# upper bound f o r v a r i a b l e s t
param U := sum{ i i n I} ( t d f [ i ] + t ex [ i ] + t wb [ i ] ) ;

# s e t o f p r edece s s o r s
s e t preds {u in I} := {(v ,w) in E: w = u} ;

###############################################################################
## Var iab l es
##

# adjacency matrix o f stream graph
var x{A} , binary ;

# l i n e a r i s a t i o n time y [ i , j ] = x [ i , j ] ∗ t [ i , j ]
var y{A} , >=0;

# s t a r t time of i n s t r u c t i on
var t{ I } , >=0;

# makespan
var z , >=0;

###############################################################################
## Object ive
##

# minimize makespan
minimize o b j e c t i v e :

z ;

###############################################################################
## Constra int
##

# makespan i s g r e a t e r than or equal to the completion o f a l l i n s t r u c t i o n s
sub j e c t to makespan { i i n I } :

t [ i ] + t d f [ i ] + t ex [ i ] + t wb [ i ] <= z ;

# in s t r u c t i o n precedence c on s t r a i n t
s ub j e c t to precedence {( i , j ) in E} :

t [ i ] + t d f [ i ] + t ex [ i ] + t wb [ i ] <= t [ j ] ;

# stream su cce s s i on con s t ra i n t f o r each s tage
sub j e c t to s tream df { j i n I } :

sum{ i i n I : i <> j} (y [ i , j ] + t d f [ i ] ∗ x [ i , j ] ) <= t [ j ] ;
s ub j e c t to stream ex { j i n I } :

sum{ i i n I : i <> j} (y [ i , j ] + ( t d f [ i ] + t ex [ i ] ) ∗ x [ i , j ] ) <= t [ j ] + t d f [ j ] ;
s ub j e c t to stream wb { j i n I } :

sum{ i i n I : i <> j} (y [ i , j ] + ( t d f [ i ] + t ex [ i ] + t wb [ i ] ) ∗ x [ i , j ] ) <= t [ j ] + t d f [ j ] + t ex [ j ] ;

# stream graph proce s so r c on s t r a i n t
s ub j e c t to p roc e s so r s :

sum{ i i n I} x [ s ta rt , i ] <= num processors ;

# stream graph succe s s o r c on s t r a i n t
s ub j e c t to suc ce s s o r s { i i n I } :

sum{ j i n I : i <> j } x [ i , j ] <= 1;

# stream graph predece s so r co n s t ra in t
s ub j e c t to p r edece s so r s { j i n I } :

sum{ i i n IS : i <> j } x [ i , j ] = 1 ;

59



###############################################################################
## Lin ea r i s a t i o n Const ra in ts
##

# l i n e a r i s a t i o n o f quadrat i c term y [ i , j ] = x [ i , j ] ∗ t [ i ]
# fo r a l l ( i , j ) in A.
s ub j e c t to l i n e a r i z e t 1 {( i , j ) in ( I c r o s s I ) : i <> j } :

y [ i , j ] <= U ∗ x [ i , j ] ;
s ub j e c t to l i n e a r i z e t 2 {( i , j ) in ( I c r o s s I ) : i <> j } :

t [ i ] − U + U ∗ x [ i , j ] <= y [ i , j ] ;
s ub j e c t to l i n e a r i z e t 3 {( i , j ) in ( I c r o s s I ) : i <> j } :

y [ i , j ] <= t [ i ] ;
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C List of Implemented Octave Functions

The following Octave operators and functions were implemented to work on our custom p matrix data
type. These operations utilise our framework to execute in parallel.

• <p matrix> + <p matrix>

• <p matrix> + <scalar>

• <p matrix> − <p matrix>

• <p matrix> − <scalar>

• <p matrix> ∗ <p matrix>

• <p matrix> ∗ <scalar>

• <p matrix> .∗ <p matrix>

• <p matrix> ./ <p matrix>

• <p matrix> .ˆ <p matrix>

• abs(<p matrix>)

• mod(<p matrix>, <scalar>)

• sin(<p matrix>)

• cos(<p matrix>)

• sign(<p matrix>)

• round(<p matrix>)

• <p matrix> == <p matrix>

• <p matrix> != <p matrix>
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