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Abstract. We consider static ad-hoc wireless networks where nodes have the
same initial battery charge and they may dynamically change their transmission
range at every time slot. When a node v transmits with range r(v), its battery
charge is decreased by β × r(v)2 where β > 0 is a fixed constant.

The goal is to provide a range assignment schedule that maximizes the number
of broadcast operations from a given source (this number is denoted as the length
of the schedule). This maximization problem, denoted as MAX LIFETIME, is
known to be NP-hard and the best algorithm yields worst-case approximation
ratio Θ(log n), where n is the number of nodes of the network [5].

We consider random geometric instances formed by selecting n points in-
dependently and uniformly at random from a square of side length

√
n in the

Euclidean plane.
We first present an efficient algorithm that constructs a range assignment sched-

ule having length, with high probability, not smaller than 1/12 of the optimum.
We then design an efficient distributed version of the above algorithm where

nodes initially know n and their own position only. The resulting schedule guar-
antees the same approximation ratio achieved by the centralized version thus ob-
taining the first distributed algorithm having provably-good performance for this
problem.

1 Introduction

Range assignments in ad-hoc networks. In static ad-hoc radio networks (in short, ad-
hoc networks), nodes have the ability to vary their transmission ranges (and, thus, their
energy consumption) in order to provide good network connectivity and low energy
consumption at the same time. More precisely, the transmission ranges determine a
(directed) communication graph over the set V of nodes. Indeed, a node v, with range
r, can transmit to another node w if and only if w belongs to the disk centered in v and
of radius r. The transmission range of a node depends, in turn, on the energy power
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supplied to the node. In particular, the power Pv required by a node v to correctly
transmit data to another station w must satisfy the inequality (see [22])

Pv

dist(v, w)2
≥ η (1)

where dist(v, w) is the Euclidean distance between v and w while η is a constant that,
wlog, can be fixed to 1.

In several previous theoretical works [1,9,16,21], it is assumed that nodes can ar-
bitrarily vary their transmission range over the set {dist(v, w) | v, w ∈ V } How-
ever, in some network models (like sensor networks), the adopted technology allows
to have only few possible transmission range values. For this reason, we will assume
that nodes have the ability to choose their transmission range from a finite set Γ =
{0, r1, r2 . . . , rk} (with 0 < r1 < r2 < ... < rk) that depends on the particular adopted
technology (see [7,8,22]). Further technical constraints on Γ will be given and discussed
in Subsection 1.1.

A fundamental class of problems, underlying any phase of a dynamic resource al-
location algorithm in ad-hoc wireless networks, is the one known as range assign-
ment problems. In these problems the goal is to find a transmission range assignment
r : V → Γ such that (1) the corresponding communication graph satisfies a given
connectivity property Π , and (2) the overall energy power cost(r) =

∑
r(v)2 required

to deploy the assignment is minimized (see for example [16,21]). Clearly, the maximal
range value rk in Γ must be sufficiently large to guarantee that at least one feasible
solution exists.

Several research works [1,9,16] have been devoted to the case where Π is defined as
follows: Given specific source s ∈ V , the transmission graph has to contain a directed
spanning tree rooted at s (a broadcast tree from s). The relevance of this problem
(denoted as MIN ENERGY BROADCAST) is due to the fact that any communication
graph satisfying the above property allows the source to perform a broadcast operation.
Broadcast is a task initiated by the source that wants to transmits a message to all nodes.
This task constitutes a basic and thus fundamental operation in real life multi-hop radio
networks [2,3,16]. As for the worst-case complexity, MIN ENERGY BROADCAST is
known to be NP-hard [9] (even when |Γ | = 3 and r1 is a small positive constant) and a
series of constant-factor approximation algorithms are available in [1,4,9,18]. The best
known approximation factor is close to 4 and it is given in [6]. In [5], a more general
version of MIN ENERGY BROADCAST is given where not uniform node efficiency is
considered. In this version, a function e : V → R+ is given and the energy cost,
required to transmit from node v to w, is d(v, w)2/e(v). This non-symmetric version
of MIN ENERGY BROADCAST seems to be harder: the best known algorithm yields
approximation ratio Θ(log n) [5].

The MAX LIFETIME problem. The above power assignment problems do not consider
important ad-hoc network scenarios where nodes are equipped with batteries of limited
charge and the goal is to maximize the number of broadcast operations. This important
(maximization) range assignment problem has been first analytically studied in [5] and
it is the subject of our paper.
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The goal is to maximize the lifetime of the network while having, at any time period
t, a broadcast tree from a given source. Formally, each node is initially equipped with
a battery charge 1 B > 0 that, at every time period t, is reduced by amount β × rt(v)2

where rt(v) denotes the range assigned to node v during t and β > 0 is a fixed constant
depending of the adopted technology. In this paper, we assume β = 1, however, all
our results can be easily extended to any β > 0. A range assignment schedule is a set
of functions {rt : V → Γ, t = 1, . . . , m}. A range assignment schedule is said to be
feasible if, at any time period t, rt yields a broadcast tree from s and, for any v ∈ V , it
holds that

m∑

t=1

rt(v)2 ≤ B

Then, the MAX LIFETIME problem is to find a feasible range assignment schedule of
maximal length m.

In [5], MAX LIFETIME is shown to be NP-hard. In the same paper, by means of a
rather involved reduction to MIN ENERGY BROADCAST with non uniform node effi-
ciency, a polynomial time algorithm is provided yielding approximation ratio Θ(log n).
This positive result also holds when the initial node battery charges are not uniform.

A static version of MAX LIFETIME has been studied in [20]: the broadcast tree is
fixed during the entire schedule and the quality of solutions returned by the MST-based
algorithm is investigated. Such results and techniques are clearly not useful for our
(dynamic) MAX LIFETIME problem.

Several other problems concerning network lifetime have been studied in the litera-
ture [7,8,20]. Their definitions vary depending on the particular node technology (i.e.
fixed or adjustable node power) and on the required connectivity or covering property.
However, both results and techniques (mostly of them being experimental) are not re-
lated to ours.

Our results. To the best of our knowledge, previous analytical results on MIN ENERGY

BROADCAST and MAX LIFETIME concern worst-case instances only. Some experi-
mental studies on MIN ENERGY BROADCAST have been done on random geometric
instances [10,18]. Such input distributions turn out to be very important in the study
of range assignment problems. On one hand, they represent the most natural random
instance family where greedy heuristics (such as the MST-based one - see [16] ) have
a bad behaviour [18]. On the other hand, random geometric distributions is a first good
way to model well-spread networks located on flat 2-dimensional regions [7,8,16,20].

We study MAX LIFETIME in random geometric instances of arbitrary size: set V
is formed by n nodes selected uniformly and independently at random from the 2-
dimensional square of side length �

√
n�. Such instances will be simply denoted as ran-

dom sets. Notice that the maximal Euclidean distance among two nodes in random sets
is

√
2n, so the maximal range value rk can be assumed to be not larger than

√
2n.

A natural and important open question is thus to establish whether efficiently-
constructible range assignment schedules exist for MAX LIFETIME having provably-
good length on random sets. Moreover, the design of efficient distributed
implementations of such schedules is of particular relevance in ad-hoc networks.

1 So we here assume that, at the very beginning, all nodes are in the same energy situation.
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To this aim, we first provide an upper bound on the length of optimal (i.e. maximal)
range assignment schedules for any finite set V in the 2-dimensional plane. So this
upper bound holds in the worst-case. Then, we present an efficient algorithm that, on
any instance (V, s), returns a feasible schedule. Furthermore, when V is a random set,
we prove the schedule length is, with high probability2 (in short, w.h.p.), not smaller
than 1/12 of the optimum. The algorithm is centralized and works in O(n2 + nT ) time
where T is the number of broadcast operations yielded by the schedule.

In Section 4, we modify our centralized algorithm in order to design a distributed
protocol for MAX LIFETIME on random sets. The protocol assumes that every node
initially knows n and its Euclidean position only. This assumption is reasonable in
static ad-hoc networks since node position can be either stored in the set-up phase or it
can locally computed by every node by using GPS systems. This operation is not too
expensive in terms of energy consumption since it is performed once and for all in the
set-up phase.

We then show that the resulting scheduling is equivalent to that yielded by the cen-
tralized version and, hence, it achieves w.h.p. a constant approximation ratio as well.
We thus get the first distributed protocol for MAX LIFETIME having provably good
performance.

The protocol performs, somewhat in parallel, two tasks: (1) It constructs a broadcast
communication subgraph starting from the source and (2) transmits the source message
along this subgraph to all nodes. We emphasize that all node costs due to both the above
tasks are taken into account: whenever a node transmits any message with range r, its
battery charge is decreased by r2.

Our analysis thus evaluates the number of broadcast operations achieved by our pro-
tocol. This suffices for bounding the approximation ratio. However, we also analyze the
amortized completion time of single broadcast operations produced by our protocol. To
this aim, we consider the synchronous model of communication [2,3,12,11,14] and take
care of the MAC layer too: in fact, we also consider time delays due to avoid collisions.

Node communications thus work in synchronous time-slots and the amortized com-
pletion time of a protocol, yielding T broadcast operations, is the overall number of
elapsed time slots divided by T .

It turns out that our protocol has amortized completion time

O

(
r2n

√
n

T
+ r2

2 +
√

n

r2

)

Since our protocol w.h.p. returns an almost maximal number T of broadcast operations,
we can point out some interesting facts.

Assume that r2 ∈ Γ is close to the connectivity threshold of random geometric
graphs [15,19,23,24], i.e., r2 = Θ(

√
log n) (this setting is relevant in our random input

- see Subsection 1.1). Then, the worst scenario for our protocol is when the initial
battery charge B is very small so that T is as well small, say T = O(1). In fact, we get
an amortized completion time O(n

√
n log n) that is a factor

√
n log n larger than the

best-known distributed broadcasting time [15], i.e., O(n).
2 Here and in the sequel the term with high probability means that the event holds with proba-

bility at least 1 − 1
nc for some constant c > 0.
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However, those optimal-time distributed protocols [15] do not care about node en-
ergy costs and, thus, about the lifetime of the network. Our protocol, instead, somewhat
trades global network lifetime with completion time of each single broadcast operation.
This fact clearly arises whenever B is large enough to allow T = Ω(

√
n) number of

broadcast operations: in this case, we get O(n
√

log n) amortized completion time, thus
very close to the best-known distributed broadcasting completion time.

1.1 Preliminaries

A random set V is formed by n nodes selected uniformly and independently at random
from the square Q of side length �

√
n�. The source node s can be any node in V . The

length of a maximal feasible range assignment schedule (in short, schedule) for an input
(V, s) is denoted as opt(V, s).

Given a set V of n nodes in the 2-dimensional Euclidean space and a positive real
r, the disk graph G(V, r) is the symmetric graph where two nodes in V are linked if
d(v, w) ≤ r. When V is a random set, the resulting disk graph distribution is known
as geometric random graphs that are the subject of several important studies related to
wireless networking [15,19,23,24]. In particular, it is known that, for sufficiently large
n, a random geometric graph G(V, r) is w.h.p. connected if and only if r ≥ μ

√
log n,

where μ = 1 + ε for any constant ε > 0 [19,23,24] . The value CT(n) = μ
√

log n is
known as the connectivity threshold of random geometric graphs.

Assumptions on range set Γ . As for set

Γ = {0, r1, r2 . . . , rk}, with 0 < r1 < r2 < ... < rk ≤
√

2n

we make the following assumptions that are motivated by our choice of studying
random sets.

The first positive value in Γ , i.e. r1, is assumed to be 1 ≤ r1 < CT(n). Observe that
if r1 ≥ CT(n) then MAX LIFETIME on random sets admits a trivial schedule which is,
w.h.p., a constant factor approximation: indeed the source must transmit at every time
period with range at least r1 and so all other nodes can transmit with the same range at
every time period.

All other values in Γ can be arbitrarily fixed in input provided that all of them are not
smaller than CT(n) and at least one of them is larger than 2

√
2c

√
log n, where c > μ is

a small constant that will be defined in Lemma 2. Informally speaking, we require that
at least one value in Γ is a bit larger than the connectivity threshold. This is reasonable
and relevant in energy problems related to random geometric wireless networks since
this value is the minimal one achieving w.h.p. global connectivity. Further discussion
on such assumptions can be found in Section 5.

2 The Upper Bound

In this section, we provide an upper bound on the length of any feasible range assign-
ment schedule for a set V .

Consider the disk graph G(V, r1) and let k1 be the size of the connected component
Cs of G containing source s.
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Lemma 1. Given a set V and a source s ∈ V , it holds that opt(V, s) ≤ B
r2
1

. Further-

more, if k1 < n then

opt(V, s) ≤ min
{

B

r2
1

,
B

r4
2
(k1r

2
2 + r2

1 − k1r
2
1)

}

Proof. Since the source must transmit with range at least r1 at any time period, the first
upper bound follows easily.
If k1 < n then consider any feasible range assignment schedule S. Let l1 and l2 be
the number of time periods where the source transmits with range r1 and at least r2,
respectively. It must hold that

l1r
2
1 + l2r

2
2 ≤ B

Since k1 < n then, in each of the l1 time periods of S, there is at least one node in
Cs but s having radius at least r2. This yields

l1r
2
2 ≤ (k1 − 1)B

By simple calculations, from the above two inequalities, we derive an upper bound
on the number of time periods of S, i.e.

l1 + l2 ≤ min
{

B

r2
1
r,

B

r4
2
(k1r

2
2 + r2

1 − k1r
2
1)

}

	

Notice that if V is a random set then, since r1 < CT(n), it holds w.h.p. k1 < n.

3 The Algorithm

In this section we present a simple and efficient algorithm for MAX LIFETIME and
then we analyze its performance. For the sake of simplicity, in this extended abstract
we restrict ourselves to the case r2 ≥ c

√
log n. Nevertheless, it is easy to extend all our

results to the more general assumption described in Section 1.1.
In order to prove the approximation ratio achieved by the schedule returned by our

algorithm, we will use the following result that is a simple consequence of Lemma 1
in [17].

Lemma 2. Constants c > 0 and γ > 0 exist such that the following holds. Given a
random set V ⊆ Q of n nodes, consider the partition of Q into square cells of side
length 
 where c

√
log n ≤ 
 ≤

√
n. Then, w.h.p., every cell contains at least γ
2 nodes.

The constants can be set as c = 12 and γ = 5/6.

Theorem 1. Let V ⊆ Q be a random set of n nodes and s ∈ V be any source node.
Then, w.h.p., the range assignment schedule returned by BS is feasible and it has length
at least βopt(V, s), where β = 1/12.

Proof. From Lemma 2, every cell contains w.h.p. a Pivot (transmitting with range r2)
at every time period. At every time period, there is a Pivot in Ws. This implies that,
at any time period, the set of Pivots w.h.p. forms a strongly-connected subgraph that



Maximizing the Number of Broadcast Operations 253

Algorithm 1. BS (Broadcast Schedule)
1: Input: Set V ⊆ Q of n nodes; a source s ∈ V ; a battery charge B > 0; the range set

Γ = {0, r1, r2 . . . , rk}
2: Partition Q into square cells of side length r2/(2

√
2); For any cell Qj , let Vj be the set of

nodes in Qj ; construct an arbitrary ordering in Vj

3: Let Cs be the connected component in G(V, r1) that contains s
4: if |Cs| ≤ r2

2 then
5: Ws ← Cs

6: else
7: Ws is defined as any connected subgraph of Cs such that it contains s and |Ws| = r2

2

8: end if
9: Construct an arbitrary ordering of Ws

10: for any time period t = 1, . . . , do
11: if node with index t mod |Ws| in Ws has remaining battery charge at least r2

2 then
12: it is selected as Pivot and range r2 is assigned to it
13: else
14: The algorithm stops
15: end if
16: for any cell Qj do
17: if node with index t mod |Vj | in Qj has remaining battery charge at least r2

2 then
18: it is selected as Pivot and range r2 is assigned to it
19: else
20: The algorithm stops
21: end if
22: end for
23: All nodes in Ws not selected in lines 11 and 17 have radius r1

24: All nodes in V \ Ws not selected in line 17 have range 0
25: end for

covers all nodes in V and s is connected to one of such Pivots. Moreover, BS assigns,
to every node, an energy power which is never larger than the current battery charge of
the node.

We now evaluate the length T of the scheduling produced by BS, so T is the last
time period of the BS’s run on input (V, s). Let w be any node in V \ Ws then, from
Lemma 2, in its cell there are w.h.p. at least (γr2

2)/8 nodes. So, w spends at most energy
(

8T

γr2
2

)

r2
2 (2)

From (2), T can be any value such that

T ≤ γB

8
(3)

During the schedule, every node v in Ws will have range r1 or r2. Let |Ws| = k,
then the energy spent by v is at most

(
T

k
+

8T

γr2
2

)

r2
2 + Tr2

1 (4)
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Notice that in (4) we have considered the fact that a node in Ws can have range r2
because it has been selected as Pivot of its cell (Line 17) or as Pivot of Ws (Line 11).
Now, two cases may arise.

- If k ≥
(

r2
r1

)2
, since r1 ≥ 1, from (4) the amount of spent energy is at most

Tr2
1 (2 + 8/γ). So, T can be any value such that

T ≤ B

r2
1 (2 + 8/γ)

(5)

Observe that every value T that satisfies 5, it also satisfies Eq. 3. So T can assume value
B

r2
1(2+8/γ) and, from Lemma 1, we have that

T ≥ opt(V, s)
2 + 8/γ

- If k <
(

r2
r1

)2
, according to the definition of Ws, we have k = k1. From (4) and some

simple calculations, the energy spent by v ∈ Ws is at most

T
r4
2 + k1r

2
1r

2
2 + (8/γ)k1r

2
2

r2
2k1 + r2

1 − k1r2
1

where we used the fact that r2
1 − k1r

2
1 ≤ 0. Observe also that since k1 <

(
r2
r1

)2
and

r1 ≥ 1, we get

k1r
2
1r

2
2 + (8/γ)k1r

2
2 ≤ r4

2

(

1 +
8

γr2
1

)

≤ r4
2

(

1 +
8

γr2
1

)

It thus follows that the energy spent by v is at most

T
r4
2 + k1r

2
1r

2
2 + (8/γ)k1r

2
2

r2
2k1 + r2

1 − k1r2
1

≤ T
r4
2(2 + 8/γ)

r2
2k1 + r2

1 − k1r2
1

It follows that T can be any value such that

T ≤ r2
2k1 + r2

1 − k1r
2
1

r4
2(2 + 8/γ)

B (6)

Finally, by combining (3), (6), and Lemma 1, we get again

T ≥ opt(V, s)
2 + 8/γ

So, the Theorem is proved for β = 1/(2 + 8/γ) > 1/12. 	
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4 The Distributed Version

In this section, we present a distributed version of BS. As mentioned in the Introduc-
tion, we adopt the synchronous model of node communication: the protocol acts in
homogeneous time slots.

The resulting protocol is non spontaneous and assumes that every node v knows
the number n of nodes, its own position (w.r.t. an absolute coordinate system) and,
clearly, Γ .

In what follows, the eccentricity of source s in Ws (i.e. the maximal distance between
s and a node in Ws) is denoted as h(Ws) and the t-th message sent by the source is
denoted as mt. We assume that mt contains the value of time period t.

Protocol: DBS (Distributed Broadcast Schedule)

Preprocessing: /* Construction of Ws ⊆ Cs such that h(Ws) ≤ r2
2 . */

– One-to-All. Starting from s, use round robin among nodes and range transmis-
sion r1 to inform all nodes in Cs that are at most within r2

2 hops from s: such
nodes will form Ws. The one-to-all operation induces a spanning tree Tree of
Ws rooted at s.

– All-to-One. By a simple bottom-up process on Tree and using round robin on
each level, s collects all node labels and the structure of Tree.

– Initialization. Every node sets a local counter counter = −1. Furthermore,
each node has a local array P of length (γ/8)r2

2 where it will store the ordered
list of the first (γ/8)r2

2 labels belonging to its own cell. This array is initially
empty.

Let us observe that at the end of the Preprocessing phase, source s has full knowledge
of Ws.

Broadcast operations:
– For t = 0, 1, . . . /* time periods */

Execute Procedure BROADCAST(mt)

Procedure BROADCAST(mt)

Nodes in Ws only:
– Source s selects the (t mod min{|Ws|, r2

2})-th node in Ws as Pivot (range r2
will be assigned to it);
s transmits, with range r1, 〈mt, P 〉 where P is the path in Tree from s to the
Pivot.

– When a node in Ws receives 〈mt, P 〉 , it checks whether its label is the first
in P . If this is the case, it transmits, with range r1, 〈mt, P

′〉 where P ′ is the
residual path to the Pivot.

– When the selected Pivot p of Ws receives 〈mt, P = (p)〉, it transmits, with
range r2, 〈mt, i〉 where i is the index of its cell.

All nodes:
– If (t ≤ (γ/8)r2

2) then
• When a node v receives, for the first time w.r.t. time period t, 〈mt, i〉 from

the Pivot of a neighbor cell i, it becomes active.



256 T. Calamoneri et al.

• An active node, at every time slot, incrementscounter by one and checks
whether its label is equal to the value of its counter. If this is the case, it
becomes the Pivot of its cell and transmits, with range r2, 〈mt, i〉 where i
is the index of its cell.

• When an active node in cell i receives 〈mt, i〉, it (so the Pivot as well)
records in P [t] the current value of counter c, i.e. the label of the Pivot,
and becomes inactive.

– else (i.e. (t > (γ/8)r2
2))

• When a node v receives, for the first time w.r.t. time period t, 〈mt, i〉 from
the Pivot of a neighbor cell i, it checks if its label is equal to P [t mod
(γ/8)r2

2]. If this is the case, it becomes the Pivot of its cell and transmits,
with range r2, 〈mt, j〉 where j is the index of its cell.

The above protocol has the following properties that are a key-ingredient in the perfor-
mance analysis.

Fact 2. Even though they initially do not known each other, all nodes in the same cell
are activated (and disactivated) at the same time slot, so their local counters share the
same value at every time slot. Furthermore, after the first (γ/8)r2

2 broadcast operations,
all nodes in the same cell know the set P of Pivots of that cell.

More precisely, if l0 < l1 < l2 < · · · are the labels of the nodes in a cell, then, during
the first (γ/8)r2

2 broadcast operations (i.e.time periods), the Pivot of the cell at time
period t will be node having label lt.

Lemma 3. Given a random set V ⊆ Q and any source s ∈ V , if the length of the
broadcast schedule yielded by BS is T , then the length of the broadcast schedule yielded
by DBS is at least T − 2.

Proof. Notice that, the only difference in terms of power consumption between BS and
DBS lies in the Preprocessing phase required by the latter. In that phase, at most two
messages with range r1 are sent by a node to discover Ws. Indeed, thanks to Fact 2, the
if branch of the Broadcast procedure for nodes in V spends time instead of power in
order to discover the set of Pivots of each cell. Hence, in the worst case, the distributed
version performs two broadcasts less than the centralized algorithm. 	


Corollary 1. Let V ⊆ Q be a random set of n nodes and s ∈ V be any source node.
Then, w.h.p., the range assignment schedule returned by DBS is feasible and it has a
length at least βopt(V, s) − 2 where β = 1/12.

Proof. Direct consequence of Theorem 1 and Lemma 3. 	


We now evaluate message and time complexity of DBS.

Lemma 4. The overall number of node transmissions (i.e. the message complexity) of
DBS is O(|Ws| + T · ((n/r2

2) + r2
2)), where T is the length of the schedule.

Sketch of the proof. Observe that in the Preprocessing phase only nodes in Cs can ex-
change messages. In particular, s and all nodes within r2

2 hops from s send only one
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message; all other nodes within 1 and r2
2 − 1 hops from s send two messages. So, the

message complexity of the Preprocessing phase is Θ(|Ws|). Thanks to Fact 2, during
each broadcast, exactly one message per cell is sent, so globally O(8n/r2

2) messages
are exchanged; to this number of messages, we have to add those sent by the nodes of
path P in Ws: this value is bounded by r2

2 . 	


Theorem 3. The overall number of time slots required by DBS to perform T broadcast
operations is w.h.p.

O(r2n
√

n + T · (r2
2 +

√
n/r2))

Sketch of the proof. For a single broadcast operation performed by DBS, we define the
delay of a cell as the number of time slots from its activation time and the selection of
its Pivot. Observe that the sum of delays introduced by a cell during the first (γ/8)r2

2
broadcasts is at most n. Then, the delay of any cell becomes 0 for all broadcasts after
the first (γ/8)r2

2 ones. Moreover, a broadcast can pass over at most O(
√

n/r2) cells.
By assuming that a maximal length path (this length being Θ(

√
n/r2)) together with

maximal cell delay can be found in each of the first min{(γ/8)r2
2, T } broadcasts, we

can bound the maximal overall delay with

O(r2n
√

n) (7)

In the Preprocessing phase, DBS uses round robin to avoid collisions. During the
All-to-One phase, each node needs to collect all messages from its children before
sending a message to its parent in Tree. Hence, the whole phase is completed in

O(nr2
2) (8)

time slots as the height of Tree is bounded by r2
2 .

Finally, the number of time slots required by every broadcast without delays and
Preprocessing time is

O(r2
2 +

√
n/r2) (9)

since r2
2 is the upper bound on h(Ws) and the length of any path on the broadcast tree

outside Ws is O(
√

n/r2).
By combining (7), (8), and (9), we get the theorem bound without considering col-

lisions among cell Pivots. In order to avoid such collisions, we further organize DBS
into iterative phases: in every phase, only cells with not colliding Pivot transmissions
are active. Since the number of cells that can interfere with a given cell is constant,
this further scheduling will increase the overall time of DBS by a constant factor only.
This iterative process can be efficiently performed in a distributed way since every node
knows n and its position, so it knows its cell. 	

From Theorem 3, the amortized completion time of a single broadcast operation per-
formed by DBS is

O

(
r2n

√
n

T
+ r2

2 +
√

n

r2

)
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5 Open Problems

In this paper, we have studied the MAX LIFETIME problem on random sets. Further
interesting future studies should address other basic operations than broadcasting: for
instance, the gossiping operation which is known to be NP-hard too [5]. A more techni-
cal problem, left open by our research, is the study of MAX LIFETIME when Γ contains
more than one positive values smaller than the connectivity threshold CT(n) of random
geometric graphs. This case seems to be very hard since it concerns the size and the
structure of the connected components of such random graphs under the threshold con-
nectivity [19,23].
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