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Abstract—Data aggregation is a key functionality in wireless in these sensor networks, thus it becomes a key field in WSNs
sensor networks (WSNs). This paper focuses on data aggregat  and has been well-studied in recent years.
scheduling problem to minimize the delay (or latency). We po- We consider the problem of designing a schedule for

pose an efficient distributed algorithm that produces a colkion- . g . .
free schedule for data aggregation in WSNs. We theoreticall data aggregation from within networks to sink node(s) with

prove that the delay of the aggregation schedule generatedyb Minimum time-slot delay. Some of previous research works on
our algorithm is at most 16R + A — 14 time-slots. Here R is  in-network aggregation did not consider the collision peof

the network radius and A is the maximum node degree in the and left it to the MAC layer. Resolving collisions in MAC
communication graph of the original network. Our algorithm qver could incur a large amount of energy consumption and a
significantly improves the previously known best data aggrgation | delav duri fi Th in thi inl
algorithm with a upper-bound of delay of 24D + 6A + 16 time- arge delay during aggregation. _us, In this paper we main
slots, where D is the network diameter (Note that D can be concentrate on the TDMA scheduling problem above the MAC
as large as2R). We conduct extensive simulations to study layer. To define the problem formally, consider a W$N
the practical performances of our proposed data aggregatio formed byn wireless noded” = {v1,...,v,} deployed in a
algorithm. Our simulation results corroborate our theoretical 2-dimensional regionu, € V is the sink node that will collect

results and show that our algorithms perform better in practice. the final aggregation result. Each nodehas a transmission
We prove that the overall lower-bound of delay for data ! ggregati ult. ISSI

aggregation under any interference model ismax{logn, R} fanger and interference range; = ©(r). A nodev; can
where n is the network size. We provide an example to show send data correctly to another nodg, if and only if (1)
that the lower-bound is (approximately) tight under the protocol v is within v;’s transmission range, and (2) is not within
interference model whenr; = r, where r; is the interference interference range; of any other transmitting node. Every

range andr is the transmission range. We also derive the lower- nodeuv: has an ability to monitor the environment. and collect
bound of delay under the protocol interference model when Vi ty '

r<rr<3randr; > 3r. some data (such as temperatuied, v; has a set of raw data
Index T Wirel owork i heduling. d A;. Let A =U, A; and N = |A| be the cardinality of the
noex ferms—Vireless networks, aggregation, scheduling. de- ot 4 Then(Ay, A, -+, A;, -+ , Ay,) is called a distribution

lay, . . L ,
&, sensor of A at sites ofl/. Data aggregation is to find the valy¢A)

at the sink node, for a certain functionf, such agnin, max,
. INTRODUCTION average, variance and so on with minimum time delay.

_ . The data aggregation scheduling problems have been ex-
Wireless sensor networks (WSNs) have drawn a Cons'd?e(hsively studied recently. Huangt al. [11] proposed a

able amount of research interest for their omnipresentiapplenralized scheduling algorithm with the delay bound of
cations sugh as enV|.r0nmentaI monitoring, spatial exfitima o5 . A | g time-slots, where is the network radius and
and battlefleld_ surveillance. To design and deploy sucokssh is maximum node degree. However the interference model
WSNs, many issues need to be resolved such as deploymenty in [11] is a simple primary interference model: no node
strategies, energy conservation, routing in dynamic emir ., seng and receive simultaneously. Under the ProtocatInt
ments, localization and so on. All the issues essentialfyonce Model, Yiet al. [3] proposed a distributed scheduling
correlate to collecting data from a set of targeted wirelesgainog generating collision-free schedules with delay @stm
sensors to some sink node(s) and then performing some furthg 1 6A + 16 time-slots, where is the network diameter.
analysis at sink node(s) which can be termed as many-t0-0N&he main contributions of this paper are as follows. We
communication. In-network data aggregation [16] is one ofohqse efficient algorithms that will construct a data aggr
the most common many-to-one communication patters usggion tree and a TDMA schedule for all links in the tree

_ o _ _such that the delay of aggregating all data to the sink node is
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is at mostl6R + A — 14 time-slots. Notice that, for general Notice that hereJ!_, S, = V' \ {v,} is to ensure that every
rr, our algorithm will produce a collision-free schedule fodata will be aggregatedi; N.S; = (), Vi # j is to ensure that
aggregation whose delay is at mét(~2)*R+ A) time-slots. every data are used at most once. To simplify our analysis,
We then present an efficient distributed algorithm thatdsuil we will relax the requirement thas; N'.S; = 0, Vi # j.

an aggregation tree and gives a schedule for each node. Wiren the setsS;, 1 < i < [ are not disjoint, in the actual
simplicity, our distributed method assumes that the clanks data aggregation, a node that appears multiple times i;,

all nodes are synchronized. Unlike our centralized alparit 1 < i < [, will participate in the data aggregation only once
our distributed algorithm wilhot explicitly produce a schedule (say the smallesi when it appears ir5;), and then it will

for nodes in the aggregation tree. The schedule for nodesoidy serve as a relay node in the following appearances.
implicitly generated in the process of data aggregatior. Ou The distributed aggregation scheduling problem is to find
distributed scheduling algorithm thus works well in dynamia scheduleS,, Ss,---,.5; in a distributed way such that
networks, as long as the constructed backbone of the netwigkminimized. This problem is proved to be NP-hard in [4].
by our algorithm remains unchanged. Obviously, whee= r,  This paper proposes an approximate distributed algorititim w
for a networkG with radiusR and the maximum node degreadelay16 R + A — 14 time-slots, whereR is the network radius
A, the delay byany data aggregation algorithm is at leasand A is the maximum node degree.

R. This implies that our algorithm is within a small constanjterference Model We assume that a node cannot send and

factor of the optimum. We then conduct extensive simulaionecejve data simultaneously. In the protocol interferenodel

to study the practical performance of our proposed dg@ we assume that each node has a transmission raage

aggreggtion method. The simulation results corroborate oy interference range; > r. A receiverv of a link uv is

theoretical results and show that our method performs betigierfered by another senderof a link pq if ||p — v|| < r;.

in practice. We find that data aggregation by our distributegk [4], [11], we first assume that; = r, which is scaled to

method has delay close t&. Besides, we prove that the; \we will later study the more general casge> 1.

overall lower-bound of delay for data aggregation under any

interference model isaax{logn, R}. We provide an example _

to show that the lower-bound is (approximately) tight urttier B- Related Terminology

protocol interference model when = r. We also analyze the For simplicity, we present our distributed methods in a

lower-bound of delay under the protocol interference mod&ynchronous message passing model in which time is divided

whenr < r; < 3r andry > 3r. into slots. In each time-slot, a node is able to send a message
The rest of the paper is organized as follows. Section tkd one of its neighbors. Note that, at the cost of higher com-

formulates the problem. We present our centralized and disunication, our methods can be implemented in asynchronous

tributed scheduling algorithms in Section 11l and analyzeit communication settings using the notions of synchronizer.

performance and prove the overall lower-bound in Section IV In a graphG = (V, E), a subsefS of V' is adominating set

Section V discusses the results in other interferences imodéDS) if for each node: in V, it is either in S or is adjacent

Section VI presents the simulation results. Section Vllines to some nodes in S. Nodes fromS are called dominators,

the related work. Section VIII concludes the paper. whereas nodes not ifi are called dominatees. A subgegtof

V' is a connected dominating set (CDS)fis a dominating

set and” induces a connected subgraph. The dominateés in

A. Network Model are also calleatonnectors. Consequently, the nodes @i can

We consider a WSN consisting efnodesl wherev, € V communicate with each other without using noded/in C.
is the sink node. Each node can send (receive) data to (frofn°DS is also called a backbone here.
all directions. For simplicity, we assume that all nodesghidne
same transmission rangesuch that two nodes andv form [1l. DISTRIBUTED AGGREGATION SCHEDULING

a communication link whenever thelr Euclidean dlstaﬂr_ae Our Improved data Aggregation Scheduling (IAS) algorithm
v|| < r. Inthe rest of the paper we will assume that 1,i.e, consists of two phases: 1) aggregation tree constructidn an
normalized to one unit. Then the underlying communicatio) aggregation scheduling. As an illustration of our method
graph is essentially a unit disk graph (UDG). we first present a centralized version of our data aggreyatio
Let A,BCVandAN B = (. We say data are aggregatedcheqyling. We adopt an existing method for the first phase

from A to B in one time-slot if all the nodes inl transmit 5.4 the second phase is the core of our algorithm. We will

data simultaneously in one time-slot and all data are redeiVyregent these two phases in the following two sections. @t th
by some nodes inB without interference. We will define

) ’ _ : end of the section, we present a distributed implementation
interference at the end of this section. Then a data aggeegal,ased on our centralized aggregation scheduling algorithm
schedule with delay can be defined as a sequence of sender

sets Sy, So, - - -, S; satisfying the following conditions:
1) S;inS; =0, Vi # 7; A. The overall approach
2) UL_S; =V \ {us}; In this section, we describe our overall approach for data
3) Data are aggregated frof). to V \ UX_, S, at time-slot aggregation. As a pre-step, we will construct a CDS as a
k, forall k =1,2,--- 1 and all the data are aggregatedackbone for the network. Then, our aggregation scheduling
to the sink nodey, in [ time-slots. algorithm can be divided into two phases:

Il. SYSTEM MODELS



Algorithm 1 Distributed Dominators Selection [19] Algorithm 2 Distributed Construction of Aggregation Tr&e

1: Determine the topology center of the UDG ag 1: Select a set of dominators as in Algorithm 1;
2: Construct a BFS (breadth-first-search) tree rootedoat 2: Root nodevy sends a message GREY-JOIN to its one-hop
with height R, the radius of the original network; neighbors inG,
3: Every node colors itself white; 3: if an unmarked grey node not ifi received a message
4. Root nodev, changes its color to black and broadcasts a GREY-JOIN then
message; BLACK to its one-hop neighborsGh 4: JoinT with the sender as its parent;

5: for each white node: received a message BLACKlo 5. Send a message BLACK-JOIN to its one-hop neigh-
6: wu colors itself grey and broadcasts a message GREY to  bors;

its one-hop neighbors ity; 6:  Mark itself;
7: if a white nodew receives GREY from all its lower-ranked 7: if an unmarked black node not i received message
neighborsthen BLACK-JOIN then
8: w colors itself as black and sends message BLACK t®: Join T with the sender as its parent;
all its one-hop neighbors if7; 9: Send a message GREY-JOIN to its one-hop neighbors;
9: All black nodes form a dominating set. 10:  Mark itself;
11: ReturnT'.

Phase I: every dominator aggregates the data from all its

dominatees (as shown in Figure 1(a)); radius R, instead of the network diameté? proved by
Phase Il: dominators aggregate their data to the sink nade previous methods. Here a nodg is called thetopology
level by level (as shown in Figure 1(b).). center in a graphG if vy = argmin,{max, dg(u,v)},
For each level in the second phase, the process can be further wheredc (u, v) is the hop distance between nodeand
divided into two sub-phases: vin graphG. R = max, dg(u,vg) is called theradius of
. all the dominators aggregate their data to its correspond- the networkG. Notice that in most networks, the topology
ing connectors; center is different from the sink node.
. all the connectors transmit their data to the dominators?) After the topology center gathered the aggregated data
in the upper level. from all nodes, it will then send the aggregation result
to the sink node via the shortest path from the topology
centery, to the sink node,. This will incur an additional
%@O\‘é o4 Oéi o Tl delay d¢ (v, vs) of at mostR.
@/{ Oﬁé O?EO “\*__:;,{y"/‘L?f’e'f ST Algorithm 1 and Algorithm 2 briefly review the methods for
: selecting a dominating set and a CDS in [19]. In Algorithm 1,
;‘?o o;\i Lo AUs i therank of a nodeu is (level, ID(u)), wherelevel is the hop-
Oﬁ oj*’p Q{ LT gy distance ofu to the root. The ranks of nodes are compared
\ J using lexicographic order. After execution of Algorithm 2,
e s S S
Y‘o?b Of% k .« e all black nodes form a dominating set. For each grey node,
either it is a leaf or its children in the aggregation tree are
(a) Phase | (b) Phase I black nodes. In the second case, a grey node plays the role

of connecting two black nodes. The root is a node in the
Fig. 1. The overall approach: the black nodes are dominaods white dominating set (a black node) and all its neighbors?’lmre
nodes are dominatees. . . -

its children in BFS.

B. Dominating Set (DS) Construction C. Centralized Algorithm

As our algorithm is aggregation-tree-based, in the firsspha The second phase is aggregation scheduling which is the
we construct an aggregation tree in a distributed way using eore of the whole algorithm. It is based on the aggregation
existing method [19]. We employ a CDS in this phase sindeee constructed in the first phase. As an illustration, wa fir
it can behave as the virtual backbone of a sensor network pfesent an efficient centralized algorithm. We will thensgret
distributed method of constructing a CDS has been proposad distributed scheduling implementation in SectionDII-
by Wanet al. [19]. In their algorithm, a special dominating set Algorithm 3 shows how the data from the dominatees are
is constructed first and then a CDS is constructed to connaggregated to the dominators. At every time-slot, the set
dominators and the other nodes. This CDS tree can be usedfaglominators will gather data from as many dominatees
the aggregation tree in our scheduling algorithm with a smdivhose data has not been gathered to a dominator yet) as
modification as follows. possible. Notice that since the maximum degree of nodes

1) We choose th&opology center of the UDG as the root of in the communication graph i€\, our method guarantees

our BFS tree. Notice that, previous methods have used tiat after at mostA time-slots, all the dominatees’ data can
sink node as the root. Our choice of the topology centee gathered to their corresponding dominators succegsfull
enables us to reduce the delay to a function of the netwaskithout interferences, which will be proved in Lemma 4. The



Algorithm 3 Aggregate Data to Dominators D(u;). Notice that we can do this because these dominators’
1: fori=1,2,---,A do degree will be decreased by one since our re-scheduling can
2. Each dominator randomly chooses a neighboring doguarantee at least one transmitterugfandw; will remain as

inatee, whose data are not gathered yet, as transmittar.active transmitter, as we will show later.

The set of such chosen links form a link det Let D; (resp.D;) be the set of remaining dominators in
3. Apply Algorithm 4 to L, assume the output link set isp(v,) (resp.D(u;)).
S,

4. All the output links inS now transmit simultaneously;
5 =1+ 1;

Algorithm 4 Reconnect Dominatees to Dominators ™
Input: a set of linksL; .
Output: a set of conflict-free links;
1. S=1L;
2: while (exist a pair of conflicting links inS) do
3 Let w;z; andujz; be one of the pairs of conflicting u; ,
links. (a) (b)

& _Fmd the setsD; and D-j based on their definitions; Fig. 2. (a) An interference between links. The dashed line means that
5. if (Juiz;| <1 and|u;z;| > 1) then the endpoints are within interference ranges of each otb@rA state after
6: If D; =0, remove the linku;z;. re-scheduling.
7 If D; # 0, replaceu;z; by a linku;z;,, for a random
zj, € Dj. Fig. 2(b) illustrates one possible state after the preggdin
8 else if(Jujz| <1 and|u;z;| > 1) then two deletions of dominators frond(u;) and D(u;). Notice
o: If D; =0, remove linku;z;. that
10: If D; # 0, replaceu;z; with u;z;,, for a random 1) The distance between and any member ab; is greater
Ziy € Dj. than one. The distance between and any member of
11:  else if (ju;z;) <1 and|u;z;| < 1) then D; is greater than one.
12: If D; = 0, remove the linku;z;; else if D; = 0,  2) Itis possible that); or D; or both could be empty.
remove the linku; z;. Algorithm 4 shows how to re-connect dominatees to domina-
13: It D; # 0 A Dj # 0, replaceu;z; andu;z; by two  tors to avoid the interference.
new linksw;zi,, u;z;,, for a randomz;, € D; and @  After all the data in the dominatees have been aggregated to
randomz;, € D;. dominators, our next step is to aggregate all the interniedia

results in the dominators to the root.
We can see that in each layer of the BFS tree, there are some

basic idea is as follows: each dominator will randomly pick dominator(s) and some dominatee(s). For every domindtee, i
dominatee whose data are not reported to any dominator y&s at least one dominator neighbor in the same or upper
Clearly, these selected dominatees may not be able to sénal. Thus, every dominator (except the root) has at least
their data to corresponding dominators in one time-slottdue one dominator in the upper level within two-hops. Using this
potential interferences. We then reconnect these dongis&te property, we can ensure that all the data in the dominatars ca
the dominators (and may not schedule some of the selectedch the root finally if every dominator transmits its data t
dominatees in the current time-slot), using Algorithm 4ctsu some dominator in upper level within two-hops. From another
that these new links can communicate concurrently. point of view, considering dominators in the decreasingsord

Suppose that two directed linksz; andu,z; interfere with of their levels, a dominatox in level L aggregates data from
each other (see Fig.2 (a)), where the dominateeand «,; all dominators in level +1 or L +2 that are within two-hops
are transmitters in these two links respectively anénd z; of u. This will ensure that all the data will be aggregated to
are dominators. For each dominatedet D(v) be the set of the root. Algorithm 5 presents our method in detail.
neighboring dominators. Obviouslyp(v)| < 5 for any node  In Algorithm 5 we only concentrate on communications
v. Let D(u;) = D(u;) \ {z:}, D(u;) = D(u;) \ {2;}. Notice between dominators. The algorithm runs from lower level to
that hereD(u;) and D(u,) may be empty, oD(u;) N D(u;) upper level in aggregation tree, every dominator will remai
may not be empty. silent until the level where it locates begins running. When

For every other active transmitter v # u; andv # w;, it is its turn, the dominator will try to gather all the data
we delete all dominators from(u;) (and also fromD(u,)) from other dominators in lower levels that have not been
that are within the transmission range @f Notice that we aggregated. If a dominator’s data has been collected hefore
can discard these dominators since their degrees are wlretlebn it is unnecessary to be collected again. Actually weshav
decreased by at least one because of the existence of stonguarantee that every data should be and only be used once.
active transmitter. We also delete the dominators that ar®ur algorithm implements this by discarding the dominators
within transmission range of both;, and«; from D(u;) and after their data have been gathered to upper levels.



Algorithm 5 Centralized-IAS The distributed implementation differs from the centradiz
Input: BFS tree with root, and depthRz, and a distributive one in that the distributed one seeks to transmit greedily:
aggregation functiorf (Please see the definition of aggregawve will try to allocate a nodev a time-slot to transmit
tion function in [23]), datad; stored at each node. wheneverv has collected the aggregated data from all its
1: Construct the aggregation tréE’ using Algorithm 2. children nodes in the data aggregation tfiéeThus the first
Remove the redundant connectors to ensure that edefe phases may interleave in our distributed implementatio
dominator uses at modt2 connectors to connect itself The interleaving will reduce the delay greatly since it eases
to all dominators in lower level and is within two-hopsthe number of simultaneous transmissions. Later, we will
Here a connector node (a dominatee of a dominates) provide the simulation result of our distributed methodjakih
is said to beredundant for the dominator, if removing shows that our distributed implementation is quite close to
x will not disconnect any of the two-hop dominatorswof (1 + ¢)R + A + ©(1), wheree is a small positive constant.

from w. Therefore we conjecture that the data aggregation delay by
Let T be the final data aggregation tree. our distributed implementation indeed has a theoreticdbpe
2.fori=R—-1,R—2,---,0do mance guarantee 0f +<)R+A+©O(1). It will be interesting
3:  Choose all dominators, denoted Bs in level i of the if we can prove or disprove this conjecture, which is left as
BFS tree. future work.
4. for every dominaton € B; do To run our algorithm, every node should maintain some
5: Find the setDs(u) of unmarked dominators that arelocal variables, which are
within two-hops ofu in BFS, and in lower level+1 1) Leaf indicator:Leaf[i] € {0, 1}, to indicate whether the
ori+2. nodev; is a leaf node in the data aggregation tree.
6: Mark all nodes inDq(u). 2) Competitor SetCS[:], the set of nodes such that for each
7: Every node w in Do (u) sends j € CSJi], nodesv; andwv; cannot transmit simultane-
f(Ay, X1, Xs,--+,Xy) to the parent node (a ously to their parents due to interference. In other words,
connector node) iff’. Here A,, is the original data if j € CS[i], we have either the parept- (i) of nodev;
set nodew has, andX;, X, ---, X, are data that in the data aggregation treé@ is within the interference
nodew received from itsd children nodes irfl. range of node;; or the parenpy(j) of nodev; in the
8: Every node: that is a parent of some nodesiin (u) data aggregation tre€ is within the interference range
sendsf(Xi, Xo, -+, X,) to nodeu (which is the of nodew;; or both. Notice that under the interference
parent ofz in T). Here X;, X,, ---, X, are data model studied in this paper, each node(ifi[i] is within
that nodez received from ity children nodes irf". a small constant number of hops ©f
9 i=1—1 3) Ready Competitor SefRdyCSJi], which is the set of
10: The rooty, sends the result to the sink using the shortest nodes that collides with and it is ready to send data
path. to its parent,i.e, it has received the data from all its

children nodes.
4) Time Slot to TransmitTST[i], which is the assigned

. . . . time-slot that node; indeed sends its data to its parent.
Notice that in our algorithm after we process dominators . ) , S
. : ) X 5) Number of Children:NoC[i], which is the number of
B; (all dominators in leveli), there may still have some . . .
) . . children nodes ob; in the data aggregation tree.
dominators inB;,; whose data are not aggregated. This could : :
. o Observe that here, at some time, if we Iefly be the set
happen because a dominato3pn,; could be within two-hops . ; .
. . - of nodes which are ready to transmie(, v € Rdy iff v has
of some dominator inB;_;, but not within two-hops ofiny

dominator fromB;. We conclude that after the execution of alggl,::(;[edrg]eazggrt?ggegn%afstgo drzr?gltgsaﬁ?ﬂgrﬁg dneosd\f/i?gh
the dominators inB; , the data from all dominators i, o gareg '

have already been aggregated have finished their transmission, thérquS[_z'] = CS[i] N
' Rdy — F. The TST of all nodes are initialized td). The
details of our distributed method are shown in Algorithm 6.
When a nodey; finishes its scheduling, it sends a message
FINISH to all nodes in its competitor s€tS[i]. When a node
Now we present a distributed implementation for our datg received a messadéNISH, it sets itsTST|i] to the larger
aggregation scheduling. The distributed implementation-c one of its original TST[i] and TST[j] + 1. When all the

D. Distributed Implementation

sists of three stages: children of nodev; finished their transmission, the node
1) Every dominatee transmits its data to the neighboring ready to compete for the transmission time slot and it will
dominator with the lowest level, send a messageEADY (i, r;) to all nodes in its competitor

2) Data are aggregated from dominators in lower levels s&t. When a node; received a messageEADY from another
dominators in upper levels and finally to the root ohodew;, it will add the sender; to its ready competitor set
the aggregation tree which is the topology center of tHedyCS[i] if j is in CS[i]. When the scheduling ends, all
network, nodes will transmit their data based @ST[:]. In the end, the

3) Topology center then transmits the aggregated data to tbpology center aggregates all the data and sends the tesult
original sink via the shortest path. the sink node via the shortest path.



Algorithm 6 Distributed Data Aggregation Scheduling Proof: We first check the origin of these links. As

Input: A network G, and the data aggregation trée shown in Algorithm 3, each dominatarchooses a dominatee
Output: TSTi] for every nodev; randomly from its neighbors and lets the chosen dominatee
1: The nodey; initializes the valuéNoCJi], andLeaf[i] based transmit tou. We call all chosen dominatees astive trans-
on the constructed aggregation trEe mitters for later references. Assume there aredominators,
2: Initializes the se€CS[i] based on the treé€ and the original then we have a sét of (at most)ng chosen links. We input
interference relation, L to Algorithm 4 and assume the output is the Set
3: RdyCSJi] < CS[i]|n{j | j is a leaf inT'}. We define aLoop Invariant for Algorithm 4 as: for each
4: TST[i] «— 0; DONE—FALSE; dominator, the number of neighboring dominatees whose data
5: Node v; randomly selects an integet. Then we say are not collected is decreased by at least one. Initialhgesi
(riyi) < (rj,7) if (1) r; <rjor(2)r; =r; andi < j. each dominatot chooses a neighboring dominatee to transmit
6: while (not DONE)do to u, the loop invariant is true.
7. if NoC[i] = 0 then If these links inZ do not conflict with each other, Algorithm
8: Send messagBEADY (i, ;) to all nodes inCS[i]. 4 will skip the execution of the while loop and output a set
o: if (r;,i) < (rj,j) for eachj € RdyCS|i] then of links which are the same as the input. Clearly, the output
10: Send messagBINISH(:)&T'ST[i] to all nodes in links are conflict-free and the loop invariant remains true.
CSli); Else, there exist interferences among linkdinthen Algo-
11 DONE«~TRUE; rithm 4 will execute the loop body. In each loop, Algorithm 4
12 if Nodew; received a messageINISH(j)&7'ST[i] adjusts a pair of conflicting links. By Lemma 2, after one rdun
then of adjustment , we solve the interferences caused by the pair
13: Deletej from RdyCS|[i]; of conflicting links, and the loop invariant remains true- Al
14: TST[i] « max {TST[:], TST[j] + 1}; gorithm 4 repetitively adjusts a pair of conflicting links &
15; if j is a child ofi then interferences exist. Observe that due to the recursiveraatu
16: NoCl[i] « NoC[i] — 1; of our adjustment algorithm, we must prove that Algorithm 4
17:  if Nodeuw; received a messageEADY (j,7;) then  will terminate in a finite number of rounds. Clearly, when it
18: if j is in CS[i] then terminates, there is no pair of conflicting links and the loop
19: Add j to RdyCS[i]. invariant remains true.
20: Nodew; transmits data based on the time sloflifiT|[:]. To show that Algorithm 4 terminates, we define Pa-
21: The topological center transmits aggregated data to titial Function for a schedule as the cardinality of the
sink. setC = {(z1,22) | 21,22 are active transmitters and their

corresponding links:1 1, 22y2 are conflicting link$. We call
the pair(z1, z2) € C a pair of conflicting transmitters. Clearly,
IV. PERFORMANCEANALYSIS the initial cardinality of the se&f is at most,(ng—1)/2. After
one round of re-scheduling, the interferences betweeraat le
In this section we first theoretically prove that the delagne pair of conflicting transmitters are resolved. By Lemma 3
of the data aggregation based on our scheduling is at mggt adjustment will not introduce any new pair of conflicting
16R + A — 14, whereR is the radius of the network anfl  transmitters. Thus the potential function will be decrealse
is the maximum node degree in the original communicatigit |east one after one round, which means that Algorithm 4
graph. We conjecture that the theoretical performance of Qjll terminate after at mosi“d(gﬂ rounds of execution of
centralized and distributed algorithms could actually heem  the while loop in Algorithm 4.
better thanl6 R+ A — 14, which is supported by our extensive Therefore, Algorithm 4 will terminate which means that
simulations. On the other hand, we also present a netwaHgre exists no conflict among the output linksdn In ad-
example to show that our centralized algorithm cannot aehiegition, the loop invariant is true after Algorithm 4 termtea.
a delay lower thantR + A — 3. It remains as future work Thus claim1 holds. m
to find bad network examples to show that our distributed | emma 2: After one round of adjustment (The loop body
methods could perform worse thdm + )R for a sufficient of Algorithm 4), we solve the interferences caused by the pai
small constant > 0. At last, we present a general lowerpf conflicting links, and the loop invariant (Every domingso
bound on the delay of data aggregation for any algorithm. degree will be decreased by at least one) remains true.
Proof: We prove the claim for each of the complementary
cases separately.
In Casel (Juiz;| < 1 and |u;z;| > 1), First we prove
First we show that, after every time-slot of Algorithm 4, fothat the interferences are solved.[)f; = (), since we remove
each dominator, the number of neighboring dominatees whasee link, the interferences are clearly solved. EI3e # 0, by
data are not collected is decreased by at least one. definition, the distance between any dominatobipandu; is
Claim 1: All the output links inS in Step4 of Algorithm greater than one, thus;z;,| > 1. At the same timeju, z;| >
3 are conflict-free. In addition, after all the links transnfor 1, thus the output adjusted links z;, u;z;, are conflict-free,
each dominator, the number of neighboring dominatees whdke interferences are solved. Next we prove the loop inmaria
data are not collected is decreased by at least one. remains true. All other dominators i, are not affected by the

A. Performance of Our Algorithm



adjustment, thus we only need to prove that for the domisatdime-slots. |

in D;UD;, the number of their neighboring dominatees whose We now bound the number of connectors that a dominator
data are not collected is decreased by at least one, K- (), u will use to connect to all dominators within two-hops. Our
we only need to for every dominator if;, the number of proof is based on a technique lemma implied from lemmas
their neighboring dominatees whose data are not collestedproved in [20].

decreased by at least one. This is straightforward since Lemma 5: Suppose that dominatosr and w are within
transmits their data. Elsd); # 0, since bothu;, u; transmit two-hops of dominator, v and w’ are the corresponding
their data, thus for every dominator i, U D;, the number of connectors fow andw respectively. Then eithdive’| <1 or
their neighboring dominatees whose data are not collesteddw’| < 1 if Zvuw < 2arcsin 1.

decreased by at least one. Cas@u;z;| < 1 and|u,z;| > 1) Lemma 6: In Algorithm 5, a dominator requires at maist
is similar to Casel. connectors to connect to all dominators within two-hops.
In Case3 (Ju;jz;| < 1 and |u;z;| < 1) we first prove that Proof: Consider any dominatou, let I>(u) be the set

the interferences are solved.lf; = () or D; = (), since we of dominators within two-hops of; in the original commu-
remove one link, the interferences are clearly solved.,Hige nication networkG. Assume that we have already deleted all
definition of D;, Dj, |u;zj,| > 1, |u;jz,| > 1, thus the output the redundant connectors for node Let C' be the set of
adjusted linksu;z;,, u;z;, are conflict-free, the interferenceconnectors left for a dominatar. Then for each remaining
are solved. Then we prove the loop invariant remains trueonnectorz € C, there is at least one dominator (called a
Similar to Casel, we only need to prove that for the dominanon-sharing dominator) that can only use this connector to
tors in D; U D;, the number of their neighboring dominateesonnect tou (otherwise, connectot is redundant and thus
whose data are not collected is decreased by at least onewilf be removed). Assume there at8 connectors irC. Then
D; = 0, we only need to for every dominator ifv;, the there are at least3 non-sharing dominators ifi;(u). From
number of their neighboring dominatees whose data are mpageonhole principle, we know that there mustdaominators
collected is decreased by at least one. This is straightfictw v; and vy such thatZviuve < 27/13 < 2arcsin(%). Thus,
sincew; transmits their data. The proof is similar for; = (.  using Lemma 5y, andwv, will share a common connector in
Else, bothu;, u; transmit their data, thus for every dominator”, which contradicts to the selection of andwvs. [ |
in D;UD;, the number of their neighboring dominatees whose In the rest of the proof, for a dominatet we useC'(u) to
data are not collected is decreased by at least one. B denote the set of connectors used to connect all dominators i
Lemma 3: The adjustment in one round of Algorithm 4 will Dy (u).
not introduce any new pair of conflicting transmitters Lemma 7: In Algorithm 5, a dominatoru in level i can
Proof: We prove by contradiction. Suppose after areceive the data from all neighboring dominatdrs(w) in at
adjustment for a pair of link§u;z;,u;z;) t0 (u;2;,,ujzj,), MOSt16 time-slots.
Algorithm 4 introduces a new pair of conflicting transmigter Proof: Each dominator: will collect the aggregated data
(u,v). Since our adjustment only reconnects eitheror w; from all dominators within two-hops in lower level. Any
to a new dominators while does not change the links faonnectorinC(u) has at most other neighboring dominators,
other transmitters, one transmitter {m,v) must bew,; or besidesu. Similar to the proof of Lemma 4, we can show
u;. Assumeu is u;, and the corresponding receiver ofis that it takes at most time-slots for each connector to collect
z. Sinceu; and v conflict, either(1) |u;zx] < 1 or (2) data from those neighboring dominators other thariRecall
lvzi,| <= 1. In Case(1), u; andwv is a pair of conflicting that at most12 connectors are needed far to reach all
transmitters before the adjustment, which causes coetradi dominators inDs(u). Thus, it will take at mosti2 time-slots
Case(2) also causes contradiction sineg € D; C D(u;), for the dominaton: to collect data from all these connectors.
by the definition ofD(u;), the distance between other activeConsequently, within at most2 + 4 = 16 time-slots, every
transmitterv, v # w;, and v # wu; are greater than one.dominator« can collect the aggregated data from all the
(Please refer to the first sentence in the second paragigph, rdominators inDs(u). [ |
column, Pagel: For every other active transmittet v # w; Theorem 8: By using Algorithm 5, the sink can receive all
andv # u;, we delete all dominators from(u,) (and also the aggregated data in at mdstk + A — 16 time-slots.
from D(u;)) that are within the transmission range«)f ® Proof: Every dominatee’s data can be aggregated to a
Lemma 4: Given a communication grapfi’ of a network, dominator within A time-slots from Lemma 4. Observe that
under the assumption that the interference rangs the same every dominator, except the root of the data aggregati@ire
as the transmission range Algorithm 3 (aggregating data connects to at least one dominator in the upper level within
from dominatees to dominators) costs at masttime-slots two-hops. Then Algorithm 5 ensures that every dominator’s
where A is the maximum node degree (. data can be aggregated at the root finally. For each level
Proof: Each dominator has at moAt neighboring domi- of the BFS tree, every dominatar including the root of
natees. We define a dominator’s unaggregated-node-degredata aggregation tre€, can collect aggregated data from all
the number of the neighboring dominatees whose data have doiinators inD» («) within at mostl6 time-slots by Lemma 7.
been aggregated to dominators yet. At first, each domirsata®ince there is no dominator in Levelafter at mosi6(R—1)
unaggregated-node-degree is bounded\bBy Claim 1, after time-slots, every dominator's data can be aggregated to the
one time-slot, each dominator’s unaggregated-node-ddgreroot. The root then uses at ma8ttime-slots to transmit data
decreased by at least one. Thus Algorithm 3 costs at @ostto the original sink node via the shortest path. Therefothiwi



17R+ A — 16 time-slots, all the data can be be aggregated &md white nodes to denote connectors. For each black node
the sink node. B on the horizontal axis, we draw two co-centric circles with

Next, we provide a revised schedule that only nelgdsme- radiusr and 2r respectively, all its3 neighboring connectors
slots for dominators in level (: > 2) to aggregate data from are located on the inner circle. We omit all leaf nodes in the
some dominators within two-hops, which can also ensure tHaure. The original sinky; is located in the rightmost of the
data will be aggregated to the root finally. This means that wight branch.

can reduce our delay bz — 2 time-slots totally. Lemma 11: When applying a centralized algorithm to the
For a dominatoru other than the root, we denote allexample shown in Fig. 3, the delay4$: + A — 3 time-slots.
dominators within two-hops af as B2 (u). Notice thatBs(u) Proof: Firstly, aggregating data from dominatees to dom-

includes at least one dominatorocated in upper level ofi.  inators costsA time-slots by Lemma 4.
By Lemma 6,u needs at most2 connectors to connect to Secondly, both branches aggregate data from lower to upper
Bs(u), we denote the set of at mos2 connectors a€’(u). levels. Between level and leveli + 2 as shown in Fig. 3, it
There must exist a connectar € C'(u) which connects; to  costs3 time-slots to aggregate data from thelominators in
v. Then all dominators inB,(u) that are connected te are leveli + 2 to 3 connectors in level + 1 and costs another
also two-hop neighbors of the dominatarwe denote the set time-slots to aggregate data fro3rconnectors in Level + 1
of these dominators aBl(u), thus Bj(u) C Ba(v). Clearly to a dominator in level. So it costs3+3) - £:2 time-slots to
all data in B5(u) can be collected by, it is not necessary gather data from dominators in levRltowards dominators in
for them to be collected by. So we letu only collect the level 2. After that, it costs one time-slot to gather data from
data in Ba(u) \ By(u). It requires at most1 connectors (all dominators in leveR to connectors in Level and then2
the connectors irC(u) \ {w}) to connect to the dominatorstime-slots to the topology centeg. Finally, vy transmits the
in By(u) \ Bb(u). So at mostl5 (= 4 + 11) time-slots are aggregated data to the sink node, which will cost anoffher
required foru to aggregate the data froiy(u) \ Bjy(u). If time-slots. Therefore we neeN+ (3+3)- £24+1+2+ R =
every dominator: other than the root aggregate the data froshR + A — 3 time-slots in total. ]
By (u) \ Bh(u), all the data can be aggregated to the root.

Theorem 9: By using Algorithm 5, the sink can receive allC. Overall Lower-bound

the aggregated data in at masifi + A — 14 time-slots. In this section we give the overall lower-bound on the delay
Proof: Similar to the proof of Theorem 8, we neeN ¢, gata aggregation. Here overall lower-bound refers ® th

time-slots for dominators to aggregate data from domirsateg,inimyum time-slots needed to finish the data aggregation by
After that, for each level of the BFS tree, every dommatcgny possible algorithm.

u, other than the root of the data aggregation t#&ecan  Thegrem 12: Under any interference model, the overall
collect aggregated data from all dominatorsiin(u) \ By(u)  |ower-bound of delay for data aggregation ayy method is

in at mostl5 time-slots as stated above. Thus, it costs at m%tax{R logn} time-slots whereR is the network radius and
15(R —2) for data to be aggregated to the dominators in levgl g thé number of nodes in the network.

2. The rootr can collect the aggregated data from dominators  proof- The lower-boundR immediately follows from the

in level 2 within 16 time-slots. Thus, withinl5(R — 2) + 16 tact that no matter what algorithm is implemented and no

time-slots, every dominator's data can be aggregated t0 {hgter what interference model we will use, it costs at least

root. The root then transmits the result to the original sink ime_siots for the farthest nodeto transmit its data to the

node in R time-slots. In all, withinl6 R + A — 14 time-slots, gjnk nodeu,.

all the data can be aggregated to the sink node. u Next, we proveog n is a lower-bound for any valid schedule
Observe that, although our analysis is based on the centiglger any interference model. Here a valid schedule is dgfine

ized method, it is easy to show that all results carry to thg section 11-A which is denoted as a sequence of sender sets
distributed implementation (Algorithm 6). Thus, we have S1,Ss,--+, S, Then for any set of sendefs_;, its receivers

Theorem 10: By using_AIgorithm 6, the sink_can receivemust be inside{v,} U (U;;lo S,_;). Consequently|S;_;| <
all the aggregated data in at md$tkR + A — 14 time-slots. 14 Zi;t 5., since different senders i;_;, must have
Jj= - -t

different receivers. Thus, we have

|Sl| <1= 20

The lower-bound of our algorithm is the delay for data 1S4 < 1+]S| <2 =2
aggregation in the worst input case. It is an important mea- B <4 — 92
surement to estimate the tightness of the upper bound of our [Sima <1 [+ [Sia] <4 =2
algorithm derived in Section IV-A. In the following context ’

B. Lower-bound of Our Algorithm

we present a network example and show that when applying 1Simi] < 14+ Y00 1Si-,] < 2°
our algorithm to it the delay can be as baddds+ A — 3 e
In Fig. 3, the rootvy (which is the topology center) has S| < 2i-1

children, which means there atesymmetric branches, each

branch is symmetric with respect to the horizontal axis. Fdiherefore, we havEﬁ:1 |S;| < 2!—1. From the precondition
some nodes in the left branch, we mark their correspondifay a valid schedule that!_,S; = V' \ {v,}, we getn — 1 <
levels beside them. We use black nodes to denote dominat@j,‘ls:1 |S;| < 2! — 1. Thereforel > logn, which means that



Fig. 3. A network example to show the lower-bound of our atpan.

we need at leadbg n time-slots for any schedule. This n
time-slots is a general overall lower-bound, which finisties
proof. |

Under the protocol interference model when = r, the
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1) All links of v 0;_1)v—1,,(1 < j < 2'7!') transmit
simultaneously.

2) All links of v(;25yv-1,5(1 < j < 271 transmit
simultaneously.

communication graph is a Unit Disk Graph (UDG). Using aregrom the schedule, we can see that we only rizéohe-slots
argument, we can get= O(A-R), whereA is the maximum to aggregate data from leveto level (i —1). This implies that

degree in UDG. Thusnax{R,logn} = max{R,log O(A -
R)} = max{R,log A}. By Theorem 12max{R,log A} is

totally we need R time-slots to aggregate data from all nodes
to the sink. SinceR = log A =log(n + 1)/2, this finishes the

also a lower-bound under the protocol interference modeloof. ]
whenr; = r. In Theorem 13, we will construct an example Now we provide the overall lower-bound under the protocol

to show that the lower-bound of botlax{R,logA} and
max{R,logn} can be (approximately) achievable.

interference model when < r; < 3r andr; > 3r.
Theorem 14: Under the protocol interference model, when

Theorem 13: Under the protocol interference model when < r; < 3r, the overall lower-bound of data aggregation

r; = r, there is a placement of nodes such that the delgymax{R,

of data aggregation is onlglog A(= 2log "T“). In other

words, the overall lower-bound provided in Theorem 12 is

(approximately) tight in this model.

i level R level R—1 |level R—2 | level 1 level 0
! I I

! I I
! I I
! I I
! I I
I
I
I

Fig. 4. An overall lower-bound example.

2
larcsin
r; > 3r, the overall lower-bound imax{R, A}.

Proof: By Theorem 12,R is a lower-bound.

Assume node: hasA neighbors. Since every neighbor of
u needs to transmit at least once to report its data, we try
to compute the maximum number afs neighbors that can
transmit simultaneously without interference, which irapla
lower-bound.

Whenr < r; < 3r, assume two neighboys s of u transmit
simultaneouslyg,t are their corresponding receivers. From
Lemma 5 of [22],Z/qut must be no larger thath= arcsin ”2—;1
to ensure linkpg andst are interference free with each other.
So the maximum number af’'s neighbors that can transmit
simultaneously i) = [ 27 ]. Therefore% is an overall lower-
bound. Thus, the overall lower-bound of delayiax{R, %}
whenr < ryp < 3r.

2}, where¢ = andy = ZL; when

=y

Proof: We prove by construction. In Fig. 4, we construct Whenr; > 3r, if one of ’s neighbors is transmitting to
a network example Ii_ke a complete binary tree. There fare the nodew, the distance betwean and any other neighbor of
levels and level has2’ nodes. The distance between all nodeg is smaller thar3r, thus smaller tham;. So the maximum
in level R is at mostr. Thus, the degrees of all nodes in levehumber ofu’s neighbors that can transmit simultaneously is
R reach A. We order all nodes in level from highest to only one. ThereforeA is an overall lower-bound. Thus, the
lowest, that means a node with ordeis the j-highest among overall lower-bound of delay isnax{R, A} whenr; > 3r.
all nodes in level (we note the node as; ;). The sink node This finishes the proof. u
is located on level which is the root of the binary tree. The

distance between any corresponding pair of nodes located in

two consecutive levels is, such as the pair of; 5,y and

V. OTHER NETWORK MODELS

v(i—1,5) Or the pair ofv(; o;) andwv(;_ ;). The distance of any  To schedule two links at the same time-slot, we must ensure
other pair of nodes located in two different levels is great¢hat they are interference free with each other. Previoidies

thanr, such as(; 1y andv(;_, ;) whenk # 2j—1 andk # 2j.

on stable link scheduling mainly focused on the protocol

We produce a valid schedule for the network example @gerference model, in which the transmission and interiee

follows. Fori = R, R—1,---,1

ranges are the same. In addition to the protocol interferenc
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model, several different interference models have beed ugensmit simultaneously. Thug\ is a lower-bound on delay
to model the interference. We briefly review these models: of data aggregation. For genekahop interference model, we
k-hop Interference model A sending node: (with receiver are also able to prove that
p) is said to cause interference at another receiving node Theorem 19: Under k-hop interference modek (> 3), the
if w is within k-hops of the nodey, i.e, the hop distance sink can receive all the aggregated data in at min&f) (R +
betweenu andw in the communication grapfi’ is at mostk. A) time-slots. For any data aggregation method, it will take
RTS/CTS Model For every pair of transmitter and receiverat leastmax (R, A) time-slots for the sink to receive all the
all nodes that are within the interference range of either tlaggregated data.
transmitter or the receiver cannot transmit. In this case, w
assume that nodewill interfere the receiving of another node VI. SIMULATION RESULTS
w from another sender if eitherv orw is in the transmission |, s section, we present the simulation results which
range qfu. Although RTS/_CTS is noF the interference |tsglf, fprevaluate our Distributed Data Aggregation Algorithms (@g
convenience of our notation, we will treat the communiaatio;j, m, 6).
restriction due to RTS/CTS d8TSCTS interference model.
Now we discuss data aggregation in other interference mod- )
els. Similar to the algorithms in Section 111, we apply a stiee A Evaluating the worst case performances
in which all the data in the dominatees are aggregated to theSince in our paper and all related work, the performance
dominators first, then dominators transmit their data towaranalysis part mainly focus on the upper-bound on latencies
the root level by level until all data reach the root. As aftga Which is the worst case performances as well, we evaluate
shown in Lemma 4, all the data can be aggregated to tHe worst case performance of our algorithm first. Here we
dominators by at mosA time-slots (HereA is the maximum compare our algorithm (which has an upper-bound on delay
degree in the interference graph instead of communicatiohl6R + A — 14 time-slots) with the previously known best
graph). The only difference is how to collect data from alesult (which has an upper-bound on delay2éD +6A + 16
dominators to the root. We still use the scheme similar tome-slots in [3]).
Algorithm 5. To analyze the performance, we need to countWe can see that when the network radidsis fixed, our
the maximum number of dominators in+ 1 hops. Observe worst case performances & ¢éo 4.5 times better than previous
that here RTS/CTS model is essentially two-hop interfeeenbest result (Figure 5(a)); when the maximum node dedxee
model. We first discuss two-hop model, the other models agefixed, our worst case performances argto 2 times better
similar. than previous best result (Figure 5(b)).
Theorem 15 (Wegner Theorem [10]): The area of the con-
vex hull of anyn > 2 non-overlapping unit-radius circularg, Evaluating the average performances
disks is at leas2v/3(n — 1) + (2 — v/3)[V12n — 3 — 3] + .
Lemma 16: There are at mostl independent nodes within
any disk of radius three.
Proof: Fix a disk D5 centered at a poini. Let S denote
the set of independent nodes In,. If for each node inS,
we consider a disk of radiug.5 centered at this node, then

Now we compare the average performances of three algo-
rithms (Algorithm 6, Yuet al. [3] and Huangt al. [11]). We
randomly deploy nodes (representing sensors) into a regfion
200m x 200m. All nodes have the same transmission radius.

In Figure 6(a), the transmission radius of each sensor is

. S fixed to 25m. The figure shows the delay for aggregating data
all of those disks must be disjoint. Therefore, the convek hlfrom all nodes to the sink by running three algorithms while

of S must be contained in the disk of radiBs> centered the number of deployed nodes increases.

Etu' 2B\3//ga%plymlg We;ne\r/;heo;zn; W'tg pr?c)) per scalgg, W€ Figure 6(b) compares the latencies for aggregating data
ave (151 =1) + " )[v12]5] —3 3] T < Adm. using three algorithms when the maximum node degree varies.
Straightforward calculation shows that the maximum mleg?_'ere the maximum node degrek is fixed to 25. It can be

to make the above inequality hold i8] = 41. seen from the figure that our algorithm (nearly the same with

Thus, similar to Theorem 8, we have the following theore , , : ;
on the delay of our data aggregation method under two-hrgu et al.s) outperforms Huangt al.'s algorithm with much

. Yover latencies.
interference model.
Theorem 17: Under2-hop interference model, the sink can )
receive all the aggregated data in at mO$R+A) time-slots. C- Evaluations on TOSSIM of TinyOS 2.0.2
Notice that undee-hop interference model, any two senders We implemented IAS on TOSSIM of Tiny0%50.2. We ran-
x and y cannot be communication neighbors (otherwise, domly deploy a number of sensor nodes in a two-dimensional
will cause interference at the receiver @f. Thus, givenA square region, all nodes have the same transmission range.
neighbors of a node, we need at ledst5 time slots to just Each node will generate a randadré-bits non-negative num-
let every of these\ neighbors transmits once. Thus, ber as its own datum. The objective of the sink node is to
Theorem 18: Under2-hop interference model, for any dataeport the aggregation result of all data (totallydata,n is
aggregation method, it will take at leastax(R, A/5) time- the network size) correctly.
slots for the sink to receive the aggregated data. In order to evaluate the efficiency of IAS, we also imple-
For k-hop interference model, where > 3, then any two mented another data aggregation algorithm by combining BFS
nodesz andy that are neighbors of a nodeclearly cannot tree and CTP (Collection Tree Protocol, which is provided by
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Fig. 5. Comparisons of worst case perfor-Fig. 6. Comparisons of average performance§ig. 7. Simulation results for our algorithm
mances for two methods. for three methods. and BFS+CTP.

Tiny0S2.0.2) using TOSSIM. We call this method BFS+CTP As we can see from Fig. 7(b), there is a big gap between
method for simplicity. The main idea of BFS+CTP methothese two methods when the density (maximum degkge

is to construct a BFS tree rooted at the sink node baseghtinues increasing. That is because the interferendebwil

on the link quality. In other words, during the procedure ajreatly decreased after IAS gather all data to dominators.
constructing BFS, the link quality computed by CTP will béHence the total delay decrease significantly. However, for
considered as the link weight. Notice that, the original CTBFS+CTP method, the number of relay nodes will continue
method (components) provided in TinyQX0.2 is used to to increase with the increment of network size such that
collect data to the sink node. To enable CTP to support dakee delay increase greatly due to the interference. From the
aggregation rather than to collect all data to the sink, wamulation results, we can see that in most cases, IAS has
modified CTP in the upper layer such that each node will nbetter performance than BFS+CTP method. Especially, the
send data to its parent (on the BFS tree) until it aggregdites@enser the network is, the more efficient our IAS algorithm is
necessary data from all children (on the BFS tree).

We tested and compared the latencies for IAS method and
BFS+CTP method in two different cases. For the first case, we
randomly generated the network topology (connected) with Data aggregation in sensor networks has been well studied
different network size (increasing fros0 to 210 with step recently [2] [12] [15] [25]. In-network aggregation means
30) while ensuring the network density unchanged, the computing and transmitting partially aggregated dataermath
network deployment area increases with the increment of tifg@n transmitting raw data in networks, thus reducing the
network size. Actually, by doing this, we fixed the maximun@nergy consumption [16].
degreeA (In our simulation,A is around22) for each case, There are a lot of existing researches on in-network aggrega
thus the radius of communication graph increases with tkien in the literature [6] [17]. Suppression scheme and rirode
increment of network size. The delay performance of twdriven methods were proposed in [5] [7] towards reducing
methods, IAS and BFS+CTP, is illustrated in Fig. 7(a) Noticeommunication cost. The tradeoff between energy consump-
that here, the definition of delay is the time duration frortion and time delay was considered in [25]. A heuristic algo-
the first datum is transmitted heading for the sink node to thighm for both broadcast and data aggregation was designed
sink node reports the result finally. From the Fig. 7(a), wi@ [1]. Another heuristic algorithm for data aggregationswa
can see that when the network density is not big, the delpyoposed [18], aiming at reducing time delay and energy
difference between two method is not so big. In most casesnsumption. Kesselmaet al. [13] proposed a randomized
our IAS method has better performance than that of BFS+CTfd distributed algorithm for aggregation in WSNs with an
The radiusR for each case is indicated by the value in thexpected delay ofO(logn). Their method are based on
brackets right after the network size on x-coordinate. two assumptions: One is that sensor nodes can adjust their

For the second case, we fix the deployment area@sX transmission range without any limitation. The other isttha
300) and continue to increase the network size fréino 200 each sensor node has the capability of detecting whether a
with step30 while keeping the network connected. By doingollision occurs after transmitting data. Both assumipose
this, we can fix the radiu® and test the performance of bothsome challenges for hardware design and is impractical when
algorithms with the increment of network density (maximurthe network scales. A collision-free scheduling methodifata
degreeA). collection is proposed in [14], aiming at optimizing energy

VIl. RELATED WORK



consumption and reliability. All these work did not discuss[s]
the minimal-delay aggregation scheduling problem.

In addition, the minimum delay of data aggregation proble

was provedN P-hard and g A — 1)-approximation algorithm
was proposed in [4], wherA is the maximum degree of the [7]
network graph. Another aggregation scheduling algorithas w
proposed in [11], which has a delay bound28fR + A + 18,

whereR is the network radius and is the maximum degree.
Recently, Wanet al. [21] proposed three novel centralized (9]

data aggregation methods for networks when nodes have the

(8]

same transmission radius and interference radius, thaach [10]
schedules of latency5R + A — 4, 2R + O(log R) + A, and

(14 0O(
studied aggregation with multiple queries in WSNs. All th

log R
VR

))R + A respectively. Recently, Xet al. [24]

algorithms mentioned above are centralized. In many ca
centralized algorithms are not practical, especially whien
network topology changes often in a large sensor network.[3]
The distributed algorithms for convergecast schedulingewe
proposed in [3], [8], [13]. [8], [13] focused on the schedgli [14]
problem for data collection in sensor networks. In data col-
lection, since data cannot be merged, the sink must recej
N packets from all the nodes, wher€ is the number of
sensor nodes in the network. Thus the lower-bound of delay
is N. The upper bound of the time delay of this algorithm i
max(3n; — 1, N), whereny, is the number of nodes in the
largest one-hop-subtree. [3] proposed a distributed sdimegd
algorithm generating collision-free schedules that haslayd [17]
bound of24D + 6A + 16, where D is the network diameter.

VIIl. CONCLUSIONS

[11]

fiz

(18]

Data aggregation is critical to the network performangeg
in WSNs and aggregation scheduling is a feasible way of

improving the quality. In this paper we study the probler&0

of distributed aggregation scheduling in WSNs and propose a
distributed scheduling method with an upper-bound on delay

of 16 R+ A — 14 time-slots. This is a nearly constant approXg,,,

imate algorithm which significantly reduces the aggregatio
delay. The theoretical analysis and the simulation reshitsv
that our method outperforms previous methods.

In addition, we provide the overall lower-bound on delay
for data aggregation under any interference model with &rn{23]
proofs and give an example to show that the lower-bound is
(approximately) tight under the protocol interference elod[24]
whenr; = r wherer is the transmission range and is the
interference range. We also derive the lower-bound on del ¥
under the protocol interference model wher: r; < 3r and
ry > 3r.

(1]
(2]

(31
(4
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