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Abstract—Data aggregation is a key functionality in wireless
sensor networks (WSNs). This paper focuses on data aggregation
scheduling problem to minimize the delay (or latency). We pro-
pose an efficient distributed algorithm that produces a collision-
free schedule for data aggregation in WSNs. We theoretically
prove that the delay of the aggregation schedule generated by
our algorithm is at most 16R + ∆ − 14 time-slots. Here R is
the network radius and ∆ is the maximum node degree in the
communication graph of the original network. Our algorithm
significantly improves the previously known best data aggregation
algorithm with a upper-bound of delay of 24D + 6∆ + 16 time-
slots, where D is the network diameter (Note that D can be
as large as 2R). We conduct extensive simulations to study
the practical performances of our proposed data aggregation
algorithm. Our simulation results corroborate our theoretical
results and show that our algorithms perform better in practice.

We prove that the overall lower-bound of delay for data
aggregation under any interference model ismax{log n, R}
where n is the network size. We provide an example to show
that the lower-bound is (approximately) tight under the protocol
interference model when rI = r, where rI is the interference
range and r is the transmission range. We also derive the lower-
bound of delay under the protocol interference model when
r < rI < 3r and rI ≥ 3r.

Index Terms—Wireless networks, aggregation, scheduling, de-
lay, sensor.

I. I NTRODUCTION

Wireless sensor networks (WSNs) have drawn a consider-
able amount of research interest for their omnipresent appli-
cations such as environmental monitoring, spatial exploration
and battlefield surveillance. To design and deploy successful
WSNs, many issues need to be resolved such as deployment
strategies, energy conservation, routing in dynamic environ-
ments, localization and so on. All the issues essentially
correlate to collecting data from a set of targeted wireless
sensors to some sink node(s) and then performing some further
analysis at sink node(s) which can be termed as many-to-one
communication. In-network data aggregation [16] is one of
the most common many-to-one communication patterns used
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in these sensor networks, thus it becomes a key field in WSNs
and has been well-studied in recent years.

We consider the problem of designing a schedule for
data aggregation from within networks to sink node(s) with
minimum time-slot delay. Some of previous research works on
in-network aggregation did not consider the collision problem
and left it to the MAC layer. Resolving collisions in MAC
layer could incur a large amount of energy consumption and a
large delay during aggregation. Thus, in this paper we mainly
concentrate on the TDMA scheduling problem above the MAC
layer. To define the problem formally, consider a WSNG
formed byn wireless nodesV = {v1, ..., vn} deployed in a
2-dimensional region.vs ∈ V is the sink node that will collect
the final aggregation result. Each nodevi has a transmission
ranger and interference rangerI = Θ(r). A node vi can
send data correctly to another nodevj , if and only if (1)
vj is within vi’s transmission range, and (2)vj is not within
interference rangerI of any other transmitting node. Every
nodevi has an ability to monitor the environment, and collect
some data (such as temperature),i.e., vi has a set of raw data
Ai. Let A = ∪n

i=1Ai and N = |A| be the cardinality of the
setA. Then〈A1, A2, · · · , Ai, · · · , An〉 is called a distribution
of A at sites ofV . Data aggregation is to find the valuef(A)
at the sink nodevs for a certain functionf , such asmin, max,
average, variance and so on with minimum time delay.

The data aggregation scheduling problems have been ex-
tensively studied recently. Huanget al. [11] proposed a
centralized scheduling algorithm with the delay bound of
23R + ∆ + 18 time-slots, whereR is the network radius and
∆ is maximum node degree. However the interference model
used in [11] is a simple primary interference model: no node
can send and receive simultaneously. Under the Protocol Inter-
ference Model, Yuet al. [3] proposed a distributed scheduling
method generating collision-free schedules with delay at most
24D + 6∆ + 16 time-slots, whereD is the network diameter.

The main contributions of this paper are as follows. We
propose efficient algorithms that will construct a data aggre-
gation tree and a TDMA schedule for all links in the tree
such that the delay of aggregating all data to the sink node is
approximately minimized. For simplicity of analysis, we use
the protocol interference model and assumerI = r. As an
illustration, we first present an efficient centralized algorithm
that will build a TDMA schedule of nodes based on the
aggregation tree which is build distributively. Our schedule
uses a bottom-up approach: schedule nodes level by level
starting from the lowest level. We theoretically prove thatthe
delay of the aggregation schedule generated by our algorithm
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is at most16R + ∆ − 14 time-slots. Notice that, for general
rI , our algorithm will produce a collision-free schedule for
aggregation whose delay is at mostΘ(( rI

r
)2R+∆) time-slots.

We then present an efficient distributed algorithm that builds
an aggregation tree and gives a schedule for each node. For
simplicity, our distributed method assumes that the clocksof
all nodes are synchronized. Unlike our centralized algorithm,
our distributed algorithm willnot explicitly produce a schedule
for nodes in the aggregation tree. The schedule for nodes is
implicitly generated in the process of data aggregation. Our
distributed scheduling algorithm thus works well in dynamic
networks, as long as the constructed backbone of the network
by our algorithm remains unchanged. Obviously, whenrI = r,
for a networkG with radiusR and the maximum node degree
∆, the delay byany data aggregation algorithm is at least
R. This implies that our algorithm is within a small constant
factor of the optimum. We then conduct extensive simulations
to study the practical performance of our proposed data
aggregation method. The simulation results corroborate our
theoretical results and show that our method performs better
in practice. We find that data aggregation by our distributed
method has delay close toR. Besides, we prove that the
overall lower-bound of delay for data aggregation under any
interference model ismax{logn, R}. We provide an example
to show that the lower-bound is (approximately) tight underthe
protocol interference model whenrI = r. We also analyze the
lower-bound of delay under the protocol interference model
whenr < rI < 3r andrI ≥ 3r.

The rest of the paper is organized as follows. Section II
formulates the problem. We present our centralized and dis-
tributed scheduling algorithms in Section III and analyze their
performance and prove the overall lower-bound in Section IV.
Section V discusses the results in other interferences models.
Section VI presents the simulation results. Section VII outlines
the related work. Section VIII concludes the paper.

II. SYSTEM MODELS

A. Network Model

We consider a WSN consisting ofn nodesV wherevs ∈ V
is the sink node. Each node can send (receive) data to (from)
all directions. For simplicity, we assume that all nodes have the
same transmission ranger such that two nodesu andv form
a communication link whenever their Euclidean distance‖u−
v‖ ≤ r. In the rest of the paper we will assume thatr = 1, i.e.,
normalized to one unit. Then the underlying communication
graph is essentially a unit disk graph (UDG).

Let A, B ⊂ V andA ∩B = ∅. We say data are aggregated
from A to B in one time-slot if all the nodes inA transmit
data simultaneously in one time-slot and all data are received
by some nodes inB without interference. We will define
interference at the end of this section. Then a data aggregation
schedule with delayl can be defined as a sequence of sender
setsS1, S2, · · · , Sl satisfying the following conditions:

1) Si ∩ Sj = ∅, ∀i 6= j;
2) ∪l

i=1Si = V \ {vs};
3) Data are aggregated fromSk to V \ ∪k

i=1Si at time-slot
k, for all k = 1, 2, · · · , l and all the data are aggregated
to the sink nodevs in l time-slots.

Notice that here∪l
i=1Si = V \ {vs} is to ensure that every

data will be aggregated;Si ∩ Sj = ∅, ∀i 6= j is to ensure that
every data are used at most once. To simplify our analysis,
we will relax the requirement thatSi ∩ Sj = ∅, ∀i 6= j.
When the setsSi, 1 ≤ i ≤ l are not disjoint, in the actual
data aggregation, a nodev, that appears multiple times inSi,
1 ≤ i ≤ l, will participate in the data aggregation only once
(say the smallesti when it appears inSi), and then it will
only serve as a relay node in the following appearances.

The distributed aggregation scheduling problem is to find
a scheduleS1, S2, · · · , Sl in a distributed way such thatl
is minimized. This problem is proved to be NP-hard in [4].
This paper proposes an approximate distributed algorithm with
delay16R+∆−14 time-slots, whereR is the network radius
and∆ is the maximum node degree.

Interference Model We assume that a node cannot send and
receive data simultaneously. In the protocol interferencemodel
[9], we assume that each node has a transmission ranger and
an interference rangerI ≥ r. A receiverv of a link uv is
interfered by another senderp of a link pq if ‖p − v‖ ≤ rI .
As [4], [11], we first assume thatrI = r, which is scaled to
1. We will later study the more general caserI ≥ r.

B. Related Terminology

For simplicity, we present our distributed methods in a
synchronous message passing model in which time is divided
into slots. In each time-slot, a node is able to send a message
to one of its neighbors. Note that, at the cost of higher com-
munication, our methods can be implemented in asynchronous
communication settings using the notions of synchronizer.

In a graphG = (V, E), a subsetS of V is a dominating set
(DS) if for each nodeu in V , it is either inS or is adjacent
to some nodev in S. Nodes fromS are called dominators,
whereas nodes not inS are called dominatees. A subsetC of
V is a connected dominating set (CDS) ifC is a dominating
set andC induces a connected subgraph. The dominatees inC
are also calledconnectors. Consequently, the nodes inC can
communicate with each other without using nodes inV \ C.
A CDS is also called a backbone here.

III. D ISTRIBUTED AGGREGATIONSCHEDULING

Our Improved data Aggregation Scheduling (IAS) algorithm
consists of two phases: 1) aggregation tree construction and
2) aggregation scheduling. As an illustration of our methods,
we first present a centralized version of our data aggregation
scheduling. We adopt an existing method for the first phase
and the second phase is the core of our algorithm. We will
present these two phases in the following two sections. At the
end of the section, we present a distributed implementation
based on our centralized aggregation scheduling algorithm.

A. The overall approach

In this section, we describe our overall approach for data
aggregation. As a pre-step, we will construct a CDS as a
backbone for the network. Then, our aggregation scheduling
algorithm can be divided into two phases:
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Algorithm 1 Distributed Dominators Selection [19]
1: Determine the topology center of the UDG asv0;
2: Construct a BFS (breadth-first-search) tree rooted atv0

with heightR, the radius of the original network;
3: Every node colors itself white;
4: Root nodev0 changes its color to black and broadcasts a

message; BLACK to its one-hop neighbors inG;
5: for each white nodeu received a message BLACKdo
6: u colors itself grey and broadcasts a message GREY to

its one-hop neighbors inG;
7: if a white nodew receives GREY from all its lower-ranked

neighborsthen
8: w colors itself as black and sends message BLACK to

all its one-hop neighbors inG;
9: All black nodes form a dominating set.

Phase I: every dominator aggregates the data from all its
dominatees (as shown in Figure 1(a));

Phase II: dominators aggregate their data to the sink nodevs

level by level (as shown in Figure 1(b).).
For each level in the second phase, the process can be further
divided into two sub-phases:

• all the dominators aggregate their data to its correspond-
ing connectors;

• all the connectors transmit their data to the dominators
in the upper level.

Level 2
Level 4

vs

(a) Phase I (b) Phase II

Fig. 1. The overall approach: the black nodes are dominatorsand white
nodes are dominatees.

B. Dominating Set (DS) Construction

As our algorithm is aggregation-tree-based, in the first phase
we construct an aggregation tree in a distributed way using an
existing method [19]. We employ a CDS in this phase since
it can behave as the virtual backbone of a sensor network. A
distributed method of constructing a CDS has been proposed
by Wanet al. [19]. In their algorithm, a special dominating set
is constructed first and then a CDS is constructed to connect
dominators and the other nodes. This CDS tree can be used as
the aggregation tree in our scheduling algorithm with a small
modification as follows.

1) We choose thetopology center of the UDG as the root of
our BFS tree. Notice that, previous methods have used the
sink node as the root. Our choice of the topology center
enables us to reduce the delay to a function of the network

Algorithm 2 Distributed Construction of Aggregation TreeT
1: Select a set of dominators as in Algorithm 1;
2: Root nodev0 sends a message GREY-JOIN to its one-hop

neighbors inG;
3: if an unmarked grey node not inT received a message

GREY-JOIN then
4: Join T with the sender as its parent;
5: Send a message BLACK-JOIN to its one-hop neigh-

bors;
6: Mark itself;
7: if an unmarked black node not inT received message

BLACK-JOIN then
8: Join T with the sender as its parent;
9: Send a message GREY-JOIN to its one-hop neighbors;

10: Mark itself;
11: ReturnT .

radiusR, instead of the network diameterD proved by
previous methods. Here a nodev0 is called thetopology
center in a graphG if v0 = argminv{maxu dG(u, v)},
wheredG(u, v) is the hop distance between nodesu and
v in graphG. R = maxu dG(u, v0) is called theradius of
the networkG. Notice that in most networks, the topology
center is different from the sink node.

2) After the topology center gathered the aggregated data
from all nodes, it will then send the aggregation result
to the sink node via the shortest path from the topology
centerv0 to the sink nodevs. This will incur an additional
delaydG(v0, vs) of at mostR.

Algorithm 1 and Algorithm 2 briefly review the methods for
selecting a dominating set and a CDS in [19]. In Algorithm 1,
therank of a nodeu is (level, ID(u)), wherelevel is the hop-
distance ofu to the root. The ranks of nodes are compared
using lexicographic order. After execution of Algorithm 2,
all black nodes form a dominating set. For each grey node,
either it is a leaf or its children in the aggregation tree are
black nodes. In the second case, a grey node plays the role
of connecting two black nodes. The root is a node in the
dominating set (a black node) and all its neighbors inG are
its children in BFS.

C. Centralized Algorithm

The second phase is aggregation scheduling which is the
core of the whole algorithm. It is based on the aggregation
tree constructed in the first phase. As an illustration, we first
present an efficient centralized algorithm. We will then present
our distributed scheduling implementation in Section III-D.

Algorithm 3 shows how the data from the dominatees are
aggregated to the dominators. At every time-slot, the set
of dominators will gather data from as many dominatees
(whose data has not been gathered to a dominator yet) as
possible. Notice that since the maximum degree of nodes
in the communication graph is∆, our method guarantees
that after at most∆ time-slots, all the dominatees’ data can
be gathered to their corresponding dominators successfully
without interferences, which will be proved in Lemma 4. The
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Algorithm 3 Aggregate Data to Dominators
1: for i = 1, 2, · · · , ∆ do
2: Each dominator randomly chooses a neighboring dom-

inatee, whose data are not gathered yet, as transmitter.
The set of such chosen links form a link setL.

3: Apply Algorithm 4 toL, assume the output link set is
S;

4: All the output links inS now transmit simultaneously;
5: i = i + 1;

Algorithm 4 Reconnect Dominatees to Dominators
Input: a set of linksL;
Output: a set of conflict-free linksS;

1: S = L;
2: while (exist a pair of conflicting links inS) do
3: Let uizi and ujzj be one of the pairs of conflicting

links.
4: Find the setsDi andDj based on their definitions;
5: if (|uizj| ≤ 1 and |ujzi| > 1) then
6: If Dj = ∅, remove the linkujzj .
7: If Dj 6= ∅, replaceujzj by a linkujzj0 , for a random

zj0 ∈ Dj .
8: else if (|ujzi| ≤ 1 and |uizj | > 1) then
9: If Di = ∅, remove linkuizi.

10: If Di 6= ∅, replaceuizi with uizi0 , for a random
zi0 ∈ Di.

11: else if (|ujzi| ≤ 1 and |uizj | ≤ 1) then
12: If Di = ∅, remove the linkuizi; else if Dj = ∅,

remove the linkujzj .
13: If Di 6= ∅ ∧ Dj 6= ∅, replaceuizi and ujzj by two

new linksuizi0 , ujzj0 , for a randomzi0 ∈ Di and a
randomzj0 ∈ Dj .

basic idea is as follows: each dominator will randomly pick a
dominatee whose data are not reported to any dominator yet.
Clearly, these selected dominatees may not be able to send
their data to corresponding dominators in one time-slot dueto
potential interferences. We then reconnect these dominatees to
the dominators (and may not schedule some of the selected
dominatees in the current time-slot), using Algorithm 4, such
that these new links can communicate concurrently.

Suppose that two directed linksuizi andujzj interfere with
each other (see Fig.2 (a)), where the dominateesui and uj

are transmitters in these two links respectively andzi andzj

are dominators. For each dominateev, let D(v) be the set of
neighboring dominators. Obviously,|D(v)| ≤ 5 for any node
v. Let D(ui) = D(ui) \ {zi}, D(uj) = D(uj) \ {zj}. Notice
that hereD(ui) andD(uj) may be empty, orD(ui)∩D(uj)
may not be empty.

For every other active transmitterv, v 6= ui and v 6= uj,
we delete all dominators fromD(ui) (and also fromD(uj))
that are within the transmission range ofv. Notice that we
can discard these dominators since their degrees are already
decreased by at least one because of the existence of some
active transmitterv. We also delete the dominators that are
within transmission range of bothui anduj from D(ui) and

D(uj). Notice that we can do this because these dominators’
degree will be decreased by one since our re-scheduling can
guarantee at least one transmitter ofui anduj will remain as
an active transmitter, as we will show later.

Let Di (resp.Dj) be the set of remaining dominators in
D(ui) (resp.D(uj)).

uj

zi zj

ui uj

zi zj

ui

(a) (b)

Fig. 2. (a) An interference between2 links. The dashed line means that
the endpoints are within interference ranges of each other;(b) A state after
re-scheduling.

Fig. 2(b) illustrates one possible state after the preceding
two deletions of dominators fromD(ui) and D(uj). Notice
that

1) The distance betweenui and any member ofDj is greater
than one. The distance betweenuj and any member of
Di is greater than one.

2) It is possible thatDi or Dj or both could be empty.
Algorithm 4 shows how to re-connect dominatees to domina-
tors to avoid the interference.

After all the data in the dominatees have been aggregated to
dominators, our next step is to aggregate all the intermediate
results in the dominators to the root.

We can see that in each layer of the BFS tree, there are some
dominator(s) and some dominatee(s). For every dominatee, it
has at least one dominator neighbor in the same or upper
level. Thus, every dominator (except the root) has at least
one dominator in the upper level within two-hops. Using this
property, we can ensure that all the data in the dominators can
reach the root finally if every dominator transmits its data to
some dominator in upper level within two-hops. From another
point of view, considering dominators in the decreasing order
of their levels, a dominatoru in level L aggregates data from
all dominators in levelL+1 or L+2 that are within two-hops
of u. This will ensure that all the data will be aggregated to
the root. Algorithm 5 presents our method in detail.

In Algorithm 5 we only concentrate on communications
between dominators. The algorithm runs from lower level to
upper level in aggregation tree, every dominator will remain
silent until the level where it locates begins running. When
it is its turn, the dominator will try to gather all the data
from other dominators in lower levels that have not been
aggregated. If a dominator’s data has been collected before,
then it is unnecessary to be collected again. Actually we have
to guarantee that every data should be and only be used once.
Our algorithm implements this by discarding the dominators
after their data have been gathered to upper levels.
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Algorithm 5 Centralized-IAS
Input: BFS tree with rootv0 and depthR, and a distributive
aggregation functionf (Please see the definition of aggrega-
tion function in [23]), dataAi stored at each nodevi.

1: Construct the aggregation treeT ′ using Algorithm 2.
Remove the redundant connectors to ensure that each
dominator uses at most12 connectors to connect itself
to all dominators in lower level and is within two-hops.
Here a connector nodex (a dominatee of a dominatoru)
is said to beredundant for the dominatoru, if removing
x will not disconnect any of the two-hop dominators ofu
from u.
Let T be the final data aggregation tree.

2: for i = R − 1, R− 2, · · · , 0 do
3: Choose all dominators, denoted asBi, in level i of the

BFS tree.
4: for every dominatoru ∈ Bi do
5: Find the setD2(u) of unmarked dominators that are

within two-hops ofu in BFS, and in lower leveli+1
or i + 2.

6: Mark all nodes inD2(u).
7: Every node w in D2(u) sends

f(Aw, X1, X2, · · · , Xd) to the parent node (a
connector node) inT . HereAw is the original data
set nodew has, andX1, X2, · · · , Xd are data that
nodew received from itsd children nodes inT .

8: Every nodez that is a parent of some nodes inD2(u)
sendsf(X1, X2, · · · , Xp) to nodeu (which is the
parent ofz in T ). Here X1, X2, · · · , Xp are data
that nodez received from itsp children nodes inT .

9: i = i− 1
10: The rootv0 sends the result to the sink using the shortest

path.

Notice that in our algorithm after we process dominators
Bi (all dominators in leveli), there may still have some
dominators inBi+1 whose data are not aggregated. This could
happen because a dominator inBi+1 could be within two-hops
of some dominator inBi−1, but not within two-hops ofany
dominator fromBi. We conclude that after the execution of all
the dominators inBi , the data from all dominators inBi+2

have already been aggregated.

D. Distributed Implementation

Now we present a distributed implementation for our data
aggregation scheduling. The distributed implementation con-
sists of three stages:

1) Every dominatee transmits its data to the neighboring
dominator with the lowest level,

2) Data are aggregated from dominators in lower levels to
dominators in upper levels and finally to the root of
the aggregation tree which is the topology center of the
network,

3) Topology center then transmits the aggregated data to the
original sink via the shortest path.

The distributed implementation differs from the centralized
one in that the distributed one seeks to transmit greedily:
we will try to allocate a nodev a time-slot to transmit
wheneverv has collected the aggregated data from all its
children nodes in the data aggregation treeT . Thus the first
two phases may interleave in our distributed implementation.
The interleaving will reduce the delay greatly since it increases
the number of simultaneous transmissions. Later, we will
provide the simulation result of our distributed method, which
shows that our distributed implementation is quite close to
(1 + ε)R + ∆ + Θ(1), whereε is a small positive constant.
Therefore we conjecture that the data aggregation delay by
our distributed implementation indeed has a theoretical perfor-
mance guarantee of(1+ε)R+∆+Θ(1). It will be interesting
if we can prove or disprove this conjecture, which is left as
future work.

To run our algorithm, every nodevi should maintain some
local variables, which are

1) Leaf indicator:Leaf[i] ∈ {0, 1}, to indicate whether the
nodevi is a leaf node in the data aggregation tree.

2) Competitor Set:CS[i], the set of nodes such that for each
j ∈ CS[i], nodesvi and vj cannot transmit simultane-
ously to their parents due to interference. In other words,
if j ∈ CS[i], we have either the parentpT (i) of nodevi

in the data aggregation treeT is within the interference
range of nodevj ; or the parentpT (j) of nodevj in the
data aggregation treeT is within the interference range
of node vi; or both. Notice that under the interference
model studied in this paper, each node inCS[i] is within
a small constant number of hops ofi.

3) Ready Competitor Set:RdyCS[i], which is the set of
nodes that collides withi and it is ready to send data
to its parent,i.e., it has received the data from all its
children nodes.

4) Time Slot to Transmit:TST[i], which is the assigned
time-slot that nodevi indeed sends its data to its parent.

5) Number of Children:NoC[i], which is the number of
children nodes ofvi in the data aggregation treeT .

Observe that here, at some time, if we letRdy be the set
of nodes which are ready to transmit (i.e., v ∈ Rdy iff v has
collected the aggregated data from all its children nodes inthe
data aggregation treeT ), and letF denote all the nodes which
have finished their transmission, thenRdyCS[i] = CS[i] ∩
Rdy − F . The TST of all nodes are initialized to0. The
details of our distributed method are shown in Algorithm 6.

When a nodevi finishes its scheduling, it sends a message
FINISH to all nodes in its competitor setCS[i]. When a node
vi received a messageFINISH, it sets itsTST[i] to the larger
one of its originalTST[i] and TST[j] + 1. When all the
children of nodevi finished their transmission, the nodevi

is ready to compete for the transmission time slot and it will
send a messageREADY(i, ri) to all nodes in its competitor
set. When a nodevi received a messageREADY from another
nodevj , it will add the senderj to its ready competitor set
RdyCS[i] if j is in CS[i]. When the scheduling ends, all
nodes will transmit their data based onTST[i]. In the end, the
topology center aggregates all the data and sends the resultto
the sink node via the shortest path.
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Algorithm 6 Distributed Data Aggregation Scheduling
Input : A network G, and the data aggregation treeT ;
Output : TST[i] for every nodevi

1: The nodevi initializes the valueNoC[i], andLeaf[i] based
on the constructed aggregation treeT .

2: Initializes the setCS[i] based on the treeT and the original
interference relation,

3: RdyCS[i]← CS[i] ∩ {j | j is a leaf inT }.
4: TST[i]← 0; DONE←FALSE;
5: Node vi randomly selects an integerri. Then we say

(ri, i) < (rj , j) if (1) ri < rj or (2) ri = rj and i < j.
6: while (not DONE)do
7: if NoC[i] = 0 then
8: Send messageREADY(i, ri) to all nodes inCS[i].
9: if (ri, i) < (rj , j) for eachj ∈ RdyCS[i] then

10: Send messageFINISH(i)&TST [i] to all nodes in
CS[i];

11: DONE←TRUE;
12: if Node vi received a messageFINISH(j)&TST [i]

then
13: Deletej from RdyCS[i];
14: TST[i]← max {TST[i], TST[j] + 1};
15: if j is a child of i then
16: NoC[i]← NoC[i]− 1;
17: if Nodevi received a messageREADY(j, rj) then
18: if j is in CS[i] then
19: Add j to RdyCS[i].
20: Nodevi transmits data based on the time slot inTST[i].
21: The topological center transmits aggregated data to the

sink.

IV. PERFORMANCEANALYSIS

In this section we first theoretically prove that the delay
of the data aggregation based on our scheduling is at most
16R + ∆ − 14, whereR is the radius of the network and∆
is the maximum node degree in the original communication
graph. We conjecture that the theoretical performance of our
centralized and distributed algorithms could actually be much
better than16R+∆−14, which is supported by our extensive
simulations. On the other hand, we also present a network
example to show that our centralized algorithm cannot achieve
a delay lower than4R + ∆ − 3. It remains as future work
to find bad network examples to show that our distributed
methods could perform worse than(1 + ε)R for a sufficient
small constantε > 0. At last, we present a general lower-
bound on the delay of data aggregation for any algorithm.

A. Performance of Our Algorithm

First we show that, after every time-slot of Algorithm 4, for
each dominator, the number of neighboring dominatees whose
data are not collected is decreased by at least one.

Claim 1: All the output links inS in Step4 of Algorithm
3 are conflict-free. In addition, after all the links transmit, for
each dominator, the number of neighboring dominatees whose
data are not collected is decreased by at least one.

Proof: We first check the origin of these links. As
shown in Algorithm 3, each dominatoru chooses a dominatee
randomly from its neighbors and lets the chosen dominatee
transmit tou. We call all chosen dominatees asactive trans-
mitters for later references. Assume there arend dominators,
then we have a setL of (at most)nd chosen links. We input
L to Algorithm 4 and assume the output is the setS.

We define aLoop Invariant for Algorithm 4 as: for each
dominator, the number of neighboring dominatees whose data
are not collected is decreased by at least one. Initially, since
each dominatoru chooses a neighboring dominatee to transmit
to u, the loop invariant is true.

If these links inL do not conflict with each other, Algorithm
4 will skip the execution of the while loop and output a set
of links which are the same as the input. Clearly, the output
links are conflict-free and the loop invariant remains true.

Else, there exist interferences among links inL, then Algo-
rithm 4 will execute the loop body. In each loop, Algorithm 4
adjusts a pair of conflicting links. By Lemma 2, after one round
of adjustment , we solve the interferences caused by the pair
of conflicting links, and the loop invariant remains true. Al-
gorithm 4 repetitively adjusts a pair of conflicting links when
interferences exist. Observe that due to the recursive nature
of our adjustment algorithm, we must prove that Algorithm 4
will terminate in a finite number of rounds. Clearly, when it
terminates, there is no pair of conflicting links and the loop
invariant remains true.

To show that Algorithm 4 terminates, we define aPo-
tential Function for a schedule as the cardinality of the
set C = {(x1, x2) | x1, x2 are active transmitters and their
corresponding linksx1y1, x2y2 are conflicting links}. We call
the pair(x1, x2) ∈ C a pair of conflicting transmitters. Clearly,
the initial cardinality of the setC is at mostnd(nd−1)/2. After
one round of re-scheduling, the interferences between at least
one pair of conflicting transmitters are resolved. By Lemma 3,
our adjustment will not introduce any new pair of conflicting
transmitters. Thus the potential function will be decreased by
at least one after one round, which means that Algorithm 4
will terminate after at mostnd(nd−1)

2 rounds of execution of
the while loop in Algorithm 4.

Therefore, Algorithm 4 will terminate which means that
there exists no conflict among the output links inS. In ad-
dition, the loop invariant is true after Algorithm 4 terminates.
Thus claim1 holds.

Lemma 2: After one round of adjustment (The loop body
of Algorithm 4), we solve the interferences caused by the pair
of conflicting links, and the loop invariant (Every dominator’s
degree will be decreased by at least one) remains true.

Proof: We prove the claim for each of the complementary
cases separately.

In Case1 (|uizj| ≤ 1 and |ujzi| > 1), First we prove
that the interferences are solved. IfDj = ∅, since we remove
one link, the interferences are clearly solved. Else,Dj 6= ∅, by
definition, the distance between any dominator inDj andui is
greater than one, thus|uizj0 | > 1. At the same time,|ujzi| >
1, thus the output adjusted linksuizi, ujzj0 are conflict-free,
the interferences are solved. Next we prove the loop invariant
remains true. All other dominators inDi are not affected by the



7

adjustment, thus we only need to prove that for the dominators
in Di∪Dj, the number of their neighboring dominatees whose
data are not collected is decreased by at least one. IfDj = ∅,
we only need to for every dominator inDi, the number of
their neighboring dominatees whose data are not collected is
decreased by at least one. This is straightforward sinceui

transmits their data. Else,Dj 6= ∅, since bothui, uj transmit
their data, thus for every dominator inDi∪Dj , the number of
their neighboring dominatees whose data are not collected is
decreased by at least one. Case2 (|ujzi| ≤ 1 and |uizj| > 1)
is similar to Case1.

In Case3 (|ujzi| ≤ 1 and |uizj| ≤ 1) we first prove that
the interferences are solved. IfDj = ∅ or Dj = ∅, since we
remove one link, the interferences are clearly solved. Else, by
definition of Di, Dj , |uizj0 | > 1, |ujzi0 | > 1, thus the output
adjusted linksuizi0 , ujzj0 are conflict-free, the interference
are solved. Then we prove the loop invariant remains true.
Similar to Case1, we only need to prove that for the domina-
tors in Di ∪Dj , the number of their neighboring dominatees
whose data are not collected is decreased by at least one. If
Di = ∅, we only need to for every dominator inDj, the
number of their neighboring dominatees whose data are not
collected is decreased by at least one. This is straightforward
sinceuj transmits their data. The proof is similar forDi = ∅.
Else, bothui, uj transmit their data, thus for every dominator
in Di∪Dj, the number of their neighboring dominatees whose
data are not collected is decreased by at least one.

Lemma 3: The adjustment in one round of Algorithm 4 will
not introduce any new pair of conflicting transmitters

Proof: We prove by contradiction. Suppose after an
adjustment for a pair of links(uizi, ujzj) to (uizi0 , ujzj0),
Algorithm 4 introduces a new pair of conflicting transmitters
(u, v). Since our adjustment only reconnects eitherui or uj

to a new dominators while does not change the links for
other transmitters, one transmitter in(u, v) must beui or
uj . Assumeu is ui, and the corresponding receiver ofv is
zk. Since ui and v conflict, either (1) |uizk| ≤ 1 or (2)
|vzi0 | <= 1. In Case(1), ui and v is a pair of conflicting
transmitters before the adjustment, which causes contradiction.
Case(2) also causes contradiction sincezi0 ∈ Di ⊆ D(ui),
by the definition ofD(ui), the distance between other active
transmitterv, v 6= ui, and v 6= uj are greater than one.
(Please refer to the first sentence in the second paragraph, right
column, Page4: For every other active transmitterv, v 6= ui

and v 6= uj, we delete all dominators fromD(ui) (and also
from D(uj)) that are within the transmission range ofv).

Lemma 4: Given a communication graphG of a network,
under the assumption that the interference rangerI is the same
as the transmission ranger, Algorithm 3 (aggregating data
from dominatees to dominators) costs at most∆ time-slots
where∆ is the maximum node degree inG.

Proof: Each dominator has at most∆ neighboring domi-
natees. We define a dominator’s unaggregated-node-degree as
the number of the neighboring dominatees whose data have not
been aggregated to dominators yet. At first, each dominator’s
unaggregated-node-degree is bounded by∆. By Claim 1, after
one time-slot, each dominator’s unaggregated-node-degree is
decreased by at least one. Thus Algorithm 3 costs at most∆

time-slots.
We now bound the number of connectors that a dominator

u will use to connect to all dominators within two-hops. Our
proof is based on a technique lemma implied from lemmas
proved in [20].

Lemma 5: Suppose that dominatorv and w are within
two-hops of dominatoru, v′ and w′ are the corresponding
connectors forv andw respectively. Then either|wv′| ≤ 1 or
|vw′| ≤ 1 if ∠vuw ≤ 2 arcsin 1

4 .
Lemma 6: In Algorithm 5, a dominator requires at most12

connectors to connect to all dominators within two-hops.
Proof: Consider any dominatoru, let I2(u) be the set

of dominators within two-hops ofu in the original commu-
nication networkG. Assume that we have already deleted all
the redundant connectors for nodeu. Let C be the set of
connectors left for a dominatoru. Then for each remaining
connectorx ∈ C, there is at least one dominator (called a
non-sharing dominator) that can only use this connector to
connect tou (otherwise, connectorx is redundant and thus
will be removed). Assume there are13 connectors inC. Then
there are at least13 non-sharing dominators inI2(u). From
pigeonhole principle, we know that there must be2 dominators
v1 and v2 such that∠v1uv2 ≤ 2π/13 < 2 arcsin(1

4 ). Thus,
using Lemma 5,v1 andv2 will share a common connector in
C, which contradicts to the selection ofv1 andv2.

In the rest of the proof, for a dominatoru, we useC(u) to
denote the set of connectors used to connect all dominators in
D2(u).

Lemma 7: In Algorithm 5, a dominatoru in level i can
receive the data from all neighboring dominatorsD2(u) in at
most16 time-slots.

Proof: Each dominatoru will collect the aggregated data
from all dominators within two-hops in lower level. Any
connector inC(u) has at most4 other neighboring dominators,
besidesu. Similar to the proof of Lemma 4, we can show
that it takes at most4 time-slots for each connector to collect
data from those neighboring dominators other thanu. Recall
that at most12 connectors are needed foru to reach all
dominators inD2(u). Thus, it will take at most12 time-slots
for the dominatoru to collect data from all these connectors.
Consequently, within at most12 + 4 = 16 time-slots, every
dominator u can collect the aggregated data from all the
dominators inD2(u).

Theorem 8: By using Algorithm 5, the sink can receive all
the aggregated data in at most17R + ∆− 16 time-slots.

Proof: Every dominatee’s data can be aggregated to a
dominator within∆ time-slots from Lemma 4. Observe that
every dominator, except the root of the data aggregation treeT ,
connects to at least one dominator in the upper level within
two-hops. Then Algorithm 5 ensures that every dominator’s
data can be aggregated at the root finally. For each level
of the BFS tree, every dominatoru including the root of
data aggregation treeT , can collect aggregated data from all
dominators inD2(u) within at most16 time-slots by Lemma 7.
Since there is no dominator in Level1, after at most16(R−1)
time-slots, every dominator’s data can be aggregated to the
root. The root then uses at mostR time-slots to transmit data
to the original sink node via the shortest path. Therefore within
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17R+ ∆− 16 time-slots, all the data can be be aggregated to
the sink node.

Next, we provide a revised schedule that only needs15 time-
slots for dominators in leveli (i ≥ 2) to aggregate data from
some dominators within two-hops, which can also ensure that
data will be aggregated to the root finally. This means that we
can reduce our delay byR− 2 time-slots totally.

For a dominatoru other than the root, we denote all
dominators within two-hops ofu asB2(u). Notice thatB2(u)
includes at least one dominatorv located in upper level ofu.
By Lemma 6,u needs at most12 connectors to connect to
B2(u), we denote the set of at most12 connectors asC(u).
There must exist a connectorw ∈ C(u) which connectsu to
v. Then all dominators inB2(u) that are connected tow are
also two-hop neighbors of the dominatorv, we denote the set
of these dominators asB′

2(u), thusB′
2(u) ⊂ B2(v). Clearly

all data inB′
2(u) can be collected byv, it is not necessary

for them to be collected byu. So we letu only collect the
data inB2(u) \B′

2(u). It requires at most11 connectors (all
the connectors inC(u) \ {w}) to connect to the dominators
in B2(u) \ B′

2(u). So at most15 (= 4 + 11) time-slots are
required foru to aggregate the data fromB2(u) \ B′

2(u). If
every dominatoru other than the root aggregate the data from
B2(u) \B′

2(u), all the data can be aggregated to the root.
Theorem 9: By using Algorithm 5, the sink can receive all

the aggregated data in at most16R + ∆− 14 time-slots.
Proof: Similar to the proof of Theorem 8, we need∆

time-slots for dominators to aggregate data from dominatees.
After that, for each level of the BFS tree, every dominator
u, other than the root of the data aggregation treeT , can
collect aggregated data from all dominators inB2(u) \B′

2(u)
in at most15 time-slots as stated above. Thus, it costs at most
15(R−2) for data to be aggregated to the dominators in level
2. The rootrT can collect the aggregated data from dominators
in level 2 within 16 time-slots. Thus, within15(R− 2) + 16
time-slots, every dominator’s data can be aggregated to the
root. The root then transmits the result to the original sink
node inR time-slots. In all, within16R + ∆− 14 time-slots,
all the data can be aggregated to the sink node.

Observe that, although our analysis is based on the central-
ized method, it is easy to show that all results carry to the
distributed implementation (Algorithm 6). Thus, we have

Theorem 10: By using Algorithm 6, the sink can receive
all the aggregated data in at most16R + ∆− 14 time-slots.

B. Lower-bound of Our Algorithm

The lower-bound of our algorithm is the delay for data
aggregation in the worst input case. It is an important mea-
surement to estimate the tightness of the upper bound of our
algorithm derived in Section IV-A. In the following context,
we present a network example and show that when applying
our algorithm to it the delay can be as bad as4R + ∆− 3

In Fig. 3, the rootv0 (which is the topology center) has2
children, which means there are2 symmetric branches, each
branch is symmetric with respect to the horizontal axis. For
some nodes in the left branch, we mark their corresponding
levels beside them. We use black nodes to denote dominators

and white nodes to denote connectors. For each black node
on the horizontal axis, we draw two co-centric circles with
radiusr and2r respectively, all its3 neighboring connectors
are located on the inner circle. We omit all leaf nodes in the
figure. The original sinkvs is located in the rightmost of the
right branch.

Lemma 11: When applying a centralized algorithm to the
example shown in Fig. 3, the delay is4R + ∆− 3 time-slots.

Proof: Firstly, aggregating data from dominatees to dom-
inators costs∆ time-slots by Lemma 4.

Secondly, both branches aggregate data from lower to upper
levels. Between leveli and leveli + 2 as shown in Fig. 3, it
costs3 time-slots to aggregate data from the7 dominators in
level i + 2 to 3 connectors in leveli + 1 and costs another3
time-slots to aggregate data from3 connectors in Leveli + 1
to a dominator in leveli. So it costs(3+3) · R−2

2 time-slots to
gather data from dominators in levelR towards dominators in
level 2. After that, it costs one time-slot to gather data from
dominators in level2 to connectors in Level1 and then2
time-slots to the topology centerv0. Finally, v0 transmits the
aggregated data to the sink node, which will cost anotherR
time-slots. Therefore we need∆+(3+3) · R−2

2 +1+2+R =
4R + ∆− 3 time-slots in total.

C. Overall Lower-bound

In this section we give the overall lower-bound on the delay
for data aggregation. Here overall lower-bound refers to the
minimum time-slots needed to finish the data aggregation by
any possible algorithm.

Theorem 12: Under any interference model, the overall
lower-bound of delay for data aggregation byany method is
max{R, logn} time-slots whereR is the network radius and
n is the number of nodes in the network.

Proof: The lower-boundR immediately follows from the
fact that no matter what algorithm is implemented and no
matter what interference model we will use, it costs at least
R time-slots for the farthest nodev to transmit its data to the
sink nodevs.

Next, we provelog n is a lower-bound for any valid schedule
under any interference model. Here a valid schedule is defined
in Section II-A which is denoted as a sequence of sender sets
S1, S2, · · · , Sl. Then for any set of sendersSl−i, its receivers
must be inside{vs} ∪ (

⋃i−1
j=0 Sl−j). Consequently,|Sl−i| <

1 +
∑i−1

j=0 |Sl−j | since different senders inSl−i must have
different receivers. Thus, we have















































|Sl| ≤ 1 = 20

|Sl−1| < 1 + |Sl| ≤ 2 = 21

|Sl−2| < 1 + |Sl|+ |Sl−1| ≤ 4 = 22

· · ·
|Sl−i| < 1 +

∑i−1
j=0 |Sl−j | ≤ 2i

· · ·
|S1| ≤ 2l−1

Therefore, we have
∑l

i=1 |Si| ≤ 2l−1. From the precondition
for a valid schedule that∪l

i=1Si = V \ {vs}, we getn− 1 ≤
∑l

i=1 |Si| ≤ 2l − 1. Thereforel ≥ log n, which means that
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Fig. 3. A network example to show the lower-bound of our algorithm.

we need at leastlog n time-slots for any schedule. Thuslog n
time-slots is a general overall lower-bound, which finishesthe
proof.

Under the protocol interference model whenrI = r, the
communication graph is a Unit Disk Graph (UDG). Using area
argument, we can getn = O(∆·R), where∆ is the maximum
degree in UDG. Thusmax{R, logn} = max{R, log O(∆ ·
R)} = max{R, log∆}. By Theorem 12,max{R, log ∆} is
also a lower-bound under the protocol interference model
when rI = r. In Theorem 13, we will construct an example
to show that the lower-bound of bothmax{R, log∆} and
max{R, logn} can be (approximately) achievable.

Theorem 13: Under the protocol interference model when
rI = r, there is a placement of nodes such that the delay
of data aggregation is only2 log ∆(= 2 log n+1

2 ). In other
words, the overall lower-bound provided in Theorem 12 is
(approximately) tight in this model.

level 0

· · ····

···

···

level R level R− 1 level R− 2 level 1

Fig. 4. An overall lower-bound example.

Proof: We prove by construction. In Fig. 4, we construct
a network example like a complete binary tree. There areR
levels and leveli has2i nodes. The distance between all nodes
in level R is at mostr. Thus, the degrees of all nodes in level
R reach∆. We order all nodes in leveli from highest to
lowest, that means a node with orderj is thej-highest among
all nodes in leveli (we note the node asv(i,j)). The sink node
is located on level0 which is the root of the binary tree. The
distance between any corresponding pair of nodes located in
two consecutive levels isr, such as the pair ofv(i,2j−1) and
v(i−1,j) or the pair ofv(i,2j) andv(i−1,j). The distance of any
other pair of nodes located in two different levels is greater
thanr, such asv(i,k) andv(i−1,j) whenk 6= 2j−1 andk 6= 2j.

We produce a valid schedule for the network example as
follows. For i = R, R− 1, · · · , 1

1) All links of v(i,2j−1)v(i−1,j)(1 ≤ j ≤ 2i−1) transmit
simultaneously.

2) All links of v(i,2j)v(i−1,j)(1 ≤ j ≤ 2i−1) transmit
simultaneously.

From the schedule, we can see that we only need2 time-slots
to aggregate data from leveli to level(i−1). This implies that
totally we need2R time-slots to aggregate data from all nodes
to the sink. SinceR = log ∆ = log(n+1)/2, this finishes the
proof.

Now we provide the overall lower-bound under the protocol
interference model whenr < rI < 3r andrI ≥ 3r.

Theorem 14: Under the protocol interference model, when
r < rI < 3r, the overall lower-bound of data aggregation
is max{R, ∆

φ
}, whereφ = 2π

⌊arcsin γ−1

2γ
⌋ and γ = rI

r
; when

rI ≥ 3r, the overall lower-bound ismax{R, ∆}.
Proof: By Theorem 12,R is a lower-bound.

Assume nodeu has∆ neighbors. Since every neighbor of
u needs to transmit at least once to report its data, we try
to compute the maximum number ofu’s neighbors that can
transmit simultaneously without interference, which implies a
lower-bound.

Whenr < rI < 3r, assume two neighborsp, s of u transmit
simultaneously,q, t are their corresponding receivers. From
Lemma 5 of [22],∠qut must be no larger thanθ = arcsin γ−1

2γ

to ensure linkspq andst are interference free with each other.
So the maximum number ofu’s neighbors that can transmit
simultaneously isφ = ⌊ 2π

θ
⌋. Therefore∆

φ
is an overall lower-

bound. Thus, the overall lower-bound of delay ismax{R, ∆
φ
}

whenr < rI < 3r.
When rI ≥ 3r, if one of u’s neighbors is transmitting to

the nodew, the distance betweenw and any other neighbor of
u is smaller than3r, thus smaller thanrI . So the maximum
number ofu’s neighbors that can transmit simultaneously is
only one. Therefore∆ is an overall lower-bound. Thus, the
overall lower-bound of delay ismax{R, ∆} when rI ≥ 3r.
This finishes the proof.

V. OTHER NETWORK MODELS

To schedule two links at the same time-slot, we must ensure
that they are interference free with each other. Previous studies
on stable link scheduling mainly focused on the protocol
interference model, in which the transmission and interference
ranges are the same. In addition to the protocol interference
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model, several different interference models have been used
to model the interference. We briefly review these models:

k-hop Interference model: A sending nodeu (with receiver
p) is said to cause interference at another receiving nodew
if w is within k-hops of the nodeu, i.e., the hop distance
betweenu andw in the communication graphG is at mostk.

RTS/CTS Model: For every pair of transmitter and receiver,
all nodes that are within the interference range of either the
transmitter or the receiver cannot transmit. In this case, we
assume that nodeu will interfere the receiving of another node
w from another senderv if either v or w is in the transmission
range ofu. Although RTS/CTS is not the interference itself, for
convenience of our notation, we will treat the communication
restriction due to RTS/CTS asRTS/CTS interference model.

Now we discuss data aggregation in other interference mod-
els. Similar to the algorithms in Section III, we apply a scheme
in which all the data in the dominatees are aggregated to the
dominators first, then dominators transmit their data towards
the root level by level until all data reach the root. As already
shown in Lemma 4, all the data can be aggregated to the
dominators by at most∆ time-slots (Here∆ is the maximum
degree in the interference graph instead of communication
graph). The only difference is how to collect data from all
dominators to the root. We still use the scheme similar to
Algorithm 5. To analyze the performance, we need to count
the maximum number of dominators ink + 1 hops. Observe
that here RTS/CTS model is essentially two-hop interference
model. We first discuss two-hop model, the other models are
similar.

Theorem 15 (Wegner Theorem [10]): The area of the con-
vex hull of any n ≥ 2 non-overlapping unit-radius circular
disks is at least2

√
3(n− 1) + (2−

√
3)⌈
√

12n− 3− 3⌉+ π.
Lemma 16: There are at most41 independent nodes within

any disk of radius three.
Proof: Fix a diskD2 centered at a pointu. Let S denote

the set of independent nodes inD2. If for each node inS,
we consider a disk of radius0.5 centered at this node, then
all of those disks must be disjoint. Therefore, the convex hull
of S must be contained in the disk of radius3.5 centered
at u. By applying Wegner Theorem with proper scaling, we
have2

√
3(|S| − 1) + (2−

√
3)⌈

√

12|S| − 3− 3⌉+ π < 49π.
Straightforward calculation shows that the maximum integer
to make the above inequality hold is|S| = 41.

Thus, similar to Theorem 8, we have the following theorem
on the delay of our data aggregation method under two-hop
interference model.

Theorem 17: Under2-hop interference model, the sink can
receive all the aggregated data in at mostO(R+∆) time-slots.
Notice that under2-hop interference model, any two senders
x and y cannot be communication neighbors (otherwise,x
will cause interference at the receiver ofy). Thus, given∆
neighbors of a node, we need at least∆/5 time slots to just
let every of these∆ neighbors transmits once. Thus,

Theorem 18: Under2-hop interference model, for any data
aggregation method, it will take at leastmax(R, ∆/5) time-
slots for the sink to receive the aggregated data.
For k-hop interference model, wherek ≥ 3, then any two
nodesx andy that are neighbors of a nodeu clearly cannot

transmit simultaneously. Thus,∆ is a lower-bound on delay
of data aggregation. For generalk-hop interference model, we
are also able to prove that

Theorem 19: Underk-hop interference model (k ≥ 3), the
sink can receive all the aggregated data in at mostO(k2)(R+
∆) time-slots. For any data aggregation method, it will take
at leastmax(R, ∆) time-slots for the sink to receive all the
aggregated data.

VI. SIMULATION RESULTS

In this section, we present the simulation results which
evaluate our Distributed Data Aggregation Algorithms (Algo-
rithm 6).

A. Evaluating the worst case performances

Since in our paper and all related work, the performance
analysis part mainly focus on the upper-bound on latencies
which is the worst case performances as well, we evaluate
the worst case performance of our algorithm first. Here we
compare our algorithm (which has an upper-bound on delay
of 16R + ∆− 14 time-slots) with the previously known best
result (which has an upper-bound on delay of24D +6∆+16
time-slots in [3]).

We can see that when the network radiusR is fixed, our
worst case performances are3 to 4.5 times better than previous
best result (Figure 5(a)); when the maximum node degree∆
is fixed, our worst case performances are1.5 to 2 times better
than previous best result (Figure 5(b)).

B. Evaluating the average performances

Now we compare the average performances of three algo-
rithms (Algorithm 6, Yuet al. [3] and Huanget al. [11]). We
randomly deploy nodes (representing sensors) into a regionof
200m× 200m. All nodes have the same transmission radius.

In Figure 6(a), the transmission radius of each sensor is
fixed to25m. The figure shows the delay for aggregating data
from all nodes to the sink by running three algorithms while
the number of deployed nodes increases.

Figure 6(b) compares the latencies for aggregating data
using three algorithms when the maximum node degree varies.
Here the maximum node degree∆ is fixed to 25. It can be
seen from the figure that our algorithm (nearly the same with
Yu et al.’s) outperforms Huanget al.’s algorithm with much
lower latencies.

C. Evaluations on TOSSIM of TinyOS 2.0.2

We implemented IAS on TOSSIM of TinyOS2.0.2. We ran-
domly deploy a number of sensor nodes in a two-dimensional
square region, all nodes have the same transmission range.
Each node will generate a random16-bits non-negative num-
ber as its own datum. The objective of the sink node is to
report the aggregation result of all data (totallyn data,n is
the network size) correctly.

In order to evaluate the efficiency of IAS, we also imple-
mented another data aggregation algorithm by combining BFS
tree and CTP (Collection Tree Protocol, which is provided by
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Fig. 5. Comparisons of worst case perfor-
mances for two methods.
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Fig. 6. Comparisons of average performances
for three methods.
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Fig. 7. Simulation results for our algorithm
and BFS+CTP.

TinyOS2.0.2) using TOSSIM. We call this method BFS+CTP
method for simplicity. The main idea of BFS+CTP method
is to construct a BFS tree rooted at the sink node based
on the link quality. In other words, during the procedure of
constructing BFS, the link quality computed by CTP will be
considered as the link weight. Notice that, the original CTP
method (components) provided in TinyOS2.0.2 is used to
collect data to the sink node. To enable CTP to support data
aggregation rather than to collect all data to the sink, we
modified CTP in the upper layer such that each node will not
send data to its parent (on the BFS tree) until it aggregates all
necessary data from all children (on the BFS tree).

We tested and compared the latencies for IAS method and
BFS+CTP method in two different cases. For the first case, we
randomly generated the network topology (connected) with
different network size (increasing from30 to 210 with step
30) while ensuring the network density unchanged,i.e., the
network deployment area increases with the increment of the
network size. Actually, by doing this, we fixed the maximum
degree∆ (In our simulation,∆ is around22) for each case,
thus the radius of communication graph increases with the
increment of network size. The delay performance of two
methods, IAS and BFS+CTP, is illustrated in Fig. 7(a) Notice
that here, the definition of delay is the time duration from
the first datum is transmitted heading for the sink node to the
sink node reports the result finally. From the Fig. 7(a), we
can see that when the network density is not big, the delay
difference between two method is not so big. In most cases,
our IAS method has better performance than that of BFS+CTP.
The radiusR for each case is indicated by the value in the
brackets right after the network size on x-coordinate.

For the second case, we fix the deployment area as (300×
300) and continue to increase the network size from50 to 200
with step30 while keeping the network connected. By doing
this, we can fix the radiusR and test the performance of both
algorithms with the increment of network density (maximum
degree∆).

As we can see from Fig. 7(b), there is a big gap between
these two methods when the density (maximum degree∆)
continues increasing. That is because the interference will be
greatly decreased after IAS gather all data to dominators.
Hence the total delay decrease significantly. However, for
BFS+CTP method, the number of relay nodes will continue
to increase with the increment of network size such that
the delay increase greatly due to the interference. From the
simulation results, we can see that in most cases, IAS has
better performance than BFS+CTP method. Especially, the
denser the network is, the more efficient our IAS algorithm is.

VII. R ELATED WORK

Data aggregation in sensor networks has been well studied
recently [2] [12] [15] [25]. In-network aggregation means
computing and transmitting partially aggregated data rather
than transmitting raw data in networks, thus reducing the
energy consumption [16].

There are a lot of existing researches on in-network aggrega-
tion in the literature [6] [17]. Suppression scheme and model-
driven methods were proposed in [5] [7] towards reducing
communication cost. The tradeoff between energy consump-
tion and time delay was considered in [25]. A heuristic algo-
rithm for both broadcast and data aggregation was designed
in [1]. Another heuristic algorithm for data aggregation was
proposed [18], aiming at reducing time delay and energy
consumption. Kesselmanet al. [13] proposed a randomized
and distributed algorithm for aggregation in WSNs with an
expected delay ofO(log n). Their method are based on
two assumptions: One is that sensor nodes can adjust their
transmission range without any limitation. The other is that
each sensor node has the capability of detecting whether a
collision occurs after transmitting data. Both assumptions pose
some challenges for hardware design and is impractical when
the network scales. A collision-free scheduling method fordata
collection is proposed in [14], aiming at optimizing energy
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consumption and reliability. All these work did not discuss
the minimal-delay aggregation scheduling problem.

In addition, the minimum delay of data aggregation problem
was provedNP -hard and a(∆− 1)-approximation algorithm
was proposed in [4], where∆ is the maximum degree of the
network graph. Another aggregation scheduling algorithm was
proposed in [11], which has a delay bound of23R + ∆ + 18,
whereR is the network radius and∆ is the maximum degree.
Recently, Wanet al. [21] proposed three novel centralized
data aggregation methods for networks when nodes have the
same transmission radius and interference radius, that achieve
schedules of latency15R + ∆− 4, 2R + O(log R) + ∆, and
(1 + O( log R

3
√

R
))R + ∆ respectively. Recently, Xuet al. [24]

studied aggregation with multiple queries in WSNs. All the
algorithms mentioned above are centralized. In many cases
centralized algorithms are not practical, especially whenthe
network topology changes often in a large sensor network.

The distributed algorithms for convergecast scheduling were
proposed in [3], [8], [13]. [8], [13] focused on the scheduling
problem for data collection in sensor networks. In data col-
lection, since data cannot be merged, the sink must receive
N packets from all the nodes, whereN is the number of
sensor nodes in the network. Thus the lower-bound of delay
is N . The upper bound of the time delay of this algorithm is
max(3nk − 1, N), wherenk is the number of nodes in the
largest one-hop-subtree. [3] proposed a distributed scheduling
algorithm generating collision-free schedules that has a delay
bound of24D + 6∆ + 16, whereD is the network diameter.

VIII. C ONCLUSIONS

Data aggregation is critical to the network performance
in WSNs and aggregation scheduling is a feasible way of
improving the quality. In this paper we study the problem
of distributed aggregation scheduling in WSNs and propose a
distributed scheduling method with an upper-bound on delay
of 16R +∆− 14 time-slots. This is a nearly constant approx-
imate algorithm which significantly reduces the aggregation
delay. The theoretical analysis and the simulation resultsshow
that our method outperforms previous methods.

In addition, we provide the overall lower-bound on delay
for data aggregation under any interference model with formal
proofs and give an example to show that the lower-bound is
(approximately) tight under the protocol interference model
whenrI = r wherer is the transmission range andrI is the
interference range. We also derive the lower-bound on delay
under the protocol interference model whenr < rI < 3r and
rI ≥ 3r.
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