
1

Compressing Network Access Control Lists∗

Alex X. Liu Eric Torng Chad R. Meiners

Department of Computer Science and Engineering

Michigan State University

East Lansing, MI 48824, U.S.A.

{alexliu, torng, meinersc}@cse.msu.edu

Abstract—An access control list (ACL) provides security for a
private network by controlling the flow of incoming and outgoing
packets. Specifically, a network policy is created in the form of a
sequence of (possibly conflicting) rules. Each packet is compared
against this ACL, and the first rule that the packet matches
defines the decision for that packet. The size of ACLs has been
increasing rapidly due to the explosive growth of Internet-based
applications and malicious attacks. This increase in size degrades
network performance and increases management complexity. In
this paper, we propose ACL Compressor, a framework that
can significantly reduce the number of rules in an access
control list while maintaining the same semantics. We make
three major contributions. First, we propose an optimal solution
using dynamic programming techniques for compressing one-
dimensional range based access control lists. Second, we present
a systematic approach for compressing multi-dimensional access
control lists. Last, we conducted extensive experiments to evaluate
ACL Compressor. In terms of effectiveness, ACL Compressor
achieves an average compression ratio of 50.22% on real-life
rule sets. In terms of efficiency, ACL runs in seconds, even for
large ACLs with thousands of rules.

Index Terms—Access Control List, Packet Classification, Fire-
wall, Algorithm.

I. INTRODUCTION

A. Background and Motivation
Access control lists (ACLs) represent a critical component

of network security. They are deployed at all points of entry

between a private network and the outside Internet to monitor

all incoming and outgoing packets. A packet can be viewed as

a tuple with a finite number of fields such as source/destination

IP addresses, source/destination port numbers, and the protocol

type. The function of an ACL is to examine every packet’s

field values and decide how to enforce the network policy.

This policy is specified as a sequence of (possibly conflicting)

rules. Each rule in an ACL has a predicate over some packet

header fields and a decision to be performed upon the packets

that match the predicate. A rule that examines d-dimensional

fields can be viewed as a d-dimensional object. Real-life

ACLs are typically 4-dimensional (over 4 packet fields: source

IP address, destination IP address, destination port number,

and protocol type) or 5-dimensional (over 5 packet fields:

source IP address, destination IP address, source port number,

destination port number, and protocol type).

When a packet comes to an ACL, the network device

searches for the first (i.e., highest priority) rule that the packet

∗The preliminary version of this paper titled “Firewall Compressor: An
Algorithm for Minimizing Firewall Policies. ” was published in the proceed-
ings of the 27th Annual IEEE Conference on Computer Communications
(INFOCOM), pages 176-180, April, c©IEEE, 2008.

matches, and executes the decision of that rule. Two ACLs

are equivalent if and only if they have the same decision for

every possible packet. Table I shows an example ACL where

the format of the four rules is based upon that used in ACLs

on Cisco routers.

Rule SIP DIP SPort DPort Proto Act

1 192.168.*.* 1.2.3.* * [4000, 5000] TCP discard

2 192.168.*.* 1.2.3.* * [0, 3999] TCP accept

3 192.168.*.* 1.2.3.* * [5001, 65535] TCP accept

4 * * * * * discard

TABLE I
AN EXAMPLE ACL

In this paper, we study a general ACL compression problem:

given an ACL f , generate another ACL f ′ that is semantically

equivalent to f but has the minimum possible number of

rules. We call this process “ACL compression”. We focus

on five versions of ACL compression that differ only in the

format of field constraints of the output ACL: (1) range ACL

compression where field constraints are specified by a range

of integers (e.g., source port ∈ [5000, 6000]), (2) prefix ACL

compression where field constraints are specified by a prefix

string (e.g., source IP = 192.168. ∗ .∗), (3) ternary ACL

compression, where field constraints are specified by a ternary

(including prefix) string (e.g., source IP = 192. ∗ .0.∗), (4)

range-prefix ACL compression where some field constraints

are specified by ranges and the remaining field constraints

are specified by prefix strings, and (5) range-ternary ACL

compression where some field constraints are specified by

ranges and the remaining field constraints are specified by

ternary strings. In most ACLs, the source port number and

destination port number fields use a range field constraint

whereas the source IP address, destination IP address, and

protocol type fields use a prefix or ternary field constraint.

We give an example that illustrates the possibilities of

ACL compression. The input ACL with five rules is depicted

in Figure 1(A). For simplicity, we assume this ACL only

examines one packet field F , the domain of F is [1, 100], and

F uses a range field constraint. The geometric representation

of this five rule ACL is given in Figure 1(a) where the predicate

of each rule is a line segment, the decision of each rule is

the color of its line segment, a packet corresponds to a point

on the line, and the decision for a packet is the color of the

first line segment that contains the point. To generate another

sequence of rules that is equivalent to the ACL in Figure 1(A)

but with the minimum number of rules, we first decompose the

five rules into non-overlapping rules as shown in Figure 1(B).

The geometric representation of these five non-overlapping

2

F ∈ [41, 60] → d1 F ∈ [41, 60] → d1 F ∈ [41, 60] → d1

F ∈ [21, 55] → d2 F ∈ [81, 100] → d3 F ∈ [21, 80] → d2

F ∈ [45, 80] → d2 F ∈ [21, 40] → d2 F ∈ [1, 100] → d3

F ∈ [1, 65] → d3 F ∈ [61, 80] → d2

F ∈ [75, 100] → d3 F ∈ [1, 20] → d3

(A) (B) (C)
decompose rescheduling

(a) (b) (c)
Fig. 1. Example Minimization of an ACL

rules is in Figure 1(b). We now reschedule the intervals to

generate a shorter semantically equivalent ACL as follows.

We first schedule the interval [41, 60]. This allows us to

schedule the two intervals [21, 40] and [61, 80] together using

one interval [21, 80] based on first-match semantics. Finally,

we can schedule intervals [1, 20] and [81, 100] together using

one interval [1, 100] again based on first-match semantics. The

three ACLs in Figures 1(A), 1(B) and 1(C) are equivalent, but

the rightmost ACL has fewer rules.

Our work on ACL compression has two important motiva-

tions. First, ACL compression is useful for network system

management and optimization because minimizing large ACL

rule sets greatly reduces the complexity of managing and

optimizing network configurations. As a result, ACL com-

pression tools in general and our ACL compression tool in

particular have been used or proposed for use in several

prominent network management and optimization projects,

such as Yu et al.’s DIFANE work [18] and Sung et al.’s work

on systematic design of enterprise networks [16], [17]. Second,

some network products have hard constraints on the number

of rules that they support. For example, NetScreen-100 only

allows ACLs with at most 733 rules. ACL compression may

allow users with larger ACLs to still use such devices. This

may become an increasingly important issue for many users

as ACL size has grown dramatically due to an increase in

Internet applications and services as well as an increase in

known vulnerabilities, threats, and attacks [2]. For example,

our older ACLs have at most 660 rules whereas the ACLs we

have more recently acquired have as many as 7652 rules.

B. Summary and Limitations of Prior Art
The main limitation of prior work is, to the best of our

knowledge, the lack of work on two key ACL compression

problems. First, no prior work has considered range ACL

compression for more than two dimensions, and we are aware

of only one paper that has considered range ACL compression

for two dimensions [1]. Second, no prior work has considered

ACL compression where different fields use different field

constraints. There is prior work that considers prefix ACL

compression [2], [1], [12] and ternary ACL compression [11],

[13], but none of these algorithms can be directly used to

compress ACLs where different fields have different field

constraints.

C. Our Approach
We use a divide-and-conquer approach where we first

decompose a multi-dimensional ACL into a hierarchy of one-

dimensional ACLs using decision diagrams. We minimize each

Fig. 2. Converting a schedule to a canonical schedule

Fig. 3. Swapping two adjacent intervals

one-dimensional ACL using appropriate ACL compression

algorithms. For one-dimensional range and prefix ACLs, we

achieve optimal compression. Finally we combine the many

one-dimensional ACL compression solutions into one multi-

dimensional solution to the original multi-dimensional ACL

minimization problem. Our approach has two key features.

First, the hierarchical representation of ACLs is canonical.

That is, two semantically equivalent ACLs will have the same

hierarchical representation no matter how they are specified.

Thus, our approach eliminates variance due to human factors

in the design of given ACLs. Second, our approach allows

range, prefix, and ternary fields to be optimized independently

using customized algorithms because it deals with one field at

a time. We name our approach “ACL Compressor”.

D. Key Contributions
In this paper, we make three key contributions: (1) We

propose an optimal algorithm for the one-dimensional range

ACL compression problem. This algorithm uses dynamic

programming techniques. (2) We present a systematic and

efficient framework for generating good solutions to the NP-

hard multi-dimensional range, range-prefix, and range-ternary

ACL compression problems. Our framework combines the

locally optimized one-dimensional solutions into a good but

not necessarily optimal multi-dimensional solution. (3) We

conducted extensive experiments on both real-life and syn-

thetic ACLs. The results show that ACL Compressor achieves

an average compression ratio of 50.22% on real-life range-

prefix ACLs.

ACL Compressor is designed to run off-line so that network

managers do not need to read or manage the compressed

ACL. Instead, network managers can continue to design and

maintain an intuitive and understandable ACL f while using

ACL Compressor to generate and deploy a minimal yet

semantically equivalent ACL f ′ on their network device.

The rest of the paper proceeds as follows. In Section II,

we describe optimal solutions using dynamic programming

techniques to two weighted one-dimensional ACL compres-

sion problems. In Section III, we give a solution to the multi-

dimensional ACL compression problem. We show experimen-

tal results in Section IV. We give concluding remarks in

Section V. The digital supplemental material of this paper

include all the proofs for the lemmas and theorems in this

paper, the pseudocode for some algorithms in this paper, and

detailed review of related work.

II. ONE-DIMENSIONAL ACL COMPRESSION

We focus primarily on the weighted one-dimensional range

ACL compression problem. We briefly discuss the weighted

3

one-dimensional prefix and ternary ACL compression prob-

lems. For range and prefix ACL compression problems, we

present optimal algorithms that use dynamic programming. For

ternary ACL compression, we present a bit merging heuristic.

We use these algorithms for one-dimensional ACLs as building

blocks in our multi-dimensional ACL Compressor framework,

which we describe in our next section. Table II lists the

notations used throughout this paper.

Symbol Description

Fi field i
D(Fi) domain of Fi

d # of dimensions
b # of bits
Σ set of all packets
f an ACL
p packet

f(p) decision of f on p
{f} set of all ACLs

equivalent to f
P prefix
fP ACL equivalent to

f on P
δ serialization

mapping function
U universe of tasks
C set of colors

Symbol Description

X cost vector of colors
c(i) color of task i

|c(i)| number of tasks
with color i

S(I) ACL schedule
for input
I = (U,C,X)

di decision i
wdi

cost of decision i
C(fP) minimum cost of an

ACL equivalent to
fP

C(fdi
P

) minimum cost of
an ACL equivalent
to fP whose last
rule’s decision is di

TABLE II
NOTATIONS USED IN THIS PAPER

A. One-dimensional Range ACL Compression
The weighted one-dimensional range ACL compression

problem is the fundamental problem for compressing range-

based domains such as port number ranges. We solve this

problem by mapping an ACL to a scheduling problem via

two processes: decomposition and serialization. Once the

ACL is rewritten as a scheduling problem, we use dynamic

programming to find the optimal schedule from which we

compute a minimum ACL.

1) ACL Decomposition and Serialization: In a non-

overlapping one-dimensional range based ACL, for any two

rules, say F ∈ [a, b] → dx and F ∈ [c, d] → dy , if they have

the same decision (i.e., dx = dy) and the two intervals [a, b]
and [c, d] are contiguous (i.e., b+1 = c or d+1 = a), then the

two rules can be merged into one rule (i.e., F ∈ [a, d] → dx
if b + 1 = c, and F ∈ [c, b] → dx if d + 1 = a). A non-

overlapping one-dimensional range ACL is called canonical

if and only if no two rules in the ACL can be merged into

one rule. For example, Figure 1(B) shows a canonical ACL

that is equivalent to the ACL in Figure 1(A).

Given a (possibly overlapping) one-dimensional range ACL

f , we first convert it to an equivalent canonical ACL f ′. It is

easy to prove that |f ′| ≤ 2× |f | − 1.

We then serialize the canonical ACL f ′ using the following

two steps: (1) sort all the intervals in an increasing order,

(2) replace the i-th interval with the integer i for every i. The

resulting ACL f ′′ is called a serialized ACL. For any two non-

overlapping intervals [a, b] and [c, d], if b < c, then we say the

interval [a, b] is less than the interval [c, d]. This serialization

procedure creates a one-to-one mapping δ from the intervals

in a canonical ACL to those in its serialized version while

keeping the relations between intervals unchanged. In other

words, two intervals S and S′ are contiguous if and only if

δ(S) and δ(S′) are contiguous.

Next, we discuss how to compress the number of rules in

the serialized ACL f ′′. Given the one-to-one mapping between

f ′′ and f ′, an optimal solution for f ′′ can be directly mapped

to an optimal solution for f ′. We formulate the weighted one-

dimensional range compression problem as the following ACL

scheduling problem.

2) The ACL Scheduling Problem: In the ACL scheduling

problem, the input consists of a universe of tasks to be

executed where each task has a color and a cost. More

formally:

• Let U = {1, 2, . . . , n} be the universe of tasks to be

executed. Each task i in U has a color. For any i (1 ≤
i ≤ n− 1), task i and i+ 1 have different colors.

• Let C = {1, 2, · · · , z} be the set of z different colors that

the n tasks in U exhibit, and for 1 ≤ j ≤ z, let |j| denote

the number of tasks with color j.

• Let X = {x1, . . . xz} be the cost vector where it costs

xj to execute any task that has color j for 1 ≤ j ≤ z.

Then an input instance to the ACL scheduling problem is I =
(U,C,X). We use c(i) to denote the color of task i. It follows

that the number of tasks with color c(i) is |c(i)|.
Intuitively, U represents a serialized ACL where each task

in U represents a rule in the ACL and the color of the task

represents the decision of the rule. In the one-dimensional

ACL compression problem, the cost of every task is 1; that

is, we assign the value 1 to every xj (1 ≤ j ≤ z). We

consider the weighted one-dimensional range compression

problem because its solution can be used as a routine in solving

the multi-dimensional ACL range compression problem.

For any ACL scheduling input instance I = (U,C,X), an

ACL schedule S(I) = 〈r1, . . . , rm〉 is an ordered list of m

intervals. An interval ri = [pi, qi] where 1 ≤ pi ≤ qi ≤ n is

the set of consecutive tasks from pi to qi.

In an ACL schedule, a task is fired (i.e. executed) in the first

interval that it appears in. More formally, the set of tasks fired

in interval ri of schedule S(I) is f(ri, S(I)) = ri −
⋃i−1

j=1 rj .

We call f(ri, S(I)) the core of interval ri in S(I).
A schedule S(I) of m intervals is a legal schedule for I if

and only if the following two conditions are satisfied.

1) For each interval 1 ≤ i ≤ m, all the tasks fired in

interval i have the same color.

2) All tasks in U are fired by some interval in S; that is,
⋃m

i=1 f(ri, S(I)) = U .

The cost of interval ri in legal schedule S(I), denoted

x(ri, S(I)), is the cost xj where j is the color that all the

tasks in fi exhibit. If fi = ∅, we set x(ri, S(I)) = 0. To

simplify notation, we will often use fi to denote f(ri, S(I))
and x(ri) to denote x(ri, S(I)) when there is no ambiguity.

The cost of a schedule S(I), denoted C(S(I)), is the sum

of the cost of every interval in S(I); that is, C(S(I)) =
∑m

i=1 x(ri, S(I)). The goal is to find a legal schedule S(I)
that minimizes C(S(I)).

3) An Optimal Solution: For any input instance I , we give

an optimal solution using dynamic programming techniques.

We start by making several basic observations to simplify the

problem. The first observation is to define the notion of a

canonical schedule.

4

Definition 2.1 (Canonical Schedule): For any input in-

stance I = (U,C,X), a legal schedule S(I) = {r1, . . . , rm}
is a canonical schedule if for each interval ri = [pi, qi],
1 ≤ i ≤ m, it holds that pi ∈ fi and qi ∈ fi.

We then observe that for any schedule including an optimal

schedule, there exists an equivalent canonical schedule that has

the same cost. For example, Figure 2 depicts two equivalent

schedules with identical costs where the one on the right is

canonical. This allows us to consider only canonical schedules

for the remainder of this section.

Lemma 2.2: For any input instance I , for any legal schedule

S(I) with m intervals, there exists a canonical schedule S′(I)
with at most m intervals and with C(S′(I)) = C(S(I)).

We next observe that for any canonical schedule S, swap-

ping two adjacent intervals that do not overlap results in a

canonical schedule with the same cost. Figure 3 illustrates

this observation for an example canonical schedule.

Lemma 2.3: For any input instance I , for any canonical

schedule S(I) containing two consecutive intervals ri =
[pi, qi] and ri+1 = [pi+1, qi+1] where [pi, qi]∩[pi+1, qi+1] = ∅,

the schedule S′(I) that is identical to schedule S(I) except

interval r′i = ri+1 = [pi+1, qi+1] and interval r′i+1 = ri =
[pi, qi] is also a canonical schedule. Furthermore, C(S′(I)) =
C(S(I)). 2

For any input instance I , we say that a schedule S(I)
is 1-canonical if it is canonical and task 1 is fired in the

last interval of S(I). A key insight is that for any canonical

schedule including an optimal canonical schedule, there exists

an equivalent 1-canonical schedule that has the same cost. This

implies that for any input instance I , there exists an optimal

1-canonical schedule.

Lemma 2.4: For any input instance I and any canonical

schedule S(I) with m intervals, we can create a 1-canonical

schedule S′(I) with m intervals such that C(S′(I)) =
C(S(I)).

Let k be the number of tasks with the same color as task

1 including task 1 itself. Given Lemma 2.4 and the definition

of canonical schedules, there are k possibilities for the final

interval rm = (1, qm) in an optimal 1-canonical schedule

S(I). The right endpoint qm must be one of the k tasks that

has the same color as task 1.

We next observe that in any canonical schedule S(I), each

interval imposes some structure on all the previous intervals

in S(I). For example, the last interval rm of any canonical

schedule S(I) partitions all previous intervals to have both

endpoints lie strictly between consecutive elements of fm, to

the left of all elements of fm, or to the right of all elements

of fm.

Lemma 2.5: For any input instance I , any canonical sched-

ule S(I), any interval ri = [pi, qi] ∈ S(I), consider any task

t ∈ fi. For any 1 ≤ j ≤ i− 1, let rj = [pj , qj]. It must be the

case that either t < pj or qj < t.

Given input instance I = (U,C,X) with |U | = n, we define

the following notations for 1 ≤ i ≤ j ≤ n:

• I(i, j) denotes an input instance with a universe of tasks

{i, . . . , j} and a set of colors that are updated to reflect

having only these tasks and a set of costs that are updated

to reflect having only these tasks.

• Opt(I(i, j)) denotes an optimal 1-canonical schedule for

I(i, j).
• C(i, j) denotes the cost of Opt(I(i, j)).

Given that there exists an optimal 1-canonical schedule for

any input instance, we derive the following Lemma.

Lemma 2.6: Given any input instance I = (U,C,X) with

|U | = n and an optimal 1-canonical schedule Opt(I(1, n)).

1) If task 1 is the only task fired in the last interval of

Opt(I(1, n)), then the schedule Opt(I(2, n)) concate-

nated with the interval [1, 1] is also an optimal canonical

schedule for I(1, n), and C(1, n) = xc(1) + C(2, n).
2) Suppose task 1 is not the only task fired in the last

interval of Opt(I(1, n)). Let t′ be the smallest task

larger than 1 fired in the last interval of Opt(I(1, n)).
Then the schedule Opt(I(2, t′ − 1)) concatenated with

the schedule Opt(I(t′, n)) where the last interval of

Opt(I(t′, n)) is extended to include task 1 is also an

optimal canonical schedule for I(1, n), and C(1, n) =
C(2, t′ − 1) + C(t′, n).

Based on the above observations, we formulate our dynamic

programming solution to the ACL scheduling problem. For

1 ≤ j ≤ z, we use Gj to denote the set of all the tasks that

have color j. Recall that we use c(i) to denote the color of

task i (1 ≤ i ≤ n). Therefore, for 1 ≤ i ≤ n, Gc(i) denotes

the set of all the tasks that have the same color as task i.

Theorem 2.7: C(i, j) can be computed by the following

recurrence relation.

For 1 ≤ i ≤ n, C(i, i) = xc(i).

For 1 ≤ i < j ≤ n, C(i, j) = min(xc(i) + C(i +
1, j),minl∈Gc(i)∧i+2≤l≤j(C(i + 1, l− 1) + C(l, j))).

B. One-dimensional Prefix ACL Compression
In [12], we proposed a polynomial time optimal algorithm

for the weighted one-dimensional prefix ACL compression

problem using dynamic programming. This algorithm is based

on three observations. First, the last rule of f can always have

its predicate changed to a default predicate. This change is

possible because f is complete and therefore extending the

range of the last rule interval cannot change the semantics

of f . Second, we can append an additional default rule to

f without changing the semantics of the resulting ACL.

Third, the structure imposed by the prefix rules provides an

efficient mechanism to divide the problem space into isolated

subproblems. For example given a prefix domain of ****

we only have to consider two cases: ****, or 0***, and

1***. The dynamic programming solution subdivides f along

prefix boundaries until each prefix contains only a single

decision. These adjacent prefixes are combined onto a minimal

prefix rule list that covers both prefixes. This process is

repeated until we are left with a single prefix and classifier.

These observations lead to a the completely different dynamic

programming formulation [9]:

Theorem 2.8: Given a one-dimensional packet classifier f

on {∗}b, a prefix P where P ⊆ {∗}b, the set of all possible

decisions {d1, d2, · · · , dz} where each decision di has a cost

wdi
(1 ≤ i ≤ z), we have that

C(fP) =
z

min
i=1

C(fdi

P)

5

where each C(fdi

P) is calculated as follows:

(1) If f has a single decision on P , then

C(fdi
P
) =

{

wf(x) if f(x) = di ∀x ∈ P
wf(x) + wdi if f(x) 6= di ∀x ∈ P

(2) If f does not have single decison on P , then

C(fdi
P
) = min







































C(fd1
P

) +C(fd1

P
)− wd1 + wdi ,

. . . ,

C(f
di−1

P
) + C(f

di−1

P
)−wdi−1 + wdi ,

C(fdi
P
) +C(fdi

P
)− wdi ,

C(f
di+1

P
) + C(f

di+1

P
)− wdi+1 + wdi ,

. . . ,

C(fdz
P

) + C(fdz

P
)− wda + wdi

where fdi

P is a classifier f on prefix P with a background

decision di. 2

C. One-dimensional Ternary ACL Compression
We address the NP-hard weighted one-dimensional ternary

ACL compression problem by first producing an optimal

weighted prefix ACL and then applying bit merging [13] to

further compress the prefix ACL. We use bit merging rather

than McGeer and Yalagandula’s heuristics [11] since we need

to handle more than two decisions. This algorithm is not

guaranteed to produce an optimal weighted one-dimensional

ternary ACL.

III. MULTI-DIMENSIONAL ACL COMPRESSION

In this section, we present ACL Compressor, our framework

for compressing multi-dimensional ACLs. Similar to [12], we

take a divide-and-conquer approach to this multi-dimensional

problem. First, we decompose a multi-dimensional ACL into a

hierarchy of one-dimensional ACLs using decision diagrams.

Second, for one-dimensional range ACLs, we use our optimal

weighted one-dimensional range ACL optimization algorithm;

for one-dimensional prefix ACLs, we use the optimal weighted

one-dimensional prefix ACL optimization algorithm in [12];

for one-dimensional ternary ACLs, we use the same prefix

ACL optimization algorithm followed by bit merging [12].

Third, we combine the multiple one-dimensional solutions

into one multi-dimensional solution to the original multi-

dimensional ACL minimization problem. Note that the multi-

dimensional solution is not guaranteed to produce a minimal

classifier. In this section, we assume we are dealing with a

range-prefix ACL compression problem. We handle range-

ternary ACL compression by simply running bit merging after

optimal one-dimensional prefix ACL compression.

A. ACL Decomposition
To leverage our one-dimensional ACL optimization algo-

rithms, we first decompose the given multi-dimensional ACL

into a hierarchy of one-dimensional ACLs by converting

the given ACL to a canonical representation called Firewall

Decision Diagram (FDD), which was introduced by Liu and

Gouda in [5], [4]. At a fundamental level, a d-dimensional

FDD is an annotated acyclic directed graph with d levels of

nodes. Each node in an FDD can be viewed as a smaller

FDD. For example, a d-dimensional FDD is composed of

labeled edges from a root node that connect to several (d−1)-
dimensional FDDs. This hierarchical view of ACLs facilitates

sophisticated optimization techniques such as identification

and reuse of critical low dimensional ACLs. Using a canonical

FDD representation, our approach is insensitive to the input

ACL syntax because any two semantically equivalent ACLs

will result in the same FDD after reduction. This key feature

of our algorithm eliminates variance due to human factors in

specifying ACLs.

We now formally describe FDD’s using a description from

[7]. “An (FDD) with a decision set DS and over fields

F1, · · · , Fd is an acyclic and directed graph that has the

following properties: (1) There is exactly one node that has

no incoming edges. This node is called the root. The nodes

that have no outgoing edges are called terminal nodes. (2)

Each node v has a label, denoted F (v), such that F (v) ∈
{F1, · · · , Fd} if v is a nonterminal node and F (v) ∈ DS if

v is a terminal node. (3) Each edge e:u → v is labeled with

a nonempty set of integers, denoted I(e), where I(e) is a

subset of the domain of u’s label (i.e., I(e) ⊆ D(F (u))). (4)

A directed path from the root to a terminal node is called a

decision path. No two nodes on a decision path have the same

label. (5) The set of all outgoing edges of a node v, denoted

E(v), satisfies the following two conditions: (i) Consistency:

I(e) ∩ I(e′) = ∅ for any two distinct edges e and e′ in E(v).
(ii) Completeness:

⋃

e∈E(v) I(e) = D(F (v)).”
Given an ACL such as the one shown in Figure 4, we

convert it to an equivalent FDD using the FDD construction

algorithm in [7]. Figure 5 shows an example FDD over the two

fields F1 and F2 where D(F1) = [0, 10] and D(F2) = [0, 15].
We use letter “a” as a shorthand for “accept” and letter “d” as

a shorthand for “discard” when labeling the terminal nodes.

We next perform FDD reduction where we identify and

eliminate redundant or isomorphic low dimensional ACLs that

may be reused multiple times within a high dimensional ACL.

Two nodes v and v′ in an FDD are isomorphic if and only

if v and v′ satisfy one of the following two conditions: (1)

both v and v′ are terminal nodes with identical labels; (2)

both v and v′ are nonterminal nodes and there is a one-to-

one correspondence between the outgoing edges of v and the

outgoing edges of v′ such that every pair of corresponding

edges have identical labels and they both point to the same

node. A reduced FDD is an FDD with no redundant nodes.

The core operation in FDD reduction is to identify iso-

morphic nodes, which can be sped up using signatures as

follows. At each level, first compute a signature for each node

at that level. For a terminal node v, set v’s signature to be

its label. For a non-terminal node v, we assume we have

the k children v1, v2, · · · , vk, in increasing order of signature

(Sig(vi) < Sig(vi+1) for 1 ≤ i ≤ k−1), and the edge between

v and its child vi is labeled with a sequence of non-overlapping

intervals in increasing order Ei. Set the signature of node v as

follows: Sig(v) = h(Sig(v1), E1, · · · , Sig(vk), Ek) where h is

a one-way and collision resistant hash function such as MD5

[14] and SHA-1 [3]. After we have assigned signatures to all

nodes at a given level, we check for redundancy as follows.

For every pair of nodes vi and vj (1 ≤ i 6= j ≤ k) at this

level, if Sig(vi) 6= Sig(vj), then we can conclude that vi and

vj are not isomorphic; otherwise, we explicitly determine if vi
and vj are isomorphic. If vi and vj are isomorphic, we delete

node vj and its outgoing edges, and redirect all the edges that

6

F1 F2 Decision

1 [0,2] 11** discard

2 [0,2] **** accept

3 [5,6] 0*** accept

4 [5,6] 10** accept

5 [5,6] **** discard

6 [0,10] **** discard

Fig. 4. Input ACL

Fig. 5. An FDD

Fig. 6. “Virtual” one-dimensional
ACL

F1 F2 Decision

1 [3,4] **** discard

2 [7,10] **** discard

3 [0,10] 11** discard

4 [0,10] **** accept

Fig. 7. Compressed output ACL

point to vj to point to vi. Further, we eliminate double edges

between node vi and its parents. Note that we process nodes

in the FDD level by level from the terminal node level to the

root node level.

B. Computing the Compressed ACL
Next, we present the core algorithm for compressing multi-

dimensional ACLs using the FDD in Figure 5 as a running

example. We observe that v1, v2, and v3 can be seen as one-

dimensional ACLs over their respective fields. We compute

a compressed multi-dimensional ACL by first applying the

appropriate one-dimensional ACL compression algorithm to

each node’s ACL and then composing their compressed ACLs

into a multi-dimensional ACL. For example, for the FDD in

Figure 5, for F1 nodes, we use our weighted one-dimensional

range ACL compression algorithm, and for F2 nodes, we

use the weighted one-dimensional prefix ACL compression

algorithm.

Given an FDD, we start generating one-dimensional ACLs

from the bottom nodes. For each node, we first create an ACL

of non-overlapping rules from the node’s outgoing edges. For

example, in Figure 5, we start with v2 and v3. The ACLs for v2
and v3 before compression are listed in Table III. Given these

two prefix ACLs, we apply the weighted one-dimensional

prefix ACL compression algorithm, which produces the two

minimal prefix ACLs in Figure 6.

v2
F2 Decision Cost

1 0*** accept 1

2 10** accept 1

3 11** deny 1

v3
F2 Decision Cost

1 **** deny 1

TABLE III
ACLS FOR v2 AND v3 BEFORE COMPRESSION

Now consider the root node in Figure 5. Treating the two

minimal ACLs computed for v1 and v2 as terminal nodes,

Figure 6 shows a one-dimensional FDD rooted at v1. The

corresponding input instance is given in Table IV. We now

explain the costs that we assigned to decisions v2 and v3.

Given a one-dimensional FDD for v1, we can use the ACLs

generated for v1’s children to form a two-dimensional ACL.

For example, using the ACL for v1 in Table IV, we expand

rule 1 into two rules by prepending rule 1’s F1 field to

both rules in v2’s ACL. Likewise, rule 2 is converted into

a single rule that is derived from v3’s ACL. To account for

this expansion, we assign the cost for decision vi to be the

total number of rules in vi’s ACL after compression. For this

example, v2 has cost 2 and v3 has cost 1. We use these costs

to produce a minimal table upon ACL composition. For this

example, after applying our weighted one-dimensional range

ACL compression algorithm on the ACL in Table IV, we

get the minimal one-dimensional ACL in Table V. Finally,

composing this ACL with the minimal ACLs for v2 and v3 in

Figure 5, we get the final multi-dimensional ACL in Figure 7.

v1
F1 Decision Cost

1 [0,2] v2 2

2 [3,4] v3 1

3 [5,6] v2 2

4 [7,10] v3 1

TABLE IV
ONE-DIMENSIONAL ACL FOR v1

BEFORE COMPRESSION

v1
F1 Decision Cost

1 [3,4] v3 1

4 [7,10] v3 1

3 [0,10] v2 2

TABLE V
ONE-DIMENSIONAL ACL FOR v1

AFTER COMPRESSION

To summarize, in this step, we compute a compressed multi-

dimensional ACL from a reduced FDD in the following bottom

up fashion. For each terminal node of the FDD, we generate

a (non-overlapping) ACL from the labels of v’s outgoing

edges, assign a cost of 1 to each decision, and finally apply

the appropriate weighted one-dimensional ACL compression

algorithm to compress the ACL. For each non-terminal node

v, we generate a (non-overlapping) ACL from the labels of

v’s outgoing edges where each decision is a node pointed

to by an outgoing edge of v, assign a cost to each decision

where the cost is the number of rules in the compressed ACL

for the corresponding node, apply the appropriate weighted

one-dimensional ACL compression algorithm to compress

the ACL, and finally compose the resulting one-dimensional

compressed ACL with the compressed ACLs of v’s children

to form a multi-dimensional ACL.

C. Redundancy Removal
We observe that ACL composition can produce ACLs with

redundant rules. We are fortunate that the ACL in Figure 7 is

optimal and therefore contains no redundant rules; however, as

a postprocessing step, we run a redundancy removal algorithm

[10], [8] on the resultant ACL. Note that it is also possible to

run redundancy removal on each non-terminal node’s ACL. In

some cases, this results in a more accurate cost value for each

node and can lead to smaller ACLs.

D. Rule Logging
Devices that use ACLs commonly provide facilities to log

matches against specific rules. However, ACL Compressor

generates a new set of rules which conflicts with logging. We

propose preserving logging information by assigning a unique

decision to each rule that has logging enabled. The unique

decision ensures that the logged rule cannot be merged with

any other rule and thus ensures the correct logging behavior.

For example, suppose the rules F ∈ [21, 55] → d2 and

F ∈ [48, 80] → d2 in Figure 1 have logging enabled. ACL

compressor then redefines these rules to be F ∈ [21, 55] → d′2
and F ∈ [48, 80] → d′′2 . After optimization we will have

four rules F ∈ [41, 60] → d1, F ∈ [21, 40] → d′2,

F ∈ [61, 80] → d′′2 , and F ∈ [1, 100] → d3.

7

As the percentage of logged rules increases, the effec-

tiveness of ACL Compressor decreases as fewer rules have

common decisions and thus fewer rules can be combined

together. In extreme cases where most rules are logged, few

rules will have common decisions, and we do not recommend

running ACL Compressor because the large number of rules

with unique decisions makes the rule list uncompressable.

We can still reduce the number of rules by removing upward

redundant rules via the process described in [6]. An upward

redundant rule is a rule that is redundant and will never match

any packets because all packets that match the rule also match

earlier rules in the ACL.

IV. EXPERIMENTAL RESULTS

We now evaluate the effectiveness and efficiency of ACL

Compressor on both real-life and synthetic ACLs.

A. Methodology

a) Measurement Metrics: We first define the metrics that

we used to measure the effectiveness of ACL Compressor. In

this paragraph, f denotes an ACL, S denotes a set of ACLs,

and AC denotes ACL Compressor. The variable order that

we use to convert an ACL into an equivalent FDD affects

the performance of ACL Compressor. We number the five

packet fields as follows: protocol type = 0, source IP address

= 1, destination IP address = 2, source port number = 3,

and destination port number = 4. We represent the 5! = 120
different permutations of the five packet fields with these num-

bers. For example, permutation 01342 corresponds to (protocol

type, source IP address, source port number, destination port

number, destination IP address). For any permutation p, we

use ACp to denote ACL Compressor using permutation p

and ACp(f) denotes the ACL produced by applying ACL

Compressor with permutation p on f . For a given classifier

f , we use ACBest to denote ACL Compressor using the best

of the 120 variable orders for f . For a set of classifiers S,

we again use ACBest to denote ACL compressor using the

best of the 120 variable orders for each classifier f ∈ S

where different classifiers may use different variable orders.

We define the compression ratio of ACp on f as
|ACp(f)|

|f | . We

define the following two metrics for assessing the performance

of AC on a set of ACLs S.

• The average compression ratio =
Σf∈S

|ACp(f)|

|f|

|S| .

• The total compression ratio =
Σf∈S |ACp(f)|

Σf∈S |f | .

Within our experiments, we use two sets of ACLs which we

describe below. We always treat the source and destination

port fields as range fields. We create three separate treatments

where we view the source IP, destination IP, and protocol fields

as range fields, prefix fields, and ternary fields, respectively.

We thus report results for range ACL compression, range-

prefix ACL compression, and range-ternary ACL compression.

b) Real-life ACLs: We first define a set RL of 40 real-

life ACLs from a set of 65 real-life ACLs that we performed

experiments on. RL is chosen from a larger set of real-life

ACLs obtained from various network service providers where

the ACLs range in size from dozens to thousands of rules. We

eliminated structurally similar ACLs from RL because similar

ACLs exhibited similar results for each method. Structurally

similar ACLs have identical rule structure and differ only in the

range or prefix values in the given predicates. ACL compressor

will produce the same number of rules for these structurally

similar ACLs so we eliminate structurally similar ACLs to

prevent biasing both the average and total compression ratios.

We created RL by randomly choosing a single ACL from each

set of structurally similar ACLs.

c) Synthetic ACLs: Because ACLs are considered confi-

dential due to security concerns, it is difficult to acquire a large

sample of real-life ACLs. To address this issue and further

evaluate the performance of ACL Compressor, we generated

SY N , a set of synthetic ACLs of 7 sizes, where each size has

25 independently generated ACLs. Every predicate of a rule

in our synthetic ACLs has five fields: source IP, destination

IP, source port, destination port, and protocol. We based our

generation method upon Rovniagin and Wool’s [15] model of

synthetic rules.

B. Effectiveness

We now assess the effectiveness of ACL Compressor. Be-

cause ACL Compressor is generally run offline, we assume

that network administrators will typically try all 120 differ-

ent permutations to generate the best possible compression.

For the range, range-prefix, and range-ternary compression

problems on RL, ACBest achieves average compression ratios

of 44.87%, 50.22%, and 42.26% with standard deviations of

22.82%, 22.40%, and 20.65%, respectively, and total com-

pression ratios of 41.77%, 53.12%, and 38.99%. In Figure 8,

we show the cumulative percentage graph for the range-prefix

compression ratio of ACBest for each classifier in RL.

We now assess how much impact variable order has on

the effectiveness of ACL Compressor and whether or not one

variable order performs well for most classifiers. For each

permutation p, we computed the average and total range-prefix

compression ratios that ACp achieves on RL and display the

cumulative percentage graphs of these values in Figures 9 and

10, respectively. For all variable orders, the average range-

prefix compression ratios achieved by ACL Compressor fall

in the range between 56.88% and 71.40%, and the total com-

pression ratios achieved by ACL Compressor fall in the range

between 59.32% and 83.41%. From these figures, we see that

variable order does significantly influence the effectiveness of

ACL Compressor but also that many of the variable orders are

very effective.

As we noted earlier, since ACL Compressor runs offline

and is efficient, we assume network managers will try all

120 permutations. If time does not permit, we suggest using

permutation 01342 as it achieved the lowest range-prefix

average compression ratio of 56.93% with a standard deviation

of 24.15% on RL, and it achieved a total compression ratio

of 59.32%. In Figure 8, we show the cumulative percentage

graph for the range-prefix compression ratio of AC01342 for

each classifier in RL.

ACL Compressor works very well on Rovniagin and Wool’s

model of synthetic rules with average and total range-prefix

8

0 20 40 60 80 100
Percentage of Classifiers

0

20

40

60

80

100

C
o
m

p
re

ss
io

n
 R

a
ti

o
 %

Best

01342

Fig. 8. CPG of range-prefix compression ratios
for ACBest and AC01342 for RL

0 20 40 60 80 100
Percentage of Permutations

56
58
60
62
64
66
68
70
72

A
v
g
.

C
o
m

p
re

ss
io

n
 R

a
ti

o
 %

Fig. 9. CPG of range-prefix average compres-
sion ratios for ACp for RL

0 20 40 60 80 100
Percentage of Permutations

55

60

65

70

75

80

85

T
o
ta

l
C

o
m

p
re

ss
io

n
 R

a
ti

o
 %

Fig. 10. CPG of range-prefix total compression
ratios for ACp for RL

0 20 40 60 80 100
Percentage of Classifiers

0
5

10
15
20
25
30
35

C
o
m

p
re

ss
io

n
 R

a
ti

o
 %

Best

01342

Fig. 11. CPG of range-prefix compression
ratios for ACBest for SY N

Fig. 12. Execution time per FDD node accord-
ing to FDD size for RL and p = 01342.

Fig. 13. Execution time per FDD node accord-
ing to FDD size for SY N and p = 01342.

compression ratios on SY N of 2.99% and 14.04%, respec-

tively. Figure 11 shows the cumulative percentage graphs of

range-prefix compression ratios achieved by AC(01342) over

SY N . From this figure we can see that 90% of the classifiers

compress to at most a tenth of their original size.

C. Efficiency

We implemented all algorithms on Microsoft .Net frame-

work 2.0. Our experiments were carried out on a desktop

PC running Windows XP with 1G memory and a single 2.2
GHz AMD Opteron 148 processor. ACL Compressor is quite

efficient taking at most a few minutes to compress any of

our real life classifiers from RL. We observe that although

ACL compressor does take more time as classifiers become

more complex, it is still relatively efficient with essentially

a quadratic running time in classifier complexity where we

estimate classifier complexity by the total number of FDD

nodes required to represent the classifier. We observe that the

average amount of time that ACL compressor spends per FDD

node increases in roughly a linear fashion with the classifier

complexity as measured by the total number of FDD nodes.

Specifically, Figure 12 shows a scatter plot of the the average

amount of time ACL Compressor spends per FDD node versus

the total number of FDD nodes required to represent the same

classifier where each point in Figure 12 is a classifier in RL.

We observe similar trends for synthetic classifiers as can be

seen from a similar scatter plot in Figure 13.

V. CONCLUSIONS
In this paper, we present ACL Compressor, a framework for

compressing ACLs and make three major contributions. First,

we give an optimal algorithm for the one-dimensional range

ACL compression problem. Second, we present a systematic

solution for compressing multi-dimensional ACLs with mixed

field constraints. Third, we conducted extensive experiments

on both real-life and synthetic ACLs. Our experimental results

show that ACL Compressor achieves an average compression

ratio of 56.93% for range-prefix ACLs.

REFERENCES

[1] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett,
and J. Wang. Compressing rectilinear pictures and minimizing access
control lists. In Proc. ACM-SIAM Symposium on Discrete Algorithms

(SODA), January 2007.
[2] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla. Packet

classifiers in ternary CAMs can be smaller. In Proc. ACM Sigmetrics,
pages 311–322, 2006.

[3] D. Eastlake and P. Jones. Us secure hash algorithm 1 (sha1). RFC 3174,
2001.

[4] M. G. Gouda and A. X. Liu. Firewall design: consistency, completeness
and compactness. In Proc. 24th IEEE Int. Conf. on Distributed

Computing Systems (ICDCS-04), pages 320–327, March 2004.
[5] M. G. Gouda and A. X. Liu. Structured firewall design. Computer

Networks Journal (Elsevier), 51(4):1106–1120, March 2007.
[6] A. X. Liu and M. G. Gouda. Complete redundancy detection in firewalls.

In Proc. 19th Annual IFIP Conf. on Data and Applications Security,

LNCS 3654, pages 196–209, August 2005.
[7] A. X. Liu and M. G. Gouda. Diverse firewall design. IEEE Transactions

on Parallel and Distributed Systems (TPDS), 19(8), 2008.
[8] A. X. Liu and M. G. Gouda. Complete redundancy removal for packet

classifiers in tcams. IEEE Transactions on Parallel and Distributed

Systems (TPDS), to appear.
[9] A. X. Liu, C. R. Meiners, and E. Torng. TCAM razor: A systematic

approach towards minimizing packet classifiers in TCAMs. IEEE
Transactions on Networking, 18:490–500, 2010.

[10] A. X. Liu, Y. Zhou, and C. R. Meiners. All-match based complete
redundancy removal for packet classifiers in TCAMs. In Proc. 27th
Infocom, April 2008.

[11] R. McGeer and P. Yalagandula. Minimizing rulesets for TCAM
implementation. In /Proc IEEE Infocom, 2009.

[12] C. R. Meiners, A. X. Liu, and E. Torng. TCAM razor: A systematic
approach towards minimizing packet classifiers in TCAMs. In Proc.

15th ICNP, pages 266–275, October 2007.
[13] C. R. Meiners, A. X. Liu, and E. Torng. Bit weaving: A non-prefix

approach to compressing packet classifiers in TCAMs. In Proc. IEEE
ICNP, 2009.

[14] R. Rivest. The md5 message-digest algorithm. RFC 1321, 1992.
[15] D. Rovniagin and A. Wool. The geometric efficient

matching algorithm for firewalls. Technical report, July 2003.
http://www.eng.tau.ac.il/ yash/ees2003-6.ps.

[16] Y.-W. E. Sung, X. Sun, S. G.Rao, G. G. Xie, and D. A. Maltz. Towards
systematic design of enterprise networks. In Proc. ACM CoNEXT, 2008.

[17] Y.-W. E. Sung, X. Sun, S. G.Rao, G. G. Xie, and D. A. Maltz.
Towards systematic design of enterprise networks. IEEE Transactions

on Networking, to appear, 2010.
[18] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based

networking with difane. In Proc. SIGCOMM, 2010.

9

Chad R. Meiners Chad Meiners received his Ph.D.
in Computer Science at Michigan State University
in 2009. He is currently a technical staff at MIT
Lincoln Laboratory. His research interests include
networking, algorithms, and security.

Alex X. Liu Alex X. Liu received his Ph.D. degree
in computer science from the University of Texas
at Austin in 2006. He is currently an assistant
professor in the Department of Computer Science
and Engineering at Michigan State University. He
received the IEEE & IFIP William C. Carter Award
in 2004 and an NSF CAREER Award in 2009. His
research interests focus on networking, security, and
dependable systems.

Eric Torng Eric Torng received his Ph.D. degree in
computer science from Stanford University in 1994.
He is currently an associate professor and graduate
director in the Department of Computer Science
and Engineering at Michigan State University. He
received an NSF CAREER award in 1997. His re-
search interests include algorithms, scheduling, and
networking.

1

Compressing Network Access Control Lists -

Supplement
Alex X. Liu Eric Torng Chad R. Meiners

Department of Computer Science and Engineering

Michigan State University

East Lansing, MI 48824, U.S.A.

{alexliu, torng, meinersc}@cse.msu.edu

I. FORMAL DEFINITIONS

We now formally define the concepts of fields, packets,

ACLs, and the ACL Compression Problem. A field Fi is a

variable whose domain, denoted D(Fi), is a finite interval

of nonnegative integers. Fields can support range, prefix,

or ternary field constraints. In most ACL networking devices

that implement sequential search of an ACL when processing

packets, all the fields support range constraints. However,

some existing products such as Linux’s ipchains [1] support a

mixture of field constraints. For example, ipchains supports

prefix field constraints for the source and destination IP

address fields. An example of a prefix is 192.168.0.0/16 or

192.168.∗.∗, both of which represent the set of IP addresses in

the range from 192.168.0.0 to 192.168.255.255. Essentially,

each prefix represents one integer interval (as we can treat an

IP address as a 32-bit integer), but only some integer intervals

correspond to prefix strings. Prefix and ternary field constraints

require special treatment, so we use a separate optimization

algorithm for fields with prefix and ternary field constraints.

A packet over d fields F1, · · · , Fd is a d-tuple (p1, · · · , pd)
where each pi (1 ≤ i ≤ d) is an element of D(Fi). We use

Σ to denote the set of all packets over fields F1, · · · , Fd. It

follows that Σ is a finite set and |Σ| = |D(F1)|×· · ·×|D(Fd)|,
where |Σ| denotes the number of elements in set Σ and |D(Fi)|
denotes the number of elements in set D(Fi) for each i.

An ACL rule has the form 〈predicate〉 → 〈decision〉. A

〈predicate〉 defines a set of packets over the fields F1 through

Fd specified as F1 ∈ S1 ∧ · · · ∧Fd ∈ Sd where Si is a subset

of D(Fi) that conforms to the Fi field constraint format. That

is, if Fi supports range field constraints, Si is a nonempty

interval that is a subset of D(Fi). If Fi supports prefix or

ternary field constraints, Si must correspond to a legal prefix

or ternary string, respectively. A packet (p1, · · · , pd) matches

a predicate F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd and the corresponding

rule if and only if the condition p1 ∈ S1∧· · ·∧pd ∈ Sd holds.

We use α to denote the set of possible values that 〈decision〉
can be. Typical elements of α include accept, discard, accept

with logging, and discard with logging.

An ACL f over d fields F1, · · · , Fd is a sequence of ACL

rules. The size of f , denoted |f |, is the number of rules in f .

A sequence of rules 〈r1, · · · , rn〉 is complete if and only if for

any packet p, there is at least one rule in the sequence that

p matches. A sequence of rules needs to be complete for it

to serve as an ACL. To ensure that an ACL is complete, the

last rule is typically a default rule which is matched by every

packet. Table I shows an example ACL over five fields.

Rule SIP DIP SPort DPort Proto Act

1 192.168.*.* 1.2.3.* * [4000, 5000] TCP discard

2 192.168.*.* 1.2.3.* * [0, 3999] TCP accept

3 192.168.*.* 1.2.3.* * [5001, 65535] TCP accept

4 * * * * * discard

TABLE I
AN EXAMPLE ACL

Two rules in a ACL overlap if there exists a packet that

matches both rules. Two rules in an ACL conflict if they

overlap and have different decisions. ACLs typically use a

first-match rule conflict resolution strategy where the decision

for a packet p is the decision of the first (i.e.highest priority)

rule that p matches in f . The decision that ACL f makes for

packet p is denoted f(p).
We can think of an ACL f as defining a many-to-one

mapping function from Σ to α. Two ACLs f1 and f2 are

equivalent, denoted f1 ≡ f2, if and only if they define the

same mapping function from Σ to α; that is, for any packet

p ∈ Σ, we have f1(p) = f2(p). For any ACL f , we use {f}
to denote the set of ACLs that are semantically equivalent to

f .

We define the ACL Compression Problem as follows:

Definition 1.1 (ACL Compression Problem): Given an

ACL f1, find an ACL f2 ∈ {f1} such that ∀f ∈ {f1} the

condition |f2| ≤ |f | holds.

If all fields support range field constraints, prefix field con-

straints, or ternary field constraints, we have the range ACL

compression problem, the prefix ACL compression problem,

and the ternary ACL compression problem, respectively. A key

special case is the one-dimensional ACL compression problem

when f has a single field.

We illustrate many of our definitions with the example

four rule ACL in Table I. The prefix entry 192.168. ∗ .∗ in

the Source IP column represents the range of IP addresses

from 192.168.0.0 to 192.168.255.255 while the entry ∗ in

the Source Port column represents the entire range of port

values from 0 to 65, 535. Because every rule has ∗ in the

Source Port column, source port number is irrelevant in the

example ACL. A packet matches rule 1 of the example ACL

if its source IP address begins with 192.168, its destination

IP address begins with 1.2.3, its destination port number is in

the interval [4000, 5000], and its protocol type is TCP. Any

2

packet matching rule 1 is discarded. Rules 3 and 4 conflict.

The first-match rule conflict resolution strategy dictates that

the decision of rule 3, acceptance, is the action applied to any

packet that matches both rule 3 and rule 4.

II. RELATED WORK

As we noted earlier, to the best of our knowledge, no

prior work has considered ACL compression problems with

a mixture of field constraints. We now describe prior work

on ACL compression problems where all fields have the same

field constraint.

Applegate et al. studied the two-dimensional range and

prefix ACL compression problems [4]. They proved that the

two-dimensional range ACL compression problem with two

decisions is NP-hard. They then gave optimal, polynomial time

algorithms for restricted two-dimensional range and prefix

variants where there are only two decisions and all rules

are strip rules, which means that only one field can be a

proper subset of its domain. They used these algorithms

to create O(min(n1/3), OPT 1/2)-approximation algorithms

for the general two-dimensional range compression problem

where n is the number of rules in the input firewall and

OPT is the optimal firewall size. For prefix ACL compression,

their approximation ratios are multiplied by b2 where b is the

number of bits required to represent a field. It is not obvious

how to extend their ideas to more dimensions. Applegate

et al. also cited a TopCoder programming contest named

StripePainter that formulated and solved the one-dimensional

range ACL compression problem and state this problem can be

solved via dynamic programming with running time Θ(Kn3)
where K is the number of distinct decisions. The StripePainter

problem is a special case of our weighted one-dimensional

range ACL compression problem. Our solution has a superior

running time of O(k2n) where k is the maximum number of

rules that have a common decision.

Draves et al. proposed an optimal solution for one-

dimensional prefix ACL compression in the context of mini-

mizing routing tables in [6]. Subsequently, in the same context

of minimizing routing tables, Suri et al. proposed an optimal

dynamic programming solution for one-dimensional prefix

ACL compression. They extended their dynamic program to

optimally solve a special two-dimensional problem in which

two rules either are non-overlapping or one contains the

other geometrically [13]. Suri et al. noted that their dynamic

program would not be optimal for rules with more than 2

dimensions. Applegate et al. developed approximate solutions

for two dimensional prefix ACL compression [4]. In [5], Dong

et al. proposed four techniques of expanding rules, trimming

rules, adding rules, and merging rules that applies to d-

dimensional prefix ACL compression. Meiners et al. proposed

a systematic approach call TCAM Razor for d-dimensional

prefix ACL compression [9].

In [11], McGeer and Yalagandula formulate the ternary ACL

compression problem as a two-level logic minimization prob-

lem, prove that ternary ACL compression is NP-hard, and give

exact and heuristic solutions for ternary ACL compression.

However, their heuristic solutions only work for ACLs with

two decisions. In [12], Meiners et al. proposed a polynomial-

time Bit Weaving heuristic for the d-dimensional ternary ACL

compression problem that works for any number of decisions.

Redundancy removal techniques [10], [8] can be used to

reduce the number of rules in a given ACL. However, they

are only useful when the ACL has redundant rules, and they

cannot combine and rewrite ACL rules to produce a smaller

ACL. In our ACL Compressor, redundancy removal is an

important component of our ACL compression algorithm.

The only other work on ACL optimization that we are aware

of has a completely different focus: creating an ACL that

minimizes average packet processing time given an input ACL

and a traffic model that specifies a probability distribution for

packet arrivals [3], [2], [7], [14]. The goal in such work is

to construct an ACL that minimizes the expected number of

rules examined for any packet assuming that the rules in the

ACL are searched in sequential order and that the traffic model

accurately specifies the arrival probabilities for all possible

packets. In such work, it may be beneficial to have a longer

ACL if this decreases the expected number of rules examined.

We do not explicitly compare our results to any algorithms

that perform this type of ACL optimization as the goals are

different and thus any comparison would be an apples to

oranges comparison.

III. PROOFS

Lemma 3.1: For any input instance I , for any legal schedule

S(I) with m intervals, there exists a canonical schedule S′(I)
with at most m intervals and with C(S′(I)) = C(S(I)).

Proof: If S(I) is canonical, we are done. Without loss of

generality, we assume that fi 6= ∅ for 1 ≤ i ≤ m because any

interval whose core is empty can be removed with no effect

on the legality or cost of the schedule. For 1 ≤ i ≤ m, let p′i
be the smallest numbered task in fi, and let q′i be the largest

numbered task in fi. Then for 1 ≤ i ≤ m, interval r′i of

schedule S′(I) is [p′, q′]. It is obvious that S′(I) is canonical,

S(I ′) has at most m intervals, and that C(S′(I)) = C(S(I)).

Lemma 3.2: For any input instance I , for any canonical

schedule S(I) containing two consecutive intervals ri =
[pi, qi] and ri+1 = [pi+1, qi+1] where [pi, qi]∩[pi+1, qi+1] = ∅,

the schedule S′(I) that is identical to schedule S(I) except

interval r′i = ri+1 = [pi+1, qi+1] and interval r′i+1 = ri =
[pi, qi] is also a canonical schedule. Furthermore, C(S′(I)) =
C(S(I)). 2

Lemma 3.3: For any input instance I and any canonical

schedule S(I) with m intervals, we can create a 1-canonical

schedule S′(I) with m intervals such that C(S′(I)) =
C(S(I)).

Proof: If task 1 is fired in interval rm of canonical

schedule S(I), we are done. Thus, we assume that task 1

is fired in interval rj of schedule S(I) where j < m.

Let qj be the right endpoint of interval rj in S(I); that is

interval rj = [1, qj]. We create 1-canonical schedule S′(I) as

follows. For 1 ≤ i ≤ j − 1, interval r′i of schedule S′(I)
is identical to interval ri = [pi, qi] of schedule S(I). For

j ≤ i ≤ m − 1, interval r′i of schedule S′(I) is interval

3

Fig. 1. Repeated application of Lemma 3.2

ri+1 = [pi+1, qi+1] of schedule S(I). Finally, interval r′m of

schedule S′(I) is interval rj = [1, qj]. Because S(I) is a

canonical schedule, pi ∈ fi for 1 ≤ i ≤ m. Thus, pi does

not appear in any interval prior to interval ri. This means

that pi > qj for j + 1 ≤ i ≤ m; otherwise, pi would

appear in interval rj which precedes interval ri. Thus, applying

Lemma 3.2 repeatedly, we conclude that S′(I) is a 1-canonical

schedule, and C(S′(I)) = C(S(I)). This repeated application

of Lemma 3.2 is illustrated in Figure 1.

Lemma 3.4: For any input instance I , any canonical sched-

ule S(I), any interval ri = [pi, qi] ∈ S(I), consider any task

t ∈ fi. For any 1 ≤ j ≤ i− 1, let rj = [pj , qj]. It must be the

case that either t < pj or qj < t.

Proof: Suppose the statement is not true. Then for some

j ≤ i− 1, it is the case that pj ≤ t ≤ qj . This means that t ∈
rj ⊆

⋃i−1
h=1 rj . This implies t 6∈ fi, which is a contradiction

since we assumed that t ∈ fi, and the result follows.

Lemma 3.5: Given any input instance I = (U,C,X) with

|U | = n and an optimal 1-canonical schedule Opt(I(1, n)).

1) If task 1 is the only task fired in the last interval of

Opt(I(1, n)), then the schedule Opt(I(2, n)) concate-

nated with the interval [1, 1] is also an optimal canonical

schedule for I(1, n), and C(1, n) = xc(1) + C(2, n).
2) Suppose task 1 is not the only task fired in the last

interval of Opt(I(1, n)). Let t′ be the smallest task

larger than 1 fired in the last interval of Opt(I(1, n)).
Then the schedule Opt(I(2, t′ − 1)) concatenated with

the schedule Opt(I(t′, n)) where the last interval of

Opt(I(t′, n)) is extended to include task 1 is also an

optimal canonical schedule for I(1, n), and C(1, n) =
C(2, t′ − 1) + C(t′, n).

Proof: Suppose the last rule of optimal 1-canonical sched-

ule Opt(I(1, n)) is [1, 1]. By Lemma 3.4, all the previous

intervals ri have pi > 1. Thus, these intervals form a schedule

for problem I(2, n). These intervals can be replaced by

Opt(I(2, n)) with no increase in cost and the first observation

follows.

We now consider the case where the last rule of opti-

mal 1-canonical schedule Opt(I(1, n)) includes task t′. By

Lemma 3.4 and the definition of t′, any interval [pi, qi]
prior to the last interval with pi < t′ also has qi < t′.

Repeatedly applying Lemma 3.2, we can move all the intervals

of Opt(I(1, n)) that are in the range [2, t′−1] to the beginning

of the schedule without increasing the cost of the resulting

schedule. These intervals form a schedule for the problem

I(2, t′ − 1). In addition, these intervals can be replaced by

Opt(I(2, t′ − 1)) with no increase in cost.

If we modify the last interval [pm, qm] so that pm = t′

instead of 1, the remainder of Opt(I(1, n)) forms a schedule

for problem I(t′, n). These intervals can be replaced by

Opt(I(t′, n)) with no increase in cost. Finally, we modify the

last interval r′ of Opt(I(t′, n)) so that its left endpoint is 1

instead of t′. This modification does not increase the cost of

the resulting schedule, and the result follows.

Theorem 3.6: C(i, j) can be computed by the following

recurrence relation.

For 1 ≤ i ≤ n, C(i, i) = xc(i).

For 1 ≤ i < j ≤ n, C(i, j) = min(xc(i) + C(i +
1, j),minl∈Gc(i)∧i+2≤l≤j(C(i + 1, l− 1) + C(l, j))).

Proof: The base case is correct as there is only one

canonical schedule for this instance, r1 = [i, i].
The correctness of the recursive case is a bit more involved.

The first term of the minimization in the recursive case, xc(i)+
C(i+1, j), corresponds to the case that i is the only task fired

the last interval of Opt(I(i, j)). The correctness follows from

case 1 of Lemma 3.5.

The second term of the minimization in the recursive case,

C(i + 1, l − 1) + C(l, j), refers to the case where task l is

the smallest numbered task that also fires in the last interval

of Opt(I(i, j)). There are at most |c(i)| − 1 possible choices

for l because task l has the same color as task i. Also, task

l cannot be task i+ 1 because adjacent tasks cannot have the

same color in a canonical or serialized ACL. By case 2 of

Lemma 3.5, we have C(i, j) = C(i+ 1, l − 1) + C(l, j).

IV. PSEUDOCODE FOR ACL SCHEDULING ALGORITHM

Algorithms 1, 2 and 3 show the pseudocode of the ACL

scheduling algorithm based on Theorem 3.6. This algorithm

uses two n× n arrays C and M . In array C, a nonzero entry

C[i, j] stores the cost of an optimal schedule Opt(I(i, j)). In

array M , for a nonzero entry M [i, j], if M [i, j] = i, it means

that i is the only task fired in the last interval of Opt(I(i, j));
if M [i, j] 6= i, it means that the smallest numbered task (other

than i) that is also fired in the last interval of Opt(I(i, j)) is

M [i, j]. Figure 2 shows the resultant tables and schedule for

a sample input.

The function ACLSA-Cost(i, j) computes the cost for

Opt(I(i, j)). At the same time, this function also stores the

trace information in array M . The information stored in M

by ACLSA-Cost is used by the function Print-ACLSA. The

function Print-ACLSA(t, i, j) basically prints out the optimal

schedule Opt(I(i, j)), but in the last interval of Opt(I(i, j)),
the left point i is replaced by t.

The complexity of this algorithm is O(k2n) where n is the

total number of tasks and k = maxi∈C |i| is the maximum

number of tasks in U that exhibit the same color. Note that

⌈n/z⌉ ≤ k ≤ ⌈n/2⌉. The O(k2n) running time follows from

two observations. First, we need to compute C(i, j) for at most

kn pairs of (i, j). For every task i ≥ 1, we need to compute

C(i, n). In addition, for any task i+ 1 where i ≥ 1, we only

need to compute C(i + 1, j − 1) where task j has the same

color as task i and j > i, and there are at most k − 1 such

values of j. Second, we need to compare at most k values

when computing C(i, j).

4

Algorithm 1: ACL Scheduling Algorithm

Data: (1) array color [1..n] where color [i] is the color of task
i; (2) array cost [1..z] where cost [j] is the cost of
executing color j; 3) array group[1..z] where group is
the set of all tasks with color h;

Result: (1) an optimal schedule of the n tasks; (2) the cost of
the optimal schedule;

ACLSA-Cost(1, n) /*compute optimal cost, store

trace info in M*/ ;
Print-ACLSA(1, 1, n) /*print an optimal schedule

using array M*/ ;
print the optimal cost C[1, n] ;

Algorithm 2: ACLSA-Cost(i, j)

if C[i, j] = 0 then
min← cost[color[i]] + ACLSA-Cost(i+ 1, j) ;
M [i, j]← i ;
for every element l in group[color[i]] do

if i+ 2 ≤ l ≤ j then
tmp←
ACLSA-Cost(i+ 1, l − 1) + ACLSA-Cost(l, j) ;
if tmp ¡ min then

min← tmp ;
M [i, j]← l ;

C[i, j]← min ;

return C[i, j] ;

Algorithm 3: Print-ACLSA(t, i, j)

if i = j then
print interval [t, i] ;

else
if M [i, j] = i then

Print-ACLSA(i+ 1, i+ 1, j) ;
print interval [t, i] ;

else
Print-ACLSA(i+ 1, i+ 1,M [i, j]− 1) ;
Print-ACLSA(t,M [i, j], j) ;

color = [0,1,2,0,2,1]
cost = [1,1,1]

group = [[0,3],[1,5],[2,4]]
C[i,j] 1 2 3 4 5 6

1 0 0 0 0 0 4
2 0 0 2 0 0 3
3 0 0 1 0 2 3
4 0 0 0 1 2 3
5 0 0 0 0 1 2
6 0 0 0 0 0 1

M[i,j] 1 2 3 4 5 6

1 0 0 0 0 0 1
2 0 0 2 0 0 6
3 0 0 3 0 5 5
4 0 0 0 4 4 4
5 0 0 0 0 5 5
6 0 0 0 0 0 6

Schedule:
[4,4]
[3,5]
[2,6]
[1,1]

Fig. 2. Resultant tables and schedule for a sample input

Acknowledgement

The authors would like to thank Yun Zhou for his participation

in the early stage of this work. This material is based in

part upon work supported by the National Science Founda-

tion under Grant Numbers CNS-0716407, CNS-0916044, and

CNS-0845513. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] ipchains, http://www.tldp.org/howto/ipchains-howto.html.
[2] S. Acharya, B. N. Mills, M. Abliz, T. Znati, J. Wang, Z. Ge, and A. G.

Greenberg. OPTWALL: A hierarchical traffic-aware firewall. In Network
and Distributed System Security Symposium (NDSS), 2007.

[3] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg. Simulation
study of firewalls to aid improved performance. In Proc. IEEE Annual

Simulation Symposium, 2006.
[4] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett,

and J. Wang. Compressing rectilinear pictures and minimizing access
control lists. In Proc. ACM-SIAM Symposium on Discrete Algorithms
(SODA), January 2007.

[5] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla. Packet
classifiers in ternary CAMs can be smaller. In Proc. ACM Sigmetrics,
pages 311–322, 2006.

[6] R. Draves, C. King, S. Venkatachary, and B. Zill. Constructing optimal
IP routing tables. In Proc. IEEE INFOCOM, pages 88–97, 1999.

[7] E.-S. M. El-Alfy and S. Z. Selim. On optimal firewall rule ordering. In
AICCSA, pages 819–824, 2007.

[8] A. X. Liu and M. G. Gouda. Complete redundancy removal for packet
classifiers in tcams. IEEE Transactions on Parallel and Distributed

Systems (TPDS), to appear.
[9] A. X. Liu, C. R. Meiners, and E. Torng. TCAM razor: A systematic

approach towards minimizing packet classifiers in TCAMs. IEEE

Transactions on Networking, 18:490–500, 2010.
[10] A. X. Liu, Y. Zhou, and C. R. Meiners. All-match based complete

redundancy removal for packet classifiers in TCAMs. In Proc. 27th

Infocom, April 2008.
[11] R. McGeer and P. Yalagandula. Minimizing rulesets for TCAM

implementation. In /Proc IEEE Infocom, 2009.
[12] C. R. Meiners, A. X. Liu, and E. Torng. Bit weaving: A non-prefix

approach to compressing packet classifiers in TCAMs. In Proc. IEEE

ICNP, 2009.
[13] S. Suri, T. Sandholm, and P. Warkhede. Compressing two-dimensional

routing tables. Algorithmica, 35:287–300, 2003.
[14] W. Wang, H. Chen, J. Chen, and B. Liu. Firewall rule ordering based on

statistical model. In International Conference on Computer Engineering

and Technology, 2009., pages 185 –188, 2009.

Alex X. Liu Alex X. Liu received his Ph.D. degree in computer science from
the University of Texas at Austin in 2006. He is currently an assistant professor
in the Department of Computer Science and Engineering at Michigan State
University. He received the IEEE & IFIP William C. Carter Award in 2004 and
an NSF CAREER Award in 2009. His research interests focus on networking,
security, and dependable systems.

Eric Torng Eric Torng received his Ph.D. degree in computer science from
Stanford University in 1994. He is currently an associate professor and
graduate director in the Department of Computer Science and Engineering
at Michigan State University. He received an NSF CAREER award in 1997.
His research interests include algorithms, scheduling, and networking.

Chad R. Meiners Chad Meiners received his B.S. in Computer Science at
Truman State University and his M.S. in Computer Science at Michigan State
University. He is currently pursuing a Ph.D. in Computer Science with a focus
on applying algorithmic techniques to networking and security problems. His
research interests include networking, algorithms, and security.

	FirewallCompressorTPDS
	FirewallCompressorSupplement

