
1

Dynamic Optimization of Multi-Attribute
Resource Allocation in Self-Organizing Clouds

Sheng Di and Cho-Li Wang

Abstract—By leveraging virtual machine (VM) technology which provides performance and fault isolation, Cloud resources
can be provisioned on demand in a fine-grained, multiplexed manner rather than in monolithic pieces. By integrating volunteer
computing into Cloud architectures, we envision a gigantic Self-Organizing Cloud (SOC) being formed to reap the huge
potential of untapped commodity computing power over the Internet. Towards this new architecture where each participant
may autonomously act as both resource consumer and provider, we propose a fully distributed, VM-multiplexing resource
allocation scheme to manage decentralized resources. Our approach not only achieves maximized resource utilization using
the proportional share model (PSM), but also delivers provably and adaptively optimal execution efficiency. We also design
a novel multi-attribute range query protocol for locating qualified nodes. Contrary to existing solutions which often generate
bulky messages per request, our protocol produces only one lightweight query message per task on the Content Addressable
Network (CAN). It works effectively to find for each task its qualified resources under a randomized policy that mitigates the
contention among requesters. We show the SOC with our optimized algorithms can make an improvement by 15%-60% in system
throughput than a P2P Grid model. Our solution also exhibits fairly high adaptability in a dynamic node-churning environment.

Index Terms—Cloud Computing, VM-multiplexing Resource Allocation, Convex Optimization, P2P Multi-attribute Range-query

F

1 INTRODUCTION

Cloud computing has emerged as a compelling paradigm
for deploying distributed services. Resource allocation
problem in Cloud systems emphasizes how to harness the
multi-attribute resources by multiplexing operating systems.
With virtual machine (VM) technology [1], we are able to
multiplex several operating systems on the same hardware
and allow task execution over its VM substrates without
performance interference. Fine-grained resource sharing
can be achieved as each VM substrate can be configured
with proper shares of resources (such as CPU, memory,
storage, network bandwidth) dynamically.

In recent years, various enhancements on resource isola-
tion techniques [2], [13], [8] have been proposed to achieve
fine-grained dynamic resource provisioning. A proportional
share scheduler can be implemented based on Xen’s credit
scheduler [14] to multiplex CPU resource among virtual
machines in a fair manner. The balloon driver [15], dif-
ference engine [10], joint-VM [8], and virtual putty [9],
can dynamically adjust the memory resource among co-
located virtual machines. The dm-ioband [16] can dynam-
ically control the usage of disk I/O bandwidth among
co-located virtual machines. These advanced techniques
enable computing resources to be dynamically partitioned
or reassembled to meet the elastic needs of end-users. Such
solutions create an unprecedented opportunity to maximize
resource utilization, which were not possibly applied in
most Grid systems [34], [36], [19], [37], [38] that usually

• S. Di and C.L. Wang are with the Department of Computer Science,
The University of Hong Kong, Hong Kong.

treat the underlying resources as indivisible ones and pre-
vent simultaneous access to them.

Today’s Cloud architectures are not without problems.
Most Cloud services built on top of a centralized ar-
chitecture may suffer denial-of-service (DoS) attacks [3],
unexpected outages, and limited pooling of computational
resources. On the contrary, volunteer computing systems (or
Desktop Grids) can easily aggregate huge potential comput-
ing power to tackle grand challenge science problems [4].
In view of this, we propose a novel Cloud architecture,
namely self-organizing cloud (SOC), which can connect
a large number of desktop computers on the Internet by
a P2P network. In SOC, each participating computer acts
as both a resource provider and a resource consumer.
They operate autonomously for locating nodes with more
abundant resource or unique services in the network to
offload some of their tasks, meanwhile they could construct
multiple VM instances for executing tasks submitted from
others whenever they have idle resources.

We focus on two key issues in the design of SOC: (1) the
multi-attribute range query problem in a fully decentralized
environment for locating a qualified node to satisfy a user
task’s resource demand with bounded delay and (2) how to
optimize a task’s execution time by determining the optimal
shares of the multi-attribute resources to allocate to the
tasks with various QoS constraints, such as the expected
execution time and limited budget.

As a fundamental difference to existing approaches,
we formulate such a resource allocation problem to be
a convex optimization problem [23]. Given a task with
its resource requirements and a budget, we first prove
that the optimal resource allocation on a qualified node
that can minimize a task’s execution time does exist. We

2

further show that it is non-trivial to solve such a convex
optimization problem directly via a brute-force strategy
and the interior point method [23]. By relaxing the prob-
lem definition, we propose an algorithm to optimize the
task execution time on a qualified resource node, given
its preset budget and tolerable Quality of Service (QoS).
The proposed algorithm involves only O(R2) adjustment
steps, where R denotes the number of resource attributes
(or dimensions). We further propose a dynamic optimal
proportional-share (DOPS) resource allocation algorithm
with O(R3) complexity, by incorporating the proportional-
share model (PSM) [12]. The key idea is to dynamically
scale the amount of resources at each dimension among
running tasks proportional to their demand, such that these
tasks could use up the maximum capacity of each resource
type at a node.

To locate qualified nodes in the SOC environment, we
design a fully-decentralized range query protocol, namely
pointer-gossiping CAN (PG-CAN), tailored for DOPS. Ex-
isting P2P desktop Grids favor CAN-based [17] or Chord-
based [18] resource discovery protocols [19], [20]. Every
joining node registers its static resource attributes (e.g.
CPU architecture, OS version) or maximum capacity on
the CAN/Chord overlay, so that other users could find
the most matched node within a logarithmic (or sublinear)
number of routing steps. Such a design is feasible for a
P2P desktop Grid because the resources of a selected node
can only be used exclusively by a single task. However,
due to dynamic resource provisioning technologies used in
Cloud, the frequent resource repartitioning and re-allocation
(e.g., upon task arrival or completion) make it a challenging
problem to locate a node containing a combination of
available resources along all the R resource attributes that
would satisfy the requirements of a submitted task.

The proposed PG-CAN range query protocol in this
work aims to find the qualified resources with minimized
contention among requesters based on task’s demand. It
is unique in that for each task, there is only one query
message propagated in the network during the entire course
of discovery. This is different from most existing multi-
attribute range query solutions that require to propagate
multiple sub-queries along multiple dimensions in paral-
lel. To mitigate the contention problem due to analogous
queries in CAN, our range query protocol proactively dif-
fuses resource indexes over the network and randomly route
query messages among nodes to locate qualified ones that
satisfy tasks’ minimal demands. To avoid possibly uneven
load distribution and abrupt resource over-utilization caused
by un-coordinated node selection process from autonomous
participants, we investigate three node selection policies,
namely double-check policy [21], queuing policy [22], and
extra-virtual-dimension policy [19].

The rest of the paper is organized as follows. We formu-
late the resource allocation problem in a VM-multiplexing
environment in Section 2. In Section 3, we prove that
optimal resource allocation does exist and show that our
solution is optimal. In Section 4, we present our DOPS
resource allocation scheme. Section 5 details the proposed

range query protocol. In Section 6, we show the simulation
results. We discuss related work in Section 7 and conclude
with an outline of future work in Section 8.

2 PROBLEM FORMULATION

Fig. 1 shows the entire journey of a task from its submission
to completion over the SOC system. In this work, we only
focus on the multi-attribute range query problem (Step 2)
and the resource allocation problem for determining the
amount of resources of a qualified node to the submitted
task (Step 4).

Task Submission
Direct task migration

Task-finish notification and result transmission

Range-query for Virutal Resources
Optimal Resource Allocation

1 2

3 4

5

1

2

3
45

1
2

3
5

4

Fig. 1: The Entire Task Execution Procedure

Suppose there are n nodes in SOC, each is denoted as
pi, where 1≤i≤n. Each node owns R different resources
(or resource attributes) 1 managed by a Virtual Machine
Monitor (VMM). We denote Π to be the set of resource
attributes owned by node pi and c(pi)=(c1(pi), c2(pi), · · ·,
cR(pi))T as pi’s capacity vector. For example, if a computer
owns a 2.4 Gflops single-core CPU, 1GB memory and a
10Mbps network bandwidth, its capacity vector is (2.4, 1,
10)T .

Let mi denote the total number of tasks submitted
to pi. A task submitted to node pi is denoted as tij ,
where 1≤j≤mi. Each task is associated with an expected
resource vector e(tij) = (e1(tij) , e2(tij) , · · · , eR(tij))T .
The user-specified expected resource vector is a rough
estimation of the needed amount of resources with respect
to the R resource attributes for a submitted task to be
completed within a tolerable execution time. After tij gets
scheduled, we denote its actual allocated resource as r(tij)
= (r1(tij), r2(tij), · · ·, rR(tij))T , where r(tij) ≽ e(tij).
Here, ≽ means the componentwise inequality between two
vectors. For short, we denote r(tij) and rk(tij) as r and rk
respectively in the case without causing ambiguity.

Each task has a load vector, denoted as l(tij) = (l1(tij),
l2(tij), · · ·, lR(tij))T , indicating the amount of workload
on each of the R resource attributes for completing the
task. For simplicity, we assume the execution of a task
can not be done concurrently among different resources at
the same node. Hence, if a task tij is executed at pi, its
execution time is equal to l(tij)T ·r(tij)−1, where r(tij)−1

= (r−1
1 (tij), r−1

2 (tij), · · · , r−1
R (tij))T .

We define a preferential weight vector w(tij) = (w1(tij),
w2(tij), · · ·, wR(tij))T , satisfying w1(tij) : w2(tij) : · · · :
wR(tij) = l1(tij) : l2(tij) : · · · : lR(tij), which indicates

1. The R resource attributes can also be viewed as R dimensions, so
we use attributes and dimensions interchangeably in the following text.

3

the relative importance of a resource that might affect the
execution time of a task according to its property (e.g.
CPU-bound or IO-bound). In essence, w(tij) acts as a more
relaxed requirement in using our model as we assume the
user does not know the exact load vector, but only needs
to specify the preferential weight vector.

To mimic the pricing scheme in a real-world Cloud,
we follow a simple monetary model to analyze the eco-
nomic implications between consumers and providers. For
any node pi, its resource price vector is denoted as
b(pi)=(b1(pi), b2(pi), · · · , bR(pi))T , which is designated
by the resource provider. Let bk(pi) (1 ≤ k ≤ R) represent
the per-time-unit price for using the kth resource attribute
on pi. Thus to run a task tij on node ps, the total payment
is calculated as Equation (1), where ∆t is the execution
time of tij on ps.

ρ(tij ,∆t) = ∆t · b(ps)T · r(tij) (1)

In our model, the user is “satisfactory” if the per-time-
unit rate, i.e., the total of per-time-unit cost for using the R
resource attributes at a selected node (denoted as B(tij)),
is always in accordance with Inequality (3). We argue that
users can hardly predict their tasks’ exact execution times
in practice. However, the users would still feel worthy as
long as the per-time-unit rate is still within their budget.

Given a submitted task tij with designated e(tij) and
w(tij), this work investigates two key issues:

1) How to efficiently locate a qualified node in a large-
scale peer-to-peer network for executing the submit-
ted task with controllable message delivery overhead.

2) How to optimize tij’s execution time (i.e., Equation
(2)) by determining the optimal amount of resources
(i.e., r(∗)) to allocate to tij , subject to the constraints
(3), (4), and (5), where node ps’s available resource
vector a(ps) = c(ps)−

∑
tij on ps

r(tij).

Min f(r(tij)) = lT (tij) · r−1(tij) =
∑R

k=1

lk
rk

(2)

s.t.
b(ps)T · r(tij) ≤ B(tij) (3)

w1(tij) : · · · : wR(tij) = l1(tij) : · · · : lR(tij) (4)

e(tij) ≼ r(tij) ≼ a(ps) (5)

We summarize the key notations in Table 1. In the
following text, we might omit the symbols tij and ps
for simplicity if thus would not lead to the ambiguity.
For example, the notations lk(tij), ek(tij), r(tij), bk(ps),
B(tij), and a(ps) may be substituted by lk, ek, r, bk, B, and
a respectively in some following expressions or formulas.

3 OPTIMAL RESOURCE ALLOCATION

Given a task tij with its weight vector w(tij) and a budget
B(tij), we first prove that the optimal resource allocation
on a qualified node ps with its price vector b(ps) does exist.

Lemma 1: The optimal allocation (denoted r∗(tij)) ex-
ists iff (i.e., ⇐⇒) Inequalities (6) and (7) are met.

b(ps)T · e(tij) ≤ B(tij) (6)

TABLE 1: Key Notations used in SOC Model
Notation Description
n the number of nodes
pi a node of identity i, where i = 1,2,· · ·,n
c(pi) the capacity vector of node pi

l(pi) the total workload vector of the tasks running on pi

a(pi) the availability vector of pi =(a1(pd), a2(pd), · · · , aR(pd))
T

b(pi) the price vector of pi’s resources in multiple dimensions
tij the jth task submitted to pi

l(tij) the workload vector of task tij
e(tij) the expected resource vector of tij
r(tij) the allocated resource vector allocated to tij
r∗(tij) tij ’s optimal resource vector with availability constraint
r(∗)(tij) tij’s optimal resource vector without availability constraint
r−1(tij) =(r−1

1 (tij),r−1
2 (tij),· · ·,r−1

R (tij))T

w(tij) the weight vector of task tij , defined in Formula (4)
B(tij) budget of tij ’s user (evaluated by per-time-unit)
ρ(tij ,∆t) user payment in executing tij , where ∆t is execution time

e(tij) ≼ a(ps) (7)
Proof:

To prove ⇒: (transport property of inequalities)
If r∗(tij) exists, it must satisfy Inequalities (3) and (5),

thus the Inequalities (6) and (7) should hold.
To prove ⇐: (to satisfy Slater’s condition [23])
If b(ps)T ·e(tij)=B(tij) or e(tij)=a(ps), then e(tij) is

a unique solution, which can be regarded as an optimal
one. If b(ps)T · e(tij) < B(tij) and e(tij)≺a(ps), other
than e(tij), there must exist another better solution (denoted
r′(tij)) such that b(ps)T · r′(tij) < B(tij) and e(tij)
≺ r′(tij) ≺ a(ps), thus r∗(tij) must exist according to
Slater’s condition [23]. Similarly, if b(ps)T · e(tij) <
B(tij) and e(tij) ≼ a(ps), Slater’s condition can also hold
by excluding the equations from the constraints (7).

We assume the qualified node ps that satisfies Inequal-
ities (6) and (7) can be found based on tij’s expected
resource vector e(tij) by a resource discovery protocol
(to be discussed in Section 5). Thus, we could rewrite
the constraint (5) to be Inequality (8) and construct a
Lagrangian function F1(r(tij)) (i.e., Formula (9)), where
λ and ν1, ν2, · · ·, νR are the Lagrangian multipliers.

(rk − ek)(rk − ak) ≤ 0, k = 1, 2, · · · , R (8)

F1(r)=
R∑

k=1

lk
rk

+λ(
R∑

k=1

bkrk−B)+
R∑

k=1

νk(rk−ek)(rk−ak) (9)

As analyzed previously, the optimal resource allocation
(r∗) does exist. Therefore, the optimal solution must satisfy
Karush-Kuhn-Tucker (KKT) conditions [23], listed below:

bT · r∗ ≤ B
(r∗k − ek)(r

∗
k − ak) ≤ 0 k = 1, 2, · · · , R

λ ≥ 0, ν ≽ 0

λ · (bT · r∗ −B) = 0
νk · (r∗k − ek)(r

∗
k − ak) = 0 k = 1, 2, · · · , R

− lk
r∗2k

+ λ · bk + νk(2r
∗
k − ek − ak) = 0

k = 1, 2, · · · , R

(10)

That is, the optimal resource vector r∗ could be found
as long as we could satisfy the above conditions simul-
taneously. In order to solve the above simultaneous equa-
tions and inequalities, there are two traditional candidate
strategies: (1) brute-force method and (2) interior point
method. Based on the brute-force method, we can first
focus on the 5th formula, which involves R equations

4

(νk·(r∗k − ek)(r
∗
k − ak)=0, where k =1,2,· · ·,R) and 2R

variables (r∗1 , r∗2 , · · ·, r∗R, ν1, ν2, · · ·, νR). Each equation
(e.g., νk·(r∗k − ek)(r

∗
k − ak)=0) holds, if and only if one of

the three conditions is valid, i.e., νk=0, rk=ek, or rk=ak.
For those combinations with their Lagrangian multipliers
being equal to zero (e.g., νk = 0), we still need to
calculate their resource assignments (i.e., rk) based on the
4th formula and the 6th formula. For all of the R equations
(νk·(r∗k − ek)(r

∗
k − ak)=0, where k =1,2,· · ·,R), there are

totally 3R combinations that could make them simultane-
ously hold, so the overall time complexity is O(3R), which
is intolerable with a large number of dimensions. Based on
the interior point method (or Newton’s method), we need
to guess a set of initial values for the resource vector r
and try to guarantee the method is converged with them,
which is complex especially because of a large number
(2R+1) of variables, and its computation result will only
be an approximate value. Consequently, this problem seems
unsolvable based on the two traditional methods.

By revisiting Constraint (5), it is clear that a(tij) is a
“firm” bound while e(tij) is a “soft” bound. That is, r(tij)
cannot be greater than a(tij) anyhow due to the limited
resource capacity. But it can be lower than e(tij) because
e(tij) was not a strict limitation but just estimated by users.
If we replace Constraint (5) with Constraint (11), we could
find an optimal solution through a few convex optimization
steps. That is, via such a constraint relaxation, we could
optimize the resource allocation for task tij on node ps
without exhausting all 3R possible combinations like the
brute-force method or worrying about the convergence
problem in the interior point method.

r(tij) ≼ a(ps) (11)

In the following text, we discuss the situation without
Constraint (11) via convex optimization analysis, and then
derive the optimal algorithm for the case with the constraint.

Theorem 1: In order to minimize f(r(tij)) subject to
Constraints (3) and (4), tij’s optimal resource vector
r(∗)(tij) is shown as Equation (12), where k=1, 2, · · ·, R.
Note that r(∗)(tij) is not subject to Inequality (5) or (11),
unlike the notation r∗(tij).

r
(∗)
k (tij) =

√
wk(tij)/bk(ps)

R∑
k=1

√
wk(tij)bk(ps)

·B(tij) (12)

Proof: We first prove that the target function f(r) is
convex, then find the optimal r(∗) via convex optimization.

Since ∂2f(r)
∂rk

=2 lk
r3k
>0, f (r) is convex with a minimum

extreme point. Then, the target Lagrangian function can be
defined as Equation (13) and λ is the Lagrangian multiplier.

F2(r) = l1
r1

+ · · ·+ lR
rR

+ λ(b1r1 + · · ·+ bRrR −B) (13)

Let ∂F2(r)
∂rk

=0, then we could get Equation (14), where k
= 1, 2, · · ·, R. Accordingly, we can get Equation (15).

lk/r
2
k = λbk (14)

r1 : r2 : · · · : rR =

√
l1
b1

:

√
l2
b2

: · · · :
√

lR
bR

(15)

In order to minimize f(r), the optimal resource vector
r(∗) should satisfy bT ·r=B. By combining this equation
with Equation (4) and (15), we could get Equation (12).

Remark: (1) Based on Equation (15), the relative amount
of resource (rk) to be allocated to a task is determined
by

√
lk
bk

. As long as the users and resource providers
express their workload (lk) and price (bk) based on the
same units of measurement (e.g., Gflops or Gflops/$), the
ratio remains unchanged. (2) Formula (12) can be used
to derive the resource vector r(∗) for tij such that its
execution time can be minimized within a budget limit
(i.e., Formula (3)). Based on Formula (12) and the proof
of Theorem 1, r(∗) can be easily computed in O(R) time.
(3) As mentioned, r(∗)(tij) is not subject to Inequality
(5) or (11), but can be regarded as an optimal resource
allocation as long as it satisfies Constraint (11), i.e., ∀
k: r

(∗)
k ≤ak(ps). However, if r(∗) does not fully satisfy

Constraint (11) (i.e., ∃ k: r
(∗)
k >ak(ps)), r(∗) is not a

feasible solution. Therefore, we propose Algorithm 1 with
a provable time complexity O(R2) to enforce Constraint
(11), while minimizing f(r(tij)) under the two additional
constraints (3) and (4).

Definition 1: CO-STEP(Γ, C): Let Γ denote a subset
of resource attributes Π (i.e., Γ ⊆ Π), while rΓ(tij) and
bTΓ (ps) denote the resource vector assigned to tij and the
price vector specified by ps w.r.t. Γ respectively. Given a
budget C, CO-STEP(Γ, C) is a procedure for computing the
optimal resource vector for tij w.r.t. Γ, which minimizes
f(rΓ(tij)), subject to Constraints (4) and (16) but excluding
Constraint (11) by using convex optimization.

bTΓ (ps) · rΓ(tij) ≤ C, where C is a constant. (16)

We devise Algorithm 1 for minimizing f(r(tij)) subject
to Constraints (3), (4), and (11), as shown below.
Algorithm 1 COMPUTE OPTIMAL RESOURCE VECTOR r∗
Input: Γ, B(tij), b(ps), a(ps); Output: r∗

1: Γ = Π, C = B(tij), r∗ = Φ (empty set);
2: repeat
3: r(∗)Γ = CO-STEP(Γ,C); /*Compute optimal r based on Γ*/
4: Ω = {dk|dk∈ Γ & r

(∗)
k >ak}; /*Select elements violating Con-

straint (11)*/
5: Γ = Γ\Ω; /*Remove Ω from Γ*/
6: C = C −

∑
dk∈Ω (bk · ak); /*Update C*/

7: r∗ = r∗∪{r∗k = ak | dk∈Ω & ak is dk’s upper bound};
8: until (Ω = Φ);
9: r∗ = r∗ ∪ r(∗)Γ ;

In this algorithm, Line 3 executes CO-STEP(Γ,C) in
order to find the r(∗)Γ without considering Constraint (11).
If r(∗)Γ completely satisfies Constraint (11) (i.e., Ω=Φ), the
final result is found. Since CO-STEP(Γ,C) excludes Con-
straint (11), there might be some cases which are assigned
with resource amount larger than the availability (i.e.,
r
(∗)
k >ak(ps)). For these cases, we will assign the maximum

available resources to them (i.e., r(∗)k =ak) and remove the
corresponding resource attributes/types (i.e., Ω) away from
Γ. The remaining budget (i.e., C = C−

∑
dk∈Ω (bk · ak)) is

also updated accordingly. The whole process will continue
until Ω becomes empty. Since the time complexity of CO-

5

STEP(Γ,C) is O(|Γ|), the number of computation steps of
Algorithm 1 in the worst case is

∑R−1
i=0 (R− i). The time

complexity of Algorithm 1 is O(R2).
Theorem 2: Given a submitted task tij with its weight

vector w(tij) and a budget B(tij), and a qualified node ps
with its resource price vector b(ps), Algorithm 1’s output
r∗ is optimal for minimizing tij’s execution time (i.e.,
f (r(tij))), subject to Constraints (3), (4), and (11).

Proof: With Constraints (3), (4), and (11), this is a
typical convex optimization problem with the Lagrangian
function formulated as Equation (17).

F3(r) =
R∑

k=1

lk
rk

+λ(
R∑

k=1

bkrk−B)+
R∑

k=1

νk(rk − ak) (17)

The main idea is to prove the output of Algorithm 1 must
satisfy KKT conditions (i.e., the necessary & sufficient
condition of the optimization), which are listed below:

bT · r∗ ≤ B
r∗k − ak ≤ 0 k = 1, 2, · · · , R
λ ≥ 0, ν ≽ 0

λ · (bT · r∗ −B) = 0
νk · (r∗k − ak) = 0 k = 1, 2, · · · , R
− lk

r∗2k
+ λ · bk + νk = 0 k = 1, 2, · · · , R

(18)

Algorithm 1 starts with the execution of CO-STEP(Π,
B(tij)), which returns a result of r(∗)Π . According to Defi-
nition 1 and Theorem 1, r(∗)Π is deduced from Constraints
(4) and (16), so r(∗)Π must satisfy − lk

r2k
+λ·bk=0 and bT ·r=B.

Then, if we let νk=0 for any k, there must exist an
assignment such that all conditions in (18) hold except for
the 2nd condition r

(∗)
k −ak≤0. Accordingly, r∗ = r(∗)Π as

long as r
(∗)
k −ak≤0, ∀ k in Π (i.e., 1≤k≤R).

If r(∗)Π cannot satisfy all the R Inequalities (i.e., ∃ k in Π,
r
(∗)
k −ak>0), we need to further adjust the solution r(∗)Π to

find an assignment that satisfies all KKT conditions in the
Formula (18). Based on Algorithm 1, for those cases with
r
(∗)
k >ak, r(∗)k will be set to ak. Assuming there are h1 such

cases and they are denoted as r1, r2, · · ·, rh1 . Obviously,
each selected rk must satisfy νk · (rk − ak)= 0 because
rk=ak. On the other hand, Algorithm 1 will continue to
execute CO-STEP(Γ,C) on the remaining R−h1 undecided
cases (denoted as Γ), with C=B(tij)−

∑h1

k=1 rk. Likewise,
all the R−h1 cases (each denoted by rk, k=h1+1, · · ·, R)
must also satisfy − lk

r2k
+λ·bk=0 and bT ·r=B. Thus if each of

them meets the condition rk−ak≤0, then the R−h1 cases
in Γ and the previously selected h1 cases will together com-
pose the solution satisfying all conditions in (18). If there
are still h2 (0<h2≤R−h1) new cases violating rk−ak≤0
in this round, Algorithm 1 will continue the adjustment
until the Hth round that either all the R−

∑H
i=1 hi cases

can satisfy rk−ak≤0 or Γ becomes empty. In the former
case, we can easily verify that resource allocation among
all the R attributes satisfy all KKT conditions in (18)
simultaneously, composing an optimal solution. For the
latter, we could conclude

∑R
k=1bk·ak ≤ B(tij), then the

optimal resource allocation is r∗ = a.

4 OPTIMAL PROPORTIONAL-SHARE ALLO-
CATION

In this section, we discuss the design of our dynamic
optimal proportional-share (DOPS) resource allocation
method, which leverages the proportional share model. The
key idea to redistribute available resources among running
tasks dynamically, such that these tasks could use up the
maximum capacity of each resource in a node (i.e., up
to c(ps)), while each task’s execution time can be further
minimized in a fair way.

DOPS consists of two main procedures: (1) Slice han-
dler: It is activated periodically to equally scale the amount
of resources allocated to tasks, such that each running
task can acquire additional resources proportional to their
demand along each resource dimension. (2) Event handler:
It is responsible for resource redistribution upon the events
of task arrival and completion. The pseudo codes are
shown in Algorithm 2 and Algorithm 3. The slice handler
(Algorithm 2) is periodically performed by ps’s VMM,
while the event handler (Algorithm 3) is only invoked upon
task arrival or completion.

Suppose there are M tasks running on a particular node
ps, denoted as t(1), t(2), · · ·, t(M) based on their arrival
order. Accordingly, w(i), B(i), and r(i) denote t(i)’s pref-
erential weight vector, budget, and resource vector respec-
tively. Assume that when t(i) is to be scheduled onto ps, the
available resource vector is denoted as a(i), which can be
componentwise calculated as c(ps)−

∑i−1
j=1 r∗(j). Note that

resource node ps found by our discovery protocol (to be
described in Section 5) is “qualified”, i.e., for t(i) (i=1,
2, · · ·, M), bT (ps)·e(i)≤B(i) and e(i)≼c(ps)−

∑i−1
j=1 r∗(j).

Thus, according to Lemma 1, the optimal resource vector
r∗(i) must exist and r∗(i) ≥ ei.

Based on the above analysis, it is possible that the
resource along certain dimensions (say the kth) may not
be fully used, provided that r∗(M)k is lower than a(M)k.
Consequently, we could improve the resource utilization
by redistributing the remaining resource at the kth dimen-
sion. Algorithm 2 shows how to determine the amount
of resources allocated to the M running tasks so as to
make full use of the underlying resources along every
dimension (i.e., up to c(ps)). By leveraging PSM, each
running task can acquire its resources proportional to their
computed optimal shares (i.e., r∗) along every dimension
(Line 4∼5). Since r∗∗(i)≽r∗(i), task t(i) will be executed faster
with the augmented resource, while the payment will still
be calculated based on r∗ instead of r∗∗. This means the
user will not be charged more even with any extra resource
allocation. It is easy to prove that Algorithm 2’s time
complexity is O(R·M).

Another issue is how to determine the optimal resource
allocation (i.e., r∗) upon task arrival and completion. As
shown in Algorithm 3, when a new task is scheduled onto
the node ps, it will get the optimal shares of resource based
on the availability of resources at ps (Line 1∼4). Note that
the calculation is based on notations of Algorithm 1, instead
of the scaled resource (i.e., r∗∗ derived from Algorithm 2)

6

Algorithm 2 SLICE HANDLER (PSM)
This program is activated periodically.
1: for (k = 1 → R) do
2: sum allocation =

∑M
p=1 r

∗
(p)k

;
3: for (each t(j), j=1,2,· · ·,M) do
4: r∗∗

(j)k
= (r∗

(j)k

/
sum allocation) · ck;

5: Assign r∗∗
(j)k

to t(j);
6: end for
7: end for
8: Notify VMM to readjust resource allocation among all running tasks;

as the slice handler will be activated afterwards based on
the DOPS design. When a task is finished, it is possible for
other running tasks to share the newly released resources
(Line 5∼12). The time complexity is M ·R3 according the
execution steps described in Algorithm 3.
Algorithm 3 EVENT HANDLER
This program is invoked as an event is generated.
1: if (The event is the arrival of a scheduled task t(x)) then
2: a(x) = c(ps)−

∑x−1
j=1 r∗

(j)
;

3: Conduct Algorithm 1 for t(x);
4: end if
5: if (The event is the completion of a task t(y)) then
6: a(ps) = a(ps) + r∗

(y)
; /*Release t(y)’s resource r∗

(y)
*/

7: for (each t(i) still running on ps) do
8: if (∃ k such that r∗

(i)k
< r

(∗)
(i)k

, k=1,2,· · ·,R) then
9: Conduct Algorithm 1 for t(i);

10: end if
11: end for
12: end if

There remain two issues concerning the sharing of the
newly released resources: (1) Can the execution time of a
running task with r∗ ̸=r(∗) be further reduced by allocating
additional resource? (2) If the answer to the above question
is yes, would there occur the resource contention problem,
i.e., there exist two running tasks which compete for the
newly released resource at the same resource attributes (or
dimensions). Theorem 3 and Theorem 4 answer the two
questions.

Theorem 3: ∀ t(i) such that r∗(i)k<r
(∗)
(i)k, if another task

was just completed and its released resource shares are
denoted △r=(△r1,△r2,· · ·,△rR)T and △rk>0, then t(i)’s
execution time is able to be reduced by increasing r∗(i)k.

Proof: For t(i), if bT ·r∗(i)<B(i), it is obvious that

r∗(i)≺r(∗)(i) , because this statement is a contraposition of the

statement “∃ r∗(i) = r(∗)(i) ⇒ bT · r∗(i) = B(i)” according to
Algorithm 1. Since △rk>0, there must exist an increment
δ>0 along the kth dimension, such that the new execution
time of task t(i) (i.e., l1

r1
+· · ·+ lk

rk+δ+· · ·+ lR
rR

) is smaller than
its original execution time (i.e., l1

r1
+· · ·+ lk

rk
+· · ·+ lR

rR
).

Let us discuss the situation that bT ·r∗=B(i) for t(i).
Recall that r(∗) is the resource vector calculated based
on the Equation (12) (i.e., without the constraint of the
capacity on each dimension), while r∗ is the output of
the Algorithm 1 (i.e., with the capacity constraint on each
dimension). Since Equation (12) is derived from bT ·r=B(i),
it is obvious that bT ·r(∗)=B(i). So, we get bT ·r=B(i) holds
for both r=r∗ and r=r(∗). Hence, if there exist a dimension
k such that r∗k<r

(∗)
k , there must exist another dimension

(say j) such that r∗j>r
(∗)
j . Otherwise, bT ·r∗<bT ·r(∗)=B,

which is contradicting to bT ·r∗=B(i). Based on the above
analysis, let us introduce a small increment δ(>0) to bk·rk
and the same amount of decrement (-δ) to bj ·rj such that
r∗k+

δ
bk
≤r

(∗)
k and r∗j − δ

bj
≥r

(∗)
j . Then we just need to prove

that such an adjustment will make t(i)’s execution time
f(r(t(i))) become shorter. We denote the original execution
time of t(i) as X and its execution time after the adjustment
as Y . We will show X−Y >0. Note that the last deduction
is due to Equation (14).

X =
l1
r1

+ · · ·+ lk
r∗k

+ · · ·+ lj
r∗j

+ · · ·+ lR
rR

(19)

Y =
l1
r1

+ · · ·+ lk

r∗k + δ
bk

+ · · ·+ lj

r∗j − δ
bj

+ · · ·+ lR
rR

(20)

X − Y = (lk
r∗k

+
lj
r∗j
)− (lk

r∗k+δ/bk
+

lj
r∗j−δ/bj

)

= δ(lk/bk
r∗k(r

∗
k+δ/bk)

− lj/bj
r∗j (r

∗
j+δ/bj)

)

> δ(lk/bk

(r
(∗)
k −δ/bk)r

(∗)
k

− lj/bj

(r
(∗)
j +δ/bj)r

(∗)
j

)

> δ(lk/bk

r
(∗)
k ·r(∗)k

− lj/bj

r
(∗)
j ·r(∗)j

) = 0

Theorem 4: Based on Algorithm 3, there would not
appear the conflict problem that two tasks with sub-optimal
resource allocation (i.e., ∃ k, r∗k < r

(∗)
k) compete for

the released resource along the same dimension upon the
completion of a task.

Proof: Provided that a task was just finished and the
released resources are △r=(△r1, △r2, · · ·, △rR)T along
R dimensions. Our objective is equivalently to prove that
at any given dimension (denoted k), there exists at most
one task (denoted t(i)) such that r∗(i)k<r

(∗)
(i)k based on our

resource redistribution scheme described in Algorithm 3
(i.e., Line 5∼11).

To prove by contradiction, suppose there do exist two
tasks running on ps (denoted as t(i) and t(j)), where t(i)
arrives earlier than t(j) and they have been scheduled before
the newly completed task. In addition, both t(i) and t(j)
need to use resource on the kth dimension (i.e., r∗(i)k >

0 and r∗(j)k > 0), while r∗(i)k<r
(∗)
(i)k and r∗(j)k<r

(∗)
(j)k hold

simultaneously.
We will prove such scenario can not happen as follows.

If r∗(i)k<r
(∗)
(i)k holds, this implies that after t(i) is scheduled

(Line 3 in Algorithm 3), t(i) must already use up the
resource at the dimension k. If t(i) had not used up the
resource at dimension k (i.e., r∗(i)k<ak), this could only

happen when r∗(i)k � r
(∗)
(i)k. If so, the original resource

allocation on t(i) would not be optimized, which was
proved by Theorem 3. Hence, t(i) must have already used
up the resource on the k dimension if r∗(i)k<r

(∗)
(i)k. This

contradicts to the assumption that the succeeding task t(j)
is also able to be assigned with r∗(i)k, where 0<r∗(j)k<r

(∗)
(j)k,

from the kth dimension upon executing Line 3 in Algorithm
3 because the available amount of resource (i.e., a(j)) along
the dimension k is equal to 0, if t(j) is scheduled after t(i).
This contradicts to the assumption that r∗(j)>0. Note r∗(j)=0

7

⇒ f(j)=∞. Hence, it is impossible for more than one task
to keep sub-optimal share simultaneously along the same
dimension.

5 POINTER-GOSSIPING CAN
Our resource allocation approach relies on the assumption
that all qualified nodes must satisfy Inequalities (6) and
(7) (i.e., Lemma 1). To meet this requirement, we design a
resource discovery protocol, namely pointer-gossiping CAN
(PG-CAN), to find these qualified nodes. We choose CAN
[17] as the DHT overlay to adapt to the multi-dimensional
feature.

1219 15 8 5

0 1

1

0

0.75

0.5

0.25

0.25 0.5 0.75

r1: Available CPU (MIPS)

r 2
:
F
re
e
m
em
o
ry
 (
G
)

20

6 181 9

7

16
10

323

1724 11
22

14

13
4

25

2

21

Q

Generate a new query message

Random-walk

Searching towards

positive neighbors

1
 Route to the duty node
2

3

Fig. 2: Range Query on CAN. (a) CAN Topology. (b) Basic Search Steps.

Like traditional CAN, each node (a.k.a. duty node) under
PG-CAN is responsible for a unique multi-dimensional
range zone randomly selected when it joins the overlay.
Fig. 2 (a) illustrates an example of CAN overlay network.
Suppose there are 25 joined nodes, each taking charge of a
single zone. If a new node (node 26) joins, a random point
such as (0.6 Gflops, 0.55GB) will be generated and
its zone will be set as the new zone evenly split along a
dimension from the existing zone (node 25 in Fig. 2 (a))
that contains this point. If there is only one non-overlapped
range dimension between two nodes (e.g. pi and pj) and
they are adjacent at this dimension, we call them neighbors
to each other. Furthermore, if the non-overlapped range of
pi is always no less than pj’s, pi is called pj’s positive
neighbor and pj is called pi’s negative neighbor. In Fig. 2
(a), Node 9, 12 and 20 are positive neighbors of node 1.

Every node will periodically propagate the state-update
messages about its available resource vector a(ps) to the
duty node whose zone encloses this vector. After a task tij
generates a query (Step 1 in Fig. 2 (b)) with the constraints
(6) and (7), the query message will be routed to the duty
node containing the expected vector e(tij). We could justify
that the state messages (or state records) of all qualified
nodes must be kept in those onward nodes (i.e., shadow
area in Fig. 2 (b)) of the duty node.

Obviously, the searching area may still be too large
for the complete resource query without flooding, so the
existing solutions [19] usually adopt random-walk to get
an approximated effect. However, according to our obser-
vation (to be presented), this will significantly reduce the
likelihood of finding qualified resources, finally degrading
the system throughput and user’s QoS. Alternatively, we
improve the mechanism by periodically diffusing a few

pointer-messages for any duty nodes owning state-update
messages (or records) to the distant nodes (with distance
as 2k hops, where k=0,1,· · ·) towards negative directions,
so that these duty nodes could be more easily found. In Fig.
2, for instance, Node 4’s negative pointer nodes along CPU
dimension are Node 14, 3, and 23. By periodically sending
pointer-recovery messages, each with empty payload out-
ward, each node could easily maintain the connection to
the negative pointer nodes. On the other hand, each query
routed to the duty node will check its stored records and
the pointed duty nodes. If it finds qualified resource records
on the current or other pointed duty nodes, it will return
those information to the requesting node; otherwise, it will
continue searching next positive neighbor duty nodes.

Each duty node (such as D1) will cache state-update
messages received from its neighbors, which are checked
periodically and removed if outdated (i.e., beyond their
TTL). In the meanwhile, it propagates its own identifier
(such as IP) to a few randomly selected pointer nodes to-
wards it negative direction. For those duty nodes containing
valid state messages, we call them non-empty-cache nodes.

Basically, there are two manners to propagate the duty
nodes’ identifiers (or pointers) backward - spreading man-
ner (Fig. 3 (a)) and hopping manner (Fig. 3 (b)), thus the
PG-CAN can also be split into two types, namely spreading
manner based PG-CAN (SPG-CAN) and hopping manner
based PG-CAN (HPG-CAN). In Fig. 3 (a), the duty node
D1 sends a pointer-message containing D1’s identifier to
its selected pointer nodes (such as D2 and D3), notifying
them that D1 has records. Upon receiving the message,
the pointer nodes (D2 and D3) will further gossip D1’s
identifer to their negative direction pointer nodes along
next dimension. In Fig. 3 (b), the identifer of any non-
empty-cache node will be forwarded from pointer node to
pointer node along each dimension. Obviously, the former
results in fewer number of hops for message delivery, but
its identifers cannot be diffused as widely as the latter’s. In
fact, we can prove that the delay complexity of identifier
delivery for the hopping manner is O(log2 n) (Theorem
5), so the hopping manner is likely to be better than the
spreading manner (to be confirmed in our simulation).

Theorem 5: The delay complexity of hops by hopping
manner for relaying any node’s index to any of its negative-
direction nodes is O(log2 n), where n refers to the total
number of nodes.

Note that log2 n=d · log2 n
1
d , so our objective is to prove

the delay is bounded under d · log2 n
1
d . The strict proof

can be found in our previous work [24]. Here, we just
use an example (shown in Fig. 4) to illustrate the idea. In
this example, suppose there are n

1
d =19 nodes along each

dimension, it is obvious that the top-most node (Node 1)
will take longest time (less than O(log(19))=4) to diffuse
its own index. Specifically, over the first hop, Node 2, 3, 5,
9, and 17 could receive the index (Node 1’s identifier). Via
the second hop, Node 4, 6, 7, 10, 11, and 13 could receive
the relayed index. For instance, Node 7 could receive Node
1’s index forwarded from Node 5 or Node 3. With just 3
hops, most of the negative-direction nodes of Node 1 could

8

D 1

2

3
4

5

6

7

8 9

1

0

11

Q

Pointer Jumping on duty nodes

Initial Duty-node routing

C
P

U

0
0

1

1 Memory

D1D2D3

C
P

U

0

0

1

1Memory
candidate index nodes on track

index nodes randomly selected

D1D2D3

C
P

U

0

0

1

1Memory
candidate index nodes on track

index nodes randomly selected

(a) (b) (c)
Fig. 3: The Procedure of Resource Matching. (a) Pointer Gossiping with Spreading Manner. (b) Pointer Gossiping with Hopping Manner. (c) Range-
query Procedure.

receive its index notification.

12345678910111213141516171819

1
st
 hop

2
nd
 hop

3
rd
hop

Fig. 4: Quick Backward Index Diffusion

Obviously, it is infeasible for peer nodes to broadcast
their indexes (either their own identifiers or those of other
nodes to forward) due to the probably considerable message
delivery overhead. Suppose that L negative index nodes are
selected along each dimension as the notification targets,
the total number of the messages (denoted as ω) to deliver
for any index is equal to L+L2+· · ·+Ld=L·(Ld−1)

L−1 . Hence,
the message overhead could be controlled by setting L to
a small value. For example, if L = 2 and d = 3, the total
number of messages is always only 14. In other words, L
has to be seriously limited in the design. L will always be
set to 2 in our following design. The whole pointer gos-
siping procedure is conducted by two algorithms, pointer-
sender and pointer-relay. We just show the pseudo codes
for hopping manner (as presented in Algorithm 4 and
Algorithm 5), since the spreading manner’s can be easily
converted from it. Specifically, unlike the line 3 ∼ 4 of
Algorithm 4, the spreading manner based pointer-sender
algorithm will randomly select L negative pointer nodes
along the dimension #1 and send its state message to them.
The corresponding pointer-relay algorithm of these pointer
nodes will not only store these messages but also forward
them to L randomly selected negative-direction pointer
nodes at the next dimension.
Algorithm 4 POINTER-SENDER (HOPPING MANNER)
This program is invoked as long as pd detects that it owns records.
1: while (TRUE) do
2: Construct a pointer-message containing pd’s identifier, i.e., {pi’s

ID, #1}, where #1 refers to the first dimension;
3: Randomly select a negative pointer node PNi at dimension #1;
4: Send {pi’s ID, #1, #1} to PNi; /*the 2nd field and 3rd field

indicate the current dimension number and the number of pointer-
messages sent along this dimension*/

5: Sleep for a tiny cycle;
6: end while

The procedure of resource query is shown in Fig. 3 (c).

Algorithm 5 POINTER-RELAY (HOPPING MANNER)
This is invoked upon receiving a pointer-message {pi’s ID, #j, #k}.
1: Put pi’s ID in PointerList on the current node;
2: if (k < L) then
3: Randomly select a negative pointer node PNi along dimension

#j;
4: Send {pi’s ID, #j, #k} to PNi;
5: else
6: j=j+1;
7: if (j < R) then
8: Construct a new pointer-message: {pi’s ID, #j #1};
9: Randomly select one negative pointer node along dimension #j;

10: Send {pi’s ID, #j, #1} to PNi;
11: end if
12: end if

When a node (denoted as Q) generates a query message,
it will first be routed to its duty node (denoted as D).
On Node D, each stored record will be checked against
the message’s demand (i.e., Conditions (6) and (7)). If
Node D keeps enough qualified records for the query,
they will be returned to the requesting node and the query
will be terminated. If there are no matched records, a
few other duty nodes pointed by the current duty node
will be randomly selected and encapsulated in a so-called
pointer-jump message, which will be sent outward in a
relay fashion (Step 2,3,4,5 in Fig. 3 (b)) until it meets the
qualified records midway through the traversal (then the
query will be terminated) or all of the pointed duty nodes
are checked (then the query message will be forwarded to
D’s next neighbor (Step 6)). We present the pseudo code
in Algorithm 6. FoundList is used to keep the matched
records after traversing all the ones stored on the current
node. At Line 10, the current node sends the query message
to another duty node; upon receiving such a message, the
remote duty node will also perform Line 2∼12, yet at line
7 JumpList will be extracted from the received message
instead.

Note that the returned query result FoundList could be a
set of qualified resource nodes based on Algorithm 3. Con-
sequently, upon receiving the query result, the requesting
node will randomly choose one out of them as the final
resource node for executing the submitted task. With this
random selection policy, we can effectively mitigate the
decision conflict among different tasks (i.e., different nodes
with analogous resource demands select the same node for

9

Algorithm 6 RESOURCE QUERY ALGORITHM
This program at node pq is invoked upon receiving a query message
{e,w,B}.
1: if (the current node is the duty node) then
2: Search pq’s record list and put the qualified records in FoundList;
3: if (FoundList is not empty) then
4: Send FoundList to the requesting node;
5: Return; /*Query is terminated here*/
6: else
7: Construct JumpList by randomly selecting a few pointed duty

nodes;
8: if (JumpList is not empty) then
9: Randomly take out a duty node and remove it from the

JumpList;
10: Send the query message with JumpList to the selected duty

node;
11: end if
12: end if
13: else
14: Forward the query message {e,w,B} based on CAN’s routing

rules;
15: end if

executing their tasks, resulting in an abrupt resource over-
utilization situation) due to the un-coordinated node selec-
tion process from those autonomous participants. However,
even with such an opportunistic scheduling policy, resource
over-utilization and load unbalancing phenomena cannot be
totally eliminated if the number of tasks to be executed
at a node cannot be controlled. We investigate three dif-
ferent policies to control imported tasks or disperse the
load distribution, namely double-check policy [21], queue-
assistant policy, and extra-virtual-dimension policy [19].
For the double-check policy, each requesting task will
recheck the current resource availability of the selected
node before the task is actually migrated. If the remote
node does not allow extra load importing because this
could make it over-utilized due to an earlier task admission
from another node, the task could get one more chance to
select another qualified node. Unlike double-check policy,
queue-assistant policy allows user tasks to be temporally
queued on the selected resource node even though its
current resource cannot fit the new demand immediately.
Extra-virtual-dimension policy, which adopts an additional
dimension for any new node joining the CAN overlay, is
also a candidate policy in dispersing the zone distribution.
We will evaluate all these policies in the next section.

6 PERFORMANCE EVALUATION

6.1 Experimental Setting

To conduct the simulation, we first build an emulated
proportional-share scheduler in accordance with Xen’s
credit-scheduler. We use PeerSim [26] to implement the
proposed CAN-based range query protocols on a large
network containing 2000 to 12000 participating nodes.
The hardware configuration of each node is randomly
selected according to system parameters specified in Ta-
ble 2. Via this table, we can derive the min capacity
and max capacity at each resource dimension. For in-
stance, along the CPU dimension, min capacity and
max capacity are 1×1=1 Gflops and 8×3.2=25.6 Gflops
respectively, which happen when there is only one core

at a node running at the speed of 1 Gflops and 8 cores
per node, each operating at 3.2 Gflops. Each node’s
resource prices are randomly generated from the range
[1
min capacity , 100

max capacity]. To investigate the contention
issue in the course of resource query among user requests,
we use a parameter called demand ratio (denoted as λ,
where 1/8 ≤ λ ≤ 1) to control the generation of resource
demand from each user task. Intuitively, λ indicates dif-
ferent contention levels on each resource dimension in
presence of large number of analogous queries injected
from from participants. For instance, if λ is set to 1.0,
each task’s expected resources would be randomly set in
[1.0×min capacity, 1.0×max capacity]. If λ is set to
0.2, the resource amounts demanded by all the tasks will
be distributed in [0.2×min capacity, 0.2×max capacity]
at each dimension, leading to a higher level of contention.

Each experiment simulates 86400 seconds (i.e., one day)
and each node will periodically receive the user requests
whose workload on each attribute (such as CPU, I/O)
will be randomized based on a Poisson process with 4000
seconds as its mean. For example, if a request’s work-
load vector is (CPU=2.4GFLOP, disk data=100Mb,
network data=200Mb), it will be finished until all the
workloads are processed by subtracting the allocated shares
of resource over time. Such a request could be analogous
to the jobs which contain sequentially submitted tasks in
Google’s trace [27], where job lengths are from dozens of
minutes to several days. Moreover, Google’s trace shows
that most of jobs contain only one single service, which
conforms to our multi-attribute resource allocation model.
The weight vector of each task is generated based on the
ratio of its workload on different resource dimensions (or
phases). In practice, the weight vector could be estimated
by statistics based on normalized usage data like Google’s
trace. The TTL (i.e., age) of each state-update message is
600 seconds and message updating cycle is 400 seconds.

TABLE 2: System Setting
Parameter Value

of nodes 2000 ∼ 12000
of cores per node 1, 2, 4, 8
computation rate per core 1, 2, 2.4, 3.2 Gflops
I/O speed per node 20, 40, 60, 80 MbPS
memory size per node 512, 1024, 2048, 4096 MB
disk size per node 20, 60, 120, 240 GB
network bandwidth 0.2 ∼ 10 Mbps

TABLE 3: User Task’s Demand
Parameter Value Parameter Value

demand ratio λ 1/8 ∼ 1 cpu rate λ ∼ 25.6λ
I/O speed 20λ ∼ 80λ memory size 512λ ∼ 4096λ
disk size 20λ ∼ 240λ bandwidth 0.1λ ∼ 10λ

We first compare the execution efficiency of SOC to that
of P2P desktop Grid [19], [20] by taking into account the
VMM overhead, to validate the efficacy of the DOPS algo-
rithm. According to Google’s trace, task’s execution may
be related to different attributes like CPU and memory. We
consider five types of resource demand: CPU, disk speed,
network, memory size, and disk space; thus constituting a
5-dimensional resource attribute space. The last two won’t
impact the task’s execution time but are regarded as the
constraints during the resource discovery phase. According

10

to the existing experimental report [29], we set the cost in
maintaining one VM instance as follows: processor rate =
5%, IO speed = 10%, network bandwidth = 5%, memory
cost = 5MB.

We compare PG-CAN with hopping manner and spread-
ing manner to other solutions, including the basic newscast
model [30], random diffusion CAN (RD-CAN) [19], and
virtual-dimension (VD) support [19]. Under the newscast
setting, each node maintains a fixed-size cache containing
2log(n) neighbors which are randomly selected from the
whole node set. Each node will periodically push its state
message to three sampled random neighbors and be further
gossiped for three more hops. Any node’s cache could be
refreshed by merging with one of its neighbors periodically.
In RD-CAN, any duty node diffuses its received state
messages over CAN towards the negative neighbors for a
few hops, and any query message is raised with Condition
(6) and (7). With VD support, every state records is inserted
into the CAN space based on R+1 dimensions, in order to
mitigate the analogous query contention.

6.2 Experimental Results

Fig. 5 presents the throughput ratio between SOC and P2P
desktop Grid (2000 nodes), using spreading manner based
PG-CAN with the extra-virtual-dimension policy support
and different demand ratios λ (=1/2,1/4,1/6, and 1/8). The
throughput ratio is defined as the ratio of the number of
finished tasks and the total number of generated tasks in the
whole system over time. In SOC, every task is allowed to
share the multiple types of resources on the same node, so
the resources can be utilized more abundantly. For example,
a CPU-bound task and an IO-bound task could run at the
same physical node at the same time by leveraging VM
resource isolation technology.

We observe that SOC would achieve up to about 60%
improvement as task sizes are relatively small on average
(say λ=1/6 or 1/8). When all the task sizes are relatively
large (say λ=1/2), SOC could still get about 15% improve-
ment compared to P2P Grid model. Another observation
is that the additional cost of maintaining VM instances is
always constant, which becomes neglectable with smaller
task sizes.

In addition to the throughput, we also evaluate task’s
execution efficiency from the perspective of execution time.
According to user’s expected resource vector e(tij), we
define tij’s expected execution time as

∑R
k=1

lk
ek

. Then,
we define tij’s execution efficiency (denoted as ϵij) as its
expected execution time divided by its real turnaround time
(from the task’s submission to its completion). Apparently,
higher value of ϵij implies shorter execution time of task
tij . From Fig. 6, we observe that both SOC and P2P Grid
deliver satisfactory average execution efficiency, which is
calculated based on all the finished tasks. The reason why
the average execution efficiency in P2P Grid appears a little
higher than that in SOC is due to the fact that exclusive
queuing model in P2P Grid may allocate relatively more
resource amount to each task. While this could result in

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24

T
h
ro

u
g
h

p
u
t
R

a
ti
o

Time (Hour)

SODC-WithoutVMCost
SODC-WithVMCost

GRID-WithoutVMCost
GRID-WithVMCost

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24

T
h
ro

u
g
h

p
u
t
R

a
ti
o

Time (Hour)

SODC-WithoutVMCost
SODC-WithVMCost

GRID-WithoutVMCost
GRID-WithVMCost

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24

T
h
ro

u
g
h

p
u
t
R

a
ti
o

Time (Hour)

SODC-WithoutVMCost
SODC-WithVMCost

GRID-WithoutVMCost
GRID-WithVMCost

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 6 12 18 24

T
h
ro

u
g
h

p
u
t
R

a
ti
o

Time (Hour)

SODC-WithoutVMCost
SODC-WithVMCost

Grid-WithoutVMCost
Grid-WithVMCost

(d)

Fig. 5: SOC vs. P2P Grid (on Throughput). (a) Demand Ratio = 1/2. (b)
Demand Ratio = 1/4. (c) Demand Ratio = 1/6. (d) Demand Ratio = 1/8.

shorter execution time for each individual task, the trade-
off is a lower throughput as reported in Fig. 5.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 6 12 18 24

A
v
e

ra
g

e
 E

ff
ic

ie
n
c
y

Time (Hour)

SODC-WithoutVMCost
SODC-WithVMCost

Grid-WithoutVMCost
Grid-WithVMCost

(a)

0

1

2

3

4

5

6

 0 6 12 18 24

A
v
e
ra

g
e
 E

ff
ic

ie
n
c
y

Time (Hour)

SODC-WithoutVMCost
SODC-WithVMCost

Grid-WithoutVMCost
Grid-WithVMCost

(b)

Fig. 6: SOC vs. P2P Grid (on Execution Efficiency). (a) Demand Ratio =
1/2. (b) Demand Ratio = 1/6.

Fig. 7 shows the converged throughput ratio under the
SPG-CAN with different policies (or their combinations) to
control the load congestion with different demand ratios.
We observe that the combination of double-check/queue-
assistant policy and the extra-virtual-dimension policy per-
forms better than the pure policies without extra-virtual-
dimension. We also observe that the queue-assistant policy
outperforms double-check policy in most of cases. Recall
that in the queue-assistant policy, the task will be failed
(i.e., the searching is terminated) if there were no qualified
resources found. This means that this policy suffers the least
query cost compared to others. As such, the combination
of queue-assistant and extra-virtual-dimension policy seems
the best. As follows, we will show that HPG-CAN without
any load control policy would still outperform the SPG-
CAN with extra-virtual-dimension policy. In the rest of this
section, we uniformly adopt the queue-assistant mode with
VM cost.

Fig. 8 and 9 present the effectiveness of different range
query protocols on SOC with 2000 nodes, under various
load ratios (λ). The failed task ratio in Fig. 8 (b) refers to
the number of tasks that cannot find qualified node divided
by the total number of submitted tasks.

We observe that HPG-CAN leads to the best performance
(including highest throughput ratio and lowest failed task
ratio) in that it could efficiently discover the global idle

11

 0

 0.2

 0.4

 0.6

 0.8

 1

1/2 1/4 1/6 1/8

T
h
ro

u
g
h
p
u
t

R
a

ti
o

Demand Ratio

double-check policy
queue-assistant policy

double-check + extra-virtual-dimension policy
queue-assistant + extra-virtual-dimension policy

Fig. 7: Throughput Ratio under Different Load Control Policies

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 6 12 18 24

T
h
ro

u
g
h

p
u
t
R

a
ti
o

Time (Hour)

HPG-CAN
SPG-CAN

SPG-CAN + VD
newscast

RD-CAN
RD-CAN + VD

(a)

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 6 12 18 24

F
a
ile

d
 T

a
s
k
 R

a
ti
o
 (

F
T

R
)

Time (Hour)

HPG-CAN
SPG-CAN

SPG-CAN + VD

newscast
RD-CAN

RD-CAN + VD

(b)

0

1

2

3

4

5

6

7

8

 0 6 12 18 24

A
v
e

ra
g
e
 E

ff
ic

ie
n
c
y

Time (Hour)

HPG-CAN
SPG-CAN

SPG-CAN + VD
newscast
RD-CAN

RD-CAN + VD

(c)

0

 0.2

 0.4

 0.6

 0.8

1

 0 6 12 18 24

F
a
ir
n
e
s
s
 I
n
d
e
x

Time (Hour)

HPG-CAN
SPG-CAN

SPG-CAN + VD

newscast
RD-CAN

RD-CAN + VD

(d)

Fig. 8: The Effectiveness of Query Protocols (λ= 1
2

). (a) Throughput Ratio.
(b) Failed Task Ratio. (c) Average Efficiency. (d) Fairness Index.

resources. Moreover, its failed task ratio can be limited
down to 0.00007 in the situation with smaller load-ratio
λ (Fig. 9 (b)). Note that smaller λ means higher degree of
resource contention in that all such small-demand queries
would always be routed to the similar duty nodes located
at the lower position of the CAN space. In comparison,
SPG-CAN works notably inferior to HPG-CAN because of
its sub-optimal effect in gossiping non-empty-cache nodes’
identifiers. Fig. 9 (c) shows an interesting result about aver-
age execution efficiency: task’s execution efficiency under
HPG-CAN converges up to 4, which is much higher than
that of SPG-CAN. In other words, HPG-CAN outperforms
the other solutions on all the three key metrics.

Furthermore, we use Jain’s fairness index [31] (denoted
φ ∈ [0,1]) to evaluate the fairness among user tasks’
completion time. The fairness index is given in Equation
(21), where ϵij refers to task tij’s execution efficiency.
Higher φ implies more steady execution efficiency.

φ =
(
∑n

i=1

∑mi

j=1 ϵij)
2

(
∑n

i=1 mi) · (
∑n

i=1

∑mi

j=1 ϵ
2
ij)

(21)

Fig. 8 (c) and Fig. 9 (c) present the fairness of all the
completed tasks’ execution. We observe that HPG-CAN
reaches the highest fairness, which means it provides most
stable results compared to other solutions.

We evaluate the system scalability (as shown in Table 4)
of the PG-CAN protocol. All the values in this table are

0

 0.2

 0.4

 0.6

 0.8

1

 0 6 12 18 24

T
h

ro
u

g
h

p
u

t
R

a
ti
o

Time (Hour)

HPG-CAN
SPG-CAN

SPG-CAN + VD

newscast
RD-CAN

RD-CAN + VD

(a)

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 6 12 18 24

F
a
ile

d
 T

a
s
k
 R

a
ti
o
 (

F
T

R
)

Time (Hour)

HPG-CAN
SPG-CAN

SPG-CAN + VD
newscast
RD-CAN

RD-CAN + VD

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 6 12 18 24

A
v
e

ra
g

e
 E

ff
ic

ie
n

c
y

Time (Hour)

HPG-CAN
SPG-CAN

SPG-CAN + VD

newscast
RD-CAN

RD-CAN + VD

(c)

0

 0.2

 0.4

 0.6

 0.8

1

 0 6 12 18 24

F
a
ir
n

e
s
s
 I
n

d
e
x

Time (Hour)

HPG-CAN
SPG-CAN

SPG-CAN + VD

newscast
RD-CAN

RD-CAN + VD

(d)

Fig. 9: The Effectiveness of Query Protocols (λ= 1
4

). (a) Throughput Ratio.
(b) Failed Task Ratio. (c) Average Efficiency. (d) Fairness Index.

recorded after the one-day duration test. With the increasing
system scale (e.g., up to 12000 nodes), the performance
metrics (including throughput, average efficiency (i.e., the
mean value of ϵij), etc.) will not change notably. The
message delivery cost is defined as the number of messages
to be sent/forwarded by each node on average during the
whole 24 hours. Our test shows that this cost increases
roughly with a logarithmic speed, which is much better
than linear rate. Moreover, most of messages are actu-
ally lightweight pointer-messages, each containing just an
identifier. Thus, the PG-CAN protocol can result in little
message delivery overhead.

TABLE 4: System Scalability of PG-CAN
XXXXXXXmetric

scale 2000 4000 6000 8000 10000 12000

throughput ratio 0.598 0.592 0.571 0.568 0.572 0.575
failed task ratio 23.7% 26.4% 27.1% 27.8% 27.9% 27.1%
average efficiency 2.72 2.61 2.60 2.58 2.57 2.56
fairness index 0.665 0.673 0.677 0.666 0.681 0.672
msg delivery cost 2913 3613 4220 4701 5067 5280

We evaluate the PG-CAN protocol under node churning
situations. We assume there are X% of nodes arbitrarily
joining/departuring the entire system every minute. We
faithfully implement the node departure maintenance on
each departure node’s neighbors to refresh their neighbor-
hoods and a binary partition tree based background zone
reassignment algorithm [17] to ensure each node always
corresponds to one globally unique zone. Specifically, each
node does not actually maintain the global view of such a
tree but only needs to distributively communicate with its
neighbors.

In our simulation, the demand ratio λ is set to 1/4 and
X% (also called dynamic level) will be set to 0%, 3%,
6% and 9%. Note that the environment with node churning
rate (dynamic level) set to 3% per minute is already very
volatile, especially compared to the 4000-seconds average
completion time for all tasks (as mentioned in Section 6.1).

In order to observe the impact of node churning to the
PG-CAN, we first conduct our simulation under an assump-
tion that the tasks would not be suspended/interrupted on

12

the departure nodes. Later, we eliminate this assumption by
considering task checkpoint/migration cost to observe the
synthetic system performance. Fig. 10 and 11 show the PG-
CAN’s working efficiency under the non-interrupting task
condition, based on hopping manner and spreading manner
respectively. It is not surprising that HPG-CAN works
much better than SPG-CAN in the dynamic environment,
due to considerably higher system throughput (HPG-CAN
converges up to 0.83 while SPG-CAN converges to about
0.78) and lower failed task ratio (HPG-CAN converges to
about 0.0005 while SPG-CAN converges to 0.025).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 6 12 18 24

T
h
ro

u
g
h
p

u
t

R
a

ti
o

Time (Hour)

dynamic level = 0%
dynamic level = 3%
dynamic level = 6%
dynamic level = 9%

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 6 12 18 24

F
a
ile

d
 T

a
s
k
 R

a
ti
o

Time (Hour)

dynamic level = 0%
dynamic level = 3%
dynamic level = 6%
dynamic level = 9%

(b)

Fig. 10: HPG-CAN under Dynamic Environment. (a) Throughput Ratio.
(b) Failed Task Ratio.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 6 12 18 24

T
h
ro

u
g
h

p
u
t
R

a
ti
o

Time (Hour)

dynamic level = 0%
dynamic level = 3%
dynamic level = 6%
dynamic level = 9%

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0 6 12 18 24

F
a
ile

d
 T

a
s
k
 R

a
ti
o

Time (Hour)

dynamic level = 0%
dynamic level = 3%
dynamic level = 6%
dynamic level = 9%

(b)

Fig. 11: SPG-CAN under Dynamic Environment. (a) Throughput Ratio.
(b) Failed Task Ratio.

In Fig. 11 (b), we observe that the blue curve (the case
without any churning nodes) decreases at the beginning and
increases linearly for the rest of time. This is reasonable
due to the following analysis: at the beginning, the whole
system is relatively idle such that most of the hosts are
qualified for any submitted tasks; however, with increasing
number of tasks submitted, the failure probability of finding
qualified nodes for any task will be increased accordingly,
especially when the rate of processing tasks becomes lower
than that of importing new tasks. What is most interest-
ing for SPG-CAN is that the overall system performance
(including throughput ratio, failed task ratio) will not get
worse with increasing dynamic level of the environment,
but get prominent improvement on contrary (See Fig. 11).
This is sound, since in the dynamic environment, the nodes
would frequently change their neighbors and the pointer-
cache maintained would also be changed accordingly. As
such, the pointers and state messages would be more widely
diffused than the original SPG-CAN, leading to a higher
probability of finding qualified resource nodes.

We further analyze the overall system performance
by taking into account the tasks’ interruption and their
checkpointing/migration cost on the departure nodes. In
practice, the tasks running on the departure nodes will
probably be interrupted or suspended until the nodes are

restored. Hence, we assume the scheduled (or running)
tasks on any departure node would take longer time to
complete, and the wasted time is set to be equal to that
for executing 10% more load of the current remaining
workload at each resource attribute. From Fig. 12 and
13, we observe that HPG-CAN with 6%-dynamic-level
can still outperform SPG-CAN with 0%-dynamic-level.
Although the performance degradation could be observed
with increasing dynamic level (Fig. 12), the whole system
could still perform very well when there are 3% churning
nodes per minute (i.e., about 1 − 0.9723 = 50.4% churning
nodes per 23 minutes), confirming the high adaptability of
our solution.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 6 12 18 24

T
h
ro

u
g
h

p
u
t
R

a
ti
o

Time (Hour)

dynamic level = 0%
dynamic level = 3%
dynamic level = 6%
dynamic level = 9%

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 6 12 18 24

F
a
ile

d
 T

a
s
k
 R

a
ti
o

Time (Hour)

dynamic level = 0%
dynamic level = 3%
dynamic level = 6%
dynamic level = 9%

(b)

Fig. 12: HPG-CAN under Dynamic Environment with Checkpointing and
Task Migration Cost. (a) Throughput Ratio. (b) Failed Task Ratio.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 6 12 18 24

T
h
ro

u
g
h
p
u

t
R

a
ti
o

Time (Hour)

dynamic level = 0%
dynamic level = 3%
dynamic level = 6%
dynamic level = 9%

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 6 12 18 24
F

a
ile

d
 T

a
s
k
 R

a
ti
o

Time (Hour)

dynamic level = 0%
dynamic level = 3%
dynamic level = 6%
dynamic level = 9%

(b)

Fig. 13: SPG-CAN under Dynamic Environment with Checkpointing and
Task Migration Cost. (a) Throughput Ratio. (b) Failed Task Ratio.

7 RELATED WORK

SOC is different from the traditional Grid model (including
P2P desktop Grid [32], [33]) in the resource consumption
manner. Grids generally assume exclusive resource usage to
ensure user QoS. The problem of job scheduling in Grids is
usually categorized as a multiprocessor scheduling (MPS)
problem [5], [6] (a kind of combinatorial optimization
problem), which has been proved to be NP-complete [7].
Accordingly, many approximation algorithms as well as
(meta)heuristics applied to various versions of the MPS
problem in the Grid environment have been studied. For
example, A. Rossi et al. [34] proposed a meta-heuristic for
solving the fixed job scheduling problem where processors
are subject to spread time constraints, i.e., the time spent
between the submission time and the completion time
should not exceed a given duration. Generalized Extremal
Optimization (GEO) [35] is another meta-heuristic for solv-
ing the MPS problem. G. Singh et al. [36] approached the
Grid scheduling problem through a cost-based provisioning
model and a multi-objective genetic algorithm for getting
approximately optimized performance (such as throughput).

13

In P2P desktop Grids, J.S. Kim et al. [19] proposed a
heuristic load balancing method for improving the task
scheduling throughput on desktop Grids over CAN overlay.
Similarly, Q. Zheng et al. [37] formulated the problem
to be a bins-and-balls model with herds phenomenon
and tried to get the approximately optimal performance
using a stochastic algorithm atop a DHT overlay. C.B.
Lee et al. [38] studied a user-centric utility function of
task turnaround time to improve the system performance
based on simulation. Compared with these existing works,
we devise an autonomous VM-multiplexing resource con-
sumption model, namely SOC, which allows each task to
dynamically make full use of the resource slices isolated
by VM technology.

Although there are also a few existing research studies
on VM-multiplexing strategies, they are not well suited to
the SOC for most of them mainly focus on a few specific
attributes such as CPU or memory. For instance, virtual-
putty [9] used an application-load forecasting method as
well as a strategy for reshaping the involved VMs to
improve a single host’s CPU and I/O resource utilization.
Gupta et al. [10] proposed a method allowing memory
sharing to happen within page boundaries only. Govindan
et al. [11] adopted statistical multiplexing of applications
to make applications fit into the given power budgets.
In contrast, X. Meng et al. [8] explicitly endeavored
to maximize the VM-multiplexing resource utilization by
analyzing VM-pairs’ compatibility in terms of the fore-
casted workload and estimated VM sizes. However, two
significant drawbacks still remain: (1) poor scalability due
to the central management of VM-correlation matrix; (2)
restrictive constraints on implementation since they only
identify the compatibility of VM-pairs. To overcome these
problems, we formulate multi-attribute resource allocation
as a convex optimization problem and devise a resource
allocation algorithm to minimize the task execution time
with O(R3) time complexity.

Since the node identifiers over the DHT are often
generated based on some hash functions, it is uneasy to
directly perform range queries. Some existing strategies
[39] have to build an extra layer to reorganize all of nodes
over the DHT, whereas others (such as [19]) leverage a
CAN topology. Many other existing works [39], [40], [41],
[42], [43], [44] mainly focus on how to locate the duty
nodes that satisfy the user-specified range in all dimensions
with limited delays. However, for most tasks with low
resource requirements (which is true in most Cloud-based
applications), nearly all the nodes in the network can be
qualified. This will generate a vast amount of network
traffic and also adds large burden to user on the filtering
process. Indeed, most ordinary users just want the system to
quickly locate a qualified node to meet its QoS goals. This
issue however becomes more complex due to the adoption
of rather flexible VM-enabled allocation scheme and the
high-dimensional range query conditions. In view of this
problem, we propose a new distributed protocol to search
resources with the mitigated contention among requesters
and strictly limited query-message traffic cost.

8 CONCLUSIONS AND FUTURE WORK
This paper proposes a novel scheme (DOPS) for virtual
resource allocation on a Self-Organizing Cloud (SOC), with
three key contributions listed below.

• Optimization of Task’s Resource Allocation Under
User’s Budget: With a realistic monetary model, we
propose a solution which can optimize the task ex-
ecution performance based on its assigned resources
under the user budget. We prove its optimality using
the KKT conditions in the convex-optimization theory.

• Maximized Resource Utilization based on PSM: In
order to further make use of the idle resources, we
design a dynamic algorithm by combining the above
algorithm with PSM and the arrival/completion of new
tasks. This can give incentives to users by gaining
an extra share of un-used resource without more pay-
ment. Experiments confirm achieving a super-optimal
execution efficiency of their tasks is possible. DOPS
could get an improvement on system throughput by
15%∼60% than the traditional methods used in P2P
Grid model, according to the simulation.

• Lightweight Resource Query Protocol with Low Con-
tention: We summarize the resource searching request
as two range query constraints, Formula (6) and For-
mula (7). We prove them to be the sufficient and
necessary conditions for getting the optimal resource
allocation. Experiments confirm the designed PG-
CAN protocol with light-weight query overhead is able
to search qualified resources very effectively.

So far, we have successfully built a prototype supporting
live migration of VMs between any two nodes on the
Internet (even though they are behind different NATs).
In the future, we will study fault-tolerance support for a
(DOPS-based, PG-CAN-enabled) SOC system; we will also
conduct sensitivity analysis of how violation of our model
assumptions would impact the optimal resource allocation.

ACKNOWLEDGMENTS
This research is supported by a Hong Kong RGC grant
HKU 7179/09E and a Hong Kong UGC Special Equipment
Grant (SEG HKU09).

REFERENCES
[1] J. E. Smith and R. Nair, Virtual Machines: Versatile Platforms For

Systems And Processes. Morgan Kaufmann, 2005.
[2] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing

performance isolation across virtual machines in xen,” Proc. seventh
ACM/IFIP/USENIX Int’l Conference on Middleware (Middleware
’06), pp. 342–362, 2006.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwin-
ski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,”, Tech.
Rep., UCB/EECS-2009-28, Feb 2009.

[4] D. P. Anderson, “Boinc: a system for public-resource computing and
storage,” Proc. Fifth IEEE/ACM Int’l Workshop on Grid Computing,
pp. 4–10, 2004.

[5] P. Crescenzi and V. Kann, A compendium of NP optimization
problems. [Online]. Available: ftp://ftp.nada.kth.se/Theory/Viggo-
Kann/compendium.pdf

[6] O. Sinnen, Task Scheduling for Parallel Systems (Wiley Series on
Parallel and Distributed Computing), Wiley-Interscience, 2007.

14

[7] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling
independent tasks on nonidentical processors,” J. ACM, vol. 24, pp.
280–289, April 1977.

[8] X. Meng and et al., “Efficient resource provisioning in compute
clouds via vm multiplexing,” Proc. seventh IEEE int’l conf. on
Autonomic computing (ICAC’10), pp. 11–20, 2010.

[9] J. Sonneck and A. Chandra, “Virtual putty: Reshaping the physical
footprint of virtual machines,” Proc. Int’l HotCloud Workshop in
conjunction with USENIX Annual Technical Conference, 2009.

[10] D. Gupta and et al., “Difference engine: Harnessing memory redun-
dancy in virtual machines,” Proc. eighth Int’l USENIX Symp. on
Operating Systems Design and Impl., pp. 309 – 322, 2008.

[11] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and
A. Baldini, “Statistical profiling-based techniques for effective power
provisioning in data centers,” in Proc. fourth ACM Conf. European
Conf. on Computer systems (EuroSys’09), 2009, pp. 317–330.

[12] M. Feldman, K. Lai, and L. Zhang, “The proportional-share alloca-
tion market for computational resources,” IEEE Trans. on Parallel
and Distributed Systems, vol. 20, pp. 1075–1088, 2009.

[13] S. Soltesz, H. Poetzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” Proc. second ACM Int’l
European Conf. on Computer Systems (Euro’07), 2007, pp. 275–
287.

[14] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three
cpu schedulers in xen,” SIGMETRICS Perform. Eval. Rev., vol. 35,
no. 2, pp. 42–51, 2007.

[15] “The role of memory in vmware esx server 3: on line at:
http://www.vmware.com/pdf/esx3 memory.pdf,” Tech. Rep.

[16] dm-ioband: online at http://sourceforge.net/apps/trac/ioband.
[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,

“A scalable content-addressable network,” Proc. ACM Int’l Conf. on
Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM’2001), pp. 161–172, 2001.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakr-
ishnan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” Proc. ACM Int’l Conf. on Applications, technologies,
architectures, and protocols for computer communications (SIG-
COMM’2001), pp. 149–160, 2001.

[19] J. S. Kim and et al., “Using content-addressable networks for
load balancing in desktop grids,” Proc. 16th ACM Int’l Symp. on
High Performance Distributed Computing (HPDC’07), pp. 189–198,
2007.

[20] A. Leite, H. Mendes, L. Weigang, A. de Melo, and A. Boukerche,
“An architecture for P2P bag-of-tasks execution with multiple task
allocation policies in desktop grids,” Proc. IEEE Int’l Conf. Cluster
Computing, pp. 1–11, Feb. 2011.

[21] Y. Drougas and V. Kalogeraki, “A fair resource allocation algorithm
for peer-to-peer overlays,” Proc. 24th Int’l Conf. on Computer
Communications (INFOCOM’05), pp. 2853–2858, 2005.

[22] D. Gross and C. M. Harris, Fundamentals of Queueing Theory (Wiley
Series in Probability and Statistics), Wiley-Interscience, Feb. 1998.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2009.

[24] S. Di, C.-L. Wang, W. Zhang, and L. Cheng, “Probabilistic best-fit
multi-dimensional range query in self-organizing cloud,” Proc. 40th
IEEE Int’l Conf. on Parallel Processing, pp. 763–772, 2011

[25] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. 19th ACM symp. on Operating systems
principles (SOSP’03), 2003, pp. 164–177.

[26] Peersim simulator: http://peersim.sourceforge.net.
[27] Google cluster-usage traces: online at

http://code.google.com/p/googleclusterdata.
[28] C. A. Waldspurger, “Memory resource manage-

ment in vmware esx server.” [Online]. Available:
http://www.usenix.org/events/osdi02/tech/waldspurger.html

[29] J. P. Walters, V. Chaudhary, M. Cha, S. G. Jr., and S. Gallo, “A
comparison of virtualization technologies for hpc,” Proc. 22nd Int’l
IEEE Conf. on Advanced Information Networking and Applications
(AINA’08), pp. 861–868, 2008.

[30] W. K. Mark Jelasity and M. van Steen, “Newscast computing,” Vrije
Universiteit Amsterdam, Tech. Rep., 2006.

[31] R. K. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation and
Modelling, John Wiley & Sons, April 1991.

[32] J. Cao, F. B. Liu, and C. Z. Xu, “P2pgrid: integrating p2p networks
into the grid environment: Research articles,” vol. 19, no. 7, Chich-
ester, UK: John Wiley and Sons Ltd., pp. 1023–1046, 2007

[33] H. Abbes, C. Cerin, and M. Jemni, “Bonjourgrid: Orchestration of
multi-instances of grid middlewares on institutional desktop grids,”
Proc. 23rd IEEE Int’l Symp. on Parallel & Distributed Processing
(IPDPS’09), pp. 1–8, 2009

[34] A. Rossi, A. Singh, and M. Sevaux, “A metaheuristic for the fixed job
scheduling problem under spread time constraints,” Comput. Oper.
Res., vol. 37, pp. 1045–1054, June 2010.

[35] P. Switalski and F. Seredynski, “Generalized extremal optimization
for solving multiprocessor task scheduling problem,” Proc. Seventh
Int’l Conf. on Simulated Evolution and Learning, Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 161–169.

[36] G. Singh, C. Kesselman, and E. Deelman, “A provisioning model and
its comparison with best-effort for performance-cost optimization in
grids,” in Proc. 16th ACM Symp. on High Performance Distributed
Computing (HPDC’07), 2007, pp. 117–126.

[37] Q. Zheng, H. Yang, and Y. Sun, “How to avoid herd: a novel
stochastic algorithm in grid scheduling,” Proc. 15th ACM Int’l
Symp. on High Performance Distributed Computing (HPDC’06), Los
Alamitos, pp. 267–278, 2006.

[38] C. B. Lee and A. E. Snavely, “Precise and realistic utility functions
for user-centric performance analysis of schedulers,” Proc. 16th
ACM Int’l Symp. on High Performance Distributed Computing
(HPDC’07), pp. 107–116, 2007.

[39] A. R. Bharambe, M. Agrawal, and S. Seshan, “Mercury: supporting
scalable multi-attribute range queries,” Proc. ACM Int’l Conf. on
Applications, technologies, architectures, and protocols for computer
communications (SIGCOMM’2004), pp. 353–366, 2004.

[40] D. Li, J. Cao, X. Lu, and K. C. C. Chen, “Efficient range query
processing in peer-to-peer systems,” IEEE Trans. on Knowledge and
Data Engineering, vol. 21, no. 1, pp. 78–91, January 2009.

[41] A. Gonzalezbeltran, P. Milligan, and P. Sage, “Range queries over
skip tree graphs,” Computer Communications, vol. 31, no. 2, pp.
358–374, February 2008.

[42] S. Wang, Q. H. Vu, B. C. Ooi, A. K. Tung, and L. Xu, “Skyframe:
a framework for skyline query processing in peer-to-peer systems,”
J. VLDB, vol. 18, pp. 345–362, January 2009.

[43] M. A. Arefin, M. Y. S. Uddin, I. Gupta, and K. Nahrstedt, “Q-tree: A
multi-attribute based range query solution for tele-immersive frame-
work,” in Proc. 29th Int’l Conf. on Distr. Comp. Sys. (ICDCS’09),
pp. 299–307, 2009.

[44] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-
dimensional data in a cloud system,” Proc. ACM Int’l Conf. on
Management of Data (SIGMOD’10), pp. 591–602, 2010.

Sheng Di Sheng Di received his M.Phil de-
gree from Huazhong University of Science
and Technology in 2007 and Ph.D degree
from The University of Hong Kong in 2011.
He is currently a post-doctor researcher at
INRIA. Dr. Di’s research interest involves
optimization of distributed resource alloca-
tion especially in P2P systems and large-
scale Cloud computing platforms. His back-
ground is mainly on the fundamental theoret-
ical analysis and practical system implemen-

tation. Contact him at the Department of Computer Science, The
University of Hong Kong, Hong Kong, sdi@cs.hku.hk.

Cho-Li Wang Cho-Li Wang received his
Ph.D. degree from University of Southern
California in 1995. Dr. Wang’s research inter-
ests include multicore computing, software
systems for Cluster and Grid computing,
and virtualization techniques for Cloud com-
puting. He serves on the editorial boards
of several international journals, including
IEEE Transactions on Computers (2006-
2010), Journal of Information Science and
Engineering, and Multiagent and Grid Sys-

tems. He is the regional coordinator (Hong Kong) of IEEE Technical
Committee on Scalable Computing (TCSC). Contact him at the
Department of Computer Science, The University of Hong Kong,
clwang@cs.hku.hk.

