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Characterization and Management
of Popular Content in KAD

Damiano Carra, Moritz Steiner, Pietro Michiardi, Ernst Biersack,
Wolfgang Effelsberg and Taoufik En-Najjary

Abstract—The endeavor of this work is to study the impact of content popularity in a large-scale Peer-to-Peer network, namely KAD.

Armed with the insights gained from an extensive measurement campaign, we pinpoint several deficiencies of the present KAD design

in handling popular content, and provide a series of solutions to address such shortcomings. Among them, we design and evaluate

an adaptive load balancing mechanism. Our mechanism is backward compatible with KAD, as it only modifies its inner algorithms,

and presents several desirable properties: (i) it drives the process that selects the number and location of peers responsible to store

references to objects, based on their popularity; (ii) it solves problems related to saturated peers, that would otherwise entail a significant

drop in the diversity of references to objects, and (iii) if coupled with an enhanced content search procedure, it allows a more fair and

efficient usage of peer resources, at a reasonable cost. Our evaluation uses a trace-driven simulator that features realistic peer churn

and a precise implementation of the inner components of KAD.

!

1 INTRODUCTION

AS demonstrated by a wide range of measurement
campains, the amount of traffic generated by peer-

to-peer (P2P) applications represents a significant por-
tion of all Internet traffic [1], [2]. KAD-based P2P systems
have become very popular: KAD is a Kademlia-based
P2P routing system. Kademlia [3] is a distributed hash
table (DHT) that is implemented in several popular
P2P applications, such as Overnet [4], eMule [5] and
aMule [6], which involve several millions of users world-
wide [7]. Thus it is important to understand whether the
inner components of KAD, namely the mechanisms used
to publish and search for content, are well designed and
whether they can be improved to obtain performance
and efficiency gains.
The design of large scale distributed systems poses

many challenges due to the heterogeneity of its com-
ponents. Many systems based on DHTs have been pro-
posed to manage such heterogeneity, primarily focusing
on node churn. The dynamic nature of arrivals and
departures of peers, and the consequent heterogeneous
session times, represents one of the main, and better
studied, characteristics of P2P networks.
Despite the vast amount of work on DHTs, little has

been said about the heterogeneity in content popularity.
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When dealing with content popularity, we need to con-
sider both objects and references – in a DHT network,
to simplify the search based on keywords, nodes store
not only objects, but also the references to them. While
object popularity derives from how often an object is
replicated, reference popularity arises mainly from two
reasons. Either the object (where the reference points
to) is popular, or the reference is formed by common
keywords, such as “the,” “mp3”, or “dvd,” that can be
found in different object titles.
In this work we study how KAD copes with ob-

ject and reference popularity. To this aim, we perform
a set of measurements campaigns. While the solution
to reference popularity due to common keywords is
straightforward, handling heterogeneous object popular-
ity represents a major challenge. The main problem is
to tailor the amount of load each peer must support in
an adaptive way. Currently proposed solutions usually
consider a statically pre-set number of peers to use
for load balancing. Instead, we realize an adaptive load
balancing mechanism for KAD-based systems.
The main contributions of our work can be summa-

rized as follows:
• We designed and implemented two measurement

tools, an instrumented aMule client and a content
spy calledMistral, which are able to provide founda-
mental insights that lead to a better understanding
of how KAD works;

• With these tools, we establish an extensive measure-
ment campaign to characterize content popularity
and the traffic associated to content publishing and
searching. The results show that content publishing
generates ten times more messages than content
searching; in addition, publish messages are, on
average, ten times larger than search messages.
We have also studied how KAD manages popular
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content. Our results indicate that a large fraction of
references to popular objects are lost due to peer sat-
uration. Moreover, our measurements identify the
KAD lookup procedure as one of the main culprits
of the load imbalance that occurs when references
are placed and retrieved;

• Our measurements show that most of the keywords
that compose the reference names are meaningless
stopwords, which constitute a substantial overhead.
As such, in this work we study means to effectively
reduce the publishing overhead without reducing
the retrieval success rate of the KAD system;

• For popular objects, we design a load balancing
scheme which adapts the number of peers used
for storing object references to their popularity. The
main constraint we consider in our design is to work
exclusively on algorithmic changes to KAD, without
modifying the underlying protocol by introducing
new messages;

• We improve the content searching procedure of KAD

to better exploit reference replication. Our goal here
is to decrease the burden imposed on few peers
by the current KAD implementation and spread the
load due to content search on reference replicas;

• We evaluate our proposed schemes (load balancing
and search) with a trace-driven simulator which
is able to reproduce realistic peer arrivals and de-
partures; our results show that our load balancing
scheme is effective in distributing the load among
peers in the key space, and the searching procedure
is able to find objects referenced by a large number
of peers, with low penalty in terms of content search
overhead.

We note that, while the schemes presented in this
paper are specific to KAD, the main ideas underlying the
adaptivity and the exploitation of the available replicas
can be generalized and used in other systems as well.
The remainder of the paper in organized as follows.

In Sec. 2 we provide some background on KAD, on the
content management, and we discuss the related work.
In Sec. 3 we introduce our measurement tools, including
Mistral, our KAD content spy. In Sec. 4 we provide a set of
measurement results that give us insights on the current
implementation and performance of KAD in case of pop-
ular content. The weaknesses highlighted in this section
will drive us in the design of the solutions for helping
KAD to manage popular content which we present in
Sec. 5. We evaluate the proposed load balancing scheme
in Sec. 6, and we conclude our paper in Sec. 7.

2 BACKGROUND AND RELATED WORK

2.1 The Kademlia DHT System

KAD is a DHT protocol based on the Kademlia frame-
work [3]. Peers and objects in KAD have an unique
identifier, referred to as KAD ID, which is 128 bit long.
The KAD IDs are randomly assigned to peers using a
cryptographic hash function. The distance between two

entities – peers, objects – is defined through the bitwise
XOR of their KAD IDs.
The basic operations performed by each node can

be grouped into two sets: routing management and
content management. Routing management takes care of
populating and maintaining the routing table. The main-
tenance requires to update the entries – called contacts –
and to rearrange the contacts accordingly. A peer stores
only a few contacts of peers that are far away in the KAD

ID space and increasingly more contacts to peers closer
in the KAD ID space. If a contact refers to a peer that is
offline, we define it as stale. The routing management
is responsible also for replying to route requests sent by
other nodes during the lookup phase (Sect. 2.2). Since
in this paper we focus on content management, we do
not go into the details of the routing procedure – the
interested reader is referred to [7].
Content management takes care of publishing the

references to the objects a peer has, as well as retrieving
the references to the objects the peer is looking for. KAD

implements a two-level publishing scheme; a reference
to an object comprises a source and W keywords:

• The source, whose KAD ID is obtained by hashing
the content of the object, contains information about
the object and the pointer to the publishing node;

• Keywords, whose KAD IDs are obtained by hashing
the individual keywords of the object name, contain
(some) information about the object and the pointer
to the source.

In the following, we will refer to source and keywords
considering the corresponding KAD IDs. We call pub-
lishing node the node that owns an object and host
nodes the nodes that have a reference to that object.
When a node wants to look for an object, it first searches
for the keywords and does a lookup to obtain all the
pointers to different sources that contain these keywords.
It then selects the source it is interested in, looks up that
source to obtain the information necessary to reach the
publishing node.
Since references are stored on nodes that can disappear

at any point in time, the publishing node publishes
multiple copies (the default value is set to 10) of each
reference – source and keywords. An expiration time is
associated to each reference, after which the information
on the host node is removed: for a source and for a
keyword the expiration times are set to 5 and 24 hours,
respectively.

2.2 Content Management

Content management procedures take care of publishing
and searching processes, which leverage on a common
function called Lookup. Given a target KAD ID, the
Lookup procedure is responsible for building a tempo-
rary contact list, called candidate list, which contains
the contacts that are closer to the target. KAD creates a
thread for each keyword and source, so that the lookup
is done in parallel for the different target KAD IDs. The
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list building process is done iteratively with the help of
different peers. Here we summarize the main steps of the
Lookup procedure: for a detailed explanation, we refer
the interested reader to [8][9].

Initialization: The (publishing or searching) peer first
retrieves from its routing table the 50 closest contacts to
the destination, and stores them in the candidate list.
The contacts are sorted by their distance, the closest
one first. The peer sends a request to the first α = 3
contacts, asking for β closer contacts contained in the
routing tables of the queried peers (in case of publishing
β = 4, while in case of searching β = 2). Such a request is
called route request. A timeout is associated to the Lookup
process, so that, if the peer does not receive any reply, it
can remove the stale contacts from the candidates, and
it can send out new route requests.

Processing Replies: When a response arrives, the peer
inserts the β returned contacts to the candidate list,
after having checked that they are not already present.
Considering the modified candidate list, a new route
request is sent if (i) a new contact is closer to the target
than the peer that provided that contact, and (ii) it is
among the α closest to the target.

Stabilization: The Lookup procedure terminates when
the responses contain contacts that are either already
present in the candidate list or further away from the
target than the other top α candidates. At this point no
new route requests are sent and the list becomes stable.

Note that, in every step of the Lookup procedure,
only the peers whose KAD IDs share at least the first
eight bits with the destination are considered: this is
referred to as the tolerance zone. When the candidate
list becomes stable, the peer can start the publishing or
searching process. In case of publishing, the peer sends a
‘store reference’ message to the top ten candidates
in the candidate list. As a response to each publishing
message, the peer receives a value called load. Each host
peer can accept up to a maximum number of references
for a given keyword or source, by default set to 50,000.
The load is the ratio between the current number of
references published on a peer and 50,000 (times 100). If
the host node has a load equal to 100, even if it replies
positively to the publishing node, it actually discards the
publishing message; therefore, popular references may
not be all recorded.
In case of searching, the peers sends a ‘search

reference’ message to the first candidate. If the re-
sponse contains 300 references (sources), the process
stops; otherwise, the peer iterates through the candidates
until it has reached 300 sources. Note that a host node
may have up to 50,000 references for a given keyword:
in the reply, the host node will select randomly 300
references out of those.

2.3 Related Work

In Sect. 5 we propose essentially two solutions for deal-
ing with popular contents: the use of stopwords, and a

load balancing scheme. Here we discuss the related work
on these two topics.
Stopwords have been used for decades in indexing

and retrieval, but never for filtering the searches in P2P
systems. The works in [10], [11], [12] and [13] provide
general architectures that aim at building a full-text
search engine, while in our approach we do not intend
to support full-text searches over the entire document;
we are just trying to enhance the indexing for file names
in P2P systems.
Detailed measurement results from a study of Gnutella

and Overnet (a precursor of KAD) are presented in the
paper of Qiao and Bustamante [14]. Among other things,
the authors evaluate the performance of queries in Over-
net. Of particular interest to our work are their results
on queries to popular keywords. They conclude that
these are handled well by Overnet because it distributes
the query load to multiple peers whose hash IDs are
“close enough” to the hash of the keyword: the more
popular the keyword, the broader the hash range. Our
measurements contradict this conclusion: first, consid-
erable overhead is generated by initially querying the
peer with the closest hash to the popular keyword with
load equal to 100; this goes on with an iteratively less
precise hash value until a peer is found who is able to
answer. Thus, a considerable additional load is imposed
on the peers next to popular keywords. Second, we not
only consider the querying but also the publishing load,
which is much higher.
Load balancing for DHT systems has been extensively

studied in the past: here we consider the most represen-
tative works. Many solutions [15][16][17] focus on the
balancing of the responsibility zone, assuming a load
uniformly distributed in the identifier space, while we
consider the problem due to skewness in the popularity
of the objects.
Many works based on the concept of virtual servers

[18][19] have been devised to cope with heterogeneity
of peer resources and content popularity: such schemes
have a fixed number of possible peers to be used to
balance the load. Instead, in our solution the content
popularity itself drives the number of peers selected to
store objects, and as such this number is not fixed a-
priori. The work in [20], which is focuses on KAD, also
uses a static, maximum number of peers that support
load balancing. Moreover, such mechanism introduces a
set of new messages that requires a modification to the
original KAD protocol. Our solution, instead, is based
solely on the currently available messages on KAD, and
does not change the protocol, which is a clear advantage
because it is backward compatible with existing KAD

deployments.
Other works [21][22] consider the transfer of the con-

tent from overloaded peers to underloaded ones (content
migration): the load balancing is initiated by the storing
peers (host nodes) and incurs in a high overhead. In
our scheme, the load balancing is performed by the
publishing peers, without any additional overhead w.r.t.
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the basic KAD scheme. The authors in [23] – another
work specific to KAD – propose a load balancing scheme
which is not adaptive, and does not avoid the loss of
information.

3 MEASUREMENT TOOLS

In what follows, we provide an extensive set of mea-
surement results that explain how content management
in KAD works.
To this aim, we designed a series of tools which derive

a vast amount of information on KAD behavior. The first
measurment tool is an instrumented aMule client that
logs the internal state of a KAD client. For instance, it de-
tects the candidate list which is built for each published
reference. Another tool, designed and implemented for
this work, is a content spy called Mistral, described in
Sect. 3.1. Finally, we designed and implemented a KAD

crawler, called Blizzard, which has been presented in [7]:
even this tool does not represent a contribution of this
paper, we describe it in Sect. 3.2 for clarity of exposition.

3.1 Spying for Content with Mistral

Mistral is based on the same principle as the Sybil attack
[24], [25], [26]. We introduce a large number of our own
peers, the sybils, into the network, all controlled by one
machine. Positioned in a strategic way in the KAD space
but physically all running on the same machine, the
Sybils can gain control over a fraction of the network
or even over the entire network. The fact that all Sybils
run on the same machine has the advantage that data
collection is much easier.
We insert a large number of Sybil peers into the

network and propagate information about them in the
routing tables of the legitimate peers. To do so, we first
crawl KAD using Blizzard (see Sect. 3.2) to learn about the
peers in the network. Next, we send hello messages to
the peers we have learned about. A hello message is
120 bit long and includes the KAD ID of the sender, and
this can be arbitrarily chosen. In Mistral, the first 24 bit
of a hello message are chosen at random while the 96
remaining bits are fixed.
The routing queries reaching the Sybils are always an-

swered with other Sybils. The returned KAD ID is closer
to the target included in the query than the receiver
of the query, thus the querying peer has always the
impression of approaching the target. Once the requester
gets close enough to the target, it queries a Sybil for
the content itself and not for any closer peers. Our
Sybil stores the search request and returns a fake source
entry. This source entry points to our machine. As a
consequence, the real peer tries to start to download
which is not successful.
With our tool, we retrieve routing and search requests

toghether with publish request messages. As stated
above, these requests are especially interesting since they
are much more frequent than search requests. Whereas

search requests are always launched by a human, pub-
lish requests are automatically and regularly launched
by the KAD clients. Also, the publish information is
richer than the search requests: it includes the full file
name, the KAD ID of the source and a significant amount
of metadata on the file. As explained above, the filename
is tokenized and published on the part of the DHT
corresponding to the hash of each of its tokens (that is, its
keywords). The answer to a publish request is the load
of the peer addressed. The Sybils always answer with
a very low load, thus attracting more and more publish
requests.
An eight-bit zone contains the peers with KAD IDs

that agree in the first eight bits, thus each zone can the-
oretically contain 2120 hash values. We actually observe
between 12,000 and 25,000 peers per zone. The entire
KAD network contains 256 eight-bit zones and between
3 and 5 million peers. It is possible to spy on one zone
of the KAD network only by restricting the returned KAD

IDs to a certain prefix. We insert 65,356 distinct Sybils
into a zone to make sure to catch at least one of the
ten publish messages for a keyword or a source and at
least one of the three search messages that are sent per
user-initiated search.
The approach adopted by Mistral was possible until

May 2008: starting from eMule version 0.49a and aMule
version 2.2.1, in fact, the developers have inserted a set
of rules that limit the Sybil attack. In practice, each peer
will ignore multiple KAD IDs pointing to one IP address:
the only way to perform today a measurement with
Mistral would be to have a distributed set of coordi-
nated nodes [27] (e.g. PlanetLab). As a consequence, the
results presented in Sect. 4.1 can not be simply replicated
nowadays. Nevertheless, the changes in the code of
the applications that use KAD have mainly focused on
security issues, but the basic components of KAD have
not been modified. In Sect. 4.2 we perform a set of simple
tests, using the current versions of eMule and aMule,
which show that the main results obtained with Mistral
are still valid.

3.2 Crawling KAD with Blizzard

Blizzard logs, for each peer P , the IP address of P , the
KAD ID of P , and whether or not has responded to
the crawler. Blizzard has been designed to be extremely
fast: since peers constantly arrive and leave, the crawling
speed represents an important aspect to get a consistent
view of the system.
The implementation of Blizzard is simple: it starts by

contacting a seed peer run by us. Then it asks the seed
peer for a set of peers to start with, and it uses a simple
breadth first search and iterative queries. It queries the
peers it already knows to discover new peers. For every
peer returned, the crawler checks if this peer has already
been discovered during this crawl. After the crawl is
completed, the results are written to disk.
Since in this work we will use Blizzard as a supporting
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tool, we refer the interested reader for implementation
details to [7].

4 MEASUREMENT RESULTS

In this section we study the KAD publishing procedure
looking at the corresponding generated traffic. We first
record for 24 hours a set of eight-bit zones with Mistral
(Sect. 4.1). We then analyze in detail the traffic over time,
focusing on a couple of popular keywords in Sect. 4.2.
Since KAD publishes ten copies for each reference, we
analyze in Sect. 4.3 where these replicas are placed, and
in Sect. 4.4 we study the reasons for the results obtained
in Sect. 4.3.

4.1 Analysis of the Traffic

Given a reference, KAD publishes it on peers whose
KAD ID shares at least the first eight bits with the KAD

ID of the reference (tolerance zone). For this reason,
the traffic on a single eight-bit zone can be studied
independently from the other zones. The analysis of
the entire KAD ID space (i.e., 256 zones) would be
impractical due to the high traffic generated. Assuming
a network with three millions online peers – this is the
average number of peers, as shown in [7] – we need
to crawl the network with Blizzard at least every two
hours to cope with the churn in the system. Each crawl
accounts for 4 GByte of traffic. Afterwards, the Sybils
must be announced to those peers. Suppose that we
only announce to each peer the 256 closest Sybils: one
announcement costs 50 bytes plus another 50 bytes for
the ack; that accounts for 3, 000, 000 ∗ 256 ∗ 2 ∗ 50 bytes
= 72 GByte. Announcements must be done periodically:
on average, announcements of Sybils generates about 40
MBytes/s of traffic. Moreover, the Sybils will also attract
search and publish messages.
Besides the traffic generated for spying on the entire

KAD ID space, since the different tolerance zones are
independent, it is sufficient to focus on some sample
zones to obtain interesting information about KAD. For
this reason, we spied on 20 different eight-bit zones of
the KAD ID space for 24 hours. During this time, on
average, 4.3 million publish messages, 350,000 search
messages and 8.7 million route messages were recorded.
The publish messages contained 26,500 different key-
words per zone, most of them in Latin letters, and
315,000 distinct sources, i.e., 315,000 distinct files. Among
the 65,356 Sybils we introduced, on the average 62,000
were hit by search or publish requests.
The hash values of the sources and of the keywords are

uniformly distributed over the KAD ID space. Similarly,
we know from our earlier measurements with Blizzard
[7] that the peers are roughly uniformly distributed on
the KAD ID space.
This property allows us to estimate the total number

S of sources (files) in the system by simply counting the
number of sources in a zone. Let Spart be the number of
sources counted in an eight-bit zone, and Ŝ := 256∗Spart

the estimate for the total number of sources in the KAD

system. Using Chernoff bounds (see [28] Chapter 4) we
tightly bound the estimation error. Indeed, Prob(|S−Ŝ| <
45000) ≥ 0.99, which means that our estimate Ŝ has most
likely an error of less than 3% for a total number of at
least 80 million sources.

The most important result that we observed is that,
independently from the zone, our measurements show
that there are ten times more publish messages than
search messages. This result is confirmed by recent
measurements, as shown in Sect. 4.2. Moreover a publish
message is ten times bigger than a search message
since it contains not only a keyword but also metadata
describing the published content. This is true also with
the current version of KAD, since the message format has
not been changed.

The number of times a keyword publication is ob-
served versus the ranking of the keyword for the eight-
bit zones 0xe3 and 0x8e are shown in Figure 1 in
a log-log scale. Rank 1 is the most popular keyword.
If each curve were a straight line, the popularity of
keywords would follow a Zipf-like distribution (i.e., the
probability of seeing a publication message for the i’th
most popular keyword is proportional to 1/iα [29]). We
used Matlab’s curve-fitting tools to estimate the value of
α, for the curve. The value of α is the same for all zones:
α ≈ −1.63.

We picked two zones as examples. The zone 0xe3

contains the keyword “the” whereas the zone 0x8e does
not contain any popular keywords. The keyword “the”
in zone 0xe3 accounts for 30% of the total load in
the zone. In total 1,518,717 publish requests with the
keyword “the” hit our Sybils in 24 hours. In contrast, in
zone 0x8e, the most popular keyword accounts only for
5% of the load. In this zone the most popular keywords
are nearly equally popular.
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Fig. 1. The number of publications per keyword for two
different zones.

Figure 2 shows the number of queries that hit our ten
most loaded Sybils in the two zones 0xe3 and 0x8e.
The popular keyword “the” in zone 0xe3 is mainly
responsible for the high load on these Sybils. The Sybils
with a lower rank have the same load in both zones.
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Fig. 2. The number of queries received by the Sybils for
two different zones.

4.2 Reliability and Diversity

In the previous section, we have discussed how we
recorded the traffic with our Sybils for 24 hours, and we
have shown that popular keywords account for most of
the load. For this reason, we need to investigate further
how KAD handles popular objects. This is important
since the number of references a peer can hold for a
given object is limited to a maximum value (50,000):
what happens when this limit is reached?
When the host peer reaches its maximum number

of references, it replies positively to any publishing
request, but actually discards the reference. Therefore,
all the following publishing traffic represents a waste of
resources, such as the download bandwidth for receiving
the messages, the processing power for processing them,
and the upload bandwidth for replying.
From the publishing node’s point of view, this trans-

lates into a decreased reliability: the probability over
time to find a reference to the publishing peer will be
significantly lower in case of popular objects w.r.t. non-
popular objects – the interested reader is referred to [30]
for a detailed evaluation of the impact of the number of
replicas on the reliability.
In order to understand how fast the maximum limit

can be reached, we focus on the traffic recorded by an
instrumented aMule client placed closed to two popular
keywords. For the sake of experimental reproducibility,
the keywords we consider are static popular keywords,
i.e., keywords that are usually present in the file names,
such as “the” or “mp3.” It is reasonable to assume that
the results we present here can be considered equivalent
to those that can be obtained during transient peaks
of popularity for other keywords (such as “ubuntu”
immediately after a new release).
Figure 3 shows the load (ratio between the current

number of references and 50,000, times 100) and the
frequency of the publishing requests over time. Note
that a single publishing message may contain multiple
publishing requests, since a keyword may be associated
with many files.
Our measurements show that the host peers located

close to a popular keyword saturate in only a few
minutes after joining the system; upon saturation, all the
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Fig. 3. Load and publishing frequency over time regis-
tered by our instrumented client.

publishing messages are wasted traffic. In particular, the
traffic amounts to 3.5 publishing messages per second,
and 0.3 searching messages per second. Note that this
result confirms the main finding of Sect. 4.1, i.e., there are
ten times more publish messages than search messages.
The corresponding total amount of incoming traffic is
approximately equal to 30 kbit/s. Even if this value
seems affordable by most of today’s Internet connec-
tions, we note that the actual available bandwidth of
ADSL users may be less than 500 kbit/s, therefore such
traffic decreases by 6% the available bandwidth to peers
laying in a hot spot.

In addition to the above mentioned problems, there is
another issue, which we call diversity. The publishing
phase is complemented by the searching phase: the
searching peer starts querying the top-ranked peers in
its candidate list, and, if it obtains at least 300 references,
the searching phase stops. For popular objects, the first
peer in the candidate list will have most probably more
that 300 references (even if it has just arrived, it takes
only a few minutes to receive more than 300 publishing
messages). Therefore, even if the references are repli-
cated ten times, if all the replicas are on saturated nodes,
the publishing peer may be never be contacted by other
peers, and it will not contribute with its resources to
the P2P system. Let S(t) be the set of peers that owns
a specific object at time t. Due to churn and, in case
of popular keywords, due to the limited number of
references held by a host peer, the peers close to the
target will have a subset S′(t). Since the searching peers
focus on a limited set of peers close to the target, they
will obtain references from S′(t), instead of from S(t).
We call diversity the ratio between |S(t)′| and |S(t)|: the
system should ensure a diversity close to one, despite
churn and keyword popularity.

If we look at a popular object, and we observe a
short period during which the churn can be considered
negligible, a diversity smaller than one has a direct
impact on the performance of the system, precisely on
the actual content transfer phase. The searching peers, in
fact, retrieve references belonging to S′(t), i.e., they will
download the content from the peers in S′(t). If such



7

peers in S′(t) have limited resources, they will put the
searching peers in a waiting queue, increasing the overall
download time, while other peers in S(t)\S′(t) will stay
idle instead of serving the content. In other words, the
system is not able to exploit all the available resources;
it is not running at its full service capacity.

4.3 Load Distribution

In the previous section we have shown the load over
time of a Sybil placed close to a popular keyword. For
a given reference, a publishing node places ten replicas.
Therefore, it is interesting to understand the load on the
entire eight-bit zone where there is a popular keyword.
For this experiment, we will not use the Sybils, since we
study the impact of popular keywords on real, legitimate
peers.
The experimental methodology is as follows. Given an

eight-bit zone, with the help of Blizzard we obtain the list
of all the peers that are alive (stale contacts are removed).
We send a publish message to all peers, obtaining as
a response the load from each of them. We collect the
replies and we sort them according to the XOR-distance
to the KAD ID of the keyword, obtaining a snapshot of
the current load distribution.
Figure 4 shows the results for two popular keywords

(“dvdrip” and “mp3”). We tested such keywords (and
others, not shown here for space constraints) in different
days and hours within a day, obtaining similar results.
The x-axis contains the distance from the target KAD ID
as a percentage of the maximum distance: since the KAD

ID is composed by 128 bits, a peer with all the bits of
the KAD ID different from the bits of the KAD ID of the
keyword (except for the first eight, since we focused on
an eight-bit zone) would have distance dmax = 2120−1. A
peer with all the bits of the KAD ID different from the bits
of the KAD ID of the keyword, except for the first twelve,
would have distance d = 2116 − 1, i.e., d/dmax = 6.25%.
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Fig. 4. Load distribution for two popular keywords.

For clarity of presentation, we have divided the x-axis
into bins; each bar in the figure represents the load of
approximately 8-10 peers (the value is the mean load of
such peers). For very popular keywords, not only the

closest peers to the target are overloaded, but there is
a high fraction of peers away from the target that has a
significant load. The snapshot clearly can not capture the
dynamics of the zone, i.e., peer arrivals and departures:
the effect of node dynamics determines the irregularity
in the shape of the load distribution, but it can not justify
the high load in peers far from the target. As an example
of an keyword with low popularity, in Fig. 5 we show the
distribution of the load of the keyword “dexter,” where
the replicas are roughly concentrated around the target.
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Fig. 5. Load distribution for the slightly popular keyword.

At first glance (cf. Figs. 4 and 5), it appears that
KAD inherently distributes the load among increasingly
distant peers when objects are popular. Unfortunately, as
we will see in Sec. 4.4, this effect has not been included
intentionally in the design of KAD, but results from an
imperfect Lookup procedure. Actually, a closer look at
Fig. 4 reveals some issues. For the keyword “dvdrip,” we
can see that there are peers at 42% XOR distance (which
corresponds to a peer sharing the first ten significant
bits with the target) with a load equal to five, which
means approximately 2500 references. At the time of the
snapshot, the number of peers between such peers and
the target is approximately 800. Since churn alone may
not justify such a spread, this result requires a deeper
analysis of the publishing procedure.

4.4 Accuracy of the Candidate List

In this section we investigate the effectiveness of the
candidate list building process as implemented in the
Lookup procedure. The candidate list represents a snap-
shot of the current peers around a target that the pub-
lishing (or the searching) peer builds with the help of
other nodes. This process is similar to the process of
crawling KAD: the designers need to face different trade-
offs, such as the accuracy of the results versus the traffic
generated, or versus the time it takes to build the list. In
KAD, the building process stops (i.e., the candidate list
is considered stable) when the peers do not receive any
contact closer than the top α (α = 3 by default) already
present in its candidate list for three seconds. This means
that the focus is on the top positions of the candidate list,
while the other positions may not be accurate.
Let L be the list of peers whose KAD IDs share the

first 8 bits with the KAD ID of a given target; L is sorted
according to the XOR distance to the target, closest
first. Let L′ be the candidate list built by the Lookup
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procedure. The list L′ is a (ordered) subset of L. For
simplicity, instead of the element itself, L′ contains the
order of the elements in L.
In order to evaluate the accuracy of L′ w.r.t. L, we

set up a measurement campaign using Blizzard. We
place a content in the shared folder of an instrumented
aMule client: this triggers the publishing process, whose
related messages (requests and replies) we register. In the
meantime, we crawl with Blizzard the KAD ID zone cor-
responding to the keywords and source of the content.
The publishing process and the crawling process last
for two minutes, making the effect of churn negligible.
With the output of the crawl we build L, while with
the logs of our instrumented client we build L′. We
repeat this process several times, for different keywords
and sources, in order to gain statistical confidence. An
example of the outcome of the experiment is given in
Table 1 (basic Lookup): for a given row, we show the
index of L′.

TABLE 1
Examples of L′.

ID order in L (basic Lookup)

A 1 2 4 5 6 21 35 95 187 310

B 1 3 10 12 15 58 84 134 456 1232

C 2 6 13 14 39 40 43 77 89 716

ID order in L (improved Lookup)

D 2 3 6 9 10 11 12 15 20 27

E 1 2 4 6 7 8 9 10 11 13

F 1 4 6 7 8 10 13 14 17 19

While the first few positions contain almost the same
elements of L, the other elements of L′ are scattered on
a wider KAD ID space. In order to quantify the accuracy
of L′ w.r.t. L, we estimate the probability that an element
of L is chosen during the candidate list building process.
For ease of representation, we assume that the candidate
list building process can be modeled as a Bernoulli trial
process, with success probability pi that depends on the
position in L′. For instance, for the first element of L′ we
pick the elements from Lwith probability p1 = 0.55; once
the first element is selected, we consider the elements
of L with probability p2 = 0.5, and so forth. For the
estimation of the probabilities pi, we consider the results
of the measurements, and we take the difference between
the positions in L for two consecutive elements of L′.
Fig. 6 shows pi, the probability to pick an element from
L to be put in the position i of the list L′, along with the
95% confidence interval (obtained with approximately
30 independent experiments). The graph shows that the
Lookup procedure is largely accurate in selecting the first
2-3 positions, but the elements in the lower positions of
L′ are far from the target. The candidate list building
process, therefore, revealed to be imperfect and inaccu-
rate, especially for the lower positions: this explains the
spread of the reference for popular keywords.
Such an inaccurate candidate list has several problems,

e.g., the ninth and tenth replicas are published so far
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Fig. 6. Estimated probability for building L′.

from the target that they may be never considered during
the search phase. A redesign of the Lookup procedure is
out of the scope of this paper. Note that the authors in
[23] impute the inaccuracy to the routing management,
while our experiments indicate that the main issue lies in
the Lookup procedure. To support this claim, we report
here our experience during the tests, in which we have
modified the values of some constants in the Lookup
procedure to understand their role in the lookup process.
During the Lookup procedure the peer asks for β closer
contacts contained in the routing tables of other peers.
By increasing the value of β, it should be possible to
increase the accuracy of the candidate list. For instance,
we set β = 16 and obtained the probabilities pi labeled as
“improved Lookup” in Fig. 6 – examples of the candidate
lists can be found in Table 1 (improved Lookup). We
notice that the accuracy of the list in the last positions
is increased1. Rather than trying to increase further the
accuracy, we will exploit such inaccuracy in the design
of our load balancing scheme.

4.5 Summary of the Issues

Our measurements show that there are ten times more
publish messages than search messages: since most of
the traffic is due to popular content, we should focus on
the management of the references to popular objects. For
such references, our analysis has highlighted different
issues on the current KAD procedures related to content
publishing. In particular, in case of popular objects,

• some peers residing in a hot spot must support
a management traffic that decreases the available
bandwidth, which may cause unfairness among
peers;

• many references are lost since they are published
on overloaded peers that discard them: as such,
diversity decreases;

• the search phase considers mainly the peer closest
to the target, without considering that some refer-
ences may be found on other peers. This problem
has a broader impact than it first appears: content
transfers are limited to a small number of peers,

1. The modification of the parameter β has been done to test if it is
possible to increase the accuracy, therefore we have not evaluated the
impact of β on the traffic generated by the application; as we said, the
Lookup procedure would need a complete redesign, which is out of
the scope of this paper.
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as compared to the whole set of peers hosting the
content, which implies increased delays.

In practice, KAD has been designed without considering
in depth the heterogeneous content popularity. Note that
a naive solution in which we increase the maximum
number of stored references on peers would not solve
the above mentioned issues. As a general guideline, the
design of the publishing process should consider its
counterpart, the searching process. With a joint design, it
is possible to take into account aspects, such as diversity,
or dynamic load balancing, and provide an efficient so-
lution that a separated design approach may not obtain.
In the next sections we will consider different solutions

for more effective treatment of popular objects. For in-
stance, we will show how to exploit the imperfect design
of the current KAD Lookup procedure to provide a
dynamic load balancing scheme, that not only decreases
the burden on hot spots, but also increases diversity.

5 SOLUTIONS

Keyword popularity derives from two main reasons.
Either the object (the name of which contains the key-
word) is popular, or the keyword itself is a common
keyword that can be found in different objects. Examples
of the latter case are the keywords “the,” “mp3” and
“dvd”: most of the files contain these keywords, but such
keywords do not characterize or describe the content of
the files. It is clear that, if the system avoids publishing
common keywords, the search procedure is marginally
affected: indeed, users seldomly specify a lookup re-
quests using such common keywords. In Sect. 5.1 we
show the straightforward solution for the common key-
words. In Sects. 5.2 and 5.3, instead, we focus on file
popularity, which may be variable over time.

5.1 Common Keywords

The simplest solution for dealing with the common
keywords is to ignore them. This approach require the
identification of the so called stopwords, i.e., words that
can be filtered out with no impact on the usability of the
system. Table 2 (first column) shows specific stopwords
for KAD file names which complement the set used
in by popular Internet search engines (Table 2 fourth
column) [31]. The number of peers on which a stopword
is published (second and fifth columns), as well as the
number of files containing the stopword (third and sixth
columns), have been determined by first crawling the
peers around the stopword with Blizzard and then by
querying all those peers for the stopword.
We propose to treat all the keywords contained in

Table 2 as stopwords. From the implementation point of
view, the solution is simple: as described in Sect. 2.2,
when a Publish or Search is performed, KAD creates
a thread for each keyword. KAD should check if the
keyword is a stopword before launching the thread. The
list of stopwords should be sufficiently stable, so that

The stopwords for KAD The Google stopwords

stopword # peers # files stopword # peers # files

avi 491 8101 about 513 7608

xvid 479 13683 are 330 7282

192kbps 437 8005 com 463 11550

dvdscreener 413 12343 for 549 12303

screener 433 7377 from 399 8345

jpg 456 10529 how 542 8282

pro 303 8378 that 423 9148

mp3 482 12019 the 487 14502

ac3 424 8045 this 452 8510

video 468 10478 what 394 7710

music 335 8558 when 294 7241

rmvb 454 13643 where 431 9445

dvd 450 10194 who 302 7742

dvdrip 560 13235 will 458 7976

english 388 7849 with 338 8543

french 377 9468 www 391 11203

dreirad 28 30 and 577 13706

TABLE 2
The KAD and Google stopwords with more than two

letters, the number of peers storing them and the number
of files containing them. For comparison the rare

keyword “dreirad” is shown.

including it in the source code represents the simplest
solution. Alternatively, the list could be dynamically
updated as it happens for the bootstrap nodes, where
websites maintains the list that can be used by new
clients to find nodes from which to bootstrap the con-
nectivity.

5.2 Adaptive Content Publishing

In this section, we consider objects with a time-varying
popularity, and show how the system should manage
the references in order to avoid the issues summarized
in Sect. 4.5. We assume that stopwords are managed as
discussed in the previous section, therefore the popular-
ity of a reference comes from the popularity of the object
the reference points to.
In Sect. 4.4 we have analyzed the accuracy of the

Lookup procedure. Even if the inaccuracy of the candi-
date list may seem a problem, this appearent drawmback
can be turned in a way to perform load balancing: the
probability that two publishing peers have the same
candidate list at the same time is low, thus they publish
their replicas on different peers. This is true only starting
from the third or fourth position onward, while usually
the first three or four positions are accurate, i.e., they are
the almost same for the different publishing peers.
In our design, we exploit the inaccuracy of the can-

didate list: since we have shown that with the basic
KAD scheme the accuracy is extremely low for the last
positions in the candidate list, we assume an improved
Lookup procedure (as shown in Fig. 6). We then focus on
the publishing and the search procedures to perform an
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Procedure Publish
Data: list: candidates /* peers ordered by their

distance to target */
Data: int: curr /* current candidate */
Data: bool: direction /* used to decide how to

iterate through the candidates */
Data: list: thresholds /* for deciding if an

object is popular or not */
Data: int: maxLoad

Initialization:1

curr = 9;2

direction = backward;3

maxLoad = 80;4

5

for i← 0 to 9 do6

contact ← candidates.get(curr);7

load ← publish(contact);8

if curr < 10 and load > thresholds.get(curr) then9

direction = forward;10

curr = 9;11

if curr ≥ 10 and load > maxLoad then12

curr + = (10 - curr%10);13

if direction == forward then14

curr++;15

else16

curr−−;17

adaptive load balancing based on object popularity. We
modify only the algorithms, without introducing new
messages or modifying the existing ones, so that our
solution is completely backward compatible with the
current KAD protocol. Moreover, for non-popular objects,
the proposed solution behaves exactly as the current
KAD scheme.
Given the candidate list produced by the Lookup

procedure, the publishing procedure tries to publish ten
replicas of the reference. The basic idea of our solution
is as follows: we use the value of the load (which is
returned by a peer as a response to a publish) as an
indication of popularity, and we drive the selection of
the candidates according to it. In case of popular objects,
instead of trying to publish the references on the best
host peers, the publishing peer should choose candidates
progressively far from the best target.
In order to obtain the load, the publishing peer needs

to publish the content: since we want to avoid the risk
to overload the closest host node, instead of publishing
starting from the first peer in the candidate list, the
publishing process should start from the tenth peer. If
the load is below a certain threshold, the publishing
peer publishes the next replica on the ninth candidate,
otherwise it considers the candidates with a rank worst
than the tenth.
The Publish procedure shows the details of our

solution. As input, we provide a vector of thresholds
used to identify if the object is popular. Such thresholds
are set only for the first ten positions, and they are higher
and higher as we get close to the top ranked candi-
dates. In particular, let Dmax and Dmin the thresholds
for the first and the tenth candidates, respectively. For

simplicity we assume that the growth of the threshold is
linear with the rank of the candidates, i.e., the threshold
for the ith candidate, Di, i = 0, 1, . . . , 9, is given by
Di = Dmax −

(

Dmax − Dmin

)

i/9.
If the publishing peer finds a candidate with a load

greater than the threshold, then it publishes the remain-
ing replicas starting from the eleventh node and onward.
Note that if the load is above the threshold at the begin-
ning of the publishing process, the object is considered
very popular, and all the remaining replicas will be more
scattered (since the publishing node will consider up to
the 19th candidate). If the threshold is never exceeded,
the publishing node publishes on the top ten ranked
peers, as in the current KAD implementation.
If the object is extremely popular, then the candidates

that usually occupy the 11th position up to the 19th
position may become overloaded, too. In this case, we
have introduced a maximum value of the load, equal
to 80: if this value is reached, we start considering the
candidates from the 20th position up to the 29th, and so
forth. In this way, as the number of publishers increases,
we add more and more peers for storing their references.
We would like to stress the fact that the Publish

procedure has a very simple form, thanks to the specific
way in which the candidate list is built. In Sec. 5.4 we
will discuss how to modify the approach in case of an
extremely accurate candidate list. Moreover, our solution
represents a modification of an existing (and widely
deployed) system: for this reason we cannot introduce a
set of mechanisms or messages that would facilitate the
load balancing process – for instance, we may introduce
a message for knowing the load of a host peer without
the need to publish on it. Our contribution lies in the
design of a load balancing scheme based solely on the
available KAD messages.

5.3 Content Search

In the current KAD implementation, when a peer is
looking for references to an object, it stops the search
process as soon as it receives at least 300 references.
A single reply may contain 300 references, therefore a
single query may be sufficient. In case of popular objects,
it is possible to find peers that hold more than 300
references even if they are not close to the KAD ID of
the object. Such peers are rarely used, with a consequent
decrease in diversity.
The simplest solution to overcome this limitation is

to introduce some randomness in the searching process.
Given the candidate list, instead of considering the first
candidate, the searching node should pick randomly one
of the first ten candidates. If the answer contains 300
references, the process stops. Otherwise, the searching
node needs to pick another candidate. The Search

procedure shows the details of our proposed solution.
In the procedure, we use the following heuristic: the

searching node tries twice with a random candidate; if
it does not receive enough references, it falls back to
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Procedure Search
Data: list: candidates /* peers ordered by their

distance to target */
Data: list: references /* obtained refs */
Data: int: maxRandomTentatives
Data: int: maxIndex

Initialization:1

maxRandomTentatives = 2;2

maxIndex = 10;3

references = {∅};4

5

while references.size() < 300 and candidates not empty do6

if maxRandomTentatives > 0 then7

contact ← candidates.getRandom(maxIndex);8

references.add(search(contact));9

maxRandomTentatives−−;10

else11

contact ← candidates.getFirst();12

references.add(search(contact));13

candidates.remove(contact);14

the basic scheme, i.e., it starts from the first candidate.
This heuristic derives from the fact that, if a candidate
has less than 300 references, there could be two reasons:
either the object is not popular, or the candidate has just
arrived, and it had little time to record the references.
In case of a non-popular object, this process results in
an overhead. We believe that, thanks to the gain in
terms of diversity and load balancing in case of popular
objects, such an overhead is a fair price that can be paid:
measurement studies [32] have shown that a few popular
files (approximately 200) account for 80% of the requests,
therefore the impact on non-popular objects should be
acceptable.
The proposed solution for the search procedure works

also in case of adoption of our proposed publishing pro-
cedure: the references to popular objects will be scattered
around the target, and a random search scheme will be
able to easily find them.

5.4 Discussion

In this section we comment on different aspects related
to the proposed scheme, including security considera-
tions, parameter settings, and peer churn. We do not
discuss the introduction of new messages, which would
simplify the load balancing, since, as we stated before,
we aim at proposing a solution that does not modify the
KAD protocol.

Accuracy of the candidate list: In our measurement
campaign, when we have derived the accuracy of the
candidate list, we have shown the results up to the tenth
position. Our proposed load balancing scheme considers
the positions with a lower rank. In case of our improved
Lookup procedure (where we have set the β parameter
to 16) we have assumed that the accuracy remains the
same up to the 20th position, thanks to the high number
of peers in the candidate list. Preliminary tests with a
prototype implementation of our load balancing scheme

in a instrumented aMule client have shown that this
assumption is reasonable.

Improving accuracy: The proposed scheme (in both
publish and search procedures) relies on the fact that the
candidate list is accurate in the first few positions, and
progressively inaccurate in the other positions. This is
specific to the implementation of the Lookup procedure
in KAD (both in the basic implementation and with
our modification). One may ask what would happen
in case of an improvement of the Lookup procedure,
such that it provides an extremely accurate candidate
list. The solution would be straightforward: it is suffi-
cient to reproduce the inaccuracy of the current Lookup
procedure. By adopting this approach, our proposed
scheme remains sufficiently general, yet maintaining its
simplicity.

Keeping the history: For each published reference, there
is an expiration time associated to it, after which the
reference is republished. A publishing peer can maintain
information about the popularity of an object. It may
be a simple flag that indicates that in the previous
publishing process the object was popular, in order to
influence the peer candidate choice. We will evaluate this
enhancement in future work.

Parameter setting: The Publish procedure has a set
of parameters, namely the thresholds used to discrimi-
nate between popular and non-popular object. Changing
such thresholds has an impact of the effectiveness of
the proposed solution: low thresholds may spread too
much the references, while high thresholds may detect
a popular object too late. Unfortunately there is no a
simple distributed solution to this problem: a centralized
solution – e.g., a server that keeps track of object popu-
larity – is impractical and subject to security problems; a
solution based on gossiping increases the overhead and
may not assure that the information is available when it
is needed. In both cases, the designer would introduce
new messages, changing the KAD protocol. The use of
thresholds is the simplest solution that does not require
significant modifications to KAD. In our case, we have
used the measurements showed in Sec. 4.3 to set the
thresholds. As for the Search procedure, there are two
parameters: the number of random tentatives and the
maximum rank in the candidate list. In Sec. 6.2 we study
them in a synthetic environment. As a future work we
plan to perform a measurement campaign to evaluate
their impact in real environments.

Security considerations: Here we consider attacks
specifically related to our scheme. A malicious peer
could return a load of 100 even if the object is not
popular, or a load of 0 even if the object is popular. If the
peer is very close to the reference KAD ID, in both cases
the effect would be minimal. If the malicious peer is far
from the reference KAD ID (i.e., it tries to be in the ninth
or tenth position of the candidate list), the inaccuracy
of the candidate list would limit the impact of such
malicious behavior. In order to be effective, a malicious



12

peer should perform these types of attacks in conjunction
with a Sybil attack: therefore, any solution that prevents
a Sybil attack [33] is sufficient to weaken the attacks to
our scheme. As for the eclipse attack, since our scheme
tends to scatter in a wider zone the references of popular
objects, we have as a by-product a countermeasure to
such a malicious behavior.

Churn: Considering a specific target KAD ID, the peers
around such target change over time. The candidate list
of a publishing peer may contain newly arrived peers
(they do not contain stale contacts, since the Lookup pro-
cedure eliminates them): during the publishing process,
a newly arrived peer has a low load, thus the publishing
peer may consider the object not popular. The impact of
this aspect is minimal, since eventually the candidate list
should contain a peer with the load above the threshold.
In any case, publishing on newly arrived peer is not a
big problem since they have a low load.

6 NUMERICAL RESULTS

In order to assess the effectiveness of our solution, we
take a simulation approach: an evaluation based on real
modified peers, in fact, would be impractical for many
reasons. For instance, the generation of the publishing
traffic for a popular keyword requires a high peer ar-
rival rate, each of them with a different KAD ID and
a differentiated candidate list building process; such a
process needs different initial neighbor set, since starting
from the same set of neighbors may result in correlated
candidate lists, which in turn affects the publishing and
the searching process.

6.1 Simulator Description and Settings

For the evaluation of the load balancing scheme, we
need two key ingredients: (i) the peer dynamics (arrival
and departure) should be realistic, and (ii) the candidate
list should have the same accuracy as in the current
KAD implementation. We should have full control of
these two aspects in a simulator: we have considered
the few available KAD simulators [34][35], and none of
them provides such control. For this reason we decided
to implement a custom event-driven simulator [36].
The peer arrivals and departures follow the publicly

available traces collected over six months from the KAD

network [37]: the simulator takes as input the availability
matrix of all the peers seen in a specific zone and gen-
erates the corresponding arrival and departure events,
reproducing the dynamics of real peers measured over
a six month period.
Given the set of peers that are online at a given instant,

and given a target KAD ID, we are able to build an
accurate list L. Starting from L, we build the candidate
list L′ following the procedure explained in Sec. 5.4, with
the help of the measurements presented in Sec. 4.4. For
the basic KAD scheme and our load balancing scheme,
we have used the results shown in Fig. 6, labeled as
“basic scheme” and “improved Lookup,” respectively.

Besides the peer availability matrix, the inputs of the
simulator are (i) the target KAD ID, (ii) the starting
publishing instant, (iii) the observation time, and (iv)
the publishing rate. The target KAD ID can be set to
check if there is a bias in the KAD ID space – which
we actually never observed, so any KAD ID can be
used. With the starting publishing instant, we can set
the point in time, within the six months period, when
the peers can start publishing the content. Once started,
we observe the evolution of the publishing process for
the observation time. The publishing rate defines the
number of publishing attempts per second, and can be
tuned to reproduce the desired keyword popularity.
We tested different input parameters – target KAD ID,

the starting publishing instant, and the observation time
– obtaining similar results, therefore in the following we
will not explicitly state the values of such parameters.
Once published, a reference has a validity of 24 hours,

after which it is removed from the host peer. The output
of the tool is represented by the peer load, with peers
sorted according to the XOR distance to the target KAD

ID. We have also recorded the number of the wasted
messages due to saturation.
For our load balancing scheme, we need to set the

thresholds used to identify popular keywords. Looking
at the load measurements, we see that the tenth replica
is usually published on peers with a limited load (10%-
20%). For this reason, we set Dmin and Dmax to 15
and 60, respectively. We performed tests with limited
variations on such thresholds (±20% on both Dmin and
Dmax, results not shown for space constraints), obtaining
similar results.
Note that we consider an eight-bit zone with a single

popular object: thanks to the KAD hash function, it is
very unlikely that the KAD IDs of two popular objects
are close enough to influence each other [7].

6.2 Results

We first validate our simulator by reproducing the basic
KAD scheme, and taking snapshots of the system at
different times, for different popularity of the keywords.
In particular, we consider a publishing rate equal to 50,
5 and 0.5 publishing requests per second for objects
with high, medium and low popularity, respectively.
Figure 7 shows the results for the three cases. Thanks
to the high number of peers, all the simulations have
always shown the same qualitative behavior. The high
and low popularity results match the corresponding ones
obtained with our measurements (cf. Figs. 4 and 5).
The simulator also trackes the rate of wasted mes-

sages: for the peers close to the target, this is equal
to the probability to be chosen times the publish rate
(once the peer is saturated). The output of the simulator
confirmed this computation: even if these results cannot
be compared with the real measurements (where we had
a single, always online, peer tracking the messages), they
can be used in comparison to the wasted messages in
case of load balancing.
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Fig. 7. Load distribution with the basic KAD scheme.

We note that if we sum up the load of all the peers
in the snapshot (which corresponds visually to the area
under the “skyline” of the load distribution), we obtain
the total number of references, all replicas included,
currently stored in the system.
With the same settings used in the basic KAD scheme,

we have tested our load balancing scheme. Fig. 8 shows
the results for the same keyword popularities used in
Fig. 7. For objects with high and medium popularity, the
load balancing scheme is able to spread the references
on a higher number of peers w.r.t. the basic scheme.
Moreover, the total number of stored references is larger
than with the basic KAD scheme (the area under the
“skyline” is bigger than the corresponding ones in Fig. 7):
this is due to the fact that no publishing messages have
been discarded. Compared to the basic KAD scheme, our
load balancing scheme is able to improve the reliability
and the diversity of the references, since no publishing
messages are lost due to overload of the host peers.
For objects with low popularity, the behavior of our

mechanism remains similar to the basic KAD scheme: our
load balancing solution is able to adapt to the popularity
conditions and spread the load accordingly.
Figures 7 and 8 can be analyzed also under a different

perspective: consider an object whose popularity varies
over time, from low to high, due to a sudden increase
of interest in such object. The three different popularities
may represent a snapshot of the evolution of the system.
In this case, we can see that our scheme is able to involve
increasingly more host nodes, balancing at the same
time the load among them, without losing any reference.
Instead, the basic KAD scheme, even if it actually uses
more host peers, shows a strong imbalance among them,
which results in some lost references. If the popularity
variation goes from high to low, the fact that references
have an expiration time (after which they are removed
from the host peers) ensures that the load on host peers
far from the target will decrease.
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Fig. 8. Load distribution with our load balancing scheme.

The evaluation of the load balancing scheme needs
to consider the performance of the searching phase as
well. Every 30 minutes we simulate a search, i.e., we use
the same candidate list building process and we send a
search request following the basic KAD scheme (i.e., start-
ing from the first candidate) and our proposed scheme
(cf. procedure Search in Sec. 5.3). For each search, we
record the number of peers that has been queried in
order to obtain at least 300 references. Tab. 3 shows the
performance (over 300 searches, with 95% confidence
intervals not reported since they are all smaller than
1% of the measured value), in case of the basic KAD

publishing scheme and our load balancing scheme2.

TABLE 3
Mean number of queried peers during the search.

High popularity Low popularity

basic improved basic improved

search search search search

basic KAD publ. 1.02 1.04 1.12 1.39

load balancing n.a. 1.07 n.a. 1.23

We note that our improved search scheme is able
to provide 300 references with a small penalty in the
number of queried peers: in practice, in the worst case,
27% of the time the searching peers need to query
two candidates, which are randomly chosen among the
first ten. As the improved search scheme is able to
improve diversity, since it may retrieve references that
have not been published on the top ranked peers (due to
overload), such a slight increase in the average number
of queried peers seems to be a reasonable price to pay.

2. If peers publish with the load balancing scheme, they will perform
the improved search, therefore the basic search is not shown in this
case.
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7 CONCLUSION

The popularity distribution of objects in a P2P network
is highly skewed. We developed Mistral, a content spy to
gain an overview of the content published and searched
in KAD. We have reported our findings from an extensive
measurement campaign on KAD, the largest currently
deployed DHT. Our observations show that the publi-
cation process in KAD accounts for more than 90% of
the total network control traffic. Moreover we note that
the load is highly unbalanced between the peers. The
peaks of load are due to very popular keywords: among
them, meaningless stopwords can simply be excluded to
improve the overall system performance. For keywords
with popularity tied to the popularity of files, which may
vary over time, load balancing is necessary to ensure a
fair use of the available resources in the network. We
have proposed a solution that dynamically adjusts the
criteria used to select the number and the location of
peers responsible for storing the references, based on
their popularity. Working with KAD introduces a num-
ber of constraints to maintain, for example, backward
compatibility. As such, our mechanism operates at the
algorithm-level and does modify the KAD protocol and
the messages.
Our simulation results showed that we can avoid the

loss of object references due to saturation, thus increas-
ing the reliability and the diversity of the resources. Fur-
thermore, we evaluated an enhanced searching proce-
dure, based on randomization, to exploit such increased
diversity: our results indicate that the price to pay for
a more efficient use of peer resources in the network
(which implicitly include the content delivery phase) is
arguably small.
There are a number of possible future research di-

rections stemming form our work. For instance, the
Lookup procedure can be re-implemented to increase
the accuracy of the candidate list produced by KAD

clients. Additionally, our load balancing mechanism can
be improved if we allow protocol modifications, so as
to eliminate “redundant” publish messages to infer load
information.
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