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Abstract—Receiving Internet streaming services on various mobile devices is getting increasingly popular, and cloud platforms have
also been gradually employed for delivering streaming services to mobile devices. While a number of studies have been conducted at
the client side to understand and characterize Internet mobile streaming delivery, little is known about the server side, particularly for
the recent cloud-based Internet mobile streaming delivery.

In this work, we aim to investigate the Internet mobile streaming service at the server side. For this purpose, we have collected a
four-month server-side log on the cloud (with 1,002 TB delivered video traffic) from a top Internet mobile streaming service provider
serving worldwide mobile users. Through trace analysis, we find that (1) a major challenge for providing Internet mobile streaming
services is rooted from the mobile device hardware and software heterogeneity. In this workload, we find over 3,400 different hardware
models with more than 100 different screen resolutions running 14 different mobile OS and 3 audio codecs and 4 video codecs. (2) To
deal with the device heterogeneity, CPU-intensive transcoding is used on the cloud to customize the video to the appropriate versions
at runtime for different devices. A video clip could be transcoded into more than 40 different versions in order to serve requests from
different devices. (3) Compared to videos in traditional Internet streaming, mobile streaming videos are typically of much smaller size
(a median of 1.68 MBytes) and shorter duration (a median of 2.7 minutes). Furthermore, the daily mobile user accesses are more
skewed following a Zipf-like distribution but users’ interests also quickly shift. Considering the huge demand of CPU cycles for online
transcoding, we further examine server-side caching in order to reduce the total CPU cycle demand from the cloud. We show that a

policy considering different versions of a video altogether outperforms other intuitive ones when the cache size is limited.

Index Terms—Internet Mobile Streaming, Heterogeneity, Popularity, Transcoding
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1 INTRODUCTION

Recently, mobile devices are getting increasing popular-
ity. For example, according to Canalys, the total number
of smartphones sold worldwide in 2011 is 487.7 mil-
lion [1], which is a 62.7% increase from the previous year
(299.7 million). By August 2012, 116.5 million people in
the U.S. owned smartphones [2].

Besides general web surfing on the Internet, these
days more and more accesses from mobile devices are
directed to all kinds of Internet streaming services. For
example, YouTube [3] is the among the earliest to provide
streaming services to mobile devices such as iPhone.
Today both iOS and Android have native support for
YouTube. Other popular streaming service providers, in-
cluding Netflix [4] and Hulu [5], also provide streaming
services to subscribed mobile users via APPs built in
various mobile operating systems. Placeshifting services
like Orb [6] and AirVideo [7] allow mobile users to access
media content stored on their home computers. Qik [8]

allows users to upload from mobile devices and then
broadcast the video content to their friends. Different
from the above services, Vuclip [9] lets users search and
play all kinds of Internet videos on their mobile devices
regardless of their mobile device types.

To understand the key challenges of Internet mobile
streaming and the difference from traditional Internet
streaming, a number of studies have been performed.
As today the majority of Internet mobile streaming ser-
vices are delivered in a client-server architecture, many
studies have focused on the resource consumption and
streaming quality received on the mobile device. For
example, Xiao et al. [10] studied energy consumption
when watching YouTube on mobile devices. Huang et
al. [11] investigated fetching policies of different mobile
video players, and Finamore et al. [12] examined the
potential causes for inferior streaming quality of mobile
YouTube accesses.

However, these studies mainly concern about the
client side by examining specific devices [10], [11] or via



local experiments [12]. As the key to the current Internet
mobile streaming delivery services, the server side plays
a critical role in the entire streaming delivery process.
Unfortunately, so far, little is known about the server
side, possibly due to the limited availability of data from
the server side. This is particularly true for the modern
cloud-based Internet streaming delivery services.

To provide in-depth understanding of the current
cloud-based Internet mobile streaming services, in this
study, we set to investigate the server side in stream-
ing delivery to mobile devices. For this purpose, we
have analyzed a 4-month (from Nov. 2010 to Feb. 2011)
server-side workload collected from a top Internet mo-
bile streaming service provider. In this workload, there
are about 480 million video sessions with about 1,002
Terabyte video traffic delivered. Through our analysis,
we have a number of findings. While the details are
presented later in the paper, some highlights are as
follows:

o A unique challenge for Internet streaming delivery
to mobile devices is rooted from the fact that mobile
devices are very heterogeneous. In this workload,
we find over 3,400 different hardware models with
109 different screen resolutions running 14 differ-
ent mobile OS and 3 audio codecs and 4 video
codecs. This greatly challenges the traditional In-
ternet streaming delivery infrastructure where the
bottleneck often lies in the limited bandwidth.

o To deal with the device heterogeneity, runtime CPU-
intensive transcoding is used by the cloud to cus-
tomize a video to the appropriate versions on the
fly for different devices. A video clip could be
transcoded into more than 40 different versions in
order to serve requests from different devices.

o Compared to videos in traditional Internet stream-
ing, mobile streaming video clips are typically of
much smaller size (with a median of 1.68 MBytes)
and the video duration is shorter as well (with a me-
dian of 2.7 minutes). Furthermore, the daily mobile
user accesses are more skewed following a Zipf-like
distribution but users’ interests also shift quickly,
resulting in a stretched-exponential distribution in
the long term.

To reduce the huge CPU cycles demanded for
transcoding on the fly, we further explore caching on the
cloud by trading off storage for CPU cycles. Our study
shows that a policy that considers different versions of a
video altogether outperforms other intuitive ones (e.g., a
file based one) when the cache size is limited. As far as
we know, we are among the first to provide a server-
side analysis on a Vuclip-like Internet mobile stream-
ing service. Our findings provide new insights and lay
some foundations to improve the current Internet mobile
streaming delivery.

The rest of the paper is organized as follows. We
describe some background and the workload overview
in section 2 and study the device hardware and software

heterogeneity in section 3. We examine various mobile
video properties in section 4 and study the access pattern
across different ISPs in section 5. We further explore the
trade-off between the storage and the CPU at the server
side in section 6. Some related work is described in
section 7 and we make concluding remarks in section 8.

2 BACKGROUND AND WORKLOAD OVERVIEW

To investigate how current cloud-based Internet stream-
ing services are delivered to mobile devices, we have
collected server-side log from private cloud rented by
one of the largest Internet mobile streaming service
providers, Vuclip [9]. Vuclip provides mobile users with
the search-and-delivery services. It allows users to search
for and watch any videos on any video-enabled mobile
phones and devices.

Different from many existing services that only pro-
vide streaming services to specific mobile devices, with
the powerful cloud platform, Vuclip can serve any type
of mobile devices that are capable of streaming playback.
Vuclip allows any mobile user to search for interested
video available on the Internet, and transcodes them on-
demand and on-the-fly based on the type of the mobile
device using the cloud CPU cycles. As like most cloud-
based services, Vuclip uses a client-server architecture
(thus cloud and server are exchangeable in this paper). To
serve different types of mobile devices, Vuclip employs
on-demand transcoding on the cloud. Transcoding is
a process to convert the requested video clip to the
appropriate codecs, format, and size at runtime upon
a request so that the video can be properly rendered
and played on the requesting mobile device. With elastic
cloud resources, Vuclip transcodes a video into different
versions by choosing the best audio/video codecs, frame
size, frame rate, and quality level combination for the
mobile device. According to our analysis, each video was
accessed in more than 2 versions on average (as shown
in Table 1 and Table 2), and the most popular video was
accessed in 44 different transcoded versions (as shown
later in Figure 4).

To deliver video content, Vuclip uses the traditional
client/server (C/S) architecture. The video file is deliv-
ered via pseudo streaming over HTTP. That is, when the
requested content is available on the server, the client
would issue an HTTP GET request to download the
content. A video may be downloaded via several HTTP
GET requests with different partial ranges specified (i.e.,
range requests). To differentiate video requests from
HTTP requests, we define a request as a single HTTP
transfer between the client and the server, and a session
as the set of requests that are involved in downloading
an entire video clip.

The 1-month workload we collected is from Nov. 1st
to Nowv. 30th, 2010. In this log, there are about 105 million
sessions watching more than 4 million different videos.
There are a total of about 192 million HTTP requests.
The total traffic delivered from the server in these 30



TABLE 1
Summary of 1-month Workload

Workload Length 30 Days
# of Sessions 105,389,370
# of Requests 192,255,173
# of Requests from Mobile Devices | 181,556,344
# of Unique Videos Accessed 4,052,740
AVG. # of Versions Per Video 2.31
MAX. # of Versions Per Video 41
Total Traffic Volume 212 TB

days is about 212 TB. Table 1 gives a summary of this
workload. Note that among all these requests, some
are from desktop/laptop computers instead of mobile
devices. In order to focus on the requests from mobile
users, we differentiate them in the server log through
the User-Agent strings specified in each HTTP request.
By analyzing the User-Agent, we find there is a total of
150,072 unique User-Agent strings. Among them, 84,281
(56%) represent mobile devices. However, examining the
received requests, we find most of them come from User-
Agent strings representing mobile users: more than 94%
(181 million out of 192 million) requests are from mobile
devices.

Please refer to Section 1 and Figures 1, 2, and 3 of the
supplementary file for how the accesses change over one
day, one week, and one month.

TABLE 2
Summary of 4-month Workload

Workload Length 120 Days
# of Sessions 480,905,010
# of HTTP Requests 982,241,100
# of Unique Videos Accessed 10,779,818
# of Unique Files (Versions) Accessed 25,728,606
# of Formats Transcoded 50
AVG. # of Versions Per Video 2.39
MAX. # of Versions Per Video 44
Total Traffic Volume 1,002 TB

After our paper based on 1-month trace is initially
published at [13], we are able to further collect 3 more
months trace from the Vuclip site. Table 2 gives a
summary of the workload. In this 4-month log, from
Nov. 2010 to Feb. 2011, there are more than 480 million
sessions accessing more than 10 million unique videos.
More than 982 million HTTP requests were served by the
server. A total of 1,002 TB traffic was delivered from the
server. To support heterogeneous mobile devices, videos
are served in different versions. In the trace, we observed
50 different formats, and each video is transcoded into
2.39 versions on average. As a result, more than 25
million unique files (versions) were requested during the
4-month period.

Please refer to Section 1 and Figure 4 of the supple-
mentary file for the hourly access pattern over the 4-
month period.

3 CHARACTERIZATION OF MoBILE DEVICE
HETEROGENEITY

3.1

To provide Internet streaming services to all kinds of
mobile devices like Vuclip, a unique challenge is the
heterogeneity among mobile devices. Different from the
pre-coding approach that was taken by many other ser-
vice providers to serve specific types of mobile devices,
Vuclip employs transcoding, a technique that can cus-
tomize the video into a proper format for the requesting
mobile device at runtime. Although transcoding is very
flexible and desirable to serve heterogeneous mobile
devices, transcoding demands huge CPU cycles on the
fly, where the support with cloud resources is critical.

To get a realistic picture of the mobile device hetero-
geneity, we retrieve detailed device information from
WUREFL [14] based on the User-Agents information we
have extracted from the 4-month server log. Among the
229,333 User-Agents that represent mobile devices, we
are able to get the brand and model information from
more than 196,832 (85.8%) distinct User-Agent strings.
The rest only have browser information.

Mobile System Heterogeneity

TABLE 3
System Heterogeneity of Mobile Devices

Models 3465
Resolution 109
Mobile OSes 14

As shown in Table 3, accesses to Vuclip in these 4
months came from 3465 different device models. These
devices have different screen sizes that can support
video playback with different resolution rates. Delving
into this, we find that these devices have 109 different
resolutions (width and height combinations), ranging
from 84 x 48 to 1600 x 1200. Figure 1 shows the most
popular resolutions, including 320 x 240, 480 x 360, and
480 % 320. They also run on 14 different mobile operating
systems.

3.2 Audio/Video Codec Heterogeneity

To play video on a mobile device, both audio and video
codecs are required. On different devices, the supported
codecs may be different as well. Such heterogeneity
would further increase the load for the server if the
server conducts transcoding for the mobile device. Note
that if such transcoding is done at the client side, it
would lead to excessive battery power consumption.
To examine the codec heterogeneity, we further look
into the supported audio/video codecs on these 3465
hardware models. We find that typically there are 3 au-
dio codecs being used, namely AAC, AMR, and WMA,
and there are 4 video codecs being used, namely H.263,
H.264, MPEG-4, WMV. Figures 2 and 3 show the popu-
larity of these codecs. As shown in these figures, AMR
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is the most popular audio codec, as more than 57.6%
devices support it, and H.263 and MPEG-4 are the most
popular video codecs.

TABLE 4
Video Codecs (4 Months)

[ Type [ Video | Audio [ # of Videos | # of Sessions |
ASF WMV WMA 871,761 8,798,925
3GP H.264 AAC 2,288,414 81,091,264
3GP H.263 AMR 8,013,445 231,990,613
3GP | MPEG-4 | AMR 634,753 8,157,977
3GP | MPEG4 | AAC 4,770,913 150,866,231

3GP in Total 10,666,715 472,106,085

With 3 audio codecs and 4 video codecs, we expect
a total of 12 combinations of different audio/video
codecs. In practice, however, not all these combination
of the audio and video codec are used. In the work-
load, we only find 5 combinations. Table 4 shows the 5
video+audio encoding schemes used. For the more than
10 million (10,779,818) unique videos that were accessed
in our 4-month log, Table 4 shows that H.263+AMR and
MPEG4+AAC are the most popular encoding schemes,
accounting for 79.6% of total viewing sessions. This is
not surprising as H.263 and MPEG4 are the most widely
supported video codecs on the 3465 models of mobile
devices.

In addition to different codecs, video files are also
encoded into two different formats, i.e, two types of
containers, 3GP and ASFE. 3GP is the 3GPP file for-
mat, which is a multimedia container format defined
by the Third Generation Partnership Project (3GPP) for
3G UMTS multimedia services. 3GP is often used on
3G mobile phones. On the other hand, ASF (Advanced
Systems/Streaming Format) belongs to Microsoft Media
framework and it is a proprietary digital audio/digital
video container format. Apparently, 3GP is much more
widely used in practice than ASF for mobile videos.

Besides the above hardware and software heterogene-
ity, mobile devices may have different network speed,
due to various reasons, such as accessing through cellu-
lar network or WiFi. To support different mobile Internet
access speed, Vuclip also transcodes video clips into 3
different quality levels: Low Quality, High Quality and
WiFi Quality. Table 5 shows the corresponding range of
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TABLE 5
Video Resolution and Encoding Rate

[ Quality [ Frame Width | Encoding Rate (Kbps) |

Low 176 51 -55

Low 320, 360 71 - 187
High 176 81 - 147
High 320, 360 172 - 335
WiFi 320, 360 358 - 423

object encoding rate for different quality levels. Consider
the variety of resolutions, videos are also customized
into 3 different frame widths: 176, 320, and 360. As
we can observe from the table that a larger resolution
(width) video does not necessarily come with a high
encoding rate. On the other hand, a video with a high
encoding rate typically comes with a larger resolution.

TABLE 6
Video Quality (4 Months)

[ Quality | # of Videos [ # of Sessions |

Low 4,767,532 123,695,613
High 9,710,415 355,047,297
WiFi 270,967 2,162,100

Table 6 further shows the number of videos accessed
between Nov. 2010 and Feb. 2011 that are of Low,
High, and WiFi Quality as well as the number of their
requested sessions. The videos in High Quality are
mostly requested: more than 73.8% viewing sessions are
for videos encoded with High Quality. Consider that
Vuclip transcodes the video content on-demand, it is
not surprising that 90% of video contents have at least
one version encoded with High Quality. WiFi Quality,
however, is the least requested quality level. This is likely
due to the relatively slow mobile accessing speed and
tiered data plan billing model today.

Since Vuclip transcodes the original video to accom-
modate mobile devices with different codecs, frame
width, and quality level, for the ease of presentation,
we use versions to refer to different transcoded video
files for each video in the rest of the paper. On the
other hand, we use videos to refer to a set of video clips
that correspond to the same content. Figure 4 shows the



probability mass function of the number of versions each
video has. As shown in the figure, in this workload,
about 57% videos have only one version, and about 3.3%
videos are accessed in 10 or more versions. The largest
version number is 44.

4 CHARACTERIZATION OF MOBILE STREAM-
ING VIDEOS

The previous section has shown that mobile device
heterogeneity is a great challenge to the service provider.
With such a level of heterogeneity, what kind of video
clips are being served is of our great interest. In this
section, we further analyze the mobile video clips that
we have collected from the server log in order to reveal
the commons with and differences from the traditional
Internet streaming content.

4.1 Video Playback Duration, File Size, and Formats

Figure 5 depicts the distribution of video playback
duration in seconds. In this figure, videos that were
accessed in Nov. 2010 are sorted in decreasing order of
the playback duration, and the y-axis is in log scale. As
shown in the figure, video clips accessed by mobile users
are mostly short in terms of playback duration: more
than 97% videos are less than 10 minutes long, and the
median playback duration is 162 seconds (less than 3
minutes). Compared to the longer duration of traditional
Internet streaming video clips, such a shorter duration
makes it more feasible for mobile devices because video
streaming consumes a lot of limited resources on mo-
bile devices, including the network for data receiving,
the CPU for decoding, and the display for rendering.
Such resource consumption can drain the limited battery
power supply at a very high rate.

Correspondingly, Figure 6 shows the file size (bytes)
distribution. Again, we sort the video files (versions)
based on their sizes in decreasing order. As shown in
Figure 6, the video file distribution is similar to that of
the duration as shown in Figure 5. Note that, here in
this figure, each video may have been accessed in several
versions in different formats and file sizes. As we can see,
most video files accessed by mobile devices are smaller
than 8 MBytes, with a mean file size of 2.78 MBytes and
the median file size 1.68 MBytes. This shows that videos
accessed by mobile devices are mostly small in terms of
bytes. This can reduce the total network transmission for
downloading the video file. Note the network interface
card could consume 30% to 40% of the total battery
power consumed during a streaming session to a mobile
device [15], [16].

Moreover, compared to the size of the traditional
Internet video files [17], [18], the size distribution we
find in this server log is much smaller. This provides a
great opportunity for reducing the transcoding cost as
we discuss later in section 6.

We then examine how many different versions each
format accounts for. Figure 7 shows the result. In this

TABLE 7
Most Popular Formats

[ Type | Video | Audio | Frame Width | Quality |
3GP H.263 AMR 176 High
3GP | MPEG-4 AAC 320 High
3GP H.263 AMR 176 Low
3GP | MPEG-4 AAC 480 High
3GP H.264 AAC 480 High
3GP H.264 AAC 480 Low
3GP | MPEG-4 AAC 320 Low
3GP | MPEG-4 AAC 480 Low
3GP H.264 AAC 320 High
ASF WMV | WMA 176 High

figure, the y-axis shows the total number of versions
that are using each format in log scale, while the z-axis
shows the different formats ranked by their correspond-
ing number of versions. We find that some formats are
significantly more popular than others. Figure 8 further
shows the popularity distribution of accesses for differ-
ent formats used by Vuclip. Similar to Figure 7, some
formats are in orders of magnitude more popular than
others. During 4 months, accesses for the Top-10 formats
as shown in Table 7 account for 94% of total sessions.
These results are as expected because of the different
popularity of different audio/video codecs supported by
different mobile devices.

4.2 Popularity of Mobile Videos

Figure 9(a) shows the popularity pattern of videos ac-
cessed site-wide on Nov. 1st. In this figure, the z-axis
represents videos ranked by the number of requested
sessions in decreasing order, plotted in log-scale, while
the y-axis represents the number of viewing sessions
of this video, also plotted in log scale. This figure
shows that, in log-log scale, the popularity distribution
of videos accessed can be well fitted with a Zipf-like

distribution )

Yi X o
where i is the popularity rank of the video, y; is the
number of requested sessions for the video, and « is the
skewness parameter. Moreover, we find o = 0.955 fits
our data very well with the goodness of fit value R?
very close to 1, indicating the popularity distribution is
not only Zipf-like, but also very close to the Zipf’s law
where a = 1. Similar patterns have been found for the
other days in the workload.

The Zipf-like distribution is known to be efficient in
modeling web traffic, and is the premise for efficient
web caching. Specifically, o is an indicator of request
concentration, and proxy caching can be more efficient
with a larger o value. For example, it was reported
in [19] that « varies between 0.64 and 0.83 for web traffic,
while it tends to be smaller for media traffic (for exam-
ple, work [18] reports 0.56 for YouTube traffic). Different
from previous measurement studies where data were
collected at edge locations (e.g., one university campus),
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the mobile video accesses are highly concentrated at the
server side as indicated by the larger a value observed.
Such discrepancy is reasonable as collecting traffic at
edge locations can only reflect the the access pattern
of users from one specific area (e.g., one university
campus), while the server logs can provide a complete
and global view of the video popularity. Furthermore,
the more concentrated accesses also mean caching at
the server side is more effective than caching at the
edge/client side, if caching at the server side is needed.
Note for content delivery, caching at the server side is
typically not for reducing network traffic as caching at
the client side.

While Figure 9(a) shows short-term (one day) popu-
larity distribution, we further examine the distribution
of popularity over longer term. Figure 9(b) shows the
corresponding popularity distribution over 4 months
of time. In this figure, the left y-axis is in powered
scale while the right y-axis is in log scale. The z-axis
is in log scale as well. As shown in the figure, the
video popularity deviates from a straight line in log-log
scale, meaning not a Zipf-like distribution. Instead, they
can roughly be fitted with a stretched exponential (SE)
distribution as shown by the left y-axis in powered (by
a constant c¢) scale [20]. With SE distribution, the rank
distribution function can be expressed as

—alogi + b.

i

An SE distribution is fit by several parameters as shown
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in the figure. For example, parameter c is also called the
stretch factor, which characterizes the median file size of
workload [20]. It was reported that for media workloads
with a median file size < 5MBytes, the stretch factor is
< 0.2. Our analysis confirms this with a ¢ of 0.065 and
a median file size of 1.68 MBytes. Parameter a in an SE
distribution increases with the duration of workload as
well as the ratio of media request rate to new content
birth rate, and it causes the distribution to deviate from a
straight line in log-log scale. Please refer to Section 2.1 of
the supplementary file for video popularity distributions
over different periods of time.

The stretched exponential distribution has been used
to characterize many natural and economic phenomena,
as well as the access patterns of Internet media traffic. It
was shown that under an SE distribution, media caching
is much less efficient than under a Zipf distribution [20].
This poses a new challenge if long-term caching is
needed on the server side.

4.3 Popularity of Different Video Versions

As videos are accessed in different versions, we next
examine the popularity distribution of video versions.
We find that in short term, unlike videos, the popularity
distribution is not Zipf-like. However, over longer terms,
the popularity pattern evolves into an SE distribution.
For details, please refer to Section 2.2 of the supplemen-
tary file.
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4.4 Popularity Evolution

We further examine how the popularity changes over
time. We find that new video clips are generated at a
high rate, and therefore, user interests shift quickly. For
details, please refer to Section 2.3 of the supplementary
file.

4.5 Correlation Between Popularity and Video
Length

We have shown in section 4.1 that the mobile video
files are often short and the video popularity in a short-
term has a Zipf-like distribution. Thus one may wonder
whether shorter videos get more accesses. To examine
this, we group video files into 1 minute interval based
on their lengths. Figure 10 shows the total number of re-
quested sessions decreases as the video length increases,
and videos shorter than 5 minutes account for about 60%
total requests. We further calculate the correlation be-
tween video popularity and video length, and examine if
shorter videos tend to be more popular. Our results show
that the correlation coefficient is 0.006, which indicates
the correlation is weak. We have also conducted similar
tests based on versions, and the results are similar.
This indicates the large percentage of requests for short
videos are due to the large population of short video
contents instead of user preferences.

5 CHARACTERIZATION OF ACCESSES BASED
ON ISPs

In this section, we further examine if the accesses at ISP-
level exhibit similar characteristics as observed at the
server-side.

5.1 Popularity Distribution within ISP

We focus on the top six ISPs that contributed to the most
traffic volume in one month. For the ease of presentation,
we anonymize the identities of the ISPs, and refer to
them as ISP #1 to ISP #6 ranked by the amount of

TABLE 8
Average # of Versions per ISP

ISP [ Versions per Video

#1 1.68
#2 2.14
#3 1.53
#4 2.08
#5 1.41
#6 1.52

their traffic. Figure 11 shows the popularity of videos
accessed on Nov. 1st across six ISPs. The rest days all
exhibit similar popularity pattern. Despite the fact that
the total number of requests from six ISPs are different,
the unique number of videos accessed are in the same
order of magnitude.

It is shown that the access patterns of ISPs #3, #4, #5
and #6 are also Zipf-like, which can be well fitted with
R? very close to 1. a values are smaller than as observed
site-wide, varying between 0.66 and 0.72, which is close
to traces from web proxy [19], and higher than observed
from other media systems [18]. This shows that mobile
video accesses are less concentrated at ISP side compared
to at the server side (Section 4.2).

The access patterns of ISPs #1 and #2 cannot be well-
fitted with Zipf distribution, because the top videos are
accessed more frequently than the Zipf model predicts.

As one of the concerns about serving videos to mobile
users is the device heterogeneity, we further examine
how users from different ISPs access the videos. Table
8 shows the average number of versions per video ac-
cessed from each ISP in one month. We find that versions
accessed by each ISP is smaller compared to site-wide
(2.31 versions per video as we show in Section 3). This
indicates that there is less diversity within ISP compared
to site-wide. As a result, the daily distribution of version
popularity per ISP is very similar to the popularity of
video popularity shown in Figure 11.

5.2 Popularity Evolution within ISP

We find that user interests shift more quickly within ISPs
than site-wide. For details, please refer to Section 3.1 of
the supplementary file.

6 TRADE-OFF BETWEEN CPU AND STORAGE

As aforementioned, in order to conduct on-demand
transcoding to serve all kinds of heterogeneous mobile
devices, Vuclip has to rely on a rented private cloud
platform. While the cloud can provide elastic services
with sufficient CPU cycles for online transcoding, it
challenges service providers both technically and eco-
nomically with the growing popularity of Internet mo-
bile streaming services. This is because Vuclip will be
charged more if more CPU cycles have been used. It is
thus very desirable to reduce the huge demand of CPU
cycles for such transcoding.
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Fig. 11. Daily Video Popularity Distribution per ISP
In the previous section, we have shown that the mobile 6.1 Replacement Strategies

users’ accesses are more concentrated (skewed) than
those in the traditional Internet streaming services. Thus,
caching at the server side, sometimes called reverse
caching, could be explored to temporarily cache some
transcoded objects so that on-the-fly transcoding would
not be necessary if the same type of mobile devices
access the same video. Such full-object caching is pos-
sible for mobile videos because mobile video objects are
typically smaller with a median of 1.68 MBytes as we
showed before. Note that different from the traditional
caching objectives such as web proxy caching for reduc-
ing the network traffic, caching at the server side here
is to reduce the CPU cycles demanded for transcoding.
That is, a trade-off between the storage and the CPU.

On the other hand, we have also shown that mobile
users’ interests shift quickly (Section 2.3 of the supple-
mentary file). This provides some hints for cache replace-
ment. Regardless whether the cache is implemented via
disk and/or memory, the cache replacement policy is the
key to the cache performance. Typical cache replacement
strategies (such as popularity-based policies) may work,
however, the complexity added by Vuclip-like services
comes from the fact that a video often has multiple
transcoded versions. Intuitively, these different versions
could be considered as separate objects in the cache.
However, if we consider video popularity, different ver-
sions of a same video are internally related. Therefore,
we next explore different replacement strategies via sim-
ulations for Vuclip-like systems.

A simple strategy is to ignore the internal relationship of
different versions of a video, and consider each version
as a distinct object. Under this assumption, the existing
web proxy cache replacement policies can be adopted.
Since we are dealing with video objects, we thus first
consider a version-popularity based replacement policy,
in which a utility function is defined as the ratio of
the version access number to the storage size occupied
by that version. The version with the least utility is the
victim to be purged from the cache.

On the contrary, if we consider that different versions
of a video are related because along the diminishing pop-
ularity of a video, all of its versions may get fewer and
fewer accesses, we can also consider a policy in which
all different versions of a video are bundled together as
one object in the cache. Taking the popularity of this
object as the sum of popularity of all its versions, we
can design a video-popularity based replacement policy,
in which the entire object (with all versions) is replaced
once it is identified as the victim based on the utility
function defined as the ratio of the total access number
to this video to the total size of occupied storage.

With the above two strategies, naturally, one may
wonder if a hybrid policy could perform better. That
is, neither considering the version independently as the
version-popularity based policy does, nor considering all
versions of a video as one object as the video-popularity
based policy does. In a hybrid strategy, a utility function
can be defined for each video as in the video-popularity
based replacement policy, but the victim is the least
popular version of the least popular video.
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Fig. 12. Cache Performance over Different Time

6.2 Simulation Results

To study the effectiveness of these different strategies,
we conduct trace-driven simulations using the collected
workload to compare their performance. With the ac-
cesses of Nov. 1st, Figure 12(a) shows that when the
cache size is smaller than 27% of the total size of
accessed objects of that day, a video-popularity based
replacement policy can achieve the highest cache hit
rate, and save roughly about 55% CPU cycles, while a
version-popularity based strategy performs the worst.
This is likely due to the highly concentrated video
access pattern as shown in Figure 9(a) compared to less
concentrated version access pattern shown in Figure 6(a)
of the supplementary file. The hybrid strategy performs
consistently worse than the video-popularity based one,
but still a little better than the version-popularity based
policy. These results are consistent with our analysis on
the video and version popularity. When the cache size
increases, the version-popularity based policy has more
flexibility in choosing the best version to cache, and thus
achieves the best cache hit ratio among the three.

Figure 12(b) further shows the results when one-week
trace from Nov. 1st to Nov. 8th was simulated. The
cache size percentage used in this simulation is based on
total accessed objects of Nov. 1st. We find that the cache
performance over one week can reach as high as that
of a day. However, the cache performance over a month
as shown in Figure 12(c) is worse. This is because with
an SE distribution for monthly video accesses, caching
is much less efficient than with a Zipf distribution for
daily accesses.

7 RELATED WORK

The Internet has witnessed the sharp increase of Internet
video traffic in the recent years with all kinds of Internet
streaming systems, such as VoD and Internet P2P-based
streaming systems. Lots of research has been conducted
to study these Internet streaming systems. For example,
Yu et al. [17] examined server logs of a traditional VoD
system with a total of over 6700 unique videos, and
analyzed user access patterns, session length, and video
popularity. Yin et al. presented the access logs of a

1
Cache Size (%)
(b) Weekly Cache Performance

10
Cache Size (%)
(c) Monthly Cache Performance

live VoD system [21], which shows different user and
content properties compared to [17]. Krishnappa et al.
collected Hulu traffic at a campus edge network, and
examined the potential benefits of performing caching
and prefetching at edge networks [22]. For P2P-based
streaming systems, Wu et al. investigated P2P streaming
topologies in UUSee [23]. Huang et al. conducted a
large scale measurement to study the PPLive-based on-
demand streaming [24]. More recently, video service
providers are leveraging multiple data centers in the
cloud to serve videos. For example, Netflix is running
all its operations today on Amazon EC2 [25]. YouTube
also leverages Google’s CDN for video streaming [26].

Along the increasing popularity of user-generated
content (UGC), studies have also been conducted to
characterize UGC videos. For example, Cha et al. studied
user behaviors and video popularity of YouTube, and
compared them with non-UGC content from Netflix [27].
Work [18] examined the traffic characteristics of YouTube
at a campus edge network.

With the rapid increase of Internet-capable mobile
devices in recent years, mobile Internet video services
and accesses are surging. A few studies have been con-
ducted to investigate the performance of mobile stream-
ing applications. Focusing on the resource utilization for
receiving streaming data on mobile devices, Xiao et al.
studied the power consumption of mobile YouTube [10].
Finamore et al. collected traffic from several edge lo-
cations and studied the potential reasons for the infe-
rior streaming experience of mobile YouTube users [12].
Previously, we have also conducted measurements to
study the resource utilization of different streaming ap-
proaches to mobile devices [16]. Furthermore, in order to
save battery power, we had designed and implemented
BlueStreaming, a system that can leverage low-power of
Bluetooth to help P2P streaming to mobile devices [28].
Collecting data from an ISP providing cellular data
services, Erman et al. analyze mobile video traffic, fo-
cusing on different streaming methods used, prevailing
encoding rates, and user behaviors [29]. However, their
study is limited to one ISP. Li et al. collect server-side
log of an iOS application that uses HTTP live streaming
(HLS) for video accesses, and analyze the user behaviors



and access patterns [30]. Different from their study that
focuses on iOS and HLS only, we base our study on
a video service that can be accessed via a much larger
variety of mobile devices.

In this study, we have investigated the commons
and differences of mobile Internet streaming services
with/from the traditional Internet streaming services.
Our study reveals a critical challenge in Internet mobile
streaming services is the hardware and software het-
erogeneity of mobile devices. Our analysis also shows
different access patterns of mobile videos from tradi-
tional Internet streaming videos. Furthermore, we have
also shown that caching at the server side with a proper
replacement policy can significantly reduce the resource
consumption for Vuclip-like Internet streaming systems
in dealing with heterogeneity. An earlier version [13]
of this manuscript is published in the proceedings of
INFOCOM 2012.

8 CONCLUSION

The wide adoption of mobile devices in practice has
made pervasive Internet streaming possible. With elastic
resources, cloud platforms have also been increasingly
employed for Internet streaming delivery. While a num-
ber of studies have been conducted to examine the
streaming services from the client’s perspective, in this
work, we have studied the Internet mobile streaming
services from the server side via 4-month server-side log
collected on a cloud from one of the largest Internet mo-
bile streaming service providers. Through detailed anal-
ysis, we have shown the great hardware and software
heterogeneity of mobile devices, different characteristics
of mobile videos, and different user access patterns from
those in traditional Internet streaming services. As the
great challenge that Vuclip-like system faces is the huge
demand of CPU resources for online transcoding to deal
with heterogeneity, we show that caching at the server
side with a proper replacement policy can effectively
trade-off limited storage size for great savings on CPU
cycles. These results provide some basic guidelines for
building and optimizing future Internet mobile stream-
ing systems.
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