
Cooperative Provable Data Possession
for Integrity Verification in Multicloud Storage

Yan Zhu, Member, IEEE, Hongxin Hu, Member, IEEE,

Gail-Joon Ahn, Senior Member, IEEE, and Mengyang Yu

Abstract—Provable data possession (PDP) is a technique for ensuring the integrity of data in storage outsourcing. In this paper, we

address the construction of an efficient PDP scheme for distributed cloud storage to support the scalability of service and data

migration, in which we consider the existence of multiple cloud service providers to cooperatively store and maintain the clients’ data.

We present a cooperative PDP (CPDP) scheme based on homomorphic verifiable response and hash index hierarchy. We prove the

security of our scheme based on multiprover zero-knowledge proof system, which can satisfy completeness, knowledge soundness,

and zero-knowledge properties. In addition, we articulate performance optimization mechanisms for our scheme, and in particular

present an efficient method for selecting optimal parameter values to minimize the computation costs of clients and storage service

providers. Our experiments show that our solution introduces lower computation and communication overheads in comparison with

noncooperative approaches.

Index Terms—Storage security, provable data possession, interactive protocol, zero-knowledge, multiple cloud, cooperative

Ç

1 INTRODUCTION

IN recent years, cloud storage service has become a faster
profit growth point by providing a comparably low cost,

scalable, position-independent platform for clients’ data.
Since cloud computing environment is constructed based
on open architectures and interfaces, it has the capability to
incorporate multiple internal and/or external cloud ser-
vices together to provide high interoperability. We call such
a distributed cloud environment as a multi Cloud (or hybrid
cloud). Often, by using virtual infrastructure management
(VIM) [1], a multicloud allows clients to easily access his/
her resources remotely through interfaces such as web
services provided by Amazon EC2.

There exist various tools and technologies for multicloud,
such as Platform VM Orchestrator, VMware vSphere, and
Ovirt. These tools help cloud providers construct a dis-
tributed cloud storage platform (DCSP) for managing
clients’ data. However, if such an important platform is
vulnerable to security attacks, it would bring irretrievable
losses to the clients. For example, the confidential data in an
enterprise may be illegally accessed through a remote
interface provided by a multicloud, or relevant data and
archives may be lost or tampered with when they are stored

into an uncertain storage pool outside the enterprise.
Therefore, it is indispensable for cloud service providers
(CSPs) to provide security techniques for managing their
storage services.

Provable data possession (PDP) [2] (or proofs of
retrievability (POR) [3]) is such a probabilistic proof
technique for a storage provider to prove the integrity
and ownership of clients’ data without downloading data.
The proof-checking without downloading makes it espe-
cially important for large-size files and folders (typically
including many clients’ files) to check whether these data
have been tampered with or deleted without downloading
the latest version of data. Thus, it is able to replace
traditional hash and signature functions in storage out-
sourcing. Various PDP schemes have been recently pro-
posed, such as Scalable PDP [4] and Dynamic PDP [5].
However, these schemes mainly focus on PDP issues at
untrusted servers in a single cloud storage provider and are
not suitable for a multicloud environment (see the compar-
ison of POR/PDP schemes in Table 1).

Motivation. To provide a low cost, scalable, location-
independent platform for managing clients’ data, current
cloud storage systems adopt several new distributed file
systems, for example, Apache Hadoop Distribution File
System (HDFS), Google File System (GFS), Amazon S3
File System, CloudStore, etc. These file systems share some
similar features: a single metadata server provides centra-
lized management by a global namespace; files are split into
blocks or chunks and stored on block servers; and the
systems are comprised of interconnected clusters of block
servers. Those features enable cloud service providers to
store and process large amounts of data. However, it is
crucial to offer an efficient verification on the integrity and
availability of stored data for detecting faults and automatic
recovery. Moreover, this verification is necessary to provide
reliability by automatically maintaining multiple copies of
data and automatically redeploying processing logic in the
event of failures.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012 2231

. Y. Zhu is with the Institute of Computer Science and Technology, Beijing
Key Laboratory of Internet Security Technology, Peking University, 2F,
ZhongGuanCun North Street No. 128, HaiDian District, Beijing 100080,
P.R. China. E-mail: yan.zhu@pku.edu.cn, zhuyan@asu.edu.

. H. Hu and G.-J. Ahn are with the School of Computing, Informatics and
Decision Systems Engineering, Arizona State University, 699 S. Mill
Avenue, Tempe, AZ 85281. E-mail: {hxhu, gahn}@asu.edu.

. M. Yu is with the School of Mathematics Science, Peking University, 2F,
ZhongGuanCun North Street No. 128, HaiDian District, Beijing 100871,
P.R. China. E-mail: myyu@pku.edu.cn.

Manuscript received 16 June 2011; revised 9 Jan. 2012; accepted 29 Jan. 2012;
published online 8 Feb. 2012.
Recommended for acceptance by J. Weissman.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-05-0395.
Digital Object Identifier no. 10.1109/TPDS.2012.66.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Although existing schemes can make a false or true
decision for data possession without downloading data at
untrusted stores, they are not suitable for a distributed cloud
storage environment since they were not originally con-
structed on interactive proof system. For example, the
schemes based on Merkle Hash tree (MHT), such as DPDP-
I, DPDP-II [2], and SPDP [4] in Table 1, use an authenticated
skip list to check the integrity of file blocks adjacently in
space. Unfortunately, they did not provide any algorithms
for constructing distributed Merkle trees that are necessary
for efficient verification in a multicloud environment. In
addition, when a client asks for a file block, the server needs
to send the file block along with a proof for the intactness of
the block. However, this process incurs significant commu-
nication overhead in a multicloud environment, since the
server in one cloud typically needs to generate such a proof
with the help of other cloud storage services, where the
adjacent blocks are stored. The other schemes, such as PDP
[2], CPOR-I, and CPOR-II [6] in Table 1, are constructed on
homomorphic verification tags, by which the server can
generate tags for multiple file blocks in terms of a single
response value. However, that doesn’t mean the responses
from multiple clouds can be also combined into a single
value on the client side. For lack of homomorphic responses,
clients must invoke the PDP protocol repeatedly to check the
integrity of file blocks stored in multiple cloud servers. Also,
clients need to know the exact position of each file block in a
multicloud environment. In addition, the verification pro-
cess in such a case will lead to high communication
overheads and computation costs at client sides as well.
Therefore, it is of utmost necessary to design a cooperative
PDP model to reduce the storage and network overheads and
enhance the transparency of verification activities in cluster-
based cloud storage systems. Moreover, such a cooperative
PDP scheme should provide features for timely detecting
abnormality and renewing multiple copies of data.

Even though existing PDP schemes have addressed
various security properties, such as public verifiability [2],
dynamics [5], scalability [4], and privacy preservation [7],
we still need a careful consideration of some potential
attacks, including two major categories: Data Leakage Attack
by which an adversary can easily obtain the stored data
through verification process after running or wiretapping
sufficient verification communications (see Attacks 1 and 3
in Appendix A, which can be found on the Computer

Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2012.66), and Tag Forgery Attack by
which a dishonest CSP can deceive the clients (see Attacks
2 and 4 in Appendix A, available in the online supplemental
material). These two attacks may cause potential risks for
privacy leakage and ownership cheating. Also, these attacks
can more easily compromise the security of a distributed
cloud system than that of a single cloud system.

Although various security models have been proposed
for existing PDP schemes [2], [7], [6], these models still
cannot cover all security requirements, especially for
provable secure privacy preservation and ownership
authentication. To establish a highly effective security
model, it is necessary to analyze the PDP scheme within
the framework of zero-knowledge proof system (ZKPS) due
to the reason that PDP system is essentially an interactive
proof system (IPS), which has been well studied in the
cryptography community. In summary, a verification
scheme for data integrity in distributed storage environ-
ments should have the following features:

. Usability aspect. A client should utilize the integrity
check in the way of collaboration services. The
scheme should conceal the details of the storage to
reduce the burden on clients;

. Security aspect. The scheme should provide ade-
quate security features to resist some existing
attacks, such as data leakage attack and tag forgery
attack;

. Performance aspect. The scheme should have the
lower communication and computation overheads
than noncooperative solution.

Related works. To check the availability and integrity of
outsourced data in cloud storages, researchers have
proposed two basic approaches called PDP [2] and POR
[3]. Ateniese et al. [2] first proposed the PDP model for
ensuring possession of files on untrusted storages and
provided an RSA-based scheme for a static case that
achieves the Oð1Þ communication cost. They also proposed
a publicly verifiable version, which allows anyone, not just
the owner, to challenge the server for data possession. This
property greatly extended application areas of PDP protocol
due to the separation of data owners and the users.
However, these schemes are insecure against replay attacks
in dynamic scenarios because of the dependencies on the
index of blocks. Moreover, they do not fit for multicloud

2232 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

TABLE 1
Comparison of POR/PDP Schemes for a File Consisting of n Blocks

s is the number of sectors in each block, c is the number of CSPs in a multi-cloud, t is the number of sampling blocks, � and �k are the probability of
block corruption in a cloud server and k-th cloud server in a multi-cloud P ¼ fPkg, respective,] denotes the verification process in a trivial approach,
and MHT , HomT , HomR denotes Merkle Hash tree, homomorphic tags, and homomorphic responses, respectively.

storage due to the loss of homomorphism property in the
verification process.

In order to support dynamic data operations, Ateniese

et al. developed a dynamic PDP solution called Scalable

PDP [4]. They proposed a lightweight PDP scheme based

on cryptographic hash function and symmetric key

encryption, but the servers can deceive the owners by

using previous metadata or responses due to the lack of

randomness in the challenges. The numbers of updates and

challenges are limited and fixed in advance and users

cannot perform block insertions anywhere. Based on this

work, Erway et al. [5] introduced two Dynamic PDP

schemes with a hash function tree to realize OðlognÞ
communication and computational costs for a n-block file.

The basic scheme, called DPDP-I, retains the drawback of

Scalable PDP, and in the “blockless” scheme, called DPDP-

II, the data blocks fmijgj2½1;t� can be leaked by the response

of a challenge, M ¼
Pt

j¼1 ajmij , where aj is a random

challenge value. Furthermore, these schemes are also not

effective for a multicloud environment because the

verification path of the challenge block cannot be stored

completely in a cloud [8].
Juels and Kaliski [3] presented a POR scheme, which

relies largely on preprocessing steps that the client conducts
before sending a file to a CSP. Unfortunately, these
operations prevent any efficient extension for updating
data. Shacham and Waters [6] proposed an improved
version of this protocol called Compact POR, which uses
homomorphic property to aggregate a proof into Oð1Þ
authenticator value and OðtÞ computation cost for t
challenge blocks, but their solution is also static and could
not prevent the leakage of data blocks in the verification
process. Wang et al. [7] presented a dynamic scheme with
OðlognÞ cost by integrating the Compact POR scheme and
MHT into the DPDP. Furthermore, several POR schemes
and models have been recently proposed including [9], [10].
In [9], Bowers et al. introduced a distributed cryptographic
system that allows a set of servers to solve the PDP problem.
This system is based on an integrity-protected error-
correcting code (IP-ECC), which improves the security and
efficiency of existing tools, like POR. However, a file must be
transformed into l distinct segments with the same length,
which are distributed across l servers. Hence, this system is
more suitable for RAID rather than a cloud storage.

Our contributions. In this paper, we address the
problem of provable data possession in distributed cloud
environments from the following aspects: high security,
transparent verification, and high performance. To achieve
these goals, we first propose a verification framework for
multicloud storage along with two fundamental techniques:
hash index hierarchy (HIH) and homomorphic verifiable
response (HVR).

We then demonstrate that the possibility of constructing
a cooperative PDP (CPDP) scheme without compromising
data privacy based on modern cryptographic techniques,
such as interactive proof system. We further introduce an
effective construction of CPDP scheme using above-men-
tioned structure. Moreover, we give a security analysis of
our CPDP scheme from the IPS model. We prove that this

construction is a multiprover zero-knowledge proof system
(MP-ZKPS) [11], which has completeness, knowledge
soundness, and zero-knowledge properties. These proper-
ties ensure that CPDP scheme can implement the security
against data leakage attack and tag forgery attack.

To improve the system performance with respect to our
scheme, we analyze the performance of probabilistic queries
for detecting abnormal situations. This probabilistic method
also has an inherent benefit in reducing computation and
communication overheads. Then, we present an efficient
method for the selection of optimal parameter values to
minimize the computation overheads of CSPs and the
clients’ operations. In addition, we analyze that our scheme
is suitable for existing distributed cloud storage systems.
Finally, our experiments show that our solution introduces
very limited computation and communication overheads.

Organization. The rest of this paper is organized as
follows: in Section 2, we describe a formal definition of
CPDP and the underlying techniques, which are utilized in
the construction of our scheme. We introduce the details of
cooperative PDP scheme for multicloud storage in Section 3.
We describe the security and performance evaluation of our
scheme in Sections 4 and 5, respectively. We discuss the
related work in Sections 1 and 6 concludes this paper.

2 STRUCTURE AND TECHNIQUES

In this section, we present our verification framework for
multicloud storage and a formal definition of CPDP. We
introduce two fundamental techniques for constructing our
CPDP scheme: hash index hierarchy on which the responses
of the clients’ challenges computed from multiple CSPs can
be combined into a single response as the final result; and
homomorphic verifiable response which supports distrib-
uted cloud storage in a multicloud storage and implements
an efficient construction of collision-resistant hash function,
which can be viewed as a random oracle model in the
verification protocol.

2.1 Verification Framework for Multicloud

Although existing PDP schemes offer a publicly accessible
remote interface for checking and managing the tremendous
amount of data, the majority of existing PDP schemes are
incapable to satisfy the inherent requirements from multiple
clouds in terms of communication and computation costs.
To address this problem, we consider a multicloud storage
service as illustrated in Fig. 1. In this architecture, a data
storage service involves three different entities: clients who
have a large amount of data to be stored in multiple clouds
and have the permissions to access and manipulate stored
data; cloud service providers (CSPs) who work together to
provide data storage services and have enough storages and
computation resources; and Trusted Third Party (TTP) who
is trusted to store verification parameters and offer public
query services for these parameters.

In this architecture, we consider the existence of multiple
CSPs to cooperatively store and maintain the clients’ data.
Moreover, a cooperative PDP is used to verify the integrity
and availability of their stored data in all CSPs. The
verification procedure is described as follows: first, a client
(data owner) uses the secret key to preprocess a file which

ZHU ET AL.: COOPERATIVE PROVABLE DATA POSSESSION FOR INTEGRITY VERIFICATION IN MULTICLOUD STORAGE 2233

consists of a collection of n blocks, generates a set of public
verification information that is stored in TTP, transmits the
file and some verification tags to CSPs, and may delete its
local copy. Then, by using a verification protocol, the clients
can issue a challenge for one CSP to check the integrity and
availability of outsourced data with respect to public
information stored in TTP.

We neither assume that CSP is trust to guarantee the
security of the stored data, nor assume that data owner has
the ability to collect the evidence of the CSP’s fault after
errors have been found. To achieve this goal, a TTP server is
constructed as a core trust base on the cloud for the sake of
security. We assume the TTP is reliable and independent
through the following functions [12]: to setup and maintain
the CPDP cryptosystem; to generate and store data owner’s
public key; and to store the public parameters used to
execute the verification protocol in the CPDP scheme. Note
that the TTP is not directly involved in the CPDP scheme in
order to reduce the complexity of cryptosystem.

2.2 Definition of Cooperative PDP

In order to prove the integrity of data stored in a multicloud
environment, we define a framework for CPDP based on
IPS and multiprover zero-knowledge proof system (MP-
ZKPS), as follows.

Definition 1 (Cooperative-PDP). A cooperative provable data
possession S ¼ ðKeyGen; TagGen; ProofÞ is a collection of
two algorithms (KeyGen; TagGen) and an interactive proof
system Proof , as follows:

. KeyGenð1�Þ: takes a security parameter � as input,
and returns a secret key sk or a public-secret keypair
ðpk; skÞ;

. TagGenðsk; F ;PÞ: takes as inputs a secret key sk, a
file F , and a set of cloud storage providers P ¼ fPkg,
and returns the triples ð�; ; �Þ, where � is the secret in
tags, ¼ ðu;HÞ is a set of verification parameters u
and an index hierarchy H for F , � ¼ f�ðkÞgPk2P
denotes a set of all tags, �ðkÞ is the tag of the fraction
F ðkÞ of F in Pk;

. ProofðP; V Þ: is a protocol of proof of data possession
between CSPs (P ¼ fPkg) and a verifier (V), that is,

X
Pk2P

PkðF ðkÞ; �ðkÞÞ !V
* +

ðpk; Þ

¼ 1; F ¼ fF ðkÞg is intact;

0; F ¼ fF ðkÞg is changed;

(

where each Pk takes as input a file F ðkÞ and a set of tags

�ðkÞ, and a public key pk and a set of public parameters

 are the common input between P and V . At the end

of the protocol run, V returns a bit f0j1g denoting

false and true. Where,
P

Pk2P denotes cooperative

computing in Pk 2 P.

A trivial way to realize the CPDP is to check the data

stored in each cloud one by one, i.e.,^
Pk2P

�
PkðF ðkÞ; �ðkÞÞ !V

�
ðpk; Þ;

where
V

denotes the logical AND operations among the

boolean outputs of all protocols hPk; V i for all Pk 2 P.

However, it would cause significant communication and

computation overheads for the verifier, as well as a loss of

location-transparent. Such a primitive approach obviously

diminishes the advantages of cloud storage: scaling

arbitrarily up and down on-demand [13]. To solve this

problem, we extend above definition by adding an

organizer(O), which is one of CSPs that directly contacts

with the verifier, as follows:

X
Pk2P

Pk
�
F ðkÞ; �ðkÞ

�
 ! O ! V

* +
ðpk; Þ;

where the action of organizer is to initiate and organize

the verification process. This definition is consistent with

aforementioned architecture, e.g., a client (or an author-

ized application) is considered as V , the CSPs are as

P ¼ fPigi2½1;c�, and the Zoho cloud is as the organizer in

Fig. 1. Often, the organizer is an independent server or a

certain CSP in P. The advantage of this new multiprover

proof system is that it does not make any difference for

the clients between multiprover verification process and

single-prover verification process in the way of collabora-

tion. Also, this kind of transparent verification is able to

conceal the details of data storage to reduce the burden on

clients. For the sake of clarity, we list some used signals in

Table 2.

2234 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

TABLE 2
The Signal and Its Explanation

Fig. 1. Verification architecture for data integrity.

2.3 Hash Index Hierarchy for CPDP

To support distributed cloud storage, we illustrate a
representative architecture used in our cooperative PDP
scheme as shown in Fig. 2. Our architecture has a hierarchy
structure which resembles a natural representation of file
storage. This hierarchical structure H consists of three
layers to represent relationships among all blocks for stored
resources. They are described as follows:

1. Express layer. Offers an abstract representation of
the stored resources;

2. Service layer. Offers and manages cloud storage
services; and

3. Storage layer. Realizes data storage on many
physical devices.

We make use of this simple hierarchy to organize data
blocks from multiple CSP services into a large-size file by
shading their differences among these cloud storage
systems. For example, in Fig. 2 the resources in Express
Layer are split and stored into three CSPs, that are indicated
by different colors, in Service Layer. In turn, each CSP
fragments and stores the assigned data into the storage
servers in Storage Layer. We also make use of colors to
distinguish different CSPs. Moreover, we follow the logical
order of the data blocks to organize the Storage Layer. This
architecture also provides special functions for data storage
and management, e.g., there may exist overlaps among data
blocks (as shown in dashed boxes) and discontinuous
blocks but these functions may increase the complexity of
storage management.

In storage layer, we define a common fragment structure
that provides probabilistic verification of data integrity for
outsourced storage. The fragment structure is a data
structure that maintains a set of block-tag pairs, allowing
searches, checks, and updates in Oð1Þ time. An instance of
this structure is shown in storage layer of Fig. 2: an
outsourced file F is split into n blocks fm1;m2; . . . ;mng, and
each block mi is split into s sectors fmi;1;mi;2; . . . ;mi;sg. The
fragment structure consists of n block-tag pair ðmi; �iÞ,
where �i is a signature tag of block mi generated by a set of

secrets � ¼ ð�1; �2; . . . ; �sÞ. In order to check the data

integrity, the fragment structure implements probabilistic

verification as follows: given a random chosen challenge (or

query) Q ¼ fði; viÞgi2RI , where I is a subset of the block

indices and vi is a random coefficient. There exists an

efficient algorithm to produce a constant-size response

ð�1; �2; . . . ; �s; �
0Þ, where �i comes from all fmk;i; vkgk2I and

�0 is from all f�k; vkgk2I .
Given a collision-resistant hash function Hkð�Þ, we make

use of this architecture to construct a Hash Index Hierarchy

H (viewed as a random oracle), which is used to replace the

common hash function in prior PDP schemes, as follows:

1. Express layer. Given s random f�igsi¼1 and the file
name Fn, sets

�ð1Þ ¼ HPs

i¼1
�i
ðFnÞ

and makes it public for verification but makes f�igsi¼1

secret.
2. Service layer. Given the �ð1Þ and the cloud name Ck,

sets �
ð2Þ
k ¼ H�ð1Þ ðCkÞ.

3. Storage layer. Given the �ð2Þ, a block number i, and its
index record 	i ¼ ‘‘BikVikRi’’, sets �

ð3Þ
i;k ¼ H�

ð2Þ
k

ð	iÞ,
where Bi is the sequence number of a block, Vi is the
updated version number, and Ri is a random integer
to avoid collision.

As a virtualization approach, we introduce a simple

index-hash table 	 ¼ f	ig to record the changes of file

blocks as well as to generate the hash value of each block in

the verification process. The structure of 	 is similar to the

structure of file block allocation table in file systems. The

index-hash table consists of serial number, block number,

version number, random integer, and so on. Different from

the common index table, we assure that all records in our

index table differ from one another to prevent forgery of

data blocks and tags. By using this structure, especially the

index records f	ig, our CPDP scheme can also support

dynamic data operations [8].
The proposed structure can be readily incorperated into

MAC-based, ECC, or RSA schemes [2], [6]. These schemes,
built from collision-resistance signatures (see Section 3.1)
and the random oracle model, have the shortest query and
response with public verifiability. They share several
common characters for the implementation of the CPDP
framework in the multiple clouds:

1. a file is split into n� s sectors and each block (s
sectors) corresponds to a tag, so that the storage of
signature tags can be reduced by the increase of s;

2. a verifier can verify the integrity of file in random
sampling approach, which is of utmost importance
for large files;

3. these schemes rely on homomorphic properties to
aggregate data and tags into a constant-size re-
sponse, which minimizes the overhead of network
communication; and

4. the hierarchy structure provides a virtualization
approach to conceal the storage details of multiple
CSPs.

ZHU ET AL.: COOPERATIVE PROVABLE DATA POSSESSION FOR INTEGRITY VERIFICATION IN MULTICLOUD STORAGE 2235

Fig. 2. Index hash hierarchy of CPDP model.

2.4 Homomorphic Verifiable Response for CPDP

A homomorphism is a map f : IP! QQ between two

groups such that fðg1 � g2Þ ¼ fðg1Þ � fðg2Þ for all g1;

g2 2 IP, where � denotes the operation in IP and �
denotes the operation in QQ. This notation has been used to

define Homomorphic Verifiable Tags (HVTs) in [2]: given

two values �i and �j for two messages mi and mj, anyone

can combine them into a value �0 corresponding to the

sum of the messages mi þmj. When provable data

possession is considered as a challenge-response protocol,

we extend this notation to the concept of HVR, which is

used to integrate multiple responses from the different

CSPs in CPDP scheme as follows.

Definition 2 (Homomorphic Verifiable Response). A

response is called homomorphic verifiable response in a PDP

protocol, if given two responses
i and
j for two challenges Qi

and Qj from two CSPs, there exists an efficient algorithm to

combine them into a response
 corresponding to the sum of the

challenges Qi

S
Qj.

Homomorphic verifiable response is the key technique of

CPDP because it not only reduces the communication

bandwidth, but also conceals the location of outsourced

data in the distributed cloud storage environment.

3 COOPERATIVE PDP SCHEME

In this section, we propose a CPDP scheme for multicloud

system based on the above-mentioned structure and techni-

ques. This scheme is constructed on collision-resistant hash,

bilinear map group, aggregation algorithm, and homo-

morphic responses.

3.1 Notations and Preliminaries

Let IH ¼ fHkg be a family of hash functions Hk : f0; 1gn !
f0; 1g� index by k 2 K. We say that algorithm A has

advantage � in breaking collision-resistance of IH if

Pr½AðkÞ ¼ ðm0;m1Þ : m0 6¼ m1; Hkðm0Þ ¼ Hkðm1Þ� � �;

where the probability is over the random choices of k 2 K
and the random bits of A. So that, we have the following

definition.

Definition 3 (Collision-Resistant Hash). A hash family IH is

ðt; �Þ-collision-resistant if no t-time adversary has advantage

at least � in breaking collision-resistance of IH.

We set up our system using bilinear pairings proposed
by Boneh and Franklin [14]. Let GG and GGT be two
multiplicative groups using elliptic curve conventions with
a large prime order p. The function e is a computable
bilinear map e : GG�GG! GGT with the following proper-
ties: for any G;H 2 GG and all a; b 2 ZZp, we have
1) Bilinearity: eð½a�G; ½b�HÞ ¼ eðG;HÞab; 2) Nondegeneracy:
eðG;HÞ 6¼ 1 unless G or H ¼ 1; and 3) Computability:
eðG;HÞ is efficiently computable.

Definition 4 (Bilinear Map Group System). A bilinear map

group system is a tuple SS ¼ hp;GG;GGT ; ei composed of the

objects as described above.

3.2 Our CPDP Scheme

In our scheme (see Fig. 3), the manager first runs algorithm

KeyGen to obtain the public/private key pairs for CSPs and

users. Then, the clients generate the tags of outsourced data

by using TagGen. Anytime, the protocol Proof is performed

by a five-move interactive proof protocol between a verifier

and more than one CSP, in which CSPs need not to interact

with each other during the verification process, but an

organizer is used to organize and manage all CSPs.
This protocol can be described as follows:

1. the organizer initiates the protocol and sends a
commitment to the verifier;

2. the verifier returns a challenge set of random index-
coefficient pairs Q to the organizer;

3. the organizer relays them into each Pi in P according
to the exact position of each data block;

4. each Pi returns its response of challenge to the
organizer; and

5. the organizer synthesizes a final response from
received responses and sends it to the verifier.

The above process would guarantee that the verifier

accesses files without knowing on which CSPs or in what

geographical locations their files reside.
In contrast to a single CSP environment, our scheme

differs from the common PDP scheme in two aspects:

1. Tag aggregation algorithm: in stage of commitment,
the organizer generates a random � 2R ZZp and
returns its commitment H 01 to the verifier. This
assures that the verifier and CSPs do not obtain the
value of �. Therefore, our approach guarantees only
the organizer can compute the final �0 by using � and
�0k received from CSPs.

After �0 is computed, we need to transfer it to the

organizer in stage of “Response1.” In order to ensure

the security of transmission of data tags, our scheme

employs a new method, similar to the ElGamal

encryption, to encrypt the combination of tagsQ
ði;viÞ2Qk

�vii , that is, for sk ¼ s 2 ZZp and pk ¼
ðg; S ¼ gsÞ 2 GG2, the cipher of messagem is C ¼ ðC1 ¼
gr; C2 ¼ m � SrÞ and its decryption is performed by

m ¼ C2 � C	s1 . Thus, we hold the equation

�0 ¼
Y
Pk2P

�0k

sk

 !�

¼
Y
Pk2P

Srk �
Q
ði;viÞ2Qk

�vii

sk

 !�

¼
Y
Pk2P
�
Y

ði;viÞ2Qk

�vii

0
@

1
A�

¼
Y
ði;viÞ2Q

�vi��i :

2. Homomorphic responses: Because of the homomorphic
property, the responses computed from CSPs in a
multicloud can be combined into a single final
response as follows: given a set of
k ¼ ð�k; �0k; �k;
kÞ
received from Pk, let �j ¼

P
Pk2P �j;k, the organizer

can compute

2236 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

�0j ¼
X
Pk2P

� � �j;k ¼
X
Pk2P

� � �j;k þ
X

ði;viÞ2Qk

vi �mi;j

0
@

1
A

¼
X
Pk2P

� � �j;k þ � �
X
Pk2P

X
ði;viÞ2Qk

vi �mi;j

¼ � �
X
Pk2P

�j;k þ � �
X
ði;viÞ2Q

vi �mi;j

¼ � � �j þ � �
X
ði;viÞ2Q

vi �mi;j:

The commitment of �j is also computed by

�0 ¼
Y
Pk2P

�k

 !�

¼
Y
Pk2P

Ys
j¼1

�j;k

 !�

¼
Ys
j¼1

Y
Pk2P

e
�
u
�j;k
j ; H2

��

¼
Ys
j¼1

e
�
u

P
Pk2P

�j;k

j ; H�
2

�
¼
Ys
j¼1

e
�
u
�j
j ; H

0
2

�
:

It is obvious that the final response
 received by the
verifiers from multiple CSPs is same as that in one simple

CSP. This means that our CPDP scheme is able to provide a
transparent verification for the verifiers. Two response
algorithms, Response1 and Response2, comprise an HVR:
given two responses
i and
j for two challenges Qi and Qj

from two CSPs, i.e.,
i ¼ Response1ðQi; fmkgk2Ii ; f�kgk2IiÞ,
there exists an efficient algorithm to combine them into a final
response
 corresponding to the sum of the challenges
Qi

S
Qj, that is,

 ¼ Response1
�
Qi

[
Qj; fmkgk2Ii

S
Ij
; f�kgk2Ii

S
Ij

�
¼ Response2ð
i;
jÞ:

For multiple CSPs, the above equation can be extended to

 ¼ Response2ðf
kgPk2PÞ. More importantly, the HVR is a
pair of values
 ¼ ð�; �; �Þ, which has a constant size even
for different challenges.

4 SECURITY ANALYSIS

We give a brief security analysis of our CPDP construction.
This construction is directly derived from multiprover zero-
knowledge proof system (MP-ZKPS), which satisfies fol-
lowing properties for a given assertion L:

ZHU ET AL.: COOPERATIVE PROVABLE DATA POSSESSION FOR INTEGRITY VERIFICATION IN MULTICLOUD STORAGE 2237

Fig. 3. Cooperative provable data possession for multicloud storage.

1. Completeness. Whenever x 2 L, there exists a
strategy for the provers that convinces the verifier
that this is the case.

2. Soundness. Whenever x 62 L, whatever strategy the
provers employ, they will not convince the verifier
that x 2 L.

3. Zero knowledge. No cheating verifier can learn
anything other than the veracity of the statement.

According to existing IPS research [15], these properties
can protect our construction from various attacks, such as
data leakage attack (privacy leakage), tag forgery attack
(ownership cheating), etc. In details, the security of our
scheme can be analyzed as follows.

4.1 Collision Resistant for Index Hash Hierarchy

In our CPDP scheme, the collision resistant of index hash
hierarchy is the basis and prerequisite for the security of
whole scheme, which is described as being secure in the
random oracle model. Although the hash function is collision
resistant, a successful hash collision can still be used to
produce a forged tag when the same hash value is reused
multiple times, e.g., a legitimate client modifies the data or
repeats to insert and delete data blocks of outsourced data.
To avoid the hash collision, the hash value �

ð3Þ
i;k , which is

used to generate the tag �i in CPDP scheme, is computed
from the set of values f�ig; Fn; Ck; f	ig. As long as there
exists 1 bit difference in these data, we can avoid the hash
collision. As a consequence, we have the following theorem
(see Appendix B, available in the online supplemental
material).

Theorem 1 (Collision Resistant). The index hash hierarchy in
CPDP scheme is collision resistant, even if the client generatesffi

2p � ln 1

1	 "

r

files with the same file name and cloud name, and the client
repeats ffi

2Lþ1 � ln 1

1	 "

r

times to modify, insert, and delete data blocks, where the collision
probability is at least ", �i 2 ZZp, and jRij ¼ L for Ri 2 	i.

4.2 Completeness Property of Verification

In our scheme, the completeness property implies public
verifiability property, which allows anyone, not just the
client (data owner), to challenge the cloud server for data
integrity and data ownership without the need for any secret
information. First, for every available data-tag pair ðF; �Þ 2
TagGenðsk; F Þ and a random challenge Q ¼ ði; viÞi2I , the
verification protocol should be completed with success
probability according to the (3), that is,

Pr
X
Pk2P

PkðF ðkÞ; �ðkÞÞ $ O$ V

* +
ðpk; Þ ¼ 1

" #
¼ 1:

In this process, anyone can obtain the owner’s public key
pk ¼ ðg; h;H1 ¼ h�;H2 ¼ h�Þ and the corresponding file
parameter ¼ ðu; �ð1Þ; 	Þ from TTP to execute the verification
protocol, hence this is a public verifiable protocol. Moreover,
for different owners, the secrets � and � hidden in their

public key pk are also different, determining that a success
verification can only be implemented by the real owner’s
public key. In addition, the parameter is used to store the
file-related information, so an owner can employ a unique
public key to deal with a large number of outsourced files.

4.3 Zero-Knowledge Property of Verification

The CPDP construction is in essence a Multi-Prover Zero-
knowledge Proof (MP-ZKP) system [11], which can be
considered as an extension of the notion of an IPS. Roughly
speaking, in the scenario of MP-ZKP, a polynomial-time
bounded verifier interacts with several provers whose
computational powers are unlimited. According to a
Simulator model, in which every cheating verifier has a
simulator that can produce a transcript that “looks like” an
interaction between a honest prover and a cheating verifier,
we can prove our CPDP construction has Zero-knowledge
property (see Appendix C, available in the online supple-
mental material)

�0 � eð�0; hÞ ¼
Ys
j¼1

e
�
u
�j
j ; H

0
2

�
� e

Y
ði;viÞ2Q

�vi��i ; h

0
@

1
A

¼
Ys
j¼1

e
�
u
�j
j ; H

0
2

�
� e

Y
ði;viÞ2Q

�
�
ð3Þ
i;k

�� � Ys
j¼1

u
mi;j

j

 !�
0
@

1
A
vi��

; h

0
@

1
A

¼
Ys
j¼1

e
�
u
���j
j ; H2

�
� e

Y
ði;viÞ2Q

ð�ð3Þi Þ
vi ; h

0
@

1
A
��

� e
Ys
j¼1

u

P
ði;viÞ2Q

�mi;jvi

j ; h�

 !

¼ e
Y
ði;viÞ2Q

ð�ð3Þi Þ
vi ; H 01

0
@

1
A �Ys

j¼1

e
�
u
�0j
j ; H2

�
:

ð3Þ

Theorem 2 (Zero-Knowledge Property). The verification
protocol ProofðP; V Þ in CPDP scheme is a computational
zero-knowledge system under a simulator model, that is, for
every probabilistic polynomial-time interactive machine V �,
there exists a probabilistic polynomial-time algorithm S�

such that the ensembles V iewðh
P

Pk2P PkðF
ðkÞ; �ðkÞÞ $ O$

V �iðpk; ÞÞ and S�ðpk; Þ are computationally indistin-
guishable.

Zero-knowledge is a property that achieves the CSPs’
robustness against attempts to gain knowledge by inter-
acting with them. For our construction, we make use of the
zero-knowledge property to preserve the privacy of data
blocks and signature tags. First, randomness is adopted
into the CSPs’ responses in order to resist the data leakage
attacks (see Attacks 1 and 3 in Appendix A, available in the
online supplemental material). That is, the random integer
�j;k is introduced into the response �j;k, i.e., �j;k ¼ �j;k þP
ði;viÞ2Qk

vi �mi;j. This means that the cheating verifier
cannot obtain mi;j from �j;k because he does not know the
random integer �j;k. At the same time, a random integer �
is also introduced to randomize the verification tag �, i.e.,
�0 ð

Q
Pk2P �

0
k �R	sk Þ

� . Thus, the tag � cannot reveal to the
cheating verifier in terms of randomness.

2238 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

4.4 Knowledge Soundness of Verification

For every data-tag pairs ðF �; ��Þ 62 TagGenðsk; F Þ, in order
to prove nonexistence of fraudulent P� and O�, we require
that the scheme satisfies the knowledge soundness prop-
erty, that is,

Pr
X
Pk2P�

PkðF ðkÞ�; �ðkÞ�Þ $ O� $ V

* +
ðpk; Þ ¼ 1

" #

 �;

where � is a negligible error. We prove that our scheme has
the knowledge soundness property by using reduction to
absurdity1: we make use of P� to construct a knowledge
extractor M [7,13], which gets the common input ðpk; Þ
and rewindable black-box accesses to the prover P �, and
then attempts to break the computational Diffie-Hellman
(CDH) problem in GG: given G;G1 ¼ Ga;G2 ¼ Gb 2R GG,
output Gab 2 GG. But it is unacceptable because the CDH
problem is widely regarded as an unsolved problem in
polynomial time. Thus, the opposite direction of the
theorem also follows. We have the following theorem (see
Appendix D, available in the online supplemental material).

Theorem 3 (Knowledge Soundness Property). Our scheme
has (t; �0) knowledge soundness in random oracle and
rewindable knowledge extractor model assuming the (t; �)-
computational Diffie-Hellman assumption holds in the group
GG for �0 � �.

Essentially, the soundness means that it is infeasible to
fool the verifier to accept false statements. Often, the
soundness can also be regarded as a stricter notion of
unforgeability for file tags to avoid cheating the ownership.
This means that the CSPs, even if collusion is attempted,
cannot be tampered with the data or forge the data tags if the
soundness property holds. Thus, the Theorem 1 denotes that
the CPDP scheme can resist the tag forgery attacks (see Attacks
2 and 4 in Appendix A, available in the online supplemental
material) to avoid cheating the CSPs’ ownership.

5 PERFORMANCE EVALUATION

In this section, to detect abnormality in a low overhead and
timely manner, we analyze and optimize the performance
of CPDP scheme based on the above scheme from two
aspects: evaluation of probabilistic queries and optimization
of length of blocks. To validate the effects of scheme, we
introduce a prototype of CPDP-based audit system and
present the experimental results.

5.1 Performance Analysis for CPDP Scheme

We present the computation cost of our CPDP scheme in
Table 3. We use ½E� to denote the computation cost of an
exponent operation in GG, namely, gx, where x is a positive
integer in ZZp and g 2 GG or GGT . We neglect the computation
cost of algebraic operations and simple modular arithmetic
operations because they run fast enough [16]. The most
complex operation is the computation of a bilinear map
eð�; �Þ between two elliptic points (denoted as ½B�).

Then, we analyze the storage and communication costs
of our scheme. We define the bilinear pairing takes the form
e : EðIFpmÞ � EðIFpkmÞ ! IF�pkm (the definition given here is
from [17], [18]), where p is a prime, m is a positive integer,
and k is the embedding degree (or security multiplier). In
this case, we utilize an asymmetric pairing e : GG1 �GG2 !
GGT to replace the symmetric pairing in the original
schemes. In Table 3, it is easy to find that client’s
computation overheads are entirely irrelevant for the
number of CSPs. Further, our scheme has better perfor-
mance compared with noncooperative approach due to the
total of computation overheads decrease 3ðc	 1Þ times
bilinear map operations, where c is the number of clouds in
a multicloud. The reason is that, before the responses are
sent to the verifier from c clouds, the organizer has
aggregate these responses into a response by using
aggregation algorithm, so the verifier only need to verify
this response once to obtain the final result.

Without loss of generality, let the security parameter � be
80 bits, we need the elliptic curve domain parameters over
IFp with jpj ¼ 160 bits and m ¼ 1 in our experiments. This
means that the length of integer is l0 ¼ 2� in ZZp. Similarly,
we have l1 ¼ 4� in GG1, l2 ¼ 24� in GG2, and lT ¼ 24� in GGTT

for the embedding degree k ¼ 6. The storage and commu-
nication costs of our scheme is shown in Table 4. The
storage overhead of a file with sizeðfÞ ¼ 1 M-bytes is
storeðfÞ ¼ n � s � l0 þ n � l1 ¼ 1:04 M-bytes for n ¼ 103 and
s ¼ 50. The storage overhead of its index table 	 is n � l0 ¼
20 K-bytes. We define the overhead rate as � ¼ storeðfÞ

sizeðfÞ 	 1 ¼
l1
s�l0 and it should therefore be kept as low as possible in
order to minimize the storage in cloud storage providers. It
is obvious that a higher s means much lower storage.
Furthermore, in the verification protocol, the communica-
tion overhead of challenge is 2t � l0 ¼ 40 � t-Bytes in terms of
the number of challenged blocks t, but its response
(Response1 or Response2) has a constant-size communica-
tion overhead s � l0 þ l1 þ lT � 1:3 K-bytes for different file
sizes. Also, it implies that client’s communication over-
heads are of a fixed size, which is entirely irrelevant for the
number of CSPs.

ZHU ET AL.: COOPERATIVE PROVABLE DATA POSSESSION FOR INTEGRITY VERIFICATION IN MULTICLOUD STORAGE 2239

TABLE 3
Comparison of Computation Overheads between Our CPDP

Scheme and Noncooperative (Trivial) Scheme

TABLE 4
Comparison of Communication Overheads between Our CPDP

and Noncooperative (Trivial) Scheme

1. It is a proof method in which a proposition is proved to be true by
proving that it is impossible to be false.

5.2 Probabilistic Verification

We recall the probabilistic verification of common PDP

scheme (which only involves one CSP), in which the

verification process achieves the detection of CSP server

misbehavior in a random sampling mode in order to reduce

the workload on the server. The detection probability of

disrupted blocks P is an important parameter to guarantee

that these blocks can be detected in time. Assume the CSP

modifies e blocks out of the n-block file, that is, the

probability of disrupted blocks is �b ¼ e
n . Let t be the

number of queried blocks for a challenge in the verification

protocol. We have detection probability2

P ð�b; tÞ � 1	 n	 e
n

� �t
¼ 1	 ð1	 �bÞt;

where, P ð�b; tÞ denotes that the probability P is a function

over �b and t. Hence, the number of queried blocks is t �
logð1	P Þ
logð1	�bÞ �

P �n
e for a sufficiently large n and t� n.3 This means

that the number of queried blocks t is directly proportional to

the total number of file blocks n for the constant P and e.

Therefore, for a uniform random verification in a PDP

scheme with fragment structure, given a file with sz ¼ n � s
sectors and the probability of sector corruption �, the

detection probability of verification protocol has

P � 1	 ð1	 �Þsz�!, where ! denotes the sampling probabil-

ity in the verification protocol. We can obtain this result as

follows: because �b � 1	 ð1	 �Þs is the probability of block

corruption with s sectors in common PDP scheme, the

verifier can detect block errors with probability P �
1	 ð1	 �bÞt � 1	 ðð1	 �ÞsÞn�! ¼ 1	 ð1	 �Þsz�! for a chal-

lenge with t ¼ n � ! index-coefficient pairs. In the same way,

given a multicloudP ¼ fPigi2½1;c�, the detection probability of

CPDP scheme has

P ðsz; f�k; rkgPk2P ; !Þ
� 1	

Y
Pk2P
ðð1	 �kÞsÞn�rk�!

¼ 1	
Y
Pk2P
ð1	 �kÞsz�rk�!;

where rk denotes the proportion of data blocks in the kth

CSP, �k denotes the probability of file corruption in the kth

CSP, and rk � ! denotes the possible number of blocks

queried by the verifier in the kth CSP. Furthermore, we

observe the ratio of queried blocks in the total file blocks w

under different detection probabilities. Based on above

analysis, it is easy to find that this ratio holds the equation

w � logð1	 P Þ
sz �

P
Pk2P rk � logð1	 �kÞ

:

When this probability �k is a constant probability, the

verifier can detect severe misbehavior with a certain

probability P by asking proof for the number of blocks t �
logð1	P Þ
s _logð1	�Þ for PDP or

t � logð1	 P Þ
s �
P

Pk2P rk � logð1	 �kÞ
;

for CPDP, where t ¼ n � w ¼ sz�w
s . Note that, the value of t is

dependent on the total number of file blocks n [2], because it
is increased along with the decrease of �k and logð1	 �kÞ <
0 for the constant number of disrupted blocks e and the
larger number n.

Another advantage of probabilistic verification based on
random sampling is that it is easy to identify the tampering or
forging data blocks or tags. The identification function is
obvious: when the verification fails, we can choose the partial
set of challenge indexes as a new challenge set, and continue
to execute the verification protocol. The above search process
can be repeatedly executed until the bad block is found. The
complexity of such a search process is OðlognÞ.

5.3 Parameter Optimization

In the fragment structure, the number of sectors per block s
is an important parameter to affect the performance of
storage services and audit services. Hence, we propose an
optimization algorithm for the value of s in this section. Our
results show that the optimal value cannot only minimize
the computation and communication overheads, but also
reduce the size of extra storage, which is required to store
the verification tags in CSPs.

Assume � denotes the probability of sector corruption. In
the fragment structure, the choosing of s is extremely
important for improving the performance of the CPDP
scheme. Given the detection probability P and the prob-
ability of sector corruption � for multiple clouds P ¼ fPkg,
the optimal value of s can be computed by

min
s2IN

logð1	 P ÞP
Pk2P rk � logð1	 �kÞ

� a
s
þ b � sþ c

()
;

where a � tþ b � sþ c denotes the computational cost of
verification protocol in PDP scheme, a; b; c 2 IR, and c is a
constant. This conclusion can be obtained from following
process: let sz ¼ n � s ¼ sizeðfÞ=l0. According to above-
mentioned results, the sampling probability holds

w � logð1	 P Þ
sz �

P
Pk2P rk � logð1	 �kÞ

¼ logð1	 P Þ
n � s �

P
Pk2P rk � logð1	 �kÞ

:

In order to minimize the computational cost, we have

2240 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

2. Exactly, we have P ¼ 1	 ð1	 e
nÞ � ð1	 e

n	1Þ � � � ð1	 e
n	tþ1Þ. Since 1	 e

n �
1	 e

n	i for i 2 ½0; t	 1�, we have P ¼ 1	
Qt	1

i¼0ð1	 e
n	iÞ � 1	

Qt	1
i¼0ð1	 e

nÞ ¼
1	 ð1	 e

nÞ
t.

3. In terms of ð1	 e
nÞ
t � 1	 e�t

n , we have P � 1	 ð1	 e�t
n Þ ¼ e�t

n .

Fig. 4. The relationship between computational cost and the number of
sectors in each block.

min
s2IN

a � tþ b � sþ cf g

¼ min
s2IN

a � n � wþ b � sþ cf g

� min
s2IN

logð1	 P ÞP
Pk2P rk � logð1	 �kÞ

a

s
þ b � sþ c

()
;

where rk denotes the proportion of data blocks in the kth
CSP, �k denotes the probability of file corruption in the kth
CSP. Since a

s is a monotone decreasing function and b � s is a
monotone increasing function for s > 0, there exists an
optimal value of s 2 N in the above equation. The optimal
value of s is unrelated to a certain file from this conclusion if
the probability � is a constant value.

For instance, we assume a multicloud storage involves
three CSPs P ¼ fP1; P2; P3g and the probability of sector
corruption is a constant value f�1; �2; �3g ¼ f0:01; 0:02;
0:001g. We set the detection probability P with the range
from 0.8 to 1, e.g., P ¼ f0:8; 0:85; 0:9; 0:95; 0:99; 0:999g. For a
file, the proportion of data blocks is 50, 30, and 20 percent in
three CSPs, respectively, that is, r1 ¼ 0:5, r2 ¼ 0:3, and
r3 ¼ 0:2. In terms of Table 3, the computational cost of CSPs
can be simplified to tþ 3sþ 9. Then, we can observe the
computational cost under different s and P in Fig. 4. When

s is less than the optimal value, the computational cost
decreases evidently with the increase of s, and then it raises
when s is more than the optimal value.

More accurately, we show the influence of parameters,
sz � w, s, and t, under different detection probabilities in
Table 6. It is easy to see that computational cost raises with
the increase of P . Moreover, we can make sure the sampling
number of challenge with following conclusion: given the
detection probability P , the probability of sector corruption
�, and the number of sectors in each block s, the sampling
number of verification protocol are a constant

t ¼ n � w � logð1	 P Þ
s �
P

Pk2P rk � logð1	 �kÞ

for different files.
Finally, we observe the change of s under different � and

P . The experimental results are shown in Table 5. It is
obvious that the optimal value of s raises with increase of P
and with the decrease of �. We choose the optimal value of s
on the basis of practical settings and system requisition. For
NTFS format, we suggest that the value of s is 200 and the
size of block is 4K-Bytes, which is the same as the default
size of cluster when the file size is less than 16TB in NTFS.
In this case, the value of s ensures that the extra storage
doesn’t exceed 1 percent in storage servers.

5.4 CPDP for Integrity Audit Services

Based on our CPDP scheme, we introduce an audit system
architecture for outsourced data in multiple clouds by
replacing the TTP with a third party auditor (TPA) in
Fig. 1. In this architecture, this architecture can be
constructed into a visualization infrastructure of cloud-
based storage service [1]. In Fig. 5, we show an example of

ZHU ET AL.: COOPERATIVE PROVABLE DATA POSSESSION FOR INTEGRITY VERIFICATION IN MULTICLOUD STORAGE 2241

TABLE 5
The Influence of s; t under the Different Corruption Probabilities � and the Different Detection Probabilities P

TABLE 6
The Influence of Parameters under Different Detection
Probabilities P (P ¼ f�1; �2; �3g ¼ f0:01; 0:02; 0:001g,

fr1; r2; r3g ¼ f0:5; 0:3; 0:2g)

Fig. 5. Applying CPDP scheme in Hadoop distributed file system.

applying our CPDP scheme in HDFS,4 which is a

distributed, scalable, and portable file system [19]. HDFS’

architecture is composed of NameNode and DataNode,

where NameNode maps a file name to a set of indexes of

blocks and DataNode indeed stores data blocks. To

support our CPDP scheme, the index hash hierarchy and

the metadata of NameNode should be integrated together

to provide an enquiry service for the hash value �
ð3Þ
i;k or

index-hash record 	i. Based on the hash value, the clients

can implement the verification protocol via CPDP services.

Hence, it is easy to replace the checksum methods with the

CPDP scheme for anomaly detection in current HDFS.
To validate the effectiveness and efficiency of our

proposed approach for audit services, we have implemented

a prototype of an audit system. We simulated the audit

service and the storage service by using two local IBM

servers with two Intel Core 2 processors at 2.16 GHz and

500M RAM running Windows Server 2003. These servers

were connected via 250 MB/sec of network bandwidth.

Using GMP and PBC libraries, we have implemented a

cryptographic library upon which our scheme can be

constructed. This C library contains approximately 5,200

lines of codes and has been tested on both Windows and

Linux platforms. The elliptic curve utilized in the experiment

is a MNT curve, with base field size of 160 bits and the

embedding degree 6. The security level is chosen to be 80 bits,

which means jpj ¼ 160.
First, we quantify the performance of our audit scheme

under different parameters, such as file size sz, sampling

ratio w, sector number per block s, and so on. Our analysis

shows that the value of s should grow with the increase of sz

in order to reduce computation and communication costs.

Thus, our experiments were carried out as follows: the

stored files were chosen from 10 KB to 10 MB; the sector

numbers were changed from 20 to 250 in terms of file sizes;

and the sampling ratios were changed from 10 to 50 percent.

The experimental results are shown in the left side of Fig. 6.

These results dictate that the computation and communica-

tion costs (including I/O costs) grow with the increase of file

size and sampling ratio.

Next, we compare the performance of each activity in our
verification protocol. We have shown the theoretical results
in Table 4: the overheads of “commitment” and “challenge”
resemble one another, and the overheads of “response” and
“verification” resemble one another as well. To validate the
theoretical results, we changed the sampling ratio w from 10
to 50 percent for a 10 MB file and 250 sectors per block in a
multicloud P ¼ fP1; P2; P3g, in which the proportions of
data blocks are 50, 30, and 20 percent in three CSPs,
respectively. In the right side of Fig. 6, our experimental
results show that the computation and communication costs
of “commitment” and “challenge” are slightly changed
along with the sampling ratio, but those for “response” and
“verification” grow with the increase of the sampling ratio.
Here, “challenge” and “response” can be divided into two
subprocesses: “challenge1” and “challenge2,” as well as
“Response1” and “Response2,” respectively. Furthermore,
the proportions of data blocks in each CSP have greater
influence on the computation costs of “challenge” and
“response” processes. In summary, our scheme has better
performance than noncooperative approach.

6 CONCLUSIONS

In this paper, we presented the construction of an efficient
PDP scheme for distributed cloud storage. Based on
homomorphic verifiable response and hash index hierar-
chy, we have proposed a cooperative PDP scheme to
support dynamic scalability on multiple storage servers. We
also showed that our scheme provided all security proper-
ties required by zero-knowledge interactive proof system,
so that it can resist various attacks even if it is deployed as a
public audit service in clouds. Furthermore, we optimized
the probabilistic query and periodic verification to improve
the audit performance. Our experiments clearly demon-
strated that our approaches only introduce a small amount
of computation and communication overheads. Therefore,
our solution can be treated as a new candidate for data
integrity verification in outsourcing data storage systems.

As part of future work, we would extend our work to
explore more effective CPDP constructions. First, from our
experiments we found that the performance of CPDP
scheme, especially for large files, is affected by the bilinear
mapping operations due to its high complexity. To solve
this problem, RSA-based constructions may be a better

2242 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 6. Experimental results under different file size, sampling ratio, and sector number.

4. Hadoop can enable applications to work with thousands of nodes and
petabytes of data, and it has been adopted by currently mainstream cloud
platforms from Apache, Google, Yahoo, Amazon, IBM, and Sun.

choice, but this is still a challenging task because the
existing RSA-based schemes have too many restrictions on
the performance and security [2]. Next, from a practical
point of view, we still need to address some issues about
integrating our CPDP scheme smoothly with existing
systems, for example, how to match index-hash hierarchy
with HDFS’s two-layer name space, how to match index
structure with cluster-network model, and how to dynami-
cally update the CPDP parameters according to HDFS’
specific requirements. Finally, it is still a challenging
problem for the generation of tags with the length irrelevant
to the size of data blocks. We would explore such an issue
to provide the support of variable-length block verification.

ACKNOWLEDGMENTS

The work of Y. Zhu and M. Yu was supported by the
National Natural Science Foundation of China (Project
No. 61170264 and No. 10990011). This work of Gail-J. Ahn
and Hongxin Hu was partially supported by the grants
from US National Science Foundation (NSF-IIS-0900970
and NSF-CNS-0831360) and Department of Energy (DE-
SC0004308). A preliminary version of this paper appeared
under the title “Efficient Provable Data Possession for
Hybrid Clouds” in Proceedings of the 17th ACM
Conference on Computer and Communications Security
(CCS), Chicago, IL, 2010, pp. 881-883.

REFERENCES

[1] B. Sotomayor, R.S. Montero, I.M. Llorente, and I.T. Foster, “Virtual
Infrastructure Management in Private and Hybrid Clouds,” IEEE
Internet Computing, vol. 13, no. 5, pp. 14-22, Sept. 2009.

[2] G. Ateniese, R.C. Burns, R. Curtmola, J. Herring, L. Kissner, Z.N.J.
Peterson, and D.X. Song, “Provable Data Possession at Untrusted
Stores,” Proc. 14th ACM Conf. Computer and Comm. Security (CCS
’07), pp. 598-609, 2007.

[3] A. Juels and B.S.K. Jr., “Pors: Proofs of Retrievability for Large
Files,” Proc. 14th ACM Conf. Computer and Comm. Security (CCS
’07), pp. 584-597, 2007.

[4] G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik, “Scalable
and Efficient Provable Data Possession,” Proc. Fourth Int’l Conf.
Security and Privacy in Comm. Netowrks (SecureComm ’08), pp. 1-10,
2008.

[5] C.C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia,
“Dynamic Provable Data Possession,” Proc. 16th ACM Conf.
Computer and Comm. Security (CCS ’09), pp. 213-222, 2009.

[6] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
Proc. 14th Int’l Conf. Theory and Application of Cryptology and
Information Security: Advances in Cryptology (ASIACRYPT ’08),
pp. 90-107, 2008.

[7] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamics for Storage Security in Cloud
Computing,” Proc. 14th European Conf. Research in Computer
Security (ESORICS ’09), pp. 355-370, 2009.

[8] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S.S. Yau, “Dynamic
Audit Services for Integrity Verification of Outsourced Storages in
Clouds,” Proc. ACM Symp. Applied Computing, pp. 1550-1557, 2011.

[9] K.D. Bowers, A. Juels, and A. Oprea, “Hail: A High-Availability
and Integrity Layer for Cloud Storage,” Proc. 16th ACM Conf.
Computer and Comm. Security, pp. 187-198, 2009.

[10] Y. Dodis, S.P. Vadhan, and D. Wichs, “Proofs of Retrievability via
Hardness Amplification,” Proc. Sixth Theory of Cryptography Conf.
Theory of Cryptography (TCC ’09), pp. 109-127, 2009.

[11] L. Fortnow, J. Rompel, and M. Sipser, “On the Power of
Multi-Prover Interactive Protocols,” J. Theoretical Computer
Science, vol. 134, pp. 156-161, 1988.

[12] Y. Zhu, H. Hu, G.-J. Ahn, Y. Han, and S. Chen, “Collaborative
Integrity Verification in Hybrid Clouds,” Proc. IEEE Conf. Seventh
Int’l Conf. Collaborative Computing: Networking, Applications and
Worksharing, pp. 197-206, 2011.

[13] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “Above the Clouds: A Berkeley View of Cloud Comput-
ing,” technical report, EECS Dept., Univ. of California, Feb. 2009.

[14] D. Boneh and M. Franklin, “Identity-Based Encryption from the
Weil Pairing,” Proc. Advances in Cryptology (CRYPTO ’01), pp. 213-
229, 2001.

[15] O. Goldreich, Foundations of Cryptography: Basic Tools. Cambridge
Univ. Press, 2001.

[16] P.S.L.M. Barreto, S.D. Galbraith, C. O’Eigeartaigh, and M. Scott,
“Efficient Pairing Computation on Supersingular Abelian Vari-
eties,” J. Design, Codes and Cryptography, vol. 42, no. 3, pp. 239-271,
2007.

[17] J.-L. Beuchat, N. Brisebarre, J. Detrey, and E. Okamoto, “Arith-
metic Operators for Pairing-Based Cryptography,” Proc. Ninth
Int’l Workshop Cryptographic Hardware and Embedded Systems (CHES
’07), pp. 239-255, 2007.

[18] H. Hu, L. Hu, and D. Feng, “On a Class of Pseudorandom
Sequences from Elliptic Curves over Finite Fields,” IEEE Trans.
Information Theory, vol. 53, no. 7, pp. 2598-2605, July 2007.

[19] A. Bialecki, M. Cafarella, D. Cutting, and O. O’Malley, “Hadoop:
A Framework for Running Applications on Large Clusters Built of
Commodity Hardware,” technical report, 2005, http://lucene.
apache.org/hadoop/.

[20] E. Al-Shaer, S. Jha, and A.D. Keromytis, Proc. Conf. Computer and
Comm. Security (CCS), 2009.

Yan Zhu received the PhD degree in computer
science from Harbin Engineering University,
China in 2005. He was an associate professor
of computer science in the Institute of Computer
Science and Technology at Peking University
since 2007. He worked at the Department of
Computer Science and Engineering, Arizona
State University as a visiting associate professor
from 2008 to 2009. His research interests
include cryptography and network security. He

is a member of the IEEE.

Hongxin Hu is currently working toward the
PhD degree from the School of Computing,
Informatics, and Decision Systems Engineering,
Ira A. Fulton School of Engineering, Arizona
State University. He is also a member of the
Security Engineering for Future Computing
Laboratory, Arizona State University. His cur-
rent research interests include access control
models and mechanisms, security and privacy
in social networks, and security in distributed

and cloud computing, network and system security and secure
software engineering. He is a member of the IEEE.

ZHU ET AL.: COOPERATIVE PROVABLE DATA POSSESSION FOR INTEGRITY VERIFICATION IN MULTICLOUD STORAGE 2243

Gail-Joon Ahn received the PhD degree in
information technology from George Mason
University, Fairfax, VA, in 2000. He is an
associate professor in the School of Computing,
Informatics, and Decision Systems Engineering,
Ira A. Fulton Schools of Engineering and the
director of Security Engineering for Future
Computing Laboratory, Arizona State University.
His research interests include information and
systems security, vulnerability and risk manage-

ment, access control, and security architecture for distributed systems,
which has been supported by the US National Science Foundation,
National Security Agency, US Department of Defense, US Department
of Energy, Bank of America, Hewlett Packard, Microsoft, and Robert
Wood Johnson Foundation. He is a recipient of the US Department of
Energy CAREER Award and the Educator of the Year Award from the
Federal Information Systems Security Educators Association. He was
an associate professor at the College of Computing and Informatics, and
the Founding Director of the Center for Digital Identity and Cyber
Defense Research and Laboratory of Information Integration, Security,
and Privacy, University of North Carolina, Charlotte. He is a senior
member of the IEEE.

Mengyang Yu received the BS degree from the
School of Mathematics Science, Peking Uni-
versity in 2010. He is currently working toward
the MS degree in Peking University. His
research interests include cryptography and
computer security.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2244 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

