IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1,

JANUARY 2013 131

Scalable and Secure Sharing of Personal
Health Records in Cloud Computing Using
Attribute-Based Encryption

Ming Li, Member, IEEE, Shucheng Yu, Member, IEEE, Yao Zheng, Student Member, IEEE,
Kui Ren, Senior Member, IEEE, and Wenjing Lou, Senior Member, IEEE

Abstract—Personal health record (PHR) is an emerging patient-centric model of health information exchange, which is often
outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal health
information could be exposed to those third party servers and to unauthorized parties. To assure the patients’ control over access to
their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy exposure,
scalability in key management, flexible access, and efficient user revocation, have remained the most important challenges toward
achieving fine-grained, cryptographically enforced data access control. In this paper, we propose a novel patient-centric framework
and a suite of mechanisms for data access control to PHRs stored in semitrusted servers. To achieve fine-grained and scalable data
access control for PHRs, we leverage attribute-based encryption (ABE) techniques to encrypt each patient’'s PHR file. Different from
previous works in secure data outsourcing, we focus on the multiple data owner scenario, and divide the users in the PHR system into
multiple security domains that greatly reduces the key management complexity for owners and users. A high degree of patient privacy
is guaranteed simultaneously by exploiting multiauthority ABE. Our scheme also enables dynamic modification of access policies or file
attributes, supports efficient on-demand user/attribute revocation and break-glass access under emergency scenarios. Extensive
analytical and experimental results are presented which show the security, scalability, and efficiency of our proposed scheme.

Index Terms—Personal health records, cloud computing, data privacy, fine-grained access control, attribute-based encryption

1 INTRODUCTION

IN recent years, personal health record (PHR) has emerged
as a patient-centric model of health information exchange.
A PHR service allows a patient to create, manage, and
control her personal health data in one place through the
web, which has made the storage, retrieval, and sharing of
the medical information more efficient. Especially, each
patient is promised the full control of her medical records
and can share her health data with a wide range of users,
including healthcare providers, family members or friends.
Due to the high cost of building and maintaining specialized
data centers, many PHR services are outsourced to or
provided by third-party service providers, for example,
Microsoft HealthVault." Recently, architectures of storing
PHRs in cloud computing have been proposed in [2], [3].

1. http://www .healthvault.com/.

e M. Li is with the Department of CS, Utah State University, 4205 Old
Main Hill, Logan, UT 84322. E-mail: ming.li@usu.edu.

o S. Yu is with the Department of CS, University of Arkansas at Little Rock,
2801 S. University Ave., Little Rock, AR 72204. E-mail: sxyul@ualr.edu.

o Y. Zheng and W. Lou are with the Department of CS, Virginia Tech, 7054
Haycock Road, Falls Church, VA 24061.
E-mail: {zhengyao, wjlou}@ut.edu.

o K. Ren is with the Department of Computer Science and Engineering,
University at Buffalo, 338 Davis Hall, Buffalo, NY 14260.
E-mail: kuiren@buffalo.edu.

Manuscript received 19 Sept. 2011; revised 7 Jan. 2012; accepted 23 Feb. 2012;
published online 9 Mar. 2012.

Recommended for acceptance by A. Nayak.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2011-09-0676.
Digital Object Identifier no. 10.1109/TPDS.2012.97.

1045-9219/13/$31.00 © 2013 IEEE

While it is exciting to have convenient PHR services for
everyone, there are many security and privacy risks which
could impede its wide adoption. The main concern is about
whether the patients could actually control the sharing of
their sensitive personal health information (PHI), especially
when they are stored on a third-party server which people
may not fully trust. On the one hand, although there exist
healthcare regulations such as HIPAA which is recently
amended to incorporate business associates [4], cloud
providers are usually not covered entities [5]. On the other
hand, due to the high value of the sensitive PHI, the third-
party storage servers are often the targets of various
malicious behaviors which may lead to exposure of the
PHI. As a famous incident, a Department of Veterans Affairs
database containing sensitive PHI of 26.5 million military
veterans, including their social security numbers and health
problems was stolen by an employee who took the data
home without authorization [6]. To ensure patient-centric
privacy control over their own PHRSs, it is essential to have
fine-grained data access control mechanisms that work with
semitrusted servers.

A feasible and promising approach would be to encrypt
the data before outsourcing. Basically, the PHR owner herself
should decide how to encrypt her files and to allow which set
of users to obtain access to each file. A PHR file should only
be available to the users who are given the corresponding
decryption key, while remain confidential to the rest of users.
Furthermore, the patient shall always retain the right to not
only grant, but also revoke access privileges when they feel it
is necessary [7]. However, the goal of patient-centric privacy

Published by the IEEE Computer Society

132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1,

is often in conflict with scalability in a PHR system. The
authorized users may either need to access the PHR for
personal use or professional purposes. Examples of the
former are family member and friends, while the latter can be
medical doctors, pharmacists, and researchers, etc. We refer
to the two categories of users as personal and professional
users, respectively. The latter has potentially large scale;
should each owner herself be directly responsible for
managing all the professional users, she will easily be
overwhelmed by the key management overhead. In addition,
since those users’” access requests are generally unpredict-
able, it is difficult for an owner to determine a list of them. On
the other hand, different from the single data owner scenario
considered in most of the existing works [8], [9], in a PHR
system, there are multiple owners who may encrypt according
to their own ways, possibly using different sets of crypto-
graphic keys. Letting each user obtain keys from every owner
whose PHR she wants to read would limit the accessibility
since patients are not always online. An alternative is to
employ a central authority (CA) to do the key management
on behalf of all PHR owners, but this requires too much trust
on a single authority (i.e., cause the key escrow problem).

In this paper, we endeavor to study the patient-centric,
secure sharing of PHRs stored on semitrusted servers, and
focus on addressing the complicated and challenging key
management issues. In order to protect the personal health
data stored on a semitrusted server, we adopt attribute-
based encryption (ABE) as the main encryption primitive.
Using ABE, access policies are expressed based on the
attributes of users or data, which enables a patient to
selectively share her PHR among a set of users by encrypting
the file under a set of attributes, without the need to know a
complete list of users. The complexities per encryption, key
generation, and decryption are only linear with the number
of attributes involved. However, to integrate ABE into a
large-scale PHR system, important issues such as key
management scalability, dynamic policy updates, and
efficient on-demand revocation are nontrivial to solve, and
remain largely open up-to-date. To this end, we make the
following main contributions:

1. We propose a novel ABE-based framework for
patient-centric secure sharing of PHRs in cloud
computing environments, under the multiowner
settings. To address the key management challenges,
we conceptually divide the users in the system into
two types of domains, namely public and personal
domains (PSDs). In particular, the majority profes-
sional users are managed distributively by attribute
authorities in the former, while each owner only
needs to manage the keys of a small number of users
in her personal domain. In this way, our framework
can simultaneously handle different types of PHR
sharing applications’ requirements, while incurring
minimal key management overhead for both owners
and users in the system. In addition, the framework
enforces write access control, handles dynamic policy
updates, and provides break-glass access to PHRs
under emergence scenarios.

2. In the public domain, we use multiauthority ABE
(MA-ABE) to improve the security and avoid key

JANUARY 2013

escrow problem. Each attribute authority (AA) in it
governs a disjoint subset of user role attributes, while
none of them alone is able to control the security of
the whole system. We propose mechanisms for key
distribution and encryption so that PHR owners can
specify personalized fine-grained role-based access
policies during file encryption. In the personal
domain, owners directly assign access privileges for
personal users and encrypt a PHR file under its data
attributes. Furthermore, we enhance MA-ABE by
putting forward an efficient and on-demand user/
attribute revocation scheme, and prove its security
under standard security assumptions. In this way,
patients have full privacy control over their PHRs.

3. We provide a thorough analysis of the complexity
and scalability of our proposed secure PHR sharing
solution, in terms of multiple metrics in computa-
tion, communication, storage, and key management.
We also compare our scheme to several previous
ones in complexity, scalability and security. Further-
more, we demonstrate the efficiency of our scheme
by implementing it on a modern workstation and
performing experiments/simulations.

Compared with the preliminary version of this paper [1],
there are several main additional contributions: 1) We clarify
and extend our usage of MA-ABE in the public domain, and
formally show how and which types of user-defined file
access policies are realized. 2) We clarify the proposed
revocable MA-ABE scheme, and provide a formal security
proof for it. 3) We carry out both real-world experiments and
simulations to evaluate the performance of the proposed
solution in this paper.

2 RELATED WORK

This paper is mostly related to works in cryptographically
enforced access control for outsourced data and attribute
based encryption. To realize fine-grained access control, the
traditional public key encryption (PKE)-based schemes [8],
[10] either incur high key management overhead, or require
encrypting multiple copies of a file using different users’
keys. To improve upon the scalability of the above solutions,
one-to-many encryption methods such as ABE can be used.
In Goyal et al’s seminal paper on ABE [11], data are
encrypted under a set of attributes so that multiple users
who possess proper keys can decrypt. This potentially makes
encryption and key management more efficient [12]. A
fundamental property of ABE is preventing against user
collusion. In addition, the encryptor is not required to know
the ACL.

2.1 ABE for Fine-Grained Data Access Control

A number of works used ABE to realize fine-grained access
control for outsourced data [13], [14], [9], [15]. Especially,
there has been an increasing interest in applying ABE to
secure electronic healthcare records (EHRs). Recently,
Narayan et al. proposed an attribute-based infrastructure
for EHR systems, where each patient’s EHR files are
encrypted using a broadcast variant of CP-ABE [16] that
allows direct revocation. However, the ciphertext length
grows linearly with the number of unrevoked users. In[17],a

LI ET AL.: SCALABLE AND SECURE SHARING OF PERSONAL HEALTH RECORDS IN CLOUD COMPUTING USING ATTRIBUTE-BASED... 133

variant of ABE that allows delegation of access rights is
proposed for encrypted EHRs. Ibraimi et al. [18] applied
ciphertext policy ABE (CP-ABE) [19] to manage the sharing
of PHRs, and introduced the concept of social/professional
domains. In [20], Akinyele et al. investigated using ABE to
generate self-protecting EMRs, which can either be stored on
cloud servers or cellphones so that EMR could be accessed
when the health provider is offline.

However, there are several common drawbacks of the
above works. First, they usually assume the use of a single
trusted authority (TA) in the system. This not only may
create a load bottleneck, but also suffers from the key escrow
problem since the TA can access all the encrypted files,
opening the door for potential privacy exposure. In addition,
it is not practical to delegate all attribute management tasks
to one TA, including certifying all users’ attributes or roles
and generating secret keys. In fact, different organizations
usually form their own (sub)domains and become suitable
authorities to define and certify different sets of attributes
belonging to their (sub)domains (i.e., divide and rule). For
example, a professional association would be responsible for
certifying medical specialties, while a regional health
provider would certify the job ranks of its staffs. Second,
there still lacks an efficient and on-demand user revocation
mechanism for ABE with the support for dynamic policy
updates/changes, which are essential parts of secure PHR
sharing. Finally, most of the existing works do not
differentiate between the personal and public domains
(PUDs), which have different attribute definitions, key
management requirements, and scalability issues. Our idea
of conceptually dividing the system into two types of
domains is similar with that in [18]; however, a key
difference is in [18] a single TA is still assumed to govern
the whole professional domain.

Recently, Yu et al. (YWRL) applied key-policy ABE to
secure outsourced data in the cloud [9], [15], where a single
data owner can encrypt her data and share with multiple
authorized users, by distributing keys to them that contain
attribute-based access privileges. They also propose a
method for the data owner to revoke a user efficiently by
delegating the updates of affected ciphertexts and user
secret keys to the cloud server. Since the key update
operations can be aggregated over time, their scheme
achieves low amortized overhead. However, in the YWRL
scheme, the data owner is also a TA at the same time. It
would be inefficient to be applied to a PHR system with
multiple data owners and users, because then each user
would receive many keys from multiple owners, even if
the keys contain the same sets of attributes. On the other
hand, Chase and Chow [21] proposed a multiple-authority
ABE (CC MA-ABE) solution in which multiple TAs, each
governing a different subset of the system’s users’
attributes, generate user secret keys collectively. A user
needs to obtain one part of her key from each TA. This
scheme prevents against collusion among at most N — 2
TAs, in addition to user collusion resistance. However, it is
not clear how to realize efficient user revocation. In
addition, since CC MA-ABE embeds the access policy in
users’ keys rather than the ciphertext, a direct application
of it to a PHR system is nonintuitive, as it is not clear how
to allow data owners to specify their file access policies.
We give detailed overviews to the YWRL scheme and CC

TABLE 1
Frequently Used Notations

Up,Ur The attribute universes for data and roles

T,L(T) A user access tree and its leaf node set

Akc Attributes in the ciphertext (from the kth AA)

A User u’s attributes given by the kth AA

Aa An attribute type, a specific attribute value of that type
P Access policy for a PHR document

P A key-policy assigned to a user

MK, PK | Master key and public key in ABE

SK A user’s secret key in ABE

rkj(-k) Proxy re-key for attribute j and version k

MA-ABE scheme in the supplementary material, which can
be found on the Computer Society Digital Library at
http:/ /doi.ieeecomputersociety.org/10.1109/TPDS.2012.97.

2.2 Revocable ABE

It is a well-known challenging problem to revoke users/
attributes efficiently and on-demand in ABE. Traditionally,
this is often done by the authority broadcasting periodic key
updates to unrevoked users frequently [13], [22], which does
not achieve complete backward /forward security and is less
efficient. Recently, [23] and [24] proposed two CP-ABE
schemes with immediate attribute revocation capability,
instead of periodical revocation. However, they were not
designed for MA-ABE.

In addition, Ryj et al. [25] proposed an alternative solution
for the same problem in our paper using Lewko and Waters’s
(LW) decentralized ABE scheme [26]. The main advantage of
their solution is, each user can obtain secret keys from any
subset of the TAs in the system, in contrast to the CC MA-
ABE. The LW ABE scheme enjoys better policy expressive-
ness, and it is extended by [25] to support user revocation.
On the downside, the communication overhead of key
revocation is still high, as it requires a data owner to transmit
an updated ciphertext component to every nonrevoked user.
They also do not differentiate personal and public domains.

In this paper, we bridge the above gaps by proposing a
unified security framework for patient-centric sharing of
PHRs in a multidomain, multiauthority PHR system with
many users. The framework captures application-level
requirements of both public and personal use of a patient’s
PHRs, and distributes users’ trust to multiple authorities that
better reflects reality. We also propose a suite of access
control mechanisms by uniquely combining the technical
strengths of both CC MA-ABE [21] and the YWRL ABE
scheme [9]. Using our scheme, patients can choose and
enforce their own access policy for each PHR file, and can
revoke a user without involving high overhead. We also
implement part of our solution in a prototype PHR system.

3 FRAMEWORK FOR PATIENT-CENTRIC, SECURE
AND SCALABLE PHR SHARING
In this section, we describe our novel patient-centric secure

data sharing framework for cloud-based PHR systems. The
main notations are summarized in Table 1.

3.1 Problem Definition

We consider a PHR system where there are multiple PHR
owners and PHR users. The owners refer to patients who

134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1,

have full control over their own PHR data, i.e., they can
create, manage, and delete it. There is a central server
belonging to the PHR service provider that stores all the
owners’ PHRs. The users may come from various aspects; for
example, a friend, a caregiver or a researcher. Users access
the PHR documents through the server in order to read or
write to someone’s PHR, and a user can simultaneously have
access to multiple owners” data.

A typical PHR system uses standard data formats. For
example, continuity-of-care (CCR) (based on XML data
structure), which is widely used in representative PHR
systems including Indivo [27], an open-source PHR system
adopted by Boston Children’s Hospital. Due to the nature of
XML, the PHR files are logically organized by their categories
in a hierarchical way [8], [20].

3.1.1 Security Model

In this paper, we consider the server to be semitrusted, i.e.,
honest but curious as those in [28] and [15]. That means
the server will try to find out as much secret information
in the stored PHR files as possible, but they will honestly
follow the protocol in general. On the other hand, some
users will also try to access the files beyond their
privileges. For example, a pharmacy may want to obtain
the prescriptions of patients for marketing and boosting its
profits. To do so, they may collude with other users, or
even with the server. In addition, we assume each party in
our system is preloaded with a public/private key pair,
and entity authentication can be done by traditional
challenge-response protocols.

3.1.2 Requirements

To achieve “patient-centric” PHR sharing, a core requirement
is that each patient can control who are authorized to access
to her own PHR documents. Especially, user-controlled
read/write access and revocation are the two core security
objectives for any electronic health record system, pointed
out by Mandl et al. [7] in as early as 2001. The security and
performance requirements are summarized as follows:

e Data confidentiality. Unauthorized users (including
the server) who do not possess enough attributes
satisfying the access policy or do not have proper
key access privileges should be prevented from
decrypting a PHR document, even under user
collusion. Fine-grained access control should be
enforced, meaning different users are authorized to
read different sets of documents.

o On-demand revocation. Whenever a user’s attribute is
no longer valid, the user should not be able to access
future PHR files using that attribute. This is usually
called attribute revocation, and the corresponding
security property is forward secrecy [23]. There is
also user revocation, where all of a user’s access
privileges are revoked.

e Write access control. We shall prevent the unauthor-
ized contributors to gain write-access to owners’
PHRs, while the legitimate contributors should access
the server with accountability.

e The data access policies should be flexible, i.e.,
dynamic changes to the predefined policies shall be

JANUARY 2013

allowed, especially the PHRs should be accessible
under emergency scenarios.

o Scalability, efficiency, and usability. The PHR system
should support users from both the personal domain
and public domains. Since the set of users from the
public domain may be large in size and unpredict-
able, the system should be highly scalable, in terms
of complexity in key management, communication,
computation and storage. Additionally, the owners’
efforts in managing users and keys should be
minimized to enjoy usability.

3.2 Overview of Our Framework

The main goal of our framework is to provide secure
patient-centric PHR access and efficient key management at
the same time. The key idea is to divide the system into
multiple security domains (namely, public domains and
personal domains) according to the different users’ data
access requirements. The PUDs consist of users who make
access based on their professional roles, such as doctors,
nurses, and medical researchers. In practice, a PUD can be
mapped to an independent sector in the society, such as the
health care, government, or insurance sector. For each PSD,
its users are personally associated with a data owner (such
as family members or close friends), and they make accesses
to PHRs based on access rights assigned by the owner.

In both types of security domains, we utilize ABE to
realize cryptographically enforced, patient-centric PHR
access. Especially, in a PUD multiauthority ABE is used, in
which there are multiple “attribute authorities” (AAs), each
governing a disjoint subset of attributes. Role attributes are
defined for PUDs, representing the professional role or
obligations of a PUD user. Users in PUDs obtain their
attribute-based secret keys from the AAs, without directly
interacting with the owners. To control access from PUD
users, owners are free to specify role-based fine-grained
access policies for her PHR files, while do not need to know
the list of authorized users when doing encryption. Since the
PUDs contain the majority of users, it greatly reduces the key
management overhead for both the owners and users.

Each data owner (e.g., patient) is a trusted authority of her
own PSD, who uses a KP-ABE system to manage the secret
keys and access rights of users in her PSD. Since the users are
personally known by the PHR owner, to realize patient-
centric access, the owner is at the best position to grant user
access privileges on a case-by-case basis. For PSD, data
attributes are defined which refer to the intrinsic properties of
the PHR data, such as the category of a PHR file. For the
purpose of PSD access, each PHR file is labeled with its data
attributes, while the key size is only linear with the number
of file categories a user can access. Since the number of users
in a PSD is often small, it reduces the burden for the owner.
When encrypting the data for PSD, all that the owner needs
to know is the intrinsic data properties.

The multidomain approach best models different user
types and access requirements in a PHR system. The use of
ABE makes the encrypted PHRs self-protective, i.e., they
can be accessed by only authorized users even when storing
on a semitrusted server, and when the owner is not online.
In addition, efficient and on-demand user revocation is
made possible via our ABE enhancements.

LI ET AL.: SCALABLE AND SECURE SHARING OF PERSONAL HEALTH RECORDS IN CLOUD COMPUTING USING ATTRIBUTE-BASED... 135

Personal domains Public domains

Insurance
domain

Health care
i : domain

Public Public

Emergency department

i AAs AAs
T 4 7k
| Encrypted PHR \(} /f' bt T T

(T) |Attrikte based access palicy (?,(ej : (g : T (1|) 5 (4) o

| S - e
v) : : :
4 oy v i v ¥ |
S :
% —(5— B —E)— ! e
= D —a—i 2 > 53
Emergency Cloud server : h‘ < -
staff ‘[} V i

i {Hospita A,
(1): obtain attributes (5): read data :

(2): provide write keys (6): delegate

(3): Outsource encrypted PHR (7): provide read keys

(4): write data (8): revacation

: (riend] physician, i{Insurance compan,
i {PHR, current M.D., Acuary, |
i ilnssses, internal medicing}i health insurance};

diagnosis} X !

Fig. 1. The proposed framework for patient-centric, secure and scalable
PHR sharing on semitrusted storage under multiowner settings.

3.3 Details of the Proposed Framework

In our framework, there are multiple SDs, multiple owners,
multiple AAs, and multiple users. In addition, two ABE
systems are involved: for each PSD the YWRL'’s revocable
KP-ABE scheme [9] is adopted; for each PUD, our proposed
revocable MA-ABE scheme (described in Section 4) is used.
The framework is illustrated in Fig. 1. We term the users
having read and write access as data readers and
contributors, respectively.

System setup and key distribution. The system first
defines a common universe of data attributes shared by
every PSD, such as “basic profile,” “medical history,”
“allergies,” and “prescriptions.” An emergency attribute is
also defined for break-glass access. Each PHR owner’s client
application generates its corresponding public/master keys.
The public keys can be published via user’s profile in an
online healthcare social-network (HSN) (which could be
part of the PHR service; e.g., the Indivo system [27]). There
are two ways for distributing secret keys. First, when first
using the PHR service, a PHR owner can specify the access
privilege of a data reader in her PSD, and let her application
generate and distribute corresponding key to the latter, in a
way resembling invitations in GoogleDoc. Second, a reader
in PSD could obtain the secret key by sending a request
(indicating which types of files she wants to access) to the
PHR owner via HSN, and the owner will grant her a subset
of requested data types. Based on that, the policy engine of
the application automatically derives an access structure,
and runs keygen of KP-ABE to generate the user secret key
that embeds her access structure. In addition, the data
attributes can be organized in a hierarchical manner for
efficient policy generation, see Fig. 2. When the user is
granted all the file types under a category, her access
privilege will be represented by that category instead.

For the PUDs, the system defines role attributes, and a
reader in a PUD obtains secret key from AAs, which binds
the user to her claimed attributes/roles. For example, a
physician in it would receive “hospital A, physician, M.D.,
internal medicine” as her attributes from the AAs. In
practice, there exist multiple AAs each governing a different
subset of role attributes. For instance, hospital staffs shall
have a different AA from pharmacy specialists. This is
reflected by (1) in Fig. 1. MA-ABE is used to encrypt the data,

//N\\\ s
S~ T
o \ T e

Personal Info

e
\
Name, DoB, age o onctorn ‘
/

sex, height, ctio
S3N.. prescriptions
Pulse, heart

rate.

Examination Insurarce info Sensitive Info

Vedical history

Conditions | Allergies

Labtest ‘ HIV profle

Blood tost X-ray images

Fig. 2. The attribute hierarchy of files—leaf nodes are atomic file
categories while internal nodes are compound categories. Dark boxes
are the categories that a PSD’s data reader have access to.

and the concrete mechanism will be presented in Section 4.
In addition, the AAs distribute write keys that permit
contributors in their PUD to write to some patients” PHR (2).

PHR encryption and access. The owners upload ABE-
encrypted PHR files to the server (3). Each owner’s PHR file
is encrypted both under a certain fine-grained and role-
based access policy for users from the PUD to access, and
under a selected set of data attributes that allows access from
users in the PSD. Only authorized users can decrypt the PHR
files, excluding the server. For improving efficiency, the data
attributes will include all the intermediate file types from a
leaf node to the root. For example, in Fig. 2, an “allergy” file’s
attributes are {PH R, medical_history,allergy}. The data
readers download PHR files from the server, and they can
decrypt the files only if they have suitable attribute-based
keys (5). The data contributors will be granted write access to
someone’s PHR, if they present proper write keys (4).

User revocation. Here, we consider revocation of a data
reader or her attributes/access privileges. There are several
possible cases:

1. revocation of one or more role attributes of a public
domain user;

2. revocation of a public domain user which is equiva-
lent to revoking all of that user’s attributes. These
operations are done by the AA that the user belongs
to, where the actual computations can be delegated to
the server to improve efficiency (8).

3. Revocation of a personal domain user’s access
privileges;

4. revocation of a personal domain user. These can be
initiated through the PHR owner’s client application
in a similar way.

Policy updates. A PHR owner can update her sharing
policy for an existing PHR document by updating the
attributes (or access policy) in the ciphertext. The supported
operations include add/delete/modify, which can be done
by the server on behalf of the user.

Break-glass. When an emergency happens, the regular
access policies may no longer be applicable. To handle this
situation, break-glass access is needed to access the victim’s
PHR. In our framework, each owner’s PHR'’s access right is
also delegated to an emergency department (ED, (6)). To
prevent from abuse of break-glass option, the emergency
staff needs to contact the ED to verify her identity and the

136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1,

emergency situation, and obtain temporary read keys (7).
After the emergency is over, the patient can revoke the
emergent access via the ED.

An example. Here, we demonstrate how our framework
works using a concrete example. Suppose PHR owner Alice
is a patient associated with hospital A. After she creates a
PHR file F; (labeled as “PHR; medical history; allergy;
emergency” in Fig. 2), she first encrypts it according to both
Fy’s data labels (under the YWRL KP-ABE), and a role-
based file access policy P; (under our revocable MA-ABE).
This policy can be decided based on recommended settings
by the system, or Alice’s own preference. It may look like

P = “(profession = physician)
A (specialty = internal medicine)

A (organization = hospital A)”.

She also sends the break-glass key to the ED. In addition,
Alice determines the access rights of users in her PSD,
which can be done either online or offline. For example, she
may approve her friend Bob’s request to access files with
labels {personal_info} or {medical_history}. Her client
application will distribute a secret key with the access
structure (personal_infoV medical_history) to Bob. When
Bob wants to access another file F;, with labels “PHR—me-
dical history—medications,” he is able to decrypt F; due to
the “medical history” attribute. For another user Charlie
who is a physician specializing in internal medicine in
hospital B in the PUD, he obtains his secret key from
multiple AAs such as the American Medical Association
(AMA), the American Board of Medical Specialties (ABMS),
and the American Hospital Association (AHA). But he
cannot decrypt F, because his role attributes do not satisfy
P,. Finally, an emergency room staff, Dorothy who
temporarily obtains the break-glass key from ED, can gain
access to I due to the emergency attribute in that key.

Remarks. The separation of PSD/PUD and data/role
attributes reflects the real-world situation. First, in the PSD, a
patient usually only gives personal access of his/her
sensitive PHR to selected users, such as family members
and close friends, rather than all the friends in the social
network. Different PSD users can be assigned different
access privileges based on their relationships with the
owner. In this way, patients can exert fine-control over the
access for each user in their PSDs. Second, by our multi-
domain and multiauthority framework, each public user
only needs to contact AAs in its own PUD who collabora-
tively generates a secret key for the user, which reduces the
workload per AA (since each AA handles fewer number of
attributes per key issuing). In addition, the multiauthority
ABE is resilient to compromise of up to N — 2 AAsin a PUD,
which solves the key-escrow problem. Furthermore, in our
framework user’s role verification is much easier. Different
organizations can form their own (sub)domains and become
AAs to manage and certify different sets of attributes, which
is similar to divide and rule.

4 MAIN DESIGN ISSUES

In this section, we address several key design issues in
secure and scalable sharing of PHRs in cloud computing,
under the proposed framework.

JANUARY 2013

4.1 Using MA-ABE in the Public Domain

For the PUDs, our framework delegates the key management
functions to multiple attribute authorities. In order to
achieve stronger privacy guarantee for data owners, the
Chase-Chow (CC) MA-ABE scheme [21] is used, where each
authority governs a disjoint set of attributes distributively. It
is natural to associate the ciphertext of a PHR document with
an owner-specified access policy for users from PUD.
However, one technical challenge is that CC MA-ABE is
essentially a KP-ABE scheme, where the access policies are
enforced in users’ secret keys, and those key-policies do not
directly translate to document access policies from the
owners’ points of view. By our design, we show that by
agreeing upon the formats of the key-policies and the rules of
specifying which attributes are required in the ciphertext, the
CC MA-ABE can actually support owner-specified docu-
ment access policies with some degree of flexibility (such as
the one in Fig. 4), i.e., it functions similar to CP-ABE.2

In order to allow the owners to specify an access policy
for each PHR document, we exploit the fact that the basic
CC MA-ABE works in a way similar to fuzzy-IBE, where
the threshold policies (e.g., k out of n) are supported.
Since the threshold gate has an intrinsic symmetry from
both the encryptor and the user’s point of views, we can
predefine the formats of the allowed document policies as
well as those of the key-policies, so that an owner can
enforce a file access policy through choosing which set of
attributes to be included in the ciphertext.

4.1.1 Basic Usage of MA-ABE

Setup. In particular, the AAs first generate the M Ks and PK
using setup as in CC MA-ABE. The kth AA defines a disjoint
set of role attributes W;, which are relatively static properties
of the public users. These attributes are classified by their
types, such as profession and license status, medical
specialty, and affiliation where each type has multiple
possible values. Basically, each AA monitors a disjoint subset
of attribute types. For example, in the healthcare domain, the
AMA may issue medical professional licenses like “physi-
cian,” “M.D.,” “nurse,” “entry-level license,” etc., the ABMS
could certify specialties like “internal medicine,” “surgery,”
etc; and AHA may define user affiliations such as “hospital
A” and “pharmacy D.” In order to represent the “do not
care” option for the owners, we add one wildcard attribute “*”
in each type of the attributes.

Document policy generation and encryption. In the basic
usage, we consider a special class of access policy—conjunc-
tive normal form (CNF), P:=((Ai=ai 1)V ---V (4 =
al‘dl)) JARRRNA ((Am = am,l) VeV (Am = a7mdm))/ where @ j
could be “*,” and m is the total number of attribute types.
For such a file access policy, an owner encrypts the file as
follows (all the attributes in this section are role attributes):

Definition 1 (Basic Encryption Rule for PUD). Let P be in
CNF form, then ‘P is required to contain at least one attribute
from each type, and the encryptor associates the ciphertext with
all the attributes on the leaf of the access tree corresponding to P.

Key policy generation and key distribution. In CC [21],
the format of the key-policies is restricted to conjunctions

2. Recently Lewko and Waters proposed a multiauthority CP-ABE
construction [29], but it does not support on-demand attribute revocation.

LI ET AL.: SCALABLE AND SECURE SHARING OF PERSONAL HEALTH RECORDS IN CLOUD COMPUTING USING ATTRIBUTE-BASED...

137

TABLE 2
Sample Secret Keys and Key-Policies for Three Public Users in the Health Care Domain

[Attribute authority || AMA

I ABMS I AHA I

Attribute type Ay :Profession | Aj :License status A3 :Medical specialty || A4 : Organization
A"1: user 1 Physician | * M.D. * || Internal medicine | * Hospital A *
A"2: user 2 Nurse * | Nurse license | * Gerontology * Hospital B *
AY3: user 3 Pharmacist | * | Pharm. license | * General * || Pharmacy C | *
Key policies 1-out-of-n1 A 1-out-of-no 1-out-of-n3 1-out-of-ny4

among different AAs,ie., P := P, A--- A Py,where P; could
correspond to arbitrary monotonic access structure. To be
able to implement the CNF document policy, each AA need
to follow the rule of key distribution:

Definition 2 (Basic key policy generation rule for PUD).
Let P be in theabove form. For the secret key of user u, A} should
contain at least one attribute from every type of attributes
governed by AAy, and always include the wildcard associated
with each type. In addition, the key policy P, of uissued by AA,
is (1 out of ny,) A --- A (1 out of ny,), whereny, .. .ny, arethe
indices of attribute types governed by AAj.

In the above, A} is the set of role attributes u obtains from
AA,. After key distribution, the AAs can remain offline for
most of the time. A detailed key distribution example is
given in Table 2.

The following two properties ensure that the set of users
that can decrypt a file with an access policy P is equivalent
to the set of users with key access structures such that the
ciphertext’s attribute set (P’s leaf nodes) will satisfy.

Definition 3 (Correctness). Given a ciphertext and its
corresponding file access policy P and its leaf node set
L(P) = MY, a user access tree T and its leaf node set L(T) =
A", P(L(T)) =1= T(L(P)) = 1. That is, whenever the
attributes in user secret key satisfy the file access policy,
the attributes in the access policy should satisfy the access
structure in user secret key.

Definition 4 (Completeness). Conversely, 7(L(P)) =1=
P(L(T)) =1

Theorem 1. Following the above proposed key generation and
encryption rules, the CNF file access policy achieves both
correctness and completeness.

Proof. In the following, subscript ¢ of an attribute set
denotes the subset of attributes belonging to the ith type.

e correctness (=). If P(L(T)) =1 (ie., L(7) satis-
fies P), Vi=1,...,m,3a € Akic N L;(T). Since the
ith policy term in P (corresponding to user access
tree 7) is “1 out of n;,” this implies 7 (L(P)) = 1.

e Completeness (<): it is easy to see the above is
reversible, due to the symmetry of set inter-
section. 0

The above theorem essentially states, the CC MA-ABE
can be used in a fashion like CP-ABE when the document
access policy is CNF. In practice, the above rules need to be
agreed and followed by each owner and AA. It is easy to
generalize the above conclusions to conjunctive forms with
each term being a threshold logic formula, which will not be
elaborated here.

4.1.2 Achieving More Expressive File Access Policies

By enhancing the key-policy generation rule, we can enable
more expressive encryptor’s access policies. We exploit an
observation that in practice, a user’s attributes/roles
belonging to different types assigned by the same AA are
often correlated with respect to a primary attribute type. In
the following, an attribute tuple refers to the set of attribute
values governed by one AA (each of a different type) that
are correlated with each other.

Definition 5 (Enhanced Key-Policy Generation Rule). In
addition to the basic key-policy generation rule, the attribute
tuples assigned by the same AA for different users do not
intersect with each other, as long as their primary attribute
types are distinct.

Definition 6 (Enhanced Encryption Rule). In addition to the
basic encryption rule, as long as there are multiple attributes of
the same primary type, corresponding nonintersected attribute
tuples are included in the ciphertext’s attribute set.

This primary-type based attribute association is illu-
strated in Fig. 3. Note that there is a “horizontal association”
between two attributes belonging to different types as-
signed to each user. For example, in the first AA (AMA) in
Table 2, “license status” is associated with “profession,” and
“profession” is a primary type. That means, a physician’s
possible set of license status do not intersect with that of a
nurse’s, or a pharmacist’'s. An “M.D.” license is always
associated with “physician,” while “elderly’s nursing
licence” is always associated with “nurse.” Thus, if the
second level key policy within the AMA is “1 out of n; A 1
out of ny,” a physician would receive a key like “(physician
OR *) AND (M.D. OR *)” (recall the assumption that each
user can only hold at most one role attribute in each type),
nurse’s will be like “(nurse OR *) AND (elderly’s nursing
licence OR *).” Meanwhile, the encryptor can be made
aware of this correlation, so she may include the attribute
set: {physician, M.D., nurse, elderly’s nursing licence}
during encryption. Due to the attribute correlation, the set
of users that can have access to this file can only possess one
out of two sets of possible roles, which means the following
policy is enforced: “(physician AND M.D.) OR (nurse AND

Primary type
|

1 '1 1 1 |
Attr.types 1 &y 1ty 1 t3 0
1 1 1 1

1 T T 1

Possible attr. values : ' @ : o :

B IR SR St s

oL@l Q !

1 1 I 1

1 1@ 1 1

' i '

Fig. 3. lllustration of the enhanced key-policy generation rule. Solid
horizontal lines represent possible attribute associations for two users.

138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1,

N

| AND | .

. /

v a N/

/ Fm lovel CNE policy cuabled by MA-ABE) ¥
OR

AN . | D/ 3

,//

[

Hospital A ‘ HospjparB
== / \
i AND i | AND

T \
PhySlclan M.D. Nurse ‘ Any Ievel ‘

Second- lt\chN pulu) cnabled by attribute correlation across. mmbuu types.

Internal
\Medmme

Fig. 4. An example policy realizable under our framework using MA-
ABE, following the enhanced key generation and encryption rules.

elderly’s nursing licence).” The direct consequence is it
enables a disjunctive normal form (DNF) encryptor access
policy to appear at the second level. If the encryptor wants
to enforce such a DNF policy under an AA, she can simply
include all the attributes in that policy in the ciphertext.

Furthermore, if one wants to encrypt with wildcard
attributes in the policy, say: “(physician AND M.D.) OR
(nurse AND any nursing license)” the same idea can be used,
i.e., we can simply correlate each “profession” attribute with
its proprietary “*” attribute. So we will have “#yusing license,
*physician_license, €tC., in the users’ keys. The above discussion is
summarized in Fig. 4 by an example encryptor’s policy.

If there are multiple PUDs, then P = Upyp,{Prup,}, and
multiple sets of ciphertext components needs to be included.
Since in reality, the number of PUDs is usually small, this
method is more efficient and secure than a straightforward
application of CP-ABE in which each organization acts as an
authority that governs all types of attributes [1], and the
length of ciphertext grows linearly with the number of
organizations. For efficiency, each file is encrypted with a
randomly generated file encryption key (FEK), which is
then encrypted by ABE.

4.1.3 Summary

In this above, we present a method to enforce owner’s
access policy during encryption, which utilizes the MA-
ABE scheme in a way like CP-ABE. The essential idea is to
define a set of key-generation rules and encryption rules.
There are two layers in the encryptor’s access policy, the
first one is across different attribute authorities while the
second is across different attributes governed by the same AA.
For the first layer, conjunctive policy is enabled; for the
second, either k-out-of-n or DNF policy are supported. We
exploit the correlations among attribute types under an AA
to enable the extended second-level DNF policy.

Next, we summarize the formats of user secret key and
ciphertext in our framework. A user v in an owner’s PSD has
the following keys: SK*” = ({D;},cy:_), where D; follows
the construction of the YWRL ABE scheme (shown in
supplementary material, available online), and A}y, is the
attribute set in the key pohcy for u. For a user v in a PUD,
SKPUD —

JANUARY 2013

defined according to the MA-ABE scheme (also in supple-
mentary material, available online), and A} include attri-
butes in the key policy issued by AA;.

The ciphertext of file F is: E(F) = (Eapp(FEK),
Erpr(F)), where Eppg(F') is a symmetric key encryption
of F, and EABE(FEK) = <EPSD(FEK), EPUD(FEK)),Where
each of the ciphertexts are encrypted using the YWRL ABE
scheme and MA-ABE scheme, respectively.

4.2 Enhancing MA-ABE for User Revocation

The original CC MA-ABE scheme does not enable efficient
and on-demand user revocation. To achieve this for MA-
ABE, we combine ideas from YWRL’s revocable KP-ABE [9],
[15] (its details are shown in supplementary material,
available online), and propose an enhanced MA-ABE
scheme. In particular, an authority can revoke a user or
user’s attributes immediately by reencrypting the cipher-
texts and updating users’ secret keys, while a major part of
these operations can be delegated to the server which
enhances efficiency.

The idea to revoke one attribute of a user in MA-ABE is
as follows: The AA who governs this attribute actively
updates that attribute for all the affected unrevoked users.
To this end, the following updates should be carried out:
1) the public/master key components for the affected
attribute; (2) the secret key component corresponding to
that attribute of each unrevoked user; 3) Also, the server
shall update all the ciphertexts containing that attribute. In
order to reduce the potential computational burden for the
AAs, we adopt proxy encryption to delegate operations 2
and 3 to the server, and use lazy-revocation to reduce the
overhead. In particular, each data attribute ¢ is associated
with a version number ver;. Upon each revocation event, if ¢
is an affected attribute, the AA submits a rekey rk;; = t}/t;
to the server, who then reencrypts the affected ciphertexts
and increases their version numbers. The unrevoked users’
secret key components are updated via a similar operation
using the rekey. To delegate secret key updates to the
server, a dummy attribute needs to be additionally defined
by each of N — 1 AAs, which are always ANDed with each
user’s key-policy to prevent the server from grasping the
secret keys. This also maintains the resistance against up to
N —2 AA collusion of MA-ABE (as will be shown by our
security proof). Using lazy-revocation, the affected cipher-
texts and user secret keys are only updated when an
affected unrevoked user logs into the system next time. By
the form of the rekey, all the updates can be aggregated
from the last login to the most current one.

To revoke a user in MA-ABE, one needs to find out a
minimal subset of attributes (v) such that without it the
user’s secret key’s access structure (A") will never be
satisfied. Because our MA-ABE scheme requires conjunctive
access policy across the AAs, it suffices to find a minimal
subset by each AAj (v C A}), without which A} will not
be satisfied, and then compute the minimal set (;,,,) out of
all ;. The AAy, . will initiate the revocation operation.

The enhanced CC MA-ABE scheme with immediate
revocation capabilities is formally described in Fig. 5. It has
nine algorithms, where MinimalSet, ReKeyGen, ReEnc, and
KeyUpdate are related to user revocation, and PolicyUpdate

LI ET AL.: SCALABLE AND SECURE SHARING OF PERSONAL HEALTH RECORDS IN CLOUD COMPUTING USING ATTRIBUTE-BASED... 139

o Setup(1”) The same as Setup from [21], except that
each AA;, (k = {1,...,N — 1}) defines an additional
dummy attribute Aj, with its corresponding public key
and master key components, and each AA initializes a
version number ver = 1. The AAs publish (ver, PK),
while (ver, M K}) is held by AA.

o Keylssue(A", MK, PK) The same as Keylssue from [21],
except the key pohcy A" of each user must be ANDed
with A7, ..., Ay _,. The user receives (ver, SK,), where
ver is the current version number.

o Encrypt(M,AS; p, PK) The same as Encryption from
[21], except that A; must be part of ASAk (Vk €
{1,..., N —1}). Tt outputs CT = (ver,Eo = M -Y*, E| =
g5, {Ck i = 1%, L}leAgUD ke{1,...,n})- The encryptor stores
the random number s used to Compute CT.

o Decrypt(CT, PK,SK,) The same as Decryption in [21],
except it uses PK and SK, with the same ver as in CT.

o MinimalSet(A") First, each AAj runs algorithm -, <
AMinimalSet(Ay) from [9]. Then kpin < argmin{|yx|},

k

and output z,,,,,-

o ReKeyGen(y, M K}) Executed by AA;. Given a set
of attributes -, for each i € ~, run algorithm
AUpdateAtt(i, M K},) from [9] and output local re-key as
rkr = (ver,{rky;c }icu,) where Uy is the attribute
universe governed by AA;. The global re-key is rk =
{rkir}1<x<n. Increase the system’s ver by 1 (the other
AAs will synchronize).

o ReEnc(CT,rk) Executed by the server. For each 1 <
k < N,i € APUD , run algorithm C}, <
AUpdateAtt4F|Ie(Ck.i, AHLk i) from [9], which updates
Clphertext component Cy; to its latest ver, where AHL
is an attribute history list. Output CT" = (ver +
1 APbDv Eo, B1,{Cy, z}leAC

« KeyUpdate(SK,, rk) UseﬁUZ gives part of SK, to
the server (except the dummy components). For each
1 < k < Nyi € Apyp,, run algorithm D}, <«
AUpdateSK(i, Dx,;, AH Ly ;) from [9]. Outputs SK! =
(ver + 1, Dy, {D;L itke{1,.. N}, LeApUDk)
o PollcyUpdate(APUD,OT, s). CT is
(ver, APUD/ Eo, £1,{C}, z}leAgLD ke{l

parsed as:
N1 For

,,,,,

each i € {AS,p — APUD} compute Cr; = Ty ;.
For each i € {ASyp — ASyp), delete Cy. Output
CT = (ver, AFUD7E07E17 {Ch, l}7€APUD ke{lm.,N}>'

Fig. 5. The enhanced MA-ABE scheme with on-demand revocation
capabilities.

is for handling dynamic policy changes. A version number
is used to record and differentiate the system states (PK,
MK, SK, CT) after each revocation operation. Since this
scheme combines [9] and [21], the differences with respect
to each of them are highlighted.

4.3 Enforce Write Access Control

If there is no restrictions on write access, anyone may write to
someone’s PHR using only public keys, which is undesirable.
By granting write access, we mean a data contributor should
obtain proper authorization from the organization she is in
(and/or from the targeting owner), which shall be able to be
verified by the server who grants/rejects write access.

A naive way is to let each contributor obtain a signature
from her organization every time she intends to write. Yet
this requires the organizations be always online. The
observation is that, it is desirable and practical to authorize
according to time periods whose granularity can be adjusted.
For example, a doctor should be permitted to write only
during her office hours; on the other hand, the doctor must

not be able to write to patients that are not treated by her.
Therefore, we combine signatures with the hash chain
technique to achieve our goals.

Suppose the time granularity is set to At, and the time is
divided into periods of At. For each working cycle (e.g., a
day), an organization generates a hash chain [30], [31]:
H = {ho,h1,...,h,}, where H(h;—1) = h;, 1 <14 < n. At time
0, the organization broadcasts a signature of the chain end h,,
(0org(hy)) to all users in its domain, where o(-) stands for an
unforgeable signature scheme. After that it multicasts h,,_; to
the set of authorized contributors at each time period . Note
that, the above method enables timely revocation of write
access, i.e., the authority simply stops issuing hashes for a
contributor at the time of revocation. In addition, an owner
could distribute a time-related signature: ooy, (ts, tt) to the
entities that requests write access (which can be delegated to
the organization), where ts is the start time of the granted
time window, and tt is the end of the time window. For
example, to enable a billing clerk to add billing information
to Alice’s PHR, Alice can specify “8 am to 5 pm” as the
granted time window at the beginning of a clinical visit. Note
that, for contributors in the PSD of the owner, they only need
to obtain signatures from the owner herself.

Generally, during time period j, an authorized contri-
butor w submits a “ticket” to the server after being
authenticated to it:

Epkseﬂ'er (Touner (ts||tt) ||‘70m (hn) ||hnfj),

where E’pk is the public key encryption using the server’s
public key, and r is a nonce to prevent replay attack. The
server verifies if the signatures are correct using both org’s
and owner’s public keys, and whether H7(h,,_;) = h,, where
HI() means hash j times. Only if both holds, the contributor
is granted write access and the server accepts the contents
uploaded subsequently.

4.4 Handle Dynamic Policy Changes

Our scheme should support the dynamic add/modify/
delete of part of the document access policies or data
attributes by the owner. For example, if a patient does not
want doctors to view her PHR after she finishes a visit to a
hospital, she can simply delete the ciphertext components
corresponding to attribute “doctor” in her PHR files. Adding
and modification of attributes/access policies can be done by
proxy reencryption techniques [22]; however, they are
expensive. To make the computation more efficient, each
owner could store the random number s used in encrypting
the FEK® of each document on her own computer, and
construct new ciphertext components corresponding to
added/changed attributes based on s. The PolicyUpdate
algorithm is shown in Fig. 5.

To reduce the storage cost, the owner can merely keep a
random seed s’ and generate the s for each encrypted file from
¢, such as using a pseudorandom generator. Thus, the main
computational overhead to modify/add one attribute in the
ciphertext is just one modular exponentiation operation.

3. The details of the encryption algorithms are shown in supplementary
material, available online.

140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013

TABLE 3

Comparison of Security
Scheme Security User domains Access policy Revocation Means
VFJPS [28] Not against user-server collusion All ACL level ACL level, immediate
BCHL [8] No collusion risk All ACL level N/A
HN [23] Not against user-server, single TA PUD Any monotonic formula Attribute-level, immediate
NGS [16] Single TA PUD Attribute and ID-based policy ACL level, immediate
RNS [25] Against N — 1 AA collusion PUD Any monotonic boolean formula | Attribute-level, immediate
Our scheme Against N — 2 AA collusion All (PSD&PUD) | Conjunctive form with wildcard | Attribute-level, immediate

4.5 Deal with Break-Glass Access

For certain parts of the PHR data, medical staffs need to
have temporary access when an emergency happens to a
patient, who may become unconscious and is unable to
change her access policies beforehand. The medical staffs
will need some temporary authorization (e.g., emergency
key) to decrypt those data. Under our framework, this can
be naturally achieved by letting each patient delegate her
emergency key to an emergency department. Specifically,
in the beginning, each owner defines an “emergency”
attribute and builds it into the PSD part of the ciphertext of
each PHR document that she allows break-glass access. She
then generates an emergency key skgy using the single-
node key-policy “emergency,” and delegates it to the ED
who keeps it in a database of patient directory. Upon
emergency, a medical staff authenticates herself to the ED,
requests and obtains the corresponding patient’s skzy;, and
then decrypts the PHR documents using skga;. After the
patient recovers from the emergency, she can revoke the
break-glass access by computing a rekey: rkgj,, submit it to
the ED and the server to update her skgy and CT to their
newest versions, respectively.

Remarks. We note that, although using ABE and MA-ABE
enhances the system scalability, there are some limita-
tions in the practicality of using them in building PHR
systems. For example, in workflow-based access control
scenarios, the data access right could be given based on
users’ identities rather than their attributes, while ABE
does not handle that efficiently. In those scenarios one
may consider the use of attribute-based broadcast
encryption (ABBE) [32]. In addition, the expressibility
of our encryptor’s access policy is somewhat limited by
that of MA-ABE’s, since it only supports conjunctive
policy across multiple AAs. In practice, the credentials
from different organizations may be considered equally
effective, in that case distributed ABE schemes [33] will
be needed. We designate those issues as future works.

5 SECURITY ANALYSIS

In this section, we analyze the security of the proposed PHR
sharing solution. First we show it achieves data confidenti-
ality (i.e., preventing unauthorized read accesses), by
proving the enhanced MA-ABE scheme (with efficient
revocation) to be secure under the attribute-based selective-
set model [21], [34]. We have the following main theorem.

Theorem 2. The enhanced MA-ABE scheme guarantees data
confidentiality of the PHR data against unauthorized users
and the curious cloud service provider, while maintaining the
collusion resistance against users and up to N — 2 AAs.

In addition, our framework achieves forward secrecy, and
security of write access control. For detailed security analysis
and proofs, please refer to the online supplementary
material, available online, of this paper.

We also compare the security of our scheme with several
existing works, in terms of confidentiality guarantee, access
control granularity, and supported revocation method, etc.
We choose four representative state-of-the-art schemes to
compare with:

1. the VFJPS scheme [28] based on access control list
(ACL);

2. the BCHL scheme based on HIBE [8] where each
owner acts as a key distribution center;

3. the HN revocable CP-ABE scheme [23], where we
adapt it by assuming using one PUD with a single
authority and multiple PSDs to fit our setting;

4. the NGS scheme in [16] which is a privacy-
preserving EHR system that adopts attribute-based
broadcast encryption to achieve data access control;

5. The RNS scheme in [25] that enhances the Lewko-
Waters MA-ABE with revocation capability for data
access control in the cloud.

The results are shown in Table 3. It can be seen that, our
scheme achieves high privacy guarantee and on-demand
revocation. The conjunctive policy restriction only applies for
PUD, while in PSD a user’s access structure can still be
arbitrary monotonic formula. In comparison with the RNS
scheme, in RNS the AAs are independent with each other,
while in our scheme the AAs issue user secret keys
collectively and interactively. Also, the RNS scheme supports
arbitrary monotonic Boolean formula as file access policy.
However, our user revocation method is more efficient in
terms of communication overhead. In RNS, upon each
revocation event, the data owner needs to recompute and
send new ciphertext components corresponding to revoked
attributes to all the remaining users. In our scheme, such
interaction is not needed. In addition, our proposed frame-
work specifically addresses the access requirements in cloud-
based health record management systems by logically
dividing the system into PUD and PSDs, which considers
both personal and professional PHR users. Our revocation
methods for ABE in both types of domains are consistent. The
RNS scheme only applies to the PUD.

6 SCALABILITY AND EFFICIENCY

6.1 Storage and Communication Costs

First, we evaluate the scalability and efficiency of our
solution in terms of storage, communication, and computa-
tion costs. We compare with previous schemes in terms of

LI ET AL.: SCALABLE AND SECURE SHARING OF PERSONAL HEALTH RECORDS IN CLOUD COMPUTING USING ATTRIBUTE-BASED... 141

TABLE 4

Notations for Efficiency Comparison
Sk Bit size of a FEK
St Bit size of an element in G1/Go
ST Bit size of an element in G
S, Bit size of an element in Z;‘)
Sp Bit size of access policy and attribute set in CT
N (or N;) | Number of AAs in a PUD (or the i-th PUD)
No The number of owners in the system
Ny, The number of data users in the system
N, Number of revoked users for a file
Ng Number of users in an attribute group
m Number of attribute types in the PUD
te,ty Total number of attributes appeared in CT, sky
l Depth of file hierarchy of an owner’s PHR

ciphertext size, user secret key size, public key/information
size, and revocation (rekeying) message size.

Our analysis is based on the worst case where each user
may potentially access part of every owners’ data. Table 4 is
a list of notations, where in our scheme: |U| = |Up| + U],
te = |AGep| + MG, 5| (includes one emergency attribute),
and t, = [A}gp| + |ALypl (@ user could be both in a PSD
and PUD). Note that, since the HN, NGS, and RNS schemes
do not separate PSD and PUD, their || = U], t. = \}AgUDL
and t, = |A%,p|. However, they only apply to PHR access
in the PUD. In addition, Sj ~ O(¢?) in the RNS scheme,
while Sp ~ O(t.logt.) for the rest.

The results are given in Table 5. The ciphertext size only
accounts for the encryption of FEK. In our scheme, for
simplicity we assume there is only one PUD, thus the
ciphertext includes m additional wildcard attributes and up
to N —1 dummy attributes. Our scheme requires a secret
key size that is linear with |A"|, the number of attributes of
each user, while in the VFJPS and BCHL schemes this is
linear with V,, since a user needs to obtain at least one key
from each owner whose PHR file the user wants to access.
For public key size, we count the size of the effective
information that each user needs to obtain. The VFJPS
scheme requires each owner to publish a directed acyclic
graph representing her ACL along with key assignments,
which essentially amounts to O(N,,) per owner. This puts a
large burden either in communication or storage cost on the
system. For rekeying, we consider revocation of one user by
an owner in VFJPS and BCHL. In VFJPS, revoking one user
from a file may need overencryption and issuing of new
public tokens for all the rest of users in the worst case. The
NGS scheme achieves direct user revocation using ABBE,
which eliminates the need of rekeying and reencryption;
however, attribute revocation is not achieved; and for the
revocable ABBE in [32], either the ciphertext size is linear
with the number of revoked users, or the public key is linear
with the total number of users in the system.* For the RNS
scheme, the main drawback is the large size of revocation
messages to be transmitted to nonrevoked users.

In our scheme, revocation of one user u requires
revoking a minimum set of data attributes that makes her
access structure unsatisfiable. From Table 5, it can be seen
that our scheme has much smaller secret key size compared
with VFJPS and BCHL, smaller rekeying message size than

4. In Table 5, for NGS scheme we only listed the efficiency of one of the
two constructions in [32]. 2 and [are the maximum number of attributes in
a ciphertext policy and user’s secret key, respectively.

VEJPS, HN, and RNS, the size of ciphertext is smaller than
NGS while being comparable with HN and RNS. The public
key size is smaller than VFJPS and BCHL, and is
comparable with that of RNS; while it seems larger than
those of HN and NGS, note that we can use the large
universe constructions [21] to dramatically reduce the
public key size. Overall, compared with non-ABE schemes,
our scheme achieves higher scalability in key management.
Compared with existing revocable ABE schemes, the main
advantage of our solution is small rekeying message sizes.
To revoke a user, the maximum rekeying message size is
linear with the number of attributes in that user’s secret key.
These indicate our scheme is more scalable than existing
works. To further show the storage and communication costs,
we provide a numerical analysis using typical parameter
settings in the supplementary material, available online.

6.2 Computation Costs

Next, we evaluate the computational cost of our scheme
through combined implementation and simulation. We
provide the first implementation of the GPSW KP-ABE
scheme [35] (to the best of our knowledge), and also
integrated the ABE algorithms into a prototype PHR
system, Indivo [27], [36]. The GPSW KP-ABE scheme is
tested on a PC with 3.4 GHz processor, using the pairing-
based cryptography (PBC) library [37]. The public para-
meters are chosen to provide 80 bits security level, and we
use a pairing-friendly type-A 160-bit elliptic curve group
[37]. This parameter setting has also been adopted in other
related works in ABE [19], [38]. We then use the ABE
algorithms to encrypt randomly generated XML-formatted
files (since real PHR files are difficult to obtain), and
implement the user-interfaces for data input and output.
Due to space limitations, the details of prototype imple-
mentation are reported in [36].

In the supplementary material, available online, (Fig. 2),
we present benchmarks of cryptographic operations and
detailed timing results for the two ABE algorithms used by
our framework. It is shown that, the decryption operation
in our enhanced MA-ABE scheme is quite fast, because it
involves only |AgUD| + 1 pairing operations (in contrast,
the RNS scheme involves 2|A%,)| + 1 pairing operations).
The time costs of key generation, encryption, and decryp-
tion processes are all linear with the number of attributes.
For 50 attributes, they all take less than 0.5 s.

From the system aspect, each data owner (patient) uses
the YWRL ABE scheme for setup, key generation and
revocation, uses both YWRL and enhanced MA-ABE for
encryption. Each PSD user adopts the YWRL scheme for
decryption, while each PUD user adopts the enhanced
MA-ABE scheme for decryption. Each AA uses enhanced
MA-ABE for setup, key generation and revocation. Next,
we provide estimations of computation times of each party
in the system in Table 6. The values are calculated from the
example parameters and benchmark results, where ex-
ponentiation times Exp; = 6.4 ms, Expy = 0.6 ms, pairing
time Tp = 2.5 ms.

Finally, we simulate the server’s computation cost spent
in user revocation to evaluate the system performance of
user revocation. Especially, the lazy-revocation method
greatly reduces the cost of revocation, because it aggregates
multiple ciphertext/key update operations, which amor-
tizes the computations over time. The details of the

142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 1, JANUARY 2013
TABLE 5
Comparison of Efficiency
Scheme Ciphertext size User secret key size Public key/info. size Revocation message
VEFJPS [28] Sk Ny - O(N, - Ny) O(Ny)
BCHL [8] l- Sl-hgk l- No . 51 251 . No N/A
HN [23] (2te +1)S1 + Sp + Sp (2ty + 1)S1 + 2(log Ny) Sk 2(5; + S7) (Nu — Na)(log 5245-)S-
NGS [16] (tc +2N,)S1 + St (ty +4)S1 (M +1+6)S1+ Sr 0
RNS [25] tc(251 + ST) + Sép ty - S1 |u|(51 + ST) O((tu + 1)ST . (Nu - N’r))
Our scheme | (tc+m+ N —1)S1 + St + Sp (tu +m +1)S1 (U + N —1)S; ty - S2
TABLE 6

Computation Complexity for Each Party in the System, and Numerical Estimation of Time Costs Assuming Following Parameters
(Also Used in Supplementary Material, Available Online): |[U/p| = 50, [U/r| = 100, N = 5 (Number of AAs), \AgSD| =5, |AA§UD| = 35,
|AY] =m =15, |L(T)| = 10, |7/| = 5 (a Minimal Number of Attributes to Revoke a User)

Setup KeyGen. (per user) Enc. (per file) Dec. (per file) User revo.

Owner I/ |Exp; + Expr [L(T)|Exp, (IABspl +1AGy p| + 1Exp; + 2Expy / 17 [Exp,
Estimate (s) 0.32 0.064 0.264 / 0.032
PSD user / / / ~|L(T)[Tp /
Estimate (s) / / / 0.025 /
PUD user / / / ~ (JA¥T+m + 1)Tp /
Estimate (s) / / / 0.078 /

kth AA ([Urlx + 1)Exp; + Expy ~ [A}[Exp, / / 7' [Expy
Estimate (s) 0.135 0.038 / / 0.032

experimental/simulation evaluation results are presented
in the supplementary material, available online.

7 CONCLUSION

In this paper, we have proposed a novel framework of
secure sharing of personal health records in cloud comput-
ing. Considering partially trustworthy cloud servers, we
argue that to fully realize the patient-centric concept,
patients shall have complete control of their own privacy
through encrypting their PHR files to allow fine-grained
access. The framework addresses the unique challenges
brought by multiple PHR owners and users, in that we
greatly reduce the complexity of key management while
enhance the privacy guarantees compared with previous
works. We utilize ABE to encrypt the PHR data, so that
patients can allow access not only by personal users, but
also various users from public domains with different
professional roles, qualifications, and affiliations. Further-
more, we enhance an existing MA-ABE scheme to handle
efficient and on-demand user revocation, and prove its
security. Through implementation and simulation, we show
that our solution is both scalable and efficient.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grants CNS-0831628, CNS-0831963, CNS-
1054317, CNS-1116939, and CNS-1155988. Ming Li’s work
was also supported in part by a USU seed grant 100022. The
preliminary version of this paper appeared in SecureComm
2010 [1].

REFERENCES

[1] M. Li, S. Yu, K. Ren, and W. Lou, “Securing Personal Health
Records in Cloud Computing: Patient-Centric and Fine-Grained
Data Access Control in Multi-Owner Settings,” Proc. Sixth Int’l
ICST Conf. Security and Privacy in Comm. Networks (SecureComm '10),
pp- 89-106, Sept. 2010.

(2]

B3]

4

(5]

(6]

[

(8]

%]

[10]

[11]

[12]

(13]

(14]

(15]

H. Lohr, A.-R. Sadeghi, and M. Winandy, “Securing the E-Health
Cloud,” Proc. First ACM Int’l Health Informatics Symp. (IHI '10),
pp- 220-229, 2010.

M. Li, S. Yu, N. Cao, and W. Lou, “Authorized Private Keyword
Search over Encrypted Personal Health Records in Cloud
Computing,” Proc. 31st Int’l Conf. Distributed Computing Systems
(ICDCS '11), June 2011.

“The Health Insurance Portability and Accountability Act,”
http:/ /www.cms.hhs.gov/HIPAAGenInfo/01_Overview.asp,
2012.

“Google, Microsoft Say Hipaa Stimulus Rule Doesn’t Apply to
Them,” http:/ /www.ihealthbeat.org/Articles /2009/4/8/, 2012.
“At Risk of Exposure - in the Push for Electronic Medical Records,
Concern Is Growing About How Well Privacy Can Be Safe-
guarded,” http://articles.latimes.com/2006/jun/26/health/
he-privacy?26, 2006.

K.D. Mandl, P. Szolovits, and 1.S. Kohane, “Public Standards and
Patients” Control: How to Keep Electronic Medical Records
Accessible but Private,” BM]J, vol. 322, no. 7281, pp. 283-287,
Feb. 2001.

J. Benaloh, M. Chase, E. Horvitz, and K. Lauter, “Patient
Controlled Encryption: Ensuring Privacy of Electronic Medical
Records,” Proc. ACM Workshop Cloud Computing Security
(CCSW ’09), pp. 103-114, 2009.

S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving Secure, Scalable,
and Fine-Grained Data Access Control in Cloud Computing,”
Proc. IEEE INFOCOM '10, 2010.

C. Dong, G. Russello, and N. Dulay, “Shared and Searchable
Encrypted Data for Untrusted Servers,”]. Computer Security,
vol. 19, pp. 367-397, 2010.

V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-Based
Encryption for Fine-Grained Access Control of Encrypted Data,”
Proc. 13th ACM Conf. Computer and Comm. Security (CCS '06),
pp- 89-98, 2006.

M. Li, W. Lou, and K. Ren, “Data Security and Privacy in Wireless
Body Area Networks,” IEEE Wireless Comm. Magazine, vol. 17,
no. 1, pp. 51-58, Feb. 2010.

A. Boldyreva, V. Goyal, and V. Kumar, “Identity-Based Encryp-
tion with Efficient Revocation,” Proc. 15th ACM Conf. Computer and
Comm. Security (CCS), pp. 417-426, 2008.

L. Ibraimi, M. Petkovic, S. Nikova, P. Hartel, and W. Jonker,
“Ciphertext-Policy Attribute-Based Threshold Decryption with
Flexible Delegation and Revocation of User Attributes,” 2009.

S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute Based Data
Sharing with Attribute Revocation,” Proc. Fifth ACM Symp.
Information, Computer and Comm. Security (ASIACCS '10), 2010.

LI ET AL.: SCALABLE AND SECURE SHARING OF PERSONAL HEALTH RECORDS IN CLOUD COMPUTING USING ATTRIBUTE-BASED...

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

[27]
(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

S. Narayan, M. Gagné, and R. Safavi-Naini, “Privacy Preserving
EHR System Using Attribute-Based Infrastructure,” Proc. ACM
Cloud Computing Security Workshop (CCSW '10), pp. 47-52, 2010.
X. Liang, R. Lu, X. Lin, and X.S. Shen, “Patient Self-Controllable
Access Policy on Phi in Ehealthcare Systems,” Proc. Advances in
Health Informatics Conf. (AHIC 10), 2010.

L. Ibraimi, M. Asim, and M. Petkovic, “Secure Management of
Personal Health Records by Applying Attribute-Based Encryp-
tion,” technical report, Univ. of Twente, 2009.

J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy
Attribute-Based Encryption,” Proc. IEEE Symp. Security and Privacy
(SP '07), pp. 321-334, 2007.

J.A. Akinyele, C.U. Lehmann, M.D. Green, M.W. Pagano, Z.N.].
Peterson, and A.D. Rubin, “Self-Protecting Electronic Medical
Records Using Attribute-Based Encryption,” Cryptology ePrint
Archive, Report 2010/565, http:/ /eprint.iacr.org/, 2010.

M. Chase and S.S. Chow, “Improving Privacy and Security in
Multi-Authority Attribute-Based Encryption,” Proc. 16th ACM
Conf. Computer and Comm. Security (CCS '09), pp. 121-130, 2009.
X. Liang, R. Lu, X. Lin, and X.S. Shen, “Ciphertext Policy Attribute
Based Encryption with Efficient Revocation,” technical report,
Univ. of Waterloo, 2010.

J. Hur and D.K. Noh, “Attribute-Based Access Control with
Efficient Revocation in Data Outsourcing Systems,” IEEE Trans.
Parallel and Distributed Systems, vol. 22, no. 7, pp. 1214-1221, July
2011.

S. Jahid, P. Mittal, and N. Borisov, “Easier: Encryption-Based
Access Control in Social Networks with Efficient Revocation,”
Proc. ACM Symp. Information, Computer and Comm. Security
(ASIACCS), Mar. 2011.

S. Ruj, A. Nayak, and I. Stojmenovic, “DACC: Distributed Access
Control in Clouds,” Proc. IEEE 10th Int’l Conf. Trust, Security and
Privacy in Computing and Comm. (TrustCom), 2011.

A. Lewko and B. Waters, “Decentralizing Attribute-Based
Encryption,” EUROCRYPT: Proc. 30th Ann. Int’l Conf. Theory and
Applications of Cryptographic Techniques: Advances in Cryptology,
pp. 568-588, 2011.

“Indivo.” http:/ /indivohealth.org/, 2012.

S.D.C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P.
Samarati, “Over-Encryption: Management of Access Control
Evolution on Outsourced Data,” Proc. 33rd Int’l Conf. Very Large
Data Bases (VLDB "07), pp. 123-134, 2007.

A. Lewko and B. Waters, “Decentralizing Attribute-Based
Encryption,” EUROCRYPT: Proc. 30th Ann. Int’l Conf. Theory and
Applications of Cryptographic Techniques: Advances in Cryptology,
pp. 568-588, 2011.

A. Perrig, R. Szewczyk,].D. Tygar, V. Wen, and D.E. Culler,
“Spins: Security Protocols for Sensor Networks,” Wireless Network-
ing, vol. 8, pp. 521-534, Sept. 2002.

H. Yang, H. Luo, F. Ye, S. Lu, and L. Zhang, “Security in Mobile
Ad Hoc Networks: Challenges and Solutions,” IEEE Wireless
Comm., vol. 11, no. 1, pp. 38-47, Feb. 2004.

N. Attrapadung and H. Imai, “Conjunctive Broadcast and
Attribute-Based Encryption,” Proc. Third Int’l Conf. Palo Alto on
Pairing-Based Cryptography-Pairing, pp. 248-265, 2009.

S. Miiller, S. Katzenbeisser, and C. Eckert, “Distributed Attribute-
Based Encryption,” Proc. 11th Int’l Conf. Information Security and
Cryptology (ICISC 08), pp. 20-36, 2009.

S. Chow, “New Privacy-Preserving Architectures for Identity-/
Attribute-Based Encryption,” PhD thesis, NYU, 2010.

Y. Zheng, “Key-Policy Attribute-Based Encryption Scheme Im-
plementation,” http://www.cnsr.ictas.vt.edu/resources.html,
2012.

Y. Zheng, “Privacy-Preserving Personal Health Record System
Using Attribute-Based Encryption,” master’s thesis, Worcester
Polytechnic Inst., 2011.

B. Lynn, “The Pbc Library,”
2012.

M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure
Attribute-Based Systems,” |. Computer Security, vol. 18, no. 5,
pp- 799-837, 2010.

http://crypto.stanford.edu/pbc/,

143

Ming Li (S'08-M'11) received the BE and ME
degrees both in electronic and information
engineering from Beihang University in China
and the PhD degree in electrical and computer
engineering from Worcester Polytechnic Insti-
tute in 2011. He is an assistant professor in the
Computer Science Department at Utah State
University. His current research interests are in
cyber security and privacy, with emphases on
. - data security and privacy in cloud computing,
security in wireless networks and cyber-physical systems. He is a
member of the IEEE and the ACM.

vy Shucheng Yu (S’07-M’10) received the BS
degree in computer science from Nanjing Uni-
versity of Post & Telecommunication in China,
the MS degree in computer science from
Tsinghua University, and the PhD degree in
electrical and computer engineering from Wor-
cester Polytechnic Institute. He joined the
Computer Science Department at the University
of Arkansas at Little Rock as an assistant
professor in 2010. His research interests are in
the general areas of Network Security and Applied Cryptography. His
current research interests include Secure Data Services in cloud
computing, Attribute-Based Cryptography, and Security and Privacy
Protection in Cyber Physical Systems. He is a member of the IEEE.

Yao Zheng (S’'11) received the BS degree in
microelectronic from Fudan University in 2007
and the MS degree in electrical engineering from
Worcester Polytechnic Institute in 2011. He is
working toward the PhD student at Virginia
Tech. Between 2007 and 2009, he worked as
a R&D developer for Siemens RTS Department
focusing on industrial networks. His MS thesis
concentrates on EMR, PHR integration and
development of secure protocol and interface
between E-health cloud and local hospitals. His current interest are in
android application security and linux kernel development. He is a
student member of the IEEE.

Kui Ren (SM'11) received the BEng and MEng
degrees both from Zhejiang University in 1998
and 2001, respectively, and the PhD degree in
electrical and computer engineering from Wor-
cester Polytechnic Institute in 2007. He is an
assistant professor in the Department of Elec-
trical and Computer Engineering at lllinois
Institute of Technology. His research focuses
on data service outsourcing security in cloud
el computing, secure computation outsourcing in
cloud computlng, and cyber physical system security. His research is
supported by US national Science Foundation (NSF), US Department of
Energy (DOE), AFRL, and Amazon. He serves on the editorial boards of
IEEE Transactions on Smart Grid and IEEE Wireless Communications.
He is a member of Internet Privacy Task Force of lllinois State. He is a
recipient of NSF CAREER Award in 2011 and a corecipient of IEEE
ICNP’11 best paper award. He is a senior member of the IEEE and a
member of the ACM.

Wenjing Lou (S’01-M’03-SM’08) received the
PhD degree in electrical and computer engineer-
ing at the University of Florida in 2003. She is an
associate professor at Virginia Polytechnic
Institute and State University. Prior to joining
Virginia Tech in 2011, she was on the faculty of
Worcester Polytechnic Institute from 2003 to
2011. Her current research interests are in cyber
security, with emphases on wireless network
security and data security and privacy in cloud
computing. She serves on the editorial board of multiple premier IEEE
journals and has chaired multiple security conferences or symposiums.
She was a recipient of the US National Science Foundation (NSF)
CAREER award in 2008. She is a senior member of the IEEE.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

