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Abstract—Interconnected systems, such as Web servers, database servers, cloud computing servers and so on, are now under
threads from network attackers. As one of most common and aggressive means, denial-of-service (DoS) attacks cause serious impact

on these computing systems. In this paper, we present a DoS attack detection system that uses multivariate correlation analysis
(MCA) for accurate network traffic characterization by extracting the geometrical correlations between network traffic features. Our

MCA-based DoS attack detection system employs the principle of anomaly based detection in attack recognition. This makes our
solution capable of detecting known and unknown DoS attacks effectively by learning the patterns of legitimate network traffic only.

Furthermore, a triangle-area-based technique is proposed to enhance and to speed up the process of MCA. The effectiveness of our
proposed detection system is evaluated using KDD Cup 99 data set, and the influences of both non-normalized data and normalized

data on the performance of the proposed detection system are examined. The results show that our system outperforms two other
previously developed state-of-the-art approaches in terms of detection accuracy.

Index Terms—Denial-of-service attack, network traffic characterization, multivariate correlations, triangle area

Ç

1 INTRODUCTION

DENIAL-OF-SERVICE (DoS) attacks are one type of aggres-
sive and menacing intrusive behavior to online servers.

DoS attacks severely degrade the availability of a victim,
which can be a host, a router, or an entire network. They
impose intensive computation tasks to the victim by
exploiting its system vulnerability or flooding it with huge
amount of useless packets. The victim can be forced out of
service from a few minutes to even several days. This
causes serious damages to the services running on the
victim. Therefore, effective detection of DoS attacks is
essential to the protection of online services. Work on DoS
attack detection mainly focuses on the development of
network-based detection mechanisms. Detection systems
based on these mechanisms monitor traffic transmitting
over the protected networks. These mechanisms release the

protected online servers from monitoring attacks and
ensure that the servers can dedicate themselves to provide
quality services with minimum delay in response. More-
over, network-based detection systems are loosely coupled
with operating systems running on the host machines
which they are protecting. As a result, the configurations of
network-based detection systems are less complicated than
that of host-based detection systems.

Generally, network-based detection systems can be
classified into two main categories, namely, misuse-based
detection systems [1] and anomaly based detection systems
[2]. Misuse-based detection systems detect attacks by
monitoring network activities and looking for matches with
the existing attack signatures. In spite of having high
detection rates to known attacks and low false-positive
rates, misuse-based detection systems are easily evaded by
any new attacks and even variants of the existing attacks.
Furthermore, it is a complicated and labor intensive task to
keep signature database updated because signature gen-
eration is a manual process and heavily involves network
security expertise.

Research community, therefore, started to explore a
way to achieve novelty-tolerant detection systems and
developed a more advanced concept, namely, anomaly
based detection. Owing to the principle of detection, which
monitors and flags any network activities presenting
significant deviation from legitimate traffic profiles as
suspicious objects, anomaly based detection techniques
show more promising in detecting zero-day intrusions that
exploit previous unknown system vulnerabilities [3].
Moreover, it is not constrained by the expertise in network
security, due to the fact that the profiles of legitimate
behaviors are developed based on techniques, such as data
mining [4], [5], machine learning [6], [7], and statistical
analysis [8], [9]. However, these proposed systems
commonly suffer from high false-positive rates because
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the correlations between features/attributes are intrinsi-
cally neglected [10] or the techniques do not manage to
fully exploit these correlations.

Recent studies have focused on feature correlation
analysis. Yu et al. [11] proposed an algorithm to discrimi-
nate DDoS attacks from flash crowds by analyzing the flow
correlation coefficient among suspicious flows. A covar-
iance matrix-based approach was designed in [12] to mine
the multivariate correlation for sequential samples.
Although the approach improves detection accuracy, it is
vulnerable to attacks that linearly change all monitored
features. In addition, this approach can only label an entire
group of observed samples as legitimate or attack traffic but
not the individuals in the group. To deal with the above
problems, an approach based on triangle area was pre-
sented in [13] to generate better discriminative features.
However, this approach has dependence on prior knowl-
edge of malicious behaviors. More recently, Jamdagni et al.
[14] developed a refined geometrical structure-based
analysis technique, where Mahalanobis distance (MD) was
used to extract the correlations between the selected packet
payload features. This approach also successfully avoids the
above problems, but it works with network packet pay-
loads. In [15], Tan et al. proposed a more sophisticated
nonpayload-based DoS detection approach using multi-
variate correlation analysis (MCA). Following this emerging
idea, we present a new MCA-based detection system to
protect online services against DoS attacks in this paper,
which is built upon our previous work in [16]. In addition to
the work shown in [16], we present the following contribu-
tions in this paper. First, we develop a complete framework
for our proposed DoS attack detection system in Section 2.1.
Second, we propose an algorithm for normal profile
generation and an algorithm for attack detection in
Sections 4.1 and 4.3, respectively. Third, we proceed a
detailed and complete mathematical analysis of the pro-
posed system and investigate further on time cost in
Section 6. As resources of interconnected systems (such as
Web servers, database servers, cloud computing servers,
etc.) are located in service providers’ local area networks
that are commonly constructed using the same or alike
network underlying infrastructure and are compliant with
the underlying network model, our proposed detection
system can provide effective protection to all of these
systems by considering their commonality.

The DoS attack detection system presented in this paper
employs the principles of MCA and anomaly based
detection. They equip our detection system with capabilities

of accurate characterization for traffic behaviors and
detection of known and unknown attacks, respectively. A
triangle area technique is developed to enhance and to
speed up the process of MCA. A statistical normalization
technique is used to eliminate the bias from the raw data.
Our proposed DoS detection system is evaluated using
KDD Cup 99 data set [17] and outperforms the state-of-the-
art systems shown in [13] and [15].

The remainder of this paper is organized as follows: We
give the overview of the system architecture in Section 2.
Section 3 presents a novel MCA technique. Section 4
describes our MCA-based detection mechanism. Section 5
evaluates the performance of our proposed detection
system using KDD Cup 99 data set. Section 6 shows the
systematic analysis on the computational complexity and
the time cost of the proposed system. Finally, conclusions
are drawn and future work is given in Section 7.

2 SYSTEM ARCHITECTURE

The overview of our proposed DoS attack detection system
architecture is given in this section, where the system
framework and the sample-by-sample detection mechanism
are discussed.

2.1 Framework

The whole detection process consists of three major steps as
shown in Fig. 1. The sample-by-sample detection mechan-
ism is involved in the whole detection phase (i.e., Steps 1, 2,
and 3) and is detailed in Section 2.2.

In Step 1, basic features are generated from ingress
network traffic to the internal network where protected
servers reside in and are used to form traffic records for a
well-defined time interval. Monitoring and analyzing at the
destination network reduce the overhead of detecting
malicious activities by concentrating only on relevant
inbound traffic. This also enables our detector to provide
protection which is the best fit for the targeted internal
network because legitimate traffic profiles used by the
detectors are developed for a smaller number of network
services. The detailed process can be found in [17].

Step 2 is multivariate correlation analysis, in which the
“triangle area map generation” module is applied to extract
the correlations between two distinct features within each
traffic record coming from the first step or the traffic record
normalized by the “feature normalization” module in this
step (Step 2). The occurrence of network intrusions cause
changes to these correlations so that the changes can be

448 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2014

Fig. 1. Framework of the proposed denial-of-service attack detection system.



used as indicators to identify the intrusive activities. All the
extracted correlations, namely, triangle areas stored in
triangle area maps (TAMs), are then used to replace the
original basic features or the normalized features to
represent the traffic records. This provides higher discrimi-
native information to differentiate between legitimate and
illegitimate traffic records. Our MCA method and the
feature normalization technique are explained in Sections 3
and 5.2, respectively.

In Step 3, the anomaly based detection mechanism [3] is
adopted in decision making. It facilitates the detection of
any DoS attacks without requiring any attack relevant
knowledge. Furthermore, the labor-intensive attack analysis
and the frequent update of the attack signature database in
the case of misuse-based detection are avoided. Meanwhile,
the mechanism enhances the robustness of the proposed
detectors and makes them harder to be evaded because
attackers need to generate attacks that match the normal
traffic profiles built by a specific detection algorithm. This,
however, is a labor-intensive task and requires expertise in
the targeted detection algorithm. Specifically, two phases
(i.e., the “training phase” and the “test phase”) are involved
in decision making. The “normal profile generation”
module is operated in the “training phase” to generate
profiles for various types of legitimate traffic records, and
the generated normal profiles are stored in a database. The
“tested profile generation” module is used in the “test
phase” to build profiles for individual observed traffic
records. Then, the tested profiles are handed over to the
“attack detection” module, which compares the individual
tested profiles with the respective stored normal profiles. A
threshold-based classifier is employed in the “attack
detection” module to distinguish DoS attacks from legit-
imate traffic. The detailed algorithm is given in Section 4.

2.2 Sample-by-Sample Detection

Jin et al. [12] systematically proved that the group-based
detection mechanism maintained a higher probability in
classifying a group of sequential network traffic samples
than the sample-by-sample detection mechanism. Whereas
the proof was based on an assumption that the samples in
a tested group were all from the same distribution (class).
This restricts the applications of the group-based detection
to limited scenarios, because attacks occur unpredictably in
general and it is difficult to obtain a group of sequential
samples only from the same distribution.

To remove this restriction, our system in this paper
investigates traffic samples individually. This offers benefits
that are not found in the group-based detection mechanism.
For example, 1) attacks can be detected in a prompt manner
in comparison with the group-based detection mechanism,
2) intrusive traffic samples can be labeled individually,
and 3) the probability of correctly classifying a sample into
its population is higher than the one achieved using the
group-based detection mechanism in a general network
scenario. To better understand the merits, we illustrate
them through a mathematical example given in [12],
which assumes traffic samples are independent and
identically distributed [12], [18], [19], and legitimate
traffic and illegitimate traffic follow normal distributions

X1 ! Nð!1; "2
1Þ and X2 ! Nð!2;"2

2Þ, respectively. The two
distributions are described statistically using the probability
density functions fðx;!1;"2

1Þ¼ð1=ð"1

ffiffiffiffiffiffi
2#
p
ÞÞe%ðx%!1Þ2=2"2

1 and
f
"
x;!2;"2

2

#
¼
"
1=
"
"2

ffiffiffiffiffiffi
2#
p ##

e%ðx%!2Þ2=2"2
2 ; respectively, where

x 2 ð%1; þ1Þ. In this task, the sample-by-sample labeling
and the group-based labeling are used to identify the
correct distribution for the individuals from a group of k
independent samples fx1; x2; . . . ; xkg.

In [12], on one hand, Jin et al. defined the probabilities of
correctly classifying a sample into its distribution using the
sample-by-sample labeling as the cumulative distribution
functions shown in (1) and (2), respectively,

P1 ¼
Z !

%1

1

"1

ffiffiffiffiffiffi
2#
p e%ðx%!1Þ2=2"2

1dx; ð1Þ

P2 ¼
Z þ1
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ffiffiffiffiffiffi
2#
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where ! ¼ !1 ' "2
"1þ"2

þ !2 ' "1
"1þ"2

is the threshold value for
classifying a sample into one of the two distributions
Nð!1;"2

1Þ and Nð!2;"2
2Þ. P 01 ¼ 1% P1 represents the prob-

ability that a sample coming from the distribution Nð!1;"2
1Þ

is not correctly classified into X1. P 02 ¼ 1% P2 represents the
probability that a sample coming from the distribution
Nð!2;"2

2Þ is not correctly classified into X2. As proven in
[12] that 1) P1 ¼ P2 ¼ P and P 01 ¼ P 02 ¼ 1% P , 2) the
samples are independently distributive, and 3) the results
of classification follow the binomial distribution, the
probability of correctly labeling j samples is defined as
PrðjÞ ¼ Cj

kP
jð1% P Þk%j where j ¼ 1; 2; . . . ; k. Thus, the

probability of correctly classifying all k samples is

PrðkÞ ¼ Pk: ð3Þ

On the other hand, to classify the same group of
independent samples fx1; x2; . . . ; xkg using the group-based
labeling, a new random variable z, which is the mean of k
random samples from the distribution Nð!l;"2

l Þ, is defined
as z ¼ 1

k

Pk
t¼1 xt, where xt 2 Xl and l ¼ 1; 2. Clearly, the new

random variable z follows the distribution Zl ! Nð!l; 1
k"

2
l Þ in

which l ¼ 1; 2. The threshold value for classification is
u ¼ !1 ' "2

"1þ"2
þ !2 ' "1

"1þ"2
. Since the random variable z is

generated utilizing k random samples xt from the distribu-
tion Nð!l;"2

l Þ, the detection precision rate of the z correctly
classified into the respective distribution Nð!1;"2

1Þ or
Nð!2;"2

2Þ will thus be as given in (4) and (5), respectively.
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As proven in [12], we have that q1 ¼ q2, q01 ¼ 1% q1, and
q02 ¼ 1% q2.

The z above represents a group of samples completely
coming from the same distribution Nð!1;"2

1Þ or Nð!2;"2
2Þ.

However, in practice, samples may come from either
distribution independently so that the probability of having
a group of samples which come only from a single
distribution Nð!1;"2

1Þ or Nð!2;"2
2Þ is 1=2k. Thus, the
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probability of correctly classifying all k samples by using
group-based labeling is

k ¼ 1; QðkÞ ¼ q1 ¼ q2; ð6Þ
k > 1; QðkÞ ¼ 1

2k
q1 ¼

1

2k
q2: ð7Þ

(

Considering the same example given in [12, p. 2,188]
where k is set to 16, the precision of the sample-by-sample
labeling achieves Prð16Þ ¼ P 16 ¼ 0:6316 ¼ 6.1581e-04, and
q1 ¼ q2 ¼ 0:90824 when using group-based labeling. The
precision of the group-based labeling achieving in the
general network scenario is Qð16Þ ¼ 1

216 q1 ¼ 1
216 ' 0:90824 ¼

1.3859e-05. Clearly, the sample-by-sample labeling and the
group-based labeling perform differently in detection pre-
cision. The relationship between the detection precisions of
two detection mechanisms can be found by analyzing (3),
(6), and (7). As shown in (8) and (9), when k equals to 1, the
probability of correctly classifying all k samples using
the sample-by-sample labeling is same as the one using the
group-based labeling. If k is greater than 1, both probabilities
PrðkÞ andQðkÞ decrease gradually, but the one of the group-
based labeling drops faster in comparison with that of the
sample-by-sample labeling, i.e.,

k ¼ 1; PrðkÞ ¼ QðkÞ; ð8Þ
k > 1; PrðkÞ > QðkÞ: ð9Þ

'

Therefore, the sample-by-sample labeling can always
achieve equal or better detection precision than the group-
based labeling.

3 MULTIVARIATE CORRELATION ANALYSIS

DoS attack traffic behaves differently from the legitimate
network traffic, and the behavior of network traffic is
reflected by its statistical properties. To well describe these
statistical properties, we present a novel MCA approach in
this section. This MCA approach employs triangle area for
extracting the correlative information between the features
within an observed data object (i.e., a traffic record). The
details are presented in the following.

Given an arbitrary data set X ¼ fx1; x2; . . . ; xng, where
xi ¼ ½fi1 fi2 . . . fim)

T , ð1 * i * nÞ represents the ith m-
dimensional traffic record. We apply the concept of
triangle area to extract the geometrical correlation between
the jth and kth features in the vector xi. To obtain the
triangle formed by the two features, data transformation
is involved. The vector xi is first projected on the (j; k)th
2D euclidean subspace as yi;j;k ¼ ½"j "k)Txi ¼ ½fij fik)

T ,
(1 * i * n, 1 * j * m, 1 * k * m, j 6¼ k). The vectors "j ¼
½ej;1 ej;2 . . . ej;m)T and "k ¼ ½ek;1 ek;2 . . . ek;m)T have ele-
ments with values of zero, except the (j; j)th and (k; k)th
elements whose values are ones in "j and "k, respectively.
The yi;j;k can be interpreted as a 2D column vector, which
can also be defined as a point on the Cartesian coordinate
system in the (j; k)th 2D euclidean subspace with
coordinate (fij , fik). Then, on the Cartesian coordinate
system, a triangle !fijOf

i
k formed by the origin and the

projected points of the coordinate (fij , f
i
k) on the j-axis and

k-axis is found. Its area Trij;k is defined as

Trij;k ¼
"
k
"
fij ; 0

#
% ð0; 0Þ k ' k

"
0; fik

#
% ð0; 0Þ kÞ=2; ð10Þ

where 1 * i * n, 1 * j * m, 1 * k * m, and j 6¼ k. To make
a complete analysis, all possible permutations of any two
distinct features in the vector xi are extracted and the
corresponding triangle areas are computed. A TAM is
constructed and all the triangle areas are arranged on the
map with respect to their indexes. For example, the Trij;k is
positioned on the jth row and the kth column of the map
TAMi, which has a size of m'm. The values of the
elements on the diagonal of the map are set to zeros
(Trij;k ¼ 0, if j ¼ k) because we only care about the
correlation between each pair of distinct features. For the
nondiagonal elements Trij;k and Trik;j where j 6¼ k, they
indeed represent the areas of the same triangle. This infers
that the values of Trij;k and Trik;j are actually equal. Hence,
the TAMi is a symmetric matrix having elements of zero on
the main diagonal.

When comparing two TAMs, we can imagine them as
two images symmetric along their main diagonals. Any
differences, identified on the upper triangles of the images,
can be found on their lower triangles as well. Therefore, to
perform a quick comparison of the two TAMs, we can
choose to investigate either the upper triangles or the lower
triangles of the TAMs only. This produces the same result
as comparing using the entire TAMs (see Appendix 1,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2013.146). Therefore, the correlations residing in a
traffic record (vector xi) can be represented effectively and
correctly by the upper triangle or the lower triangle of the
respective TAMi. For consistency, we consider the lower
triangles of TAMs in the following sections. The lower
triangle of the TAMi is converted into a new correlation
vector TAMi

lower denoted as follows:

TAMi
lower ¼

(
Tri2;1 Tr

i
3;1 . . . Trim;1 Tr

i
3;2

Tri4;2 . . . Trim;2 . . . Trim;m%1

)T
:

ð11Þ

For the aforementioned data set X, its geometrical multi-
variate correlations can be represented by XTAMlower ¼
fTAM1

lower; TAM
2
lower; . . . ; TAMi

lower; . . . ; TAMn
lowerg.

When putting into practice, the computation of the Trij;k
defined in (10) can be simplified because the value of the
Trij;k is eventually equal to half of the multiplication of the
absolute values of fij and fik. Therefore, the transformation
can be eliminated, and (10) can be replaced by Trij;k ¼
ðjfij j' jfikjÞ=2.

The above explanation shows that our MCA approach
supplies with the following benefits to data analysis. First, it
does not require the knowledge of historic traffic in
performing analysis. Second, unlike the Covariance matrix
approaches proposed in [12] which is vulnerable to linear
change of all features, our proposed triangle-area-based
MCA withstands the problem. Third, it provides character-
ization for individual network traffic records rather than
model network traffic behavior of a group of network traffic
records. This results in lower latency in decision making
and enable sample-by-sample detection. Fourth, the corre-
lations between distinct pairs of features are revealed
through the geometrical structure analysis. Changes of
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these structures may occur when anomaly behaviors appear
in the network. This provides an important signal to trigger
an alert.

4 DETECTION MECHANISM

In this section, we present a threshold-based anomaly
detector, whose normal profiles are generated using purely
legitimate network traffic records and utilized for future
comparisons with new incoming investigated traffic
records. The dissimilarity between a new incoming traffic
record and the respective normal profile is examined by
the proposed detector. If the dissimilarity is greater than a
predetermined threshold, the traffic record is flagged as an
attack. Otherwise, it is labeled as a legitimate traffic record.
Clearly, normal profiles and thresholds have direct
influence on the performance of a threshold-based detec-
tor. A low-quality normal profile causes an inaccurate
characterization to legitimate network traffic. Thus, we first
apply the proposed triangle-area-based MCA approach to
analyze legitimate network traffic, and the generated
TAMs are then used to supply quality features for normal
profile generation.

4.1 Normal Profile Generation

Assume there is a set of g legitimate training traffic records
Xnormal ¼ fxnormal1 ; xnormal2 ; . . . ; xnormalg g. The triangle-area-
based MCA approach is applied to analyze the records.
The generated lower triangles of the TAMs of the set of
g legitimate training traffic records are denoted by
Xnormal
TAMlower

¼ fTAMnormal;1
lower ; TAMnormal;2

lower ; . . . ; TAMnormal;g
lower g.

Mahalanobis distance is adopted to measure the dis-
similarity between traffic records. This is because MD has
been successfully and widely used in cluster analysis,
classification and multivariate outlier detection techniques.
Unlike euclidean distance and Manhattan distance, it
evaluates distance between two multivariate data objects
by taking the correlations between variables into account
and removing the dependence on the scale of measurement
during the calculation.

Fig. 2 presents the algorithm for normal profile
generation, in which the normal profile Pro is built
through the density estimation of the MDs between

individual legitimate training traffic records (TAMnormal;i
lower )

and the expectation (TAMnormal
lower ) of the g legitimate

training traffic records. The MD is computed using (14)
and the covariance matrix (Cov) involved in (14) can be
obtained using the following equation:

Cov ¼

"
"
Trnormal2;1 ; Trnormal2;1

#

"
"
Trnormal3;1 ; Trnormal2;1
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..

.

"
"
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"
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#
+ + + "

"
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#

"
"
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#
+ + + "

"
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. ..

.

"
"
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normal
3;1

#
+ + + "

"
Trnormalm;m%1; Tr

normal
m;m%1

#

3

777775
:

ð12Þ

The covariance between two arbitrary elements in the lower
triangle of a normal TAM is defined in (13).

"
"
Trnormalj;k ; Trnormall;v

#
¼ 1

g% 1

Xg

i¼1

"
Trnormal;ij;k % !Trnormal

j;k

#

'
"
Trnormal;il;v % !Trnormal

l;v

#
:

ð13Þ

Moreover, the mean of the ðj; kÞth elements and the mean of
the ðl; vÞth elements of TAMs over g legitimate training
traffic records are defined as !Trnormal

j;k
¼ 1

g

Pg
i¼1 Tr

normal;i
j;k and

!Trnormal
l;v
¼ 1

g

Pg
i¼1 Tr

normal;i
l;v , respectively,

MDnormal;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
TAMnormal;i

lower % TAMnormal
lower

#T "
TAMnormal;i

lower % TAMnormal
lower

#

Cov

s

;

ð14Þ

MDobserved ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi"
TAMobserved

lower % TAMnormal
lower

#T "
TAMobserved

lower % TAMnormal
lower

#

Cov

s

:

ð15Þ

As shown in Fig. 2, the distribution of the MDs is
described by two parameters, namely the mean ! and the
standard deviation " of the MDs. Finally, the obtained
distribution Nð!;"2Þ of the normal training traffic records,
TAMnormal

lower and Cov are stored in the normal profile Pro for
attack detection.

4.2 Threshold Selection

The threshold given in (16) is used to differentiate attack
traffic from the legitimate one

Threshold ¼ !þ " , $: ð16Þ

For a normal distribution, $ is usually ranged from 1 to 3.
This means that detection decision can be made with a
certain level of confidence varying from 68 to 99.7 percent in
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association with the selection of different values of $. Thus,
if the MD between an observed traffic record xobserved and
the respective normal profile is greater than the threshold, it
will be considered as an attack. Attack detection is detailed
in Section 4.3.

4.3 Attack Detection

To detect DoS attacks, the lower triangle (TAMobserved
lower ) of

the TAM of an observed record needs to be generated
using the proposed triangle-area-based MCA approach.
Then, the MD between the TAMobserved

lower and the TAMnormal
lower

stored in the respective pregenerated normal profile Pro is
computed using (15). The detailed detection algorithm is
shown in Fig. 3.

5 EVALUATION OF THE MCA-Based DoS ATTACK

DETECTION SYSTEM

The evaluation of our proposed DoS attack detection system
is conducted using KDD Cup 99 data set [17]. Despite the
data set is criticised for redundant records that prevent
algorithms from learning infrequent harmful records [21], it
is the only publicly available labeled benchmark data set,
and it has been widely used in the domain of intrusion
detection research. Testing our approach on KDD Cup 99
data set contributes a convincing evaluation and makes the
comparisons with other state-of-the-art techniques equita-
ble. Additionally, our detection system innately withstands
the negative impact introduced by the data set because its
profiles are built purely based on legitimate network traffic.
Thus, our system is not affected by the redundant records.

During the evaluation, the 10 percent labeled data of KDD
Cup 99 data set is used, where three types of legitimate
traffic (TCP, UDP, and ICMP traffic) and six different types
of DoS attacks (Teardrop, Smurf, Pod, Neptune, Land and
Back attacks) are available. All of these records are first
filtered and then are further grouped into seven clusters
according to their labels (see Table 9 in Appendix 4, which is
available in the online supplemental material).

The overall evaluation process is detailed as follows:
First, the proposed triangle-area-based MCA approach is
assessed for its capability of network traffic characteriza-
tion. Second, a tenfold cross-validation is conducted to
evaluate the detection performance of the proposed MCA-
based detection system, and the entire filtered data subset
is used in this task. In the training phase, we employ only
the normal records. Normal profiles are built with respect

to the different types of legitimate traffic using the
algorithm presented in Fig. 2. The corresponding thresh-
olds are determined according to (16) given the parameter
$ varying from 1 to 3 with an increment of 0.5. During the
test phase, both the Normal records and the attack records
are taken into account. As given in Fig. 3, the observed
samples are examined against the respective normal
profiles which are built based on the legitimate traffic
records carried using the same type of transport layer
protocol. Third, four metrics, namely, true-negative rate
(TNR), detection rate (DR), false-positive rate (FPR), and
accuracy (i.e., the proportion of the overall samples which
are classified correctly), are used to evaluate the proposed
MCA-based detection system. To be a good candidate, our
proposed detection system is required to achieve a high
detection accuracy.

5.1 Results and Analysis on Original Data

5.1.1 Network Traffic Characterization Using Triangle-
Area-Based Multivariate Correlation Analysis

In the evaluation, the TAMs of the different types of traffic
records are generated using 32 continuous features. The
images for the TAMs of Normal TCP record, Back attack
record, Land attack record, and Neptune attack record are
presented in Fig. 4. More results can be found in
Appendix 2, which is available in the online supplemental
material. The images demonstrate that TAM is a symmetric
matrix, whose upper triangle and lower triangle are
identical. The brightness of an element in an image
represents its value in the corresponding TAM. The greater
the value is, the brighter the element is. The images in Fig. 4
also demonstrate that our proposed MCA approach fulfils
the anticipation of generating features for accurate network
traffic characterization.
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Fig. 3. Algorithm for attack detection based on Mahalanobis distance.

Fig. 4. Images of TAMs of normal TCP traffic, Back, Land and Neptune
attacks generated using original data.



5.1.2 Tenfold Cross-Validation

To evaluate the performance of our detection system along
with the change of the threshold, the average TNRs for
legitimate traffic and the average DRs for the individual
types of DoS attacks are shown in Table 1.

Throughout the evaluation, our proposed detection
system achieves encouraging performance in most of the
cases except Land attack. The rate of correct classification of
the Normal records rises from 98.74 to 99.47 percent along
with the increase of the threshold. Meanwhile, the Smurf
and Pod attack records are completely detected without
being affected by the change of the threshold. Moreover, the
system achieves nearly 100 percent DRs for the Back attacks
in almost all cases. However, the detection system suffers
serious degeneration in the cases of the Teardrop and
Neptune attacks when the threshold is greater than 1:5".
The DRs for these two attacks drop sharply to 48.45 and
52.96 percent, respectively, while the threshold is set to 3".

To have a better overview of the performance of our
MCA-based detection system, the overall FPR and DR are
highlighted in Table 2. The overall FPR and DR are
computed over all traffic records regardless the types of
attacks. When the threshold grows from 1" to 3", the FPR
drops quickly from 1.26 to 0.53 percent. Correspondingly,
the DR also drops from 95.11 to 86.98 percent while the
threshold rises. It shows clearly in the table that a larger
number of legitimate traffic records are covered by a greater
threshold, and more DoS attack records are incorrectly
accepted as legitimate traffic in the meantime.

5.2 Problems with the Current System and Solution

Although the detection system achieves a moderate overall
detection performance in the above evaluation, we want to
explore the causes of degradation in detecting the Land,
Teardrop, and Neptune attacks.

Our analysis shows that the problems come from the
data used in the evaluation, where the basic features in the
non-normalized original data are in different scales. There-
fore, even though our triangle-area-based MCA approach is
promising in characterization and clearly reveals the
patterns of the various types of traffic records, our detector
is still ineffective in some of the attacks. For instance, the
Land, Teardrop and Neptune attacks whose patterns are
different than the patterns of the legitimate traffic. How-
ever, the level of the dissimilarity between these attacks and
the respective normal profiles is close to that between
the legitimate traffic and the respective normal profiles.

Moreover, the changes appearing in some other more
important features with much smaller values can hardly
take effect in distinguishing the DoS attack traffic from the
legitimate traffic, because the overall dissimilarity is
dominated by the features with large values. Nevertheless,
the non-normalized original data contains zero values in
some of the features (both the important and the less
important features), and they confuse our MCA and make
many new generated features (Trij;k) equal to zeros. This
vitally degrades the discriminative power of the new
feature set (TAMi

lower), which is not supposed to happen.
Apparently, an appropriate data normalization techni-

que should be employed to eliminate the bias. We adopt
the statistical normalization technique [20] to this work.
The statistical normalization takes both the mean scale of
attribute values and their statistical distribution into
account. It converts data derived from any normal
distribution into standard normal distribution, in which
99.9 percent samples of the attribute are scaled into [%3, 3].
In addition, statistical normalization has been proven
improving detection performance of distance-based classi-
fiers and outperforming other normalization methods,
such as mean range [0, 1], ordinal normalization and so
on [20].

Considering the same arbitrary data set X ¼ fx1;
x2; . . . ; xng given in Section 3, the statistical normalization
is defined as follows: The normalized value of feature fij is
given as Fi

j ¼ ðfij % "fjÞ="fij , where "fj ¼ 1
n

Pn
i¼1 f

i
j is the mean

of feature fij , and

"fij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðfij % "fjÞ2
s

is the standard deviation of feature fij . The normalized
feature vector xi is represented by ½Fi

1 F
i
2 . . .Fi

m)
T in which

1 * i * n. In the following evaluation, the data are
normalized in a batch manner. However, real-time normal-
ization can be achieved through the incremental learning
[22] when our detection system is put online. The mean "fi
can be updated as "fi ¼ "fi þ xnþ1% "fi

nþ1 .

5.3 Results and Analysis on Normalized Data

To verify our observation, a tenfold cross-validation is
conducted as done in Section 5.1.2 on the data normalized
using the aforementioned statistical normalization techni-
que. The results are given in Section 5.3.1.

5.3.1 Tenfold Cross-Validation
The detection performance based on the normalized data is
given in Table 3. The results reveal that the data does have
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TABLE 1
Average Detection Performance of the Proposed System

on Original Data against Different Thresholds

TABLE 2
Detection Rate and False-Positive Rate Achieved

by the Proposed System on Original Data



significant influence on our detection system, whose
overall performance increases dramatically when taking
the normalized data as the inputs. The Teardrop, Neptune,
and Land attacks, which are mostly miss-classified in the
previous evaluation, now can be completely classified
correctly by the system along the increase of the threshold.
Except the Back attacks, the other types of DoS attacks are
detected completely regardless of the change of the thresh-
old as well. Although the detection system claims only a
93.56 percent DR in detecting the Back attacks in the worst
case, its DR rises stably and slowly to 99.32 percent when
the a more rigorous threshold is chosen. The ineffectiveness
of the statistical normalization technique on the Back
attacks is caused by the fact that the non-normalized
features of the Back attacks originally fall in similar scales
as the ones of the legitimate traffic so that after data
normalization there is no improvement on the detection of
the Back attacks. In comparison with the TNR of our
detection system achieved on the non-normalized Normal
records, the one achieved on the normalized Normal
records declines a bit to maximum 98.75 percent when the
threshold is set to 3". However, it manages to remain in
the reasonable range.

Then, similar to the previous evaluation, we show the
overall FPR and DR in Table 4. The FPR shown in the
table drops nearly 1 percent when the threshold increases
from 1" to 2". Finally, it reaches to 1.25 percent while the
threshold is staying at 3". The DR of the system varies
from 100.00 to 99.96 percent. It is clearly seen that the
proposed detection system achieves a better DR with the
normalized data.

5.3.2 Performance Comparisons

To make complete comparisons, the ROC curves of the
previous two evaluations are shown in Fig. 5. The
relationship between DR and FPR is clearly revealed in
the ROC curves. The DR increases when larger numbers
of false positive are tolerated. In Fig. 5a, the ROC curve
for analyzing the original data using our proposed
detection system shows a rising trend. The curve climbs
gradually from 86.98 to 89.44 percent DR, and finally
reaches to 95.11 percent DR. Likewise, the ROC curve for
analyzing the normalized data presents a resembling
pattern but jumps dramatically from 99.97 to 99.99 percent
DR after experiencing slow progress as shown in Fig. 5b.
Then, the curve remains in a high level of DR around
100.00 percent. It is shown clearly in Fig. 5 that our
detection system always enjoys higher detection rates

while working with the normalized data than with the
original data. The worst performance (99.96 percent DR
and 1.25 percent FPR) of our system shown in Fig. 5b is
even much better the best performance (95.11 percent DR
and 1.26 percent FPR) in term of detection rate shown in
Fig. 5a.

Last but not the least, two state-of-the-art detection
approaches, namely, triangle area-based nearest neighbors
approach [13] and euclidean distance map-based approach
[15] are selected to compare with our proposed detection
system. The best accuracies on detecting DoS attacks
achieved by the various approaches and systems are given
in Table 5. Although all approaches and systems high-
lighted in Table 5 have high accuracies on DoS attack
detection, our proposed MCA-based detection system
(95.20 percent for the original data and 99.95 percent for
the normalized data) clearly outperforms the triangle area-
based nearest neighbors approach (92.15 percent). In
addition, our proposed detection system cooperating with
normalized data (99.95 percent) shows a marginal advan-
tage over the approach based on euclidean distance map
(99.87 percent). Although this is a narrow lead, our
detection system shows more promising especially when
it is deployed on a production network with a throughput
of 1 Gbps. Due to a significantly fewer number of false
alarms generated per second, network administrators will
be much less interrupted by the false information.
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TABLE 4
Detection Rate and False-Positive Rate Achieved by the

Proposed System on Normalized Data

TABLE 3
Average Detection Performance of the Proposed System on

Normalized Data against Different Thresholds

Fig. 5. ROC curves for the detection of DoS attacks.



6 COMPUTATIONAL COMPLEXITY AND TIME COST

ANALYSIS

In this section, we conduct an analysis on the computational
complexity and the time cost of our proposed MCA-based
detection system.

On one hand, as discussed in Section 3, triangle areas of
all possible combinations of any two distinct features in a
traffic record need to be computed when processing our
proposed MCA. Since each traffic record has m features (or
dimensions), mðm%1Þ

2 triangle areas are generated and are
used to construct a TAMi

lower. Thus, the proposed MCA has
a computational complexity of Oðm2Þ. On the other hand, as
explained in Section 4.3, the MD between the observed
feature vector (i.e., the TAMi

lower) and TAMnormal
lower of the

respective normal profile needs to be computed in the
detection process of our proposed detection system to
evaluate the level of the dissimilarity between them. Thus,
this computation incurs a complexity of OðM2Þ, in which
M ¼ mðm%1Þ

2 is the dimensions of TAMi
lower. OðM2Þ can be

written as Oðm4Þ. By taking the computational complexities
of the proposed MCA and the detection process of our
proposed detection system into account, the overall
computational complexity of the proposed detection system
is Oðm2Þ þOðm4Þ ¼ Oðm4Þ. However, m is a fixed number
which is 32 in our case, so that the overall computational
complexity is indeed equal to Oð1Þ.

Similarly, approach based on euclidean distance map [15]
achieves the same computational complexities of Oðm2Þ and
Oðm4Þ in data processing and attack detection, respectively.
Moreover, the number of features (m) in use is identical to that
used in our proposed detection system as well. Thus, the
overall computational complexity of the euclidean distance
map-based approach is Oð1Þ. For another state-of-the-art
detection approach that we compared in the previous section,
triangle area-based nearest neighbors approach [13] suffers a
heavier overall computational complexity. In data processing
and attack detection phases, the computational complexities
are Oðml2Þ and Oðl2n2Þ, respectively, where m is the number
of features (or dimensions) in a traffic record, l is the number
of clusters used in generating triangle areas and n is the
number of training samples. The overall complexity is
Oðml2Þ þOðl2n2Þ ¼ Oðl2n2Þ. In general, our proposed detec-
tion system can achieve equal or better computational

complexity than the above two other approaches. Table 6 is
provided to summarize the computational complexities of
the above discussed approaches.

Moreover, time cost is discussed to show the contribu-
tion of our proposed MCA in terms of acceleration of data
processing. Our proposed MCA can proceed approximately
23,092 traffic records per second. In contrast, the MCA
based on euclidean distance map [15] can achieve approxi-
mately 12,044 traffic records per second, which is nearly less
than half of that achieved by our proposed MCA. Due to the
unavailability of the source code of triangle area-based
nearest neighbors approach [13], we cannot provide
comparison to it.

7 CONCLUSION AND FUTURE WORK

This paper has presented an MCA-based DoS attack
detection system which is powered by the triangle-area-
based MCA technique and the anomaly-based detection
technique. The former technique extracts the geometrical
correlations hidden in individual pairs of two distinct
features within each network traffic record, and offers more
accurate characterization for network traffic behaviors. The
latter technique facilitates our system to be able to
distinguish both known and unknown DoS attacks from
legitimate network traffic.

Evaluation has been conducted using KDD Cup 99 data
set to verify the effectiveness and performance of the
proposed DoS attack detection system. The influence of
original (non-normalized) and normalized data has been
studied in the paper. The results have revealed that when
working with non-normalized data, our detection system
achieves maximum 95.20 percent detection accuracy
although it does not work well in identifying Land,
Neptune, and Teardrop attack records. The problem,
however, can be solved by utilizing statistical normalization
technique to eliminate the bias from the data. The results of
evaluating with the normalized data have shown a more
encouraging detection accuracy of 99.95 percent and nearly
100.00 percent DRs for the various DoS attacks. Besides, the
comparison result has proven that our detection system
outperforms two state-of-the-art approaches in terms of
detection accuracy. Moreover, the computational complex-
ity and the time cost of the proposed detection system have
been analyzed and shown in Section 6. The proposed
system achieves equal or better performance in comparison
with the two state-of-the-art approaches.

To be part of the future work, we will further test our
DoS attack detection system using real-world data and
employ more sophisticated classification techniques to
further alleviate the false-positive rate.
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