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Abstract—This paper contains the supplementary material to the paper submitted to IEEE TPDS entitled “Novel Flow Control
for Fully Adaptive Routing in Cache-coherent NoCs” (labeled as “main file” in this paper). In Sec. 1, we prove that if a routing
algorithm with WPF is deadlock-free, then this algorithm with conservative VC re-allocation is also deadlock-free. In Sec. 2, we
provide further insights for the performance trends of routing algorithms by analyzing the buffer utilization. In Sec. 3, we present
the full system performance analysis. In Sec. 4, we show the recursive algorithm to calculate the allowable escape VC. In Sec. 5,
we perform sensitivity study on several configuration parameters. In Sec. 6, we provide further discussion about the designs.

�

1 LOGICAL EQUIVALENCE OF Alg AND
Alg+WPF

Sec. 4.1 proposes Theorem 1, which declares that if
a fully adaptive routing algorithm with conservative
VC re-allocation (named as Alg) is deadlock-free,
then applying WPF on this routing algorithm (named
as Alg+WPF ) is also deadlock-free. This section
proves that if Alg+WPF is deadlock-free, then Alg
is deadlock-free as well. In addition to Assumption 1
in Sec. 4.1 of the main file, this proof needs another
simple assumption about the routing algorithm.
Assumption 2. The definition of a routing algorithm
is independent of the packet length.

Assumption 2 implies that if two packets are inject-
ed from the same source and destined to the same
node, they can use the same set of VCs even though
these packets have different lengths. This assumption
is generally used in many previous theories [2], [3],
[6], [7], [8], [9], [10], [12], [18], [21], [24], [25]. We prove
the following theorem.
Theorem 3: If Alg+WPF is deadlock-free, then Alg is
also deadlock-free.
Description: This proof is similar to the proof of
Theorem 1 in the main file. We prove that if Alg
has a deadlock configuration, then Alg+WPF has a
deadlock configuration as well. Use Config0 in Fig. 1
as an example. We replace packet Pi with packet P ′

i

to completely fill all VCs. The source and destination
of P ′

i are the same as Pi, while P ′
i may have more

flits than Pi to completely fill the VCs. We prove
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Fig. 1. The construction of a new configuration.

that Alg+WPF can achieve Config0, and Config0
is a deadlock configuration. However, Alg+WPF is
deadlock-free, thus there is no such configuration.
Proof : By contradiction. If Alg is not deadlock-free,
then there is a deadlock configuration (Config0) in
which a set of packets, Pset0 , are waiting on VCs held
by other packets in Pset0 . We prove that there is a
deadlock configuration for Alg+WPF in three steps.

Step 1: We build a new configuration based on
Config0. Consider each packet Pi in Pset0 . If Pi does
not completely fill all VCs where its flits reside, we
replace Pi with packet P ′

i to completely fill all VCs
occupied by Pi. The source and destination of P ′

i are
the same as Pi, and the length of P ′

i is larger than Pi.
If Pi completely fills all VCs where its flits reside, P ′

i

is the same as Pi. We label the new configuration as
Config1, and the set of packets in Config1 as Pset1 .

Step 2: We prove that when the network is routed
by Alg+WPF , all packets in Pset1 can move to their
current VCs in Config1, and the head flits of these
packets are at VC heads. For each packet P ′

i in Pset1 ,
we consider its corresponding packet Pi in Config0.
We further consider each hop hopk of Pi when it is
routed by Alg. Assume the head flit of Pi moves
to V Ck’s head during hopk. The routing algorithm
allows Pi to use V Ck. Although P ′

i and Pi may have
different packet lengths, they have the same source
and destination information. Based on Assumption 2,
the routing algorithm allows P ′

i to use V Ck as well.
Since Alg+WPF is deadlock-free, V Ck must be-

come available at some time. Based on Assumption
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Fig. 2. The buffer utilization and throughput in saturation for several routing algorithms.

1 in the main file, P ′
i has some possibility to request

V Ck. There are two cases when P ′
i requests V Ck.

2.1) V Ck is empty. V Ck can be re-allocated to P ′
i

with conservative VC re-allocation. Thus, the head flit
of P ′

i will move to V Ck’s head.
2.2) V Ck is not empty. But V Ck already received the

tail flit of last allocated packet and still has enough
buffers for P ′

i . WPF can re-allocate V Ck to P ′
i . Yet,

when P ′
i reaches V Ck, its head flit is not at V Ck’s

head. Considering Alg+WPF is deadlock-free, the
packets in V Ck before P ′

i must be sent out in limited
time. Then, the head flit of P ′

i is at V Ck’s head.
Considering 2.1) and 2.2) together, if the head flit of

Pi moves to the head of a VC during any hop when
routed by Alg, the head flit of P ′

i can also move to
the same VC head when routed by Alg+WPF . Thus,
when routed by Alg+WPF , P ′

i can be routed to its
current VC(s) in Config1, and the head flit of P ′

i is at
the VC head.

Step 3: We prove that Config1 is a deadlock con-
figuration for Alg+WPF . Since all VCs in Config1
are completely filled, all packets in Pset1 still wait
for VCs held by other packets in Pset1 , even with
WPF applied. Config1 is a deadlock configuration for
Alg+WPF . But Alg+WPF is deadlock-free, so there
is no deadlock configuration. Thus, Alg is deadlock-
free as well.

Theorem 1 of the main file declares that if Alg
is deadlock-free, then Alg+WPF is deadlock-free
as well. Theorem 3 declares that if Alg+WPF is
deadlock-free, then Alg is deadlock-free as well. Con-
sidering these two theorems together, the deadlock
freedom of Alg+WPF is logically equivalent to the
deadlock freedom of Alg. Therefore, the WPF opti-
mization of traditional wormhole flow control does
not have any influence on the deadlock freedom.

2 BUFFER UTILIZATION OF ROUTING AL-
GORITHMS

Sec. 5.1 of the main file measures the performance of
several fully adaptive, partially adaptive and deter-
ministic routing algorithms. This section provides fur-
ther insights of the performance trends by analyzing

the buffer utilization of all evaluated designs. Fig. 2
illustrates the average buffer utilization of all network
VCs in saturation for eight synthetic traffic patterns.
The maximum and minimum rates are given by the
error bars. Fig. 2 also shows the saturation throughput
supported by routing algorithms. There are several
important insights.

First, buffers are used to support high through-
put. The saturation throughput of routing algorithms
is related to the buffer utilization. Higher average
buffer utilization generally leads to higher saturation
throughput. This trend is obvious in bit complement.
Bit complement sends traffic from node {s3,s2,s1,s0}
to node {¬s3,¬s2,¬s1,¬s0}, which has the largest av-
erage hop count [14], and puts the highest pressure
on the buffers among all evaluated traffic patterns.

Second, for the same routing algorithm in different
traffic patterns, there may be fluctuations between
the buffer utilization and the saturation throughput.
For example, even though DOR shows much higher
buffer utilization for bit complement than shuffle, its
saturation throughput for bit complement is lower
than shuffle. These fluctuations are due to that the
same routing algorithm uses different VCs for dif-
ferent patterns; the network becomes saturated in
different status. Similarly, since some algorithms use
different VCs in the same traffic pattern, there may be
slight fluctuations as well. For example, even though
the average buffer utilization of west-first is slightly
lower than DOR for bit reverse, its saturation through-
put is higher than DOR.

Third, since all fully adaptive routing algorithms,
including PSF, PSF+WA, FULLY and FULLY+WA, use
the same set of VCs for the same traffic pattern,
their saturation throughput is roughly proportional
to the buffer utilization. For instance, in bit reverse,
PSF+WA’s average buffer utilization is 78.3% higher
than PSF, making it perform 79.5% better than PSF.
Similarly, PSF+WA has 67.4% higher average buffer
utilization than PSF in shuffle, and its saturation
throughput is 67.2% higher than PSF.

Fourth, the network becomes saturated when some
resources become saturated [4]. For most patterns and
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Fig. 3. System speedup for PARSEC benchmarks.

most algorithms, the bottleneck is VCs; networks be-
come saturated when some VCs have more than 80%
utilization, including DOR, west-first, negative-first
and odd-even in most patterns. When the algorithm
provides abundant adaptiveness, it distributes traffic
more uniformly among VCs, preventing them from
becoming the bottleneck. Instead, the bottleneck may
be the crossbar or network interface [23]. For example,
since negative-first offers adaptiveness for all traffic
in tranpose-2, the network becomes saturated even
when the maximum buffer utilization is only 49.2%.
Similarly, when in saturation, the maximum buffer
utilization of PSF+WA and FULLY+WA is lower than
partially adaptive routing and DOR.

Fifth, PSF and FULLY are limited by conservative
VC re-allocation; their maximum buffer utilization
for evaluated patterns is less than 40%. Applying
WPF on adaptive VCs and aggressive VC re-allocation
on escape VCs greatly increases buffer utilization,
which proportionally improves performance. FULLY
supports higher routing flexibility than PSF, which
brings higher buffer utilization and performance.
3 EVALUATION ON PARSEC WORKLOADS
3.1 Methodology and Configuration
To measure full-system performance, we leverage
FeS2 [16] for x86 simulation and BookSim for NoC
simulation. FeS2 is implemented as a module for
Simics [15]. We run PARSEC benchmarks [1] with 16
threads on a 16-core CMP, which is organized as a 4×4
mesh. Prior research shows the frequency of simple
cores in a many-core platform can be optimized to
5∼10 GHZ, while the frequency of NoC router is
limited by the allocator speed [5]. We assume cores
are clocked 5× faster than the network. Cache lines
are 64 bytes; long packets are 5 flits long with a
16-byte flit width. We use a distributed, directory-
based MOESI coherence protocol which needs 4 VNs
for protocol-level deadlock freedom. Each VN has 2
VCs; each VC is 4 flits deep. The router pipeline is
the same as described in Sec. 4.4 of the main file.
All benchmarks use the simsmall input sets. The total
runtime is the performance metric. TABLE 1 gives the
system configuration.
3.2 Performance
Fig. 3 shows the speedups relative to PSF for PARSEC
workloads. We divide the 10 applications into 2 class-
es. For blackscholes, fluidanimate, raytrace

TABLE 1. Full system simulation configuration.
# of cores 16, 4×4 Mesh
L1 cache (D & I) private, 4-way, 32KB each
L2 cache private, 8-way, 512KB each
Cache coherence MOESI distributed directory

and swaptions, different algorithms perform simi-
larly. The working sets of these applications fit in-
to the caches and their computation phases consist
of few synchronization points, leading to a lightly
loaded network. The system performance of these
applications is unaffected by techniques that improve
the network throughput, such as sophisticated routing
algorithms.

However, the routing algorithms affect the oth-
er 6 applications. These applications have heavier
loads than previous 4 applications. Yet, their aver-
age aggregate loads during the running periods are
lower than the network saturation points. The high-
est average aggregate injection rate for canneal is
12.3% flits/node/cycle, which is below the saturation
points for all designs. Two factors bring performance
improvements for these 6 applications. First, these
applications exhibit period bursty communication and
the synchronization primitives create one hotspot in-
side the network. The bursty communication and the
hotspot make the network operate past saturation at
times during the running period. Thus, these appli-
cations benefit from routing algorithms with high-
er throughputs. Second, short packets are critical in
cache-coherent many-core platforms; they carry time-
critical control messages that are often on the applica-
tion’s critical path. These short packets can affect the
execution time significantly. The novel flow control
reduces the packet latency, especially under heavy
loads, which brings performance gains. For example,
FULLY+WA has 48.5% and 43.0% speedups over PSF
for facesim and streamcluster.

Since most of vips application’s bursty commu-
nication is eastbound, west-first performs best for
vips. For facesim and streamcluster, negative-
first offers higher adaptiveness than odd-even, thus
achieving better performance. For all heavy load ap-
plications except vips, FULLY+WA performs best.
Across these applications, FULLY+WA achieves an
average of 21.3% and maximum 37.8% speedup over
FULLY. With sufficient flexibility, FULLY+WA has an
average 12.1% speedup over PSF+WA. The average
speedups of FULLY+WA are 29.3%, 15.0%, 10.1%,
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void AllowableEVCs(int cx,int cy,int dx,int dy,
int*** EVCs){

if( cx == dx && cy == dy ){ // destination
return;

} else if( cx < dx && cy == dy ){ // east
EVCs[cx+1][cy][1] = 1;
AllowableEVCs( cx+1, cy, dx, dy, EVCs );

} else if( cx > dx && cy == dy ){ // west
EVCs[cx-1][cy][0] = 1;
AllowableEVCs( cx-1, cy, dx, dy, EVCs );

} else if( cx == dx && cy < dy ){ // north
EVCs[cx][cy+1][3] = 1;
AllowableEVCs( cx, cy+1, dx, dy, EVCs );

} else if( cx == dx && cy > dy ){ // south
EVCs[cx][cy-1][2] = 1;
AllowableEVCs( cx, cy-1, dx, dy, EVCs );

} else if( cx>dx && cy>dy ){ // north-west
EVCs[cx-1][cy][0] = 1;
AllowableEVCs( cx-1, cy, dx, dy, EVCs );
AllowableEVCs( cx, cy-1, dx, dy, EVCs );

} else if( cx>dx && cy<dy ){ // south-west
EVCs[cx-1][cy][0] = 1;
AllowableEVCs( cx-1, cy, dx, dy, EVCs );
AllowableEVCs( cx, cy+1, dx, dy, EVCs );

} else if( cx<dx && cy>dy ){ // north-east
EVCs[cx+1][cy][1] = 1;
AllowableEVCs( cx+1, cy, dx, dy, EVCs );
AllowableEVCs( cx, cy-1, dx, dy, EVCs );

} else if( cx<dx && cy<dy ){ // south-east  
EVCs[cx+1][cy][1] = 1;
AllowableEVCs( cx+1, cy, dx, dy, EVCs );
AllowableEVCs( cx, cy+1, dx, dy, EVCs );

}
}

Fig. 4. The AllowableEVCs algorithm. The initial value of
EVCs is 0s. cx and cy are X and Y positions of the current
node. dx and dy are X and Y positions of the destination.
Port encoding: East: 0, West: 1, South: 2, North: 3.

9.9% and 10.4% over PSF, DOR, west-first, negative-
first and odd-even, respectively.

4 ALLOWABLE ESCAPE VCS (EVCS)
In Sec. 5.2 of the main file, we leverage a recursive al-
gorithm to calculate the allowable escape VCs (EVCs)
for synthetic traffic patterns. Here, we present the
algorithm, as shown in Fig. 4.

This algorithm recursively calculates all allowable
EVCs for a packet sent from node (cx, cy) to node
(dx, dy). At each step, the algorithm marks the escape
VC at the port which adheres to DOR as allowable by
setting the corresponding element of EV Cs array to
‘1’. Fully adaptive routing may forward the packet to
all neighbors inside the minimum quadrant defined
by the current position and the destination. At the
next step, the algorithm continues by using these
neighbors as current positions. For example, if cx>dx
and cy>dy, then the destination is at the north-west
quadrant of current position. The EVC at the east
input port of node (cx− 1, cy) is allowed to be used.
The packet may move to node (cx − 1, cy) and node
(cx, cy−1), and the algorithm continues by using them
as current positions at the next step. By considering
all source and destination pairs defined in the traffic
pattern, we get the allowable EVCs in a 4×4 mesh
network, as shown in TABLE 4 of the main file.

5 SENSITIVITY TO NETWORK DESIGN

This section performs sensitivity study for network
configuration parameters. Except for the analyzed

TABLE 2. Baseline configuration and variations.
Characteristic Baseline Variations
Topology (mesh) 4×4 8×8
VCs/VN 2 4
Flit buffers/VC 4 3, 2
SFP ratio 80% 60%, 40%

parameter, other parameters are the same as the base-
line configuration shown in TABLE 2. This section
makes comparison with the performance of baseline
configuration shown in the main file. To improve the
readability, we reproduce Fig. 10 of the main file, as
shown in Fig. 5 here.

5.1 Single-flit Packet Ratio (SFP ratio)
Single-flit packet (SFP) ratios depend on the cache
hierarchy, the coherence protocol and the application.
To test the robustness of our design, we evaluate
60% and 40% SFP ratios for transpose-1. As shown
in Fig. 6, DOR, west-first, negative-first and odd-even
exhibit nearly identical performance for different SFP
ratios. The aggressive VC re-allocation makes their
performance insensitive to the packet length distri-
bution. However, the performance of PSF and FULLY
improves as the SFP ratio shrinks. Their conservative
VC re-allocation favors long packets which utilize
buffers more efficiently than short ones. As the SFP ra-
tio decreases, so does the possibility of applying WPF.
Thus, the performance gap between FULLY+WA and
FULLY (or PSF+WA and PSF) decreases. However,
even with a 40% SFP ratio, FULLY+WA achieves a
53.1% saturation throughput gain over FULLY.

5.2 VC Depth
Different NoCs may use different VC depths. To test
the flexibility, we evaluate 3- and 2-flit deep VCs
with bit reverse traffic. Comparing 4 flits/VC (Fig. 5a)
and 3 flits/VC (Fig. 7a), DOR and west-first perform
similarly, while FULLY and PSF show minor perfor-
mance degradation. DOR and west-first offer no or
very limited adaptiveness which is a major factor in
their performance. Thus, reducing the VC depth from
4 to 3 has little effect. The bottleneck of FULLY and
PSF is conservative VC re-allocation. Considering the
majority of short packets, reducing the VC depth from
4 to 3 only affects performance slightly. However, the
performance of FULLY+WA, PSF+WA, odd-even and
negative-first declines with shallower VCs since the
VC depth is their bottleneck. Shallow VCs increase the
number of hops that a blocked packet spans, which
increases the effect of chained blocking [23].

Comparing 3 and 2 flits/VC, performance drops for
all algorithms. FULLY outperforms DOR and west-
first with 2 flits/VC. As the VC depth decreases,
the difference between aggressive and conservative
VC re-allocation declines; FULLY gets a relative gain.
Even with 2 flits/VC, WPF still optimizes the perfor-
mance since short packets dominate traffic. In Fig. 7b,
FULLY+WA performs 46.2% better than FULLY. Novel
flow control leads to superior performance even with
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(a) Bit reverse.
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(b) Transpose-1.
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(c) Transpose-2.
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(d) Hotspot.
Fig. 5. Routing algorithm performance for the baseline configuration (A reproduction of Fig. 10 in the main file).
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(a) 60% SFP ratio
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(b) 40% SFP ratio.
Fig. 6. The performance with different SFP ratios for
transpose-1 traffic.
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(a) 3-flit deep VCs.
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(b) 2-flit deep VCs.
Fig. 7. The performance with different VC depths for bit
reverse traffic.

half of the buffers, which enables the design of a
low-cost NoC. With 2 flits/VC (Fig. 7b), FULLY+WA’s
saturation throughput is 40.3%, while FULLY’s satu-
ration throughput is 32.3% with 4 flits/VC (Fig. 5a).
The same is true for PSF+WA.

5.3 VC Count

Semiconductor scaling and coherence protocol op-
timization may allow a VN to be configured with
more VCs. Comparing 4 VCs/VN (Fig. 8a) and 2
VCs/VN (Fig. 5a), the performance of DOR, west-first
and odd-even is almost the same. These algorithms
offer limited adaptiveness; although additional results
show increasing the VC count from 1 to 2 improves
performance, increasing the VC count from 2 to 4
cannot reduce the physical path congestion and does
not further improve performance. Negative-first has
a modest gain. In contrast, PSF, FULLY, PSF+WA
and FULLY+WA all have significant gains; more VCs
mitigate the negative effects of conservative VC re-
allocation. The gap between PSF and FULLY (or PS-
F+WA and FULLY+WA) decreases with more VCs;
more VCs reduce the possibility of using escape VCs
in PSF which forces packets to lose adaptivity.
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Fig. 8. The performance with 4 VCs/VN.

Fig. 8b shows the performance of transpose-2,
which is a favorable pattern for negative-first. FUL-
LY+WA performs similarly to negative-first; with
more VCs, the effect of restricting the use of escape
VCs in FULLY+WA declines. More VCs reduces the
gap between FULLY and FULLY+WA (or PSF and
PSF+WA), since the possibility of facing empty VCs
increases. Furthermore, using WPF to forward entire
packets into non-empty VCs may result in Head-
of-Line (HoL) blocking [4] and limit FULLY+WA
(or PSF+WA). Nevertheless, FULLY+WA still shows
an average 19.8% gain over FULLY for these two
patterns with 4 VCs; providing high VC utilization
outweighs the negative effect of HoL blocking in a
VC-limited NoC. Similar to VC depth, with only 2
VCs, FULLY+WA performs similarly or even better
(Figs 5a and 5b) than FULLY with 4 VCs (Fig. 8). WPF
provides similar or higher performance with half as
many VCs.

5.4 Network Size

Fig. 9 explores the scalability for an 8×8 mesh. The
trends across different algorithms are similar to the
4×4 mesh (Fig. 5). Communication is mostly deter-
mined by the traffic pattern. Since a larger network
leads to higher average hop counts [14], it puts more
pressure on VCs than a smaller one. Novel flow
control achieves more gains in a larger network.
The average improvement for these two patterns of
FULLY+WA over FULLY is 108.2%, while it is 93.1%
in a 4×4 mesh. As packets travel more hops in a
larger network, the possibility of entering an escape
VC increases. For PSF and PSF+WA, once the packet
enters an escape VC, it loses adaptivity in subsequent
hops. Therefore, the gap between FULLY+WA and
PSF+WA (or FULLY and PSF) increases with a larger
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Fig. 9. The performance for an 8×8 mesh network.

network; providing routing flexibility becomes more
important with a larger network.

6 FURTHER DISCUSSION

6.1 Packet Length
Packet lengths for cache coherence traffic typically
have a bimodal distribution. However, optimizations
such as cache line compression [5], [11] create packet
distributions that are not bimodal; the packet length
may be distributed between a single flit and the max-
imum flits per packet supported by the architecture.
To apply WPF on such NoCs, more downstream VC
status registers are needed for the first-stage arbiters
shown in Fig. 9 of the main file. An important consid-
eration is how many different packet lengths to apply
WPF to. The longest packet length that can use WPF
is one flit shorter than the VC depth. Designers can
ignore long packets, since there are few opportunities
to apply WPF on long packets. This tradeoff depends
on the packet length distribution, VC depth, hardware
overhead and the expected performance gain.

6.2 DAMQ and Hybrid Flow Controls
Previous research proposed dynamically allocated
multi-queue (DAMQ) designs for both off-chip [22]
and on-chip networks [17], [26] to improve VC utiliza-
tion. Even with DAMQ, allowing multiple packets to
reside in one VC may lead to deadlock similar to Fig. 3
of the main file for fully adaptive routing in wormhole
networks. WPF is complimentary to DAMQ as it
ensures deadlock-freedom. WPF can be viewed as a
hybrid mechanism combining wormhole and VCT.
There are some hybrid flow controls [13], [19], [20].
Hybrid switching [19] and buffered wormhole [20]
remove a blocked packet to release held physical
channels by using either the processing node mem-
ory [19] or a central buffer [20]. Layered switching
divides a long packet into several groups and tries to
keep SA grants for a whole group [13]. Our research
is different; we focus on improving the performance
while avoiding deadlock.
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