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Abstract

Distributed Hash Tables (DHTs) such as Chord and Kademlia offer an efficient solution for locat-
ing resources in peer-to-peer networks. Unfortunately, malicious nodes along a lookup path can easily
subvert such queries. Several systems, including Halo (based on Chord) and Kad (based on Kademlia),
mitigate such attacks by using a combination of redundancy and diversity in the paths taken by redun-
dant lookup queries. Much greater assurance can be provided, however. We describe Reputation for
Directory Services (ReDS), a framework for enhancing lookups in redundant DHTs by tracking how
well other nodes service lookup requests. We describe how the ReDS technique can be applied to vir-
tually any redundant DHT including Halo and Kad. We also study the collaborative identification and
removal of bad lookup paths in a way that does not rely on the sharing of reputation scores — we show
that such sharing is vulnerable to attacks that make it unsuitable for most applications of ReDS. Through
extensive simulations we demonstrate that ReDS improves lookup success rates for Halo and Kad by
80% or more over a wide range of conditions, even against strategic attackers attempting to game their
reputation scores and in the presence of node churn.
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1 Introduction
Over the past several years peer-to-peer (P2P) systems have been gaining popularity and mainstream ac-
ceptance. For example, Skype, the popular P2P-based system, had 42 million concurrent online users in
September 2012.1 BitTorrent,2 Akamai,3 and even botnets are large P2P systems that must achieve decen-
tralized coordination to locate resources. For example, in Skype one must be able to locate the current IP
addresses of contacts, and in a distributed storage system one must be able to locate the IP address of a
node hosting a particular file. One class of solutions called distributed hash tables (DHTs) maps resources
onto nodes in the P2P network and provides a put-get abstraction where resources can be stored (put) in the
network and subsequently retrieved (get). The key idea in DHTs is that each peer maintains a routing table
with only a few entries and yet any resource can be located by routing queries through a few nodes, where
“few” usually corresponds to a number logarithmic in the number of nodes in the network. Chord [18],
CAN [15], Pastry [16], and Kademlia [10] are examples of DHTs with these properties.

DHTs provide several important properties, such as scalable location of nodes and services, but do not
protect against malicious peers manipulating the resource locate operations (lookups). For example, an
attacker may want to undermine the system’s operations by providing fake lookup results for non-existent
peers or to make his own peers the end point of lookups so as to pollute the network’s files and services.
Such an attacker can easily manipulate much of the system’s activity. In Chord, for example, about 10%
of malicious nodes in the network can subvert more than 50% of the searches [9]. Halo is a system that
exploits the deterministic mapping of routing-table entries to nodes in Chord to provide a ‘high-assurance
locate’ in Chord through redundant searches [9]. Several other DHTs such as Salsa [12], Cyclone [2], and
NISAN [14] also utilize redundant searching to tolerate malicious nodes in the network. Kad (based on
Kademlia) is an example of a non-deterministic DHT that also incorporates redundancy into the protocol;
routing-table entries are a function of nodes encountered in the system and are not easily predictable.

While all these techniques are able to improve the success of lookups by a combination of redundancy
and diversity of the redundant lookup paths, they still allow a non-trivial failure rate while incurring substan-
tial overhead for redundancy. For example, Halo still has a failure rate as high as 5–6% for 20% malicious
nodes utilizing a logarithmic number of redundant lookups in the size of the network (e.g., 13 lookups in
a network of 10,000 nodes). We show that Kad has a non-trivial failure rate of 17–21% with only 10% of
malicious nodes even with a high level of redundancy. In this paper we investigate an approach to improve
DHT lookups in malicious environments. The central observation of our technique is a simple one: if a
node uses redundant lookups and tracks which nodes gave accurate results, then it can use this information
to improve the success rate of lookups that traverse it.

Our design approach, Reputation for Directory Services (ReDS), includes two novel features. First,
the querying node uses the redundancy in the lookups and structure of the DHT to infer the honesty and
reliability of nodes throughout the lookup path, even though direct observation is not possible. Second, the
peers employ ‘collaborative boosting’ in which each node involved in the lookup routing can improve the
success of the route by picking the next hop based on a form of constrained local boosting (so as not to
inflate the path length significantly).

We note that quite a bit of work has been done on P2P reputation systems (Hoffman et al. provide
an extensive survey [8]). However, this work mainly addresses the ‘free rider problem’ in which some
users unfairly use resources provided by peers without providing any resources themselves. This issue
is orthogonal to our work, which instead leverages reputation to detect malicious behavior that aims to
undermine DHT routing. While we are able to leverage some of the findings of other work on reputation

1http://skypenumerology.blogspot.com/
2http://www.bittorrent.com/
3Akamai NetSession Interface http://www.akamai.com/html/misc/akamai_client/netsession_

interface_overview.html
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systems, identifying malicious behavior in the DHT routing layer presents unique design challenges that we
address.

Contributions. Preliminary results on ReDS were published as a work-in-progress paper examining
ReDS in the context of Salsa [21] and a workshop paper examining Halo-ReDS under a limited adversary
model [1]. Here we make the following additional significant contributions:

• We show that reputation can be applied to a variety of redundant DHT-based directory services to improve
lookup success rates. We specifically describe Halo-ReDS and Kad-ReDS, which are implementations for
Halo (a deterministic DHT) and Kad (a non-deterministic DHT).
• Building on our approach of using a reputation tree to make statistical inferences about where malicious

nodes reside in the DHT, we show how nodes along a lookup path can make use of their local reputation
trees for collaborative boosting. We show a dramatic improvement in success rates for this mode.
• Through analysis and simulation we study the behavior of Halo-ReDS and Kad-ReDS under adaptive

adversaries who attack only some fraction of the time in an effort to game the reputation system. In
particular we show that attackers are limited to attacking at a low, ineffective rate.
• We evaluate the performance of Halo-ReDS and Kad-ReDS under churn and show that while adaptive

inference suffers with churn, collaborative ReDS is more robust.
• We examine the possibility of sharing reputation scores and show how such sharing can be attacked though

slandering and self-promotion attacks. Further, we identify a new ‘use-based’ attack on shared reputation
that would greatly undermine most ReDS systems, leading us to recommend using only first-hand obser-
vations.

2 System and Attack Models
2.1 System model

DHTs support a distributed implementation of put and get operations, where objects are placed on nodes
in the peer-to-peer network and are indexed by keys. By using operations such as put(key, object) and
get(key), objects can be inserted into and retrieved from the DHT. In both operations, the DHT must first
map the key to a particular owner node o in the system. Once owner o has been located, the resource is
inserted or retrieved from o. We describe the rest of the system model in the context of Halo and Kad.

Halo and Chord. In Chord, nodes are assigned to a virtual address space organized in a ring. For example,
the address space could correspond to the output of SHA-1, and the next address after 2160 − 1 is 0 again.
IDs can be issued to nodes via a central authority along with a certificate [4]. Resources such as files can
be assigned virtual addresses (the resource’s key) based on the hash values of their filenames. A resource’s
owner is the clockwise-closest in the virtual address space, i.e. the node with the lowest ID greater than the
target ID, modulo the size of the ID space. Each node maintains a routing table of nodes called “fingers”,
which are at exponentially increasing distances from itself. When a node receives a locate request for a
target key t, it redirects the query to the closest finger to t. This process results in efficient lookups with
O(log n) hops requiring only O(log n) storage at each node, where n is the total number of nodes in the
DHT.

While Chord has good stability properties under independent node failures, lookups are easily subverted.
Simply adding redundancy to lookups does not help very much, as lookups often converge to the same
nodes. Halo makes the observation that each node v occurs inO(log n) other nodes’ finger tables [9]. These
nodes are called the “knuckles” of v. Searching for those knuckles instead of the actual target effectively
disentangles the redundant searches. Note that because of the clockwise-closest relation, if a redundant
search yields multiple candidates for the target’s owner, then the closest one (that is alive) is picked. Thus,
as long as one of the lookups in a redundant search returns the correct answer, then the correct owner is
obtained.
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Kad. Kad is a widely deployed DHT based on Kademlia [10]. Distances in the Kad ID space are measured
using the XOR of two IDs and taking the output as an integer. In Kad, each node maintains a routing table
comprising of ‘k-buckets’ for each exponentially increasing interval of ID space from the node. Each k-
bucket includes up to k nodes from the corresponding ID range and are dynamically populated by new nodes
encountered in each put-get operation, resulting in the non-determinism of routing table entries as compared
to other deterministic DHTs such as Chord. More specifically, the j-th k-bucket of a node contains learned
nodes for which it shares the first j bits of the ID and has a different j + 1-st bit. If a k-bucket is full, then
the least recently seen node is evicted to make space for a new node.

Kad lookups proceed iteratively, where each node contacts α nodes at each step and receives the β
closest results from each of them. A short list of k nodes is maintained by the querying node and the list is
updated with the α×β results returned at every step. At the next step the querying node contacts the closest
α unqueried nodes drawn from the short list. Kad ensures O(log n) lookup steps by moving at least one bit
closer to the target ID with each iteration.

In Kad, a ‘resource’ is stored on r different nodes (called replica roots) around the key such that their
Kad ID falls within a certain distance called search tolerance, δ. Typically r = 10 and δ is such that Kad ID
of a replica root agrees at least in the first 8 bits with the key.

2.2 Attack model

Malicious nodes in the system may attempt to subvert lookup operations, e.g., by dropping or misdirecting
lookups. The adversary’s goal could be to cause peers to use attacker-controlled nodes, e.g., as a way to
spread disinformation, spam, or malware. Adversaries may also seek to censor access to content through
denial of service or degradation of service attacks in which lookup results lead to invalid or incorrect nodes.
The attacker’s most effective strategy to achieve these ends in a P2P network is to control a large number
of peers in the system (or virtual peers by controlling its location in the address space). To prevent the
number of malicious peers from growing without bound, social-network-based anti-Sybil techniques such
as SybilInfer [5] and SybilLimit [23] may be used. However, we expect that the attacker may be able to
inject a constant fraction of the total number of peers into the network without detection through social
engineering.

Such an attacker would both try to manipulate lookup results as well as try to deceive any attempt at
using reputation or malicious node detection. Thus, our system design has to take both types of attacks
into account. We assume lookup operations going through a malicious node will be manipulated by the
malicious node to map the key to the closest malicious node instead of the actual owner. Furthermore, we
also assume the attackers can coordinate and choose to attack only a fraction of the time to evade detection.
Thus, for an attack rate a (measured as a probability), adversaries will compromise a particular lookup(t)
for target t with probability a. We assume powerful adversaries who can exchange information in real time
and flag t as a target that should be attacked or not.

A standard assumption we make in our analysis is that malicious nodes cannot control their placement
in the ring and thus malicious nodes are distributed uniformly at random in the address space. The use
of a SHA-1 hash can achieve such a distribution as long as the attackers cannot control the value of their
hashed identity and cannot own a large number of identities. Thus, we must assume that all peers have some
identifier (such as a PKI credential) issued by a trusted provider. Furthermore, peers can verify the virtual
addresses of nodes by checking signatures, e.g., Myrmic [20] provides such assurances for Kademlia.

For Halo we assume that ‘control’ lookups for maintaining routing tables use high enough redundancy
to ensure minimal chances of attackers gaining any extra influence in the system. Kad’s routing tables are
updated during regular lookup operations, and we show how our approach effectively limits routing table
pollution.
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3 ReDS Design
We propose to augment DHTs like Halo and Kad so that nodes can utilize the successes and failures of in-
dividual lookups in a redundant search to infer and avoid malicious nodes in the DHT. ReDS can then better
direct searches in two steps: 1) the originator of a lookup picks the best possible start node(s) (‘local boost-
ing’) and 2) each node involved in the lookup process can avoid malicious fingers by selecting alternative
fingers (‘collaborative boosting’).

3.1 Halo-ReDS

In previous work, we describe a local boosting algorithm called A-Boost (for adaptive boost) [1], where
local observations are used to predict lookup performance as far along an entire lookup path as possible.
The general idea is to attempt to infer the locations of malicious nodes in the path, and A-Boost makes
such determinations based on the amount of reputation information collected for that path. The entire set of
reputation information is called the reputation tree. We refer the reader to the paper for more information
on A-Boost [1].

We now describe a simple technique by which nodes can improve the success of a lookup by collabora-
tively using their locally collected reputation scores to improve finger selection for the next hop. In Kad we
already expect to have multiple fingers in each k-bucket. For Halo-ReDS we augment Halo nodes by adding
the concept of k-buckets, one for each location where a finger would be in the Chord ring. In particular the
k-bucket for a given finger’s key (v+2i) includes that key’s owner (the original Chord finger) and the k− 1
predecessors of that node. For collaborative boosting each node maintains a reputation tree, as in A-Boost.
When the closest finger for a target key t is requested by node u, u checks the A-Boost scores of the nodes
in the k-bucket closest to t and selects the best finger in the bucket for that request. Thus, the failure rate at
each hop in the lookup is expected to drop significantly because all nodes in the k-bucket must be malicious
to subvert a lookup.

In a Chord lookup the lookup locates the predecessor first and asks it to return the successor (the target
node). Thus, a malicious predecessor can still subvert a lookup for its successor because it controls all
lookups for that successor. To alleviate this problem, we assume that each node knows k′ additional succes-
sors (k′+1 in total) so that the last hop is short-circuited as long as the lookup reaches the k′-vicinity of the
target.

Another issue in Halo is that selecting the predecessors of a finger for a k-bucket means that the lookup
may not get as close to the target at each hop, thereby increasing the lookup cost. Since each hop may
regress by at most k nodes at each hop, the average number of nodes between the current hop and the target
node after hop i is at most n/2i−k/2i−1+2k. Therefore, assuming k < log n, we have that after O(log n)
hops, there are at most 2k + 1 nodes between the target and the current hop. As long as k′ ≥ 2k + 1,
short-circuiting means that this will take one additional hop compared to regular Chord. In our system, we
use k = 2 and k′ = 8, so for 1,000 nodes this constraint is satisfied (and thus for larger networks too). We
experimentally validated this analysis and found that for a 1,000-node network, path lengths for Halo-ReDS
increased by only 0.15 hops on average compared to regular Halo.

3.2 Kad-ReDS.

Because of the non-deterministic nature of Kad and the dynamism of k-bucket entries, we follow a different
approach for maintaining reputation in Kad-ReDS as described next.

Building the lookup graph. In Kad-ReDS the querying node keeps track of the lookup paths that are used
to locate the target. As a lookup operation proceeds, the querying node builds a lookup graph with itself as
a vertex as shown in Figure 1. For each of the β results, a directed edge is constructed to the intermediate
queried node returning that result. We note that duplicate nodes can be returned by different queried nodes
during a lookup step, e.g., β10 in Figure 1 is returned by two different queried nodes α22 and α25. Cycles
are also possible, as a node may return an ancestor. The querying node incrementally builds such a graph
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Algorithm 1: Building the lookup graph for Kad-ReDS
input : q : Querying node

i : Current lookup step
αi : a queried node at step i
Nα(1 : β) : β result nodes returned by αi
Gi−1〈V,E〉 : Lookup graph at step (i− 1)

output : Gi〈V,E〉 at step i

if i = 0 then
Add vertices q and αi in V (Gi−1);
Add a directed edge e = (αi, q), from αi to q in E(Gi−1);

end

for each node βj in Nα do
if βj is not a vertex in Gi−1 then

Add vertex βj in V (Gi−1);
end
Add a directed edge e = (βi, αi) from βi to αi in E(Gi−1);

end

by using Algorithm 1 at each step of the lookup. For example, in the next iteration the querying node q45
selects the closest α nodes β10, β12, and β14 to expand next. We also note that the algorithm is initialized by
constructing α edges toward the querying node from each of the α nodes it selects to query at the first step
of the lookup.

Applying reputation scores. After the search terminates with one or more replica roots being identified,
we mark each lookup path as being successful if it terminated in finding the closest replica root to the key.
This is done by traversing the lookup graph in depth-first search order as described in Algorithm 2, with
the closest replica root as the starting node u. Algorithm 2 avoids cycles by keeping track of nodes visited
during the traversal. Each finger appearing on a successful path is then credited +1 to its reputation score
since it was involved in locating the closest correct replica root. Other nodes in the graph are not credited.
For example in Figure 1, reputation score of the contacts β10 and α25 in the k-bucket of q45 are increased
by 2 as two successful paths go through these nodes. Our rationale for locating the closest replica root is to
make Kad-ReDS robust against attackers who may attempt to insert a replica root close to the target key. By
crediting nodes for locating the closest replica root, the attacker is forced to insert itself at a location closer
than any other replica root, which is significantly harder.

Using the reputation scores. During the lookup process, the querying node uses its local reputation
information to pick the best α nodes from the appropriate k-bucket. Each of the queried nodes in turn
collaborates by providing the best β contacts from the appropriate k-bucket using their reputation scores
from first-hand observations. Thus, at each step the basic Kad algorithm of cutting the remaining distance
in half is honored, except that a better choice is made while picking nodes from within the k-buckets. We
also modified the bucket eviction policy in which regular Kad replaces the least-seen node when a new node
is being added to an already full k-bucket. Kad-ReDS instead replaces the node with the lowest reputation
score, breaking ties by replacing the least seen of the least reputed nodes.

Attack model under Kad-ReDS. The k-bucket population can change dynamically in Kad as nodes are
encountered during the lookup process. To model the most effective attack possible, we make the following
change to the attack model for Kad. When the attacker chooses not to attack a query, he attempts to provide
the correct closest replica root at the end of the lookup to maximize his reputation scores. In addition, he
attempts to pollute routing tables with malicious nodes during the lookup process. In particular, a malicious
node knows about all of the other malicious nodes and can provide them as answers to a query. He does so
only as long as they are at least one bit closer in the XOR distance to the target, since more distant malicious
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q45

α27 α22 α25

β15 β12 β10 β14

β30 r∗4 r7

Figure 1: Lookup graph for a lookup initiated by node q45 for key . Subscripts denote the XOR distance of
the node from the lookup target key , i.e. XOR(q45, key) = 45. Edges from a node are directed toward the
node from which they are returned during the lookup process. Three successful paths from a correct replica
root r4 are shown in bold.

nodes will be ignored. This approach allows the attacker nodes to be seen and possibly selected for being
added to k-buckets more than would be expected. At the same time, malicious nodes can still provide a
correct lookup result upon termination of the lookup process, ensuring a positive effect on reputation.

3.3 Handling Churn

In our simulations (see Section 4) we evaluate ReDS under a dynamic network with churn. In large P2P
systems peers generally leave and rejoin the system at irregular intervals. This churn makes relying on
predictions based on past behavior inaccurate at larger time scales. The attacker can also modulate the
behavior of his peers to manipulate the reputation system. Several techniques can be used to mitigate this
risk.

We explored techniques such as exponentially weighted moving average (EWMA) to cope with churn,
but, as we show in Section 4.2, it is effective to update the scores with equal weight to older and newer
results. EWMA is still recommended to deal with oscillation attacks, as described in Section 5.1. We also
considered various exploitation-versus-exploration tradeoffs, but deterministically picking the node with
the highest A-Boost score provided the best results. Since the finger and its predecessor have the same
initial reputation scores, one of them will be picked at random at the beginning. If the selected node loses
reputation because of failed searches, then the other node is picked. Eventually, each node is explored if one
or both display failures, and thus we found both exploitation and exploration taking place on an as-needed
basis. Our findings for exploration validate analysis from Section 5.

3.4 Shared reputation scores

An intuitive idea for improving ReDS is for peers to share reputation information with each other. Shared
reputation is beneficial for and even a central part of many reputation systems in the context of free-rider
prevention [8]. We thus explore how shared reputation could work in ReDS and how well it would work.

Unlike reputation systems in many contexts, ReDS peers cannot make use of reputation information
shared by arbitrarily selected peers. They can only use reputation from nodes who share the same fingers.
We thus aim to identify and maintain a list of the nodes with shared fingers and regularly share reputation
information with them.

Specifically, we worked out a shared reputation scheme for Halo, which has deterministic finger selec-
tion. We expect that shared reputation in Kad will be significantly harder, since k-buckets are populated
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Algorithm 2: UPDATING REPUTATION SCORE FOR KAD-REDS
UpdateReputation()
input : q : Querying node

G〈V,E〉 : Final lookup graph
u : A vertex in the graph G〈V,E〉
visited : List of visited nodes

output : Updated reputation scores of q’s k-bucket contacts

if u is in visited list then
return;

end

if u = q then
return;

end

increment by 1 the reputation score of k-bucket contact u of querying node q;
mark node u as visited ;

for each node v with an edge from u to v in G do
UpdateReputation(q, G, v);

end

opportunistically. As we show in our experiments and analysis, shared reputation is ineffective in the face
of malicious reputation sharing, and thus we do not attempt to devise a scheme for Kad. In the context of
Halo we can define two nodes that share the same finger f to be joint knuckles of each other for finger f . In
this approach each node maintains a list of joint knuckles for each of its fingers. The list can be maintained
by periodically performing the knuckle search on each finger, which is already a Halo primitive. The node
then incorporates the scores of these joint knuckles into a score for its finger. We divide the scheme into two
phases: (I) sharing reputation scores with joint knuckles and (II) calculating the shared reputation scores.

Phase I: Sharing. We divide time into a series of epochs based on the assumption of loosely synchronized
clocks (e.g. with NTP). At the beginning of each epoch ti, a node compares its first-hand reputation score
with its score from epoch ti−1. If the score has changed, then it broadcasts the updated score to its joint
knuckles.

Phase II: Calculating reputation. After receiving all updated scores, the node can calculate the shared
reputation score for each of its fingers. Taking the average reputation score is not robust to self-promotion
and slandering attacks. Wagner goes into great detail on aggregation methods that are suitable for security
applications, finding that median is a strong solution [19]. We note, however, that median always fails
when the number of attackers is more than 50%. Having so many attackers among one’s joint knuckles is
possible due to the small sample size. Since we have our own reputation information collected from local
observations, we can do better.

We now describe a novel scheme for reputation aggregation called Drop-off, in which scores close to the
node’s own local scores are more likely to be considered for a final aggregation step. The key assumption in
this approach is that the score from first-hand observations is a better approximation of the correct score than
scores from slandering or self-promoting attackers. We aim to balance between accepting and hopefully
gaining from others’ reputation information (which may be different from our own) while trying to limit
vulnerability from slandering and self-promotion attacks.

Let rk(f) be the first-hand reputation score of finger f as measured by knuckle k. k receives a reputation
score for f from joint knuckle j, which is rj(f). k then calculates w = 1−|rj(f)−rk(f)| and places rj(f)
into a scoring bin for f with probability w. Intuitively, the further j’s score is from k’s, the less likely it is
to be included in the scoring bin. k’s shared reputation score for j for the current epoch is the median of the
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scores in the scoring bin.

Slandering and Self-Promotion. Slandering and self-promotion attacks are the most prominent attacks
against a shared reputation system, aiming to make a targeted peer select malicious fingers for lookup
operations. To show the value of Drop-off, we must show its resilience to these attacks.

We now derive an equation to estimate the expected score that the Drop-off method would provide.
Let k be the knukle of a finger f and let rk(f) be k’s reputation score for finger f based on first-hand
observations. For both slandering and self promotion attacks, let us assume that rm(f) is the reputation
score of f , received from the malicious knuckles and rh(f) is the reputation scores of f , received from
honest knuckles. Malicious scores are assumed to all be the same, as are honest scores, for simplicity of
analysis. Let nh be the number of k’s joint knuckles of f that are honest and nm be the number that are
malicious. Finally, let dh = |rh(f)−rk(f)| and dm = |rm(f)−rk(f)| be the differences between k’s score
and the scores from its honest and malicious joint knuckles, respectively. Based on the Drop-off algorithm,
(1 − dh) is the probability of selecting the score from an honest knuckle to calculate the median of the
shared scores. Letting p be the probability that the number of honest nodes selected is more than the number
malicious nodes selected, we have:

p =

nh∑
i=1

i−1∑
j=0

(
nh
i

)
(1− dh)idnh−i

h

(
nm
j

)
(1− dm)

j
dnm−j
m

Let q be the probability that the number of malicious nodes and honest nodes selected are the same,
meaning that the median will be calculated as rh(f)+rm(f)

2 . Assuming that at least one honest node and
malicious node are selected, and letting n′ = min(nm, nh), we get:

q =

n′∑
i=1

(
nm
i

)
(1− dm)idnm−i

m

(
nh
i

)
(1− dh)idnh−i

h

In total, the expected Drop-off score E[sδ] is given by:

E[sδ] = prh(f) + q
rh(f) + rm(f)

2
+ (1− p− q)rm(f).

To illustrate the effect of the Drop-off approach, let us consider the following simple numerical example
of a self-promotion attack against a knuckle k. Suppose that for calculating the score of a malicious finger
f , k finds 11 joint knuckles, of which six are attackers. Let us say that the “true” reputation score for f is 0.1
(only 10% of the searches through it will succeed), while k’s estimated score from first-hand observations
is currently 0.3.

Assume for simplicity that all six attackers claim that their reputation score for f is 1.0, while all five
honest nodes report a score of 0.1 for f . The average score is 0.59, which is much higher than the true
score. The median has reached the breakdown point, since more than half of the nodes are malicious; the
median score is 1.0. For Drop-off, we first must examine the population of the bucket. The expected number
of honest nodes in the bucket is four, while the expected number of malicious nodes is 1.8. In 88% of the
cases, the honest nodes form a majority of the bucket and the Drop-off score is 0.1. The overall expected
Drop-off score is 0.17.

The system works similarly against slandering attacks. With this approach, the Drop-off scheme pro-
vides much better scores than taking the average. It also provides a way to avoid the breakdown point
that the median faces against a majority of attackers as joint knuckles. The simulation results presented
in Section 4.7 bear out our analytical findings that Drop-off is a novel improvement in calculating shared
reputation scores over other techniques. However, they also show only limited benefits of sharing in ReDS.
Further, we present an attack on shared reputation for ReDS in Section 5.3.
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4 Experimental Evaluation
We now present results from extensive simulations of Halo-ReDS and Kad-ReDS. We first describe our
experimental setup, and then we present the simulation results.

4.1 Experimental setup

We built simulators for both Halo-ReDS and Kad-ReDS in Java. Each simulator includes the basic lookup
mechanism of the network,4 the A-Boost reputation tree for each node, collaborative boosting, a model for
node churn, and attacker models specific to the network (see Section 2.2).

Setup for Halo-ReDS. All our simulations for Halo-ReDS were run for networks with 1000 nodes.5 In our
experiments we use a redundancy of 10 as suggested for regular Halo with 1000 nodes in the network.

Setup for Kad-ReDS. Most of our simulations for Kad-ReDS were run for networks with 10, 000 nodes.
The largest simulation was run for 100,000 nodes. In Kad and Kad-ReDS, we initialize the system with
nl lookups per node to populate the k-buckets. The difference between collaborative boosting and A-boost
is in the selection process of the β nodes returned by an intermediate queried node during every step of a
lookup process, as described in Section 3.2. Also as discussed in Section 3.2, we impose an attacker model
on Kad that includes routing table pollution, since routing tables are populated dynamically, and we modify
the bucket replacement policy to replace low reputation nodes. Kad has inherent redundancy controlled
by parameters k and α as described in Section 2.1. We used k=10 and α=7 redundancy for most of the
simulations.

Churn. To evaluate how the network handles node churn, we add and remove nodes probabilistically after
each lookup (which are treated as atomic operations). The probability of a given node joining or leaving
after a given lookup is set based on the intended churn rate for that simulation run. For example, in a
simulation with n = 1000 nodes, a colluding fraction of c = 20%, l = 250 training lookups, and a churn
rate of r = 25% over the whole simulation (i.e., in a network with 1000 nodes, on average 250 nodes leave
the network and 250 new nodes join the network over the course of the simulation), the probabilities for a
single node are pleave = pjoin = 0.00125, calculated as

p =
1

l·(1−c)·n
r·n

=
r

l · (1− c)

where the (1− c) stems from the fact that only honest nodes do training lookups.

Nodes chosen for lookups. For all simulations, all honest nodes are selected in a random permutation as
querying nodes. For A-Boost and collaborative boosting, this helps to build the reputation trees of all the
honest nodes. For all ReDS simulations, nodes use deterministic maximum score as described in Section 3.3
to select fingers for routing.

Shared reputation. When shared reputation is used, all honest nodes are trained and queried similarly, with
the addition that nodes gather shared reputation information from joint knuckles when evaluating fingers.
Shared reputation is only available in Halo-ReDS, as described in Section 3.4.

Sampling. For some of the results in this section, we used a continuous simulation mode, in which the
network is sampled at regular intervals as the simulation progresses. This allowed us to monitor the evolution
of the failure rate as nodes learn more information about the network and as nodes join and leave the network.
To achieve this, we conduct alternating phases of nt training lookups, during which reputation scores are
set, and nl probing lookups, during which the failure rate of lookups was recorded. Probing can be thought

4We use “network” to indicate the underlying DHT, i.e. Chord or Kad.
5Larger networks can be simulated, but take an impractically long time to finish since each node in the network must build up

reputation information through lookups.
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Figure 2: Halo-ReDS (Continuous). The evolution of the failure rate. The failure rate appears to stabilize
around a steady-state value.

of as taking a snapshot of the state of the network. One set of training lookups and probing lookups is a slot.
We then took the failure rate achieved in the steady-state as the final result. Since continuous simulations
show changes over time, they represent a single (often very long) simulation run.

In other (non-continuous) simulations, we simply run a long training phase and then a single probing
phase at the end. Each data point in these graphs corresponds to an average value with standard error bars
from ni different instantiations of the DHT, where we typically set ni = 10.

4.2 Long-term performance under churn

One issue with reputation in a DHT is that as nodes join and leave the network (i.e., under node churn),
reputation information becomes stale. We also seek to determine whether ReDS performance reaches a
reliable steady state as churn continues to affect the system.

To these ends, we ran Halo-ReDS experiments in continuous simulation mode in which all nodes were
replaced on average once every 800 lookups (160 slots), i.e., by the time a node has done 800 lookups, on
average all nodes in the network have been replaced once. We then let this simulation continue for altogether
20,000 lookups per node (4,000 slots, 20 million total lookups), and calculate the average failure rate over
the latter half of the simulation (i.e., the latter 10,000 lookups or 2,000 slots) to get a steady state value for
the failure rate.

Figure 2 shows the results for c = 20% and attack rate a = 1.0. The failure rate quickly drops from a
relatively high rate of 7% early on, when no reputation information is available, to less than 1%. As churn
sets in, the failure rate increases until it reaches a steady state of around 1.5%, indicating that removing rep-
utation information for fingers that leave the network to a large extent solves the problem of stale reputation,
limiting the effect of node churn on ReDS.

4.3 Comparison of different Halo schemes.

We now compare the failure rates of different schemes (regular Halo, A-Boost, and collaborative boosting)
for different colluding rates using non-continuous simulation runs. Figure 3(a) shows the failure rate for
regular Halo, A-Boost, and collaborative boosting for an attack rate of a = 1.0. Due to node churn, A-Boost
performs roughly the same as regular Halo. Collaborative boosting, on the other hand, significantly reduces
the failure rate, down to 1.5% for a colluding fraction of 20%, an improvement of around 79% over regular
Halo and 73% over A-Boost.

The results for an attack rate of a = 0.5 are shown in Figure 3(b). Note that in such a scenario, there is
only half as much information available to the reputation system about attackers. The failure rate of regular
Halo is now approximately half of what it was for an attack rate of a = 1.0, because only half of all lookups
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(a) Attack rate a = 1.0. A-Boost is unable to improve over
regular Halo due to node churn. Collaborative boosting,
however, performs significantly better throughout.
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Figure 3: Halo. These graphs compare the failure rates for different Halo algorithms and colluding fractions.
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Figure 4: Kad (Continuous). Evolution of routing table pollution over the lifetime of an experiment with
c = 20% and a = 1.0. Regular Kad faces increasing pollution over time, while Kad-ReDS identifies and
removes malicious fingers from k-buckets.

are attacked. A-Boost is now performing worse than regular Halo. Collaborative boosting, on the other
hand, is again performing much better than regular Halo and A-Boost, reducing the failure rate by 40% and
50% compared to regular Halo and A-Boost, respectively.

A-Boost suffers under churn because it cannot easily adapt to changes beyond its fingers. The reputation
trees of nodes that did not see the change in their fingers’ fingers (and further down the tree) do not account
for these churn events. In collaborative boosting, however, nodes can rely on their fingers to adapt to
changes further down the lookup paths. This greatly improves the speed at which lookup paths are modified
to address churn events.

4.4 Performance of Kad-ReDS.

We now turn towards evaluating our design for Kad-ReDS. Our primary concerns in Kad-ReDS are whether
routing table pollution can be overcome, the general effectiveness of the design under different redundancy
parameters, and the performance of A-Boost and collaborative boosting under churn.

Routing Table Pollution. We find that routing table pollution is the most critical factor in Kad and Kad-
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Figure 5: Kad (No Churn). Failure rates with k = 10, a = 1.0, and varying α and c. Higher redundancy
(α) improves both systems, but Kad-ReDS is much better than Kad for α > 3.
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Figure 6: Kad. Failure rates of different Kad-ReDS schemes for different colluding fractions c. Both
A-Boost and Collaborative are much more effective than Kad.

ReDS performance. Thus, we first seek to understand the extent of routing table pollution these systems. To
this end, we perform a continuous time simulation with 10,000 nodes under r = 25% churn. Each of the
nodes performs 100 lookups in order to populate the k-buckets and build the reputation system. We divide
the simulation time into 400 slots of 2500 lookups each.

As discussed in Section 3.2, attacker nodes are attempting to get their own nodes into as many routing
tables as possible. In Kad-ReDS, however, attacker nodes with low reputation scores will have little chance
to be selected as the next hop contacts in future lookups and will eventually be kicked out of many k-buckets.
Figure 4 shows the pollution of routing tables over the training period for both regular Kad and Kad-ReDS.
We see that the reputation system is very effective, leading to a decreasing rate of pollution of routing tables
with Kad-ReDS, compared with increasing pollution rates in Kad.

Redundancy. We also explore the performance of Kad-ReDS in extensive non-continuous simulations.
First, we break down the performance in detail without churn. Figure 5 shows the effect of redundancy
on regular Kad without churn. We use an attack rate of a = 1.0. Figure 5(a) shows how the failure rate
decreases as the redundancy increases. However, even with a high redundancy of α = 10, the failure rate
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Figure 7: Halo-ReDS. The failure rate for different continuous attack rates, with c = 20%. Attacker
effectiveness peaks at less than a = 1.0.

when c = 10% is over 21%. Collaborative boosting dramatically improves the system. Figure 5(b) shows
failure rates for Kad-ReDS. With a lower redundancy of k = 10 and α = 5, the failure rate when c = 10%
is less than 1%. When c = 20%, k = 10, and α = 7, Kad has a 56% failure rate, while Kad-ReDS has a 3%
failure rate, a 95% decrease.

Comparison Under Churn. We now compare the performance of Kad and both collaborative and A-
boost versions of Kad-ReDS under churn. We present results for r = 25% churn, and k = 10 and α = 7
redundancy. Figure 6(a) shows the failure rate of regular Kad, A-Boost, and collaborative boosting for an
attack rate of a = 1.0. Performances of A-Boost and collaborative are almost the same (within the margin
of error), significantly reducing the failure rate of Kad down to 4-5% from 54% for c = 20%. By comparing
Figure 5(b) and Figure 6(a) we note that, the performance of Kad-ReDS with k=10 and α=7 degrades from
2-3% failure rate to 4-5% due to the 25% churn.

The results for an attack ratio of a = 0.0 are shown in Figure 6(b). In our attack model (Section 3.2),
the attackers are always trying to pollute the routing tables even when they are not attacking. Figure 6(b)
shows that failure rate slightly increases for 0% attack rate compared to the failure rate for 100% attack rate.
We will discuss more about our attack effectiveness in Section 4.5.

Over all scenarios we tested, we find that performance is improved by at least 93.4% with Kad-ReDS
compared to regular Kad.

4.5 Overall attack effectiveness.

In this experiment, we show the overall attack effectiveness when honest nodes use collaborative boosting.
The overall attack effectiveness is the maximum continuous failure rate that the attacker can achieve when
his nodes use a consistent attack rate, i.e. without jumping to 100% attack rate for evaluation. This allows
us to identify the best that the attacker could do consistently over time.

Halo. We first performed the experiment for both regular Halo and A-Boost. In regular Halo, the attack
effectiveness grows linearly with the attack rate as expected. In A-Boost, which is generally about as
effective as regular Halo under churn, the results are quite similar. For a = 0.1 attack rate, both systems had
less than 1% failure rate for c =5% to 20%. For a = 0.5 and c =20%, the failure rate is between 3.5% to
4.0%, and for a = 1.0 and c =20%, the failure rate is between 6.9% to 7.5%.

Figure 7 shows the overall attack effectiveness that the attacker can achieve against collaborative boost-
ing. We see that increasing the attack rate up to a point results in more lookup failures. Beyond a certain
attack rate, e.g., at 60% for a colluding fraction of c = 20%, the overall failure rate goes back down. Specif-
ically, for c = 20%, the effectiveness peaks at a 2.1% failure rate, for c = 15% at 0.7%, for c = 10% at
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Figure 8: Kad. Overall attack effectiveness with different attack rates. Attackers perform best by attacking
with low attack rates.

0.014%, and for c = 5% at a tiny fraction of a percent. Comparing the overall effectiveness of collaborative
boosting to A-Boost and regular Halo, ReDS reduces effective failure rates by up to 70% for c = 5%, 10%,
and by up to 80% for c = 15%, 20%. The reason for the peak in effectiveness is that with lower attack
rates, fewer lookups are being subverted, while with higher attack rates, the malicious nodes are more easily
detected by the reputation system and are no longer used.

Despite the ability of attackers to operate at a peak rate, we note that for colluding fractions of 20%
and below, no matter what rate the attackers attack with, collaborative boosting limits their effectiveness to
below 2.1%.

Kad. We similarly examine overall attack effectiveness in Kad. Figure 8 shows our simulation results. Kad
has very different results (Figure 8(a)) from Halo due to routing table pollution in the attacker model. In
particular, for Kad with colluding fraction c = 20%, the failure rate is 80% when the attack rate is a = 0.0
and drops to 54% when a = 1.0. The high failure rate with no manipulation of lookups (a = 0.0) is due to
the effectiveness of routing table pollution against Kad. As the attack rate increases, routing table pollution
decreases, which leads to the drop in failure rates. This occurs because, when the attacker manipulates
lookups, the results returned by attacker nodes are always attacker nodes and are generally further away
from the target than those returned by honest nodes. So whenever both attacker nodes and honest nodes
are responding to a lookup, the attacker nodes not only fail to manipulate the lookup result but also do
not appear in the later stages of the lookup process. This reduces the malicious nodes’ chances of being
opportunistically added to k-buckets.

In comparison, Figure 8(b) shows how effective Kad-ReDS is to counter the advanced route subversion
attack described in Section 3.2. The attackers gain a slight advantage with lower attack rates. The reputation
system, however, severely limits the growth of the average failure rate by curbing routing table pollution.
Kad-ReDS maintains a failure rate of no more than 5.1% for all attack rates with c = 20% or less, which is
a 93% improvement over Kad.

4.6 Comparison of subsearch failure reasons

Next, we analyzed how and when subsearches (these are the redundant lookups that together form the
overall search) fail under the different algorithms. A more indirect way of comparing different algorithms
and showing how the algorithms improve the failure rate is by looking at why searches fail.

Figure 9 shows the failure reasons for regular Halo in Figure 9(a) and collaborative boosting in Fig-
ure 9(c). For both regular Halo and collaborative boosting there are certain failures which cannot be avoided.
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(a) Regular Halo. As the colluding fraction increases,
more subsearches fail because of a bad node in the lookup
path.
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(b) A-Boost. Compared to regular Halo, A-Boost has fewer
failures due to a bad node in the path, showing that it is
indeed routing around malicious nodes.
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(c) Collaborative boosting. Even when the colluding frac-
tion increases, failures due to a bad node in the lookup path
increase much more slowly than in regular Halo or A-Boost.

Figure 9: Halo Failures. What percentage of subsearches fail and for what reasons.

For example, a knuckle may return the wrong successor node, as this is an inherent limitation of Chord’s
structure, where a knuckle for a particular exponential offset simply does not exist (25% of the time) [9].
Other failures, however, can be reduced using reputation information. The main failures for both regular
Halo and collaborative boosting are: a lookup hits a bad node in the lookup path, the starting node for a
knuckle-search was already a colluder, or the knuckle that was found was a colluding node. For regular
Halo as shown in Figure 9(a), the most important failure reason is that a lookup hits a colluder node in the
lookup path, which subverts the search. As the colluding fraction increases, the number of subsearches that
fail because of a bad node in the path increases as well. For collaborative boosting as shown in Figure 9(c),
it is clearly visible that collaborative boosting routes around bad nodes and thus has a much smaller per-
centage of subsearches that fail due to a colluding node in the lookup path. The percentage increases as the
colluding fraction increases, but it stays at a much smaller percentage compared to regular Halo. Likewise,
collaborative boosting is also more successful at picking good nodes as starting nodes by exploiting rep-
utation information. This shows that reputation information is indeed useful in avoiding bad nodes in the
lookup paths, by sending lookups through parts of the Chord network which are known to be reliable.
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Figure 10: Shared reputation (c = 10%) at best performs about the same than normal collaborative mode
(within the margin of error).

4.7 Effectiveness of shared reputation

In these experiments, we explore whether sharing reputation values can help lower the failure rate. We again
simulate malicious nodes attacking at a rate of 1.0, for different fractions of colluding nodes, and see how
the failure rate evolves We also look at different ways of calculating shared reputation: average, median, and
the Drop-off algorithm described in Section 3.4. The values returned by malicious nodes are furthermore
calculated to maximize the probability that the value is accepted by the requesting node, by taking into
account the shared reputation algorithm used. This maximizes the attackers’ advantage.

Figure 10 shows the results for 10% colluding nodes. We see that while there is a slight difference in the
convergence speed at the beginning of the simulation (median and Drop-off shared reputation converging
slightly faster), the difference is not statistically significant. For a higher fraction of colluding nodes of 20%
and for attack rates lower than a = 1.0 (not shown), shared reputation fails to improve the failure rate over
collaborative in any scenario.

New Nodes. Next we study whether new nodes joining the system can benefit from shared reputation.
Intuitively, shared reputation should be particularly useful for new nodes joining an existing Chord network.
A new node does not have any reputation information yet, so asking other nodes in the network for shared
reputation helps a node to make routing decisions until it has collected enough observations by itself. In
this experiment, we test the failure rate of nodes newly added to the Chord network, where those nodes rely
solely on shared reputation and collaborative boosting.

The results do not bear out this intuition, however. Figure 11 shows that using shared reputation for
newly added nodes does not improve the failure rate, and can even worsen the failure rate for example for
colluding fractions of 20%. This can be explained by noting that using collaborative boosting necessarily
decreases (and cannot increase) the failure rate, as each node only operates according to its first-hand ob-
servations. In shared reputation, however, nodes become susceptible to slandering and self-promotion of
malicious nodes.

5 Security Analysis
In this section we present an analysis of the security of ReDS against various attackers. Since exploring
these possibilities by fixing one or a few parameters in simulation would be tedious and time consuming,
we analyze these situations theoretically. Based on our results, we conclude that only oscillation attacks and
targeted attacks on keys are serious threats to ReDS — we analyze oscillation attacks in this section and
show their effectiveness is limited. Targeted attacks are a further challenge and we plan to address them in
future work. We also examine a novel attack against shared reputation in ReDS.
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Figure 11: Using shared reputation increases the failure rate of newly joined nodes, because it is susceptible
to reputation attacks by malicious nodes.

5.1 Oscillation Attack

In an oscillation attack the attacker follows a strategic approach, alternately acting as a benign node and
then a malicious node. By behaving as an honest node, the attacker increases its reputation scores in order
to increase the probability of being selected in future lookups, while performing malicious activities in later
periods. This attack can be especially dangerous for ReDS when lookups are made in recursive mode,
since this adaptive behavior is hard to observe when making indirect observations about the performance of
lookup paths beyond the first hop.

We now analyze the effectiveness of the oscillation attack and show that it has limited ability to un-
dermine the system, especially over time. The intuition of our finding is that the attacker must either lose
opportunities to attack while rebuilding his reputation score or maintain a low reputation score and continu-
ally lose opportunities to attack.

Although in the rest of the paper we study a simpler version of ReDS, we explore a more general version
of ReDS in this analysis. In particular, we leverage an exponentially weighted moving average (EWMA) to
track nodes’ scores with more emphasis on recent activity. The reputation score (si+1) of a given node just
before lookup i + 1 is given by: si+1 = αri + (1 − α)si, where ri is the result of the lookup and α is the
weight given to the most recent results. We also allow the node to select a peer from the k-bucket in a way
that balances exploration (trying other nodes) and exploitation (making use of the known scores). To do this
we set the probability of selecting the attacker node a (let us call this event A), who has score s(a), as:

Pr[A] =
s(a)β∑

j∈k−bucket s(j)
β
,

where β is a weighting parameter. These two generalizations allow us to explore and understand the impact
of these design choices in analysis.

For the analysis we focus on a single attacker node and make the following simplifications:

• We examine the case when there is exactly one attacker and one honest node in a k-bucket.
• The honest node’s reputation score is fixed at sh.
• We do not consider churn.
• When the attacker acts as a benign node, its reputation score is not affected by the malicious activities of

any other nodes in the lookup path.

The first two assumptions are for simplicity; our analysis generalizes to various k-bucket populations
and moderate fluctuations in the honest node’s score. By not considering churn we lose out on the attacker’s
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Figure 12: Analysis: One Threshold: For varying τ and four combinations of α and β, the fraction of
lookups attacked.

remaining opportunity to get lookups to attack. We evaluate with churn in our extensive simulations in
Section 4. The fourth assumption is the best strategy for our attacker. By coordinating his malicious nodes
to attack all at the same time, he only risks losing reputation in an attack when he is also maximizing his
chance to modify a lookup result. Thus, the oscillation attack is a global strategy.

To make the analysis tractable, we examine a limited set of possible functions for the attacker to select
the probability of attacking a lookup: one threshold, two thresholds, and probabilistic. We examine each of
these in turn.

One Threshold. We first consider a threshold τ in which the probability of attack on lookup i is pi = 1
when Pr[A]i >= τ and otherwise pi = 0. This captures the intuition that the attacker should attack when
it is being selected often enough to have an impact and otherwise it should rebuild his score.

The main metric we employ, and that our attacker seeks to maximize, is the expected number of lookups
that the attacker can attack (E[attacks]) given the total number of lookups L that the user performs through
the k-bucket of interest. This can be written as:

E[attacks|L] =
L∑
i=1

Pr[A]i × pi.

Since pi depends on Pr[A]i, and each round’s behavior depends on the results of the prior rounds, we did
not seek a closed-form solution. Instead, we developed a simple numerical simulation of the above formula
for a range of values of τ , α, and β. We examine the effect of τ for select values of α and β, as shown
in Figure 12. We use α = 0.01 as a slow-learning model, emphasizing longer histories, and α = 0.5 as
a fast-learning model, emphasizing recent behavior. Similarly, we use β = 1 as a lightly biased model,
emphasizing exploration among k-bucket members, and β = 100 as a heavily biased model, emphasizing
exploitation of knowledge. Figure 12 shows that the attacker can choose τ to attack a substantial fraction of
lookups in both lightly biased models and in the slow-learning, heavily biased model. In these models the
attacker can identify a peak at which τ is optimal for the model. However, we also see that the fast-learning,
heavily biased model is very effective against this attacker, with exactly one attack at all values of τ . In this
model, E[attacks] = 1, i.e. the attacker effectively never gets selected after the first attack. This is similar
to the model that we use in ReDS.

To further break down how the attacker modulates its behavior, we examine the first few hundred lookups
in the slow-learning, lightly biased model in Figure 13. We chose this model with τ = 0.32 to show the best
case for the attacker. We see that the attacker’s reputation score steadily declines until oscillating around
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Figure 13: Analysis: One Threshold: The reputation scores and Pr[A] as the lookups proceed for α = 0.01
and β = 1.
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Figure 14: Analysis: Two Thresholds: For varying τ1 and τ2, the fraction of lookups attacked.

0.42. The probability of being used (Pr[A]) similarly declines until oscillating around 0.32. The oscillation
attack is quite limited.

Two Thresholds. Oscillating behavior may occur over longer time scales. To examine this, we extend
the threshold model to include a lower threshold τ1 and an upper threshold τ2. The attacker will set p = 0
whenever Pr[A] ≤ τ1, i.e. the attacker’s reputation score has dropped too much to be selected very often.
He will set p = 1 whenever Pr[A] ≥ τ2, i.e. the attacker has built up sufficient reputation to attack again.
The key question is how the attacker will set the thresholds τ1 and τ2.

In Figure 14 we see the attack rates for lookups in the slow-learning, heavily biased model. We have
similar results for each model as with the one threshold attacker. First we note that, in this model, the
attacker is never able to attack more than 7.1% of lookups. Further, the attacker’s best strategy is to keep his
range of scores quite high, requiring him to behave honestly for most lookups. In the fast-learning, heavily
biased model, the attacker can never attack more than one lookup.

Probabilistic. Since the attacker can also employ a probabilistic attacking strategy, we also examine a
probabilistic version of the oscillation attack. We let the attacker’s probability p of attack for a given lookup
i be:

pi = ρ(Pr[A]i − 0.5) + c

for attacker-chosen constants ρ and c. Although this function is linear, it covers a wide range of possible
attacker policies. Figure 15 shows the change in number of lookups attacked in the slow-learning, heavily
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Figure 15: Analysis: Probabilistic: For varying ρ and c, the fraction of lookups attacked.

biased model for varying ρ and c. As with the other attacker models, the attacker has very limited success
(again, he can only attack at most 7.1% of lookups). Additionally, the fast-learning, heavily biased model
still only allows for one attack.

In sum, in all three attacker models, the oscillation attack provides little to no advantage to the attacker.

5.2 Other attacks on first-hand observations

In ReDS a node maintains its own reputation tree for each node in its k-buckets. Other than an oscillation
attack, there are several ways an attacker might try to manipulate first-hand observations. White-washing,
bootstrapping, and targeted attacks are three such attacks that we briefly discuss in this section.

White-washing Attacks. In a white-washing attack, a node leaves and rejoins the system to get a better
reputation score. This attack can be partially mitigated by having nodes cache reputation values for nodes
that have left, up to a memory limit, and by setting a low initial reputation score for new nodes that discour-
ages this attack. Through a white-washing attack the attacker could also attempt to gain a higher reputation
score in the joining round than it would have by staying in the system and behaving honestly in a standard
oscillation attack. From the above analysis of the oscillation attack, we could identify the expected score at
a time when the attacker’s reputation reaches its nadir (say, slow) and the benefit of white washing would be
greatest. We should then set the initial reputation of joining nodes to slow to remove the incentive for white
washing as long as the attacker behaves optimally in the oscillation attack.

Bootstrapping Attacks. In the beginning phase of the system, we do not have enough observations for
nodes to build their own reputation scores. In this phase we give each node an initial reputation score, and
the probability of a node being selected for the first lookup from a given k-bucket is 1/k. If the node returns
a bad result, then the requesting node immediately switches to another node in the k-bucket, limiting the
effect of an all-out attack in the early phases of the system. With time, we get the required observations and
peers can distinguish between the honest and malicious nodes in their k-buckets.

Targeted Attacks on Keys. Attackers in ReDS may also try blocking access to a specific resource, or
provide a malicious version of the resource, without attacking other lookups in the system, i.e., the attacker
only manipulates lookups for a specific target key t. This is more challenging for ReDS than generic attacks
because it can only be observed when the desired resource is being requested. We believe that limited
tracking of attacked keys may be possible, but we leave further exploration to future work.

Targeted Attacks on Users. Similarly, an attacker may be interested in preventing a specific peer from
accessing resources in the system. Since ReDS is most effective with the collaborative help of other nodes,
the benefits of ReDS are limited against this attack.
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Figure 16: A use-based attack. F , a malicious finger, attacks lookups from knuckles K4 and K5 but not
those from K1, K2, and K3. Scores are reported to K5, whose score bucket is shown on the right.

5.3 A use-based attack on shared reputation

We now consider attacks on shared reputation. Despite the relative resilience of the Drop-off scheme, it is
vulnerable to a novel attack that greatly affects the possibility of shared reputation in ReDS. This use-based
attack works against any ReDS system in which a given finger is used more by some knuckles than others.
The attacker seeks to limit the loss of reputation from attacks while attacking as many lookups as possible.
The attacker can achieve this by attacking the lookups from its knuckles who use his node as a finger more
while not attacking lookups from other nodes. When the joint knuckles share reputation information about
this malicious finger, they will have conflicting scores. The attacker’s goal is to arrange its attacks so that
the low scores are mostly ignored by other nodes.

We now describe a use-based attack in detail as applied to Halo-ReDS with shared reputation. A version
of this attack should also work against Kad-ReDS with shared reputation, due to the XOR metric, or against
any ReDS system in which a large fraction of lookups go through just a few fingers. For simplicity, we
assume that each node in the Halo DHT performs the same number of lookups. The assumption is valid
when peers perform a large number of lookups, and the probability of a given peer to initiate a lookup
follows uniform distribution. With non-uniform distributions of lookup rates, the attack should have the
same results on average.

In the use-based attack the attacker node acts as a malicious finger for m of its k knuckles and as an
honest node for the remaining k − m knuckles. An attacker node with ID a attacks the m most distant
knuckles, as these knuckles use node a to cover a larger fraction of the ID space. In particular, a performs
maliciously for the knuckles having ID a− 2log(n)−i, where i = 1, 2, . . . ,m. Given l lookups using node a,
we estimate that the number attacked on average will be

∑m
i=1

l
2i

= l
(
1−

(
1
2

)m).
We show an example of the attack in Figure 16. F is a malicious finger with knuckles K1 to K5. Here

m = 2, meaning that lookups from K4 and K5 are being attacked, accounting for 75% of the lookups
through F . K5 is a new node with reputation score 0.5 for F , whereas K4’s score of 0.2 for F reflects
F ’s attacks on its lookups. We show the reputation scores sent to K5, which include three scores of 0.8
from knuckles K1 to K3 and 0.2 from K4. Using the median, the score will be 0.8, while using Drop-off,
the expected score is 0.75. In either case, the finger can thus attack many lookups while retaining a high
reputation.

We further study the use-based attack in a simple simulator of the Drop-off scheme, using 10000 nodes
and 10000 lookup operations. Since node a may not always behave the same to a given knuckle, we define
two parameters. For the m knuckles for which a acts maliciously, let f represent the percentage of lookups
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Figure 17: Percentage of cases (p%) in which a given attacked knuckle computes the reputation score of the
attacker finger as 0.8 (s = 80%)

through a that fail. Let s as the percentage of successful lookups through a for the k −m of knuckles for
which a acts honestly.

For example, if s = 80% and f = 80%, the victim knuckles give a a score of 0.2 and the other k −m
knuckles, 0.8. In Figure 17 we consider the shared reputation scoring of the m knuckles when using all k
scores. When m = 1, s = 80%, and f = 80% the lone victim knuckle uses 0.8 as the shared reputation
score of a in p = 98.6% of cases. At the same time, he can attack 50% of all lookups going through it. If an
attacker acts maliciously for more knuckles, it causes more lookups to fail, but its credibility is decreased to
those knuckles. Thus, the value of p decreases as we increase m. Figure 17 shows that for m = 5, we get
p = 43.1%, while the attacker can attack 78% of lookups.

In sum, the use-based attack enables the attacker to attack a majority or large fraction of lookups while
still getting a good reputation score most or nearly all of the time.

Countermeasures. We first note that the Drop-off scoring scheme may not be the best suited to stop the
attack, as it is designed mainly to resist slandering and self-promotion attacks. Basic schemes, however,
fare even worse. Using the median, the attacker would be able to attack half of its knuckles and still
attain an excellent reputation score. For 10,000 nodes, this means the attacker could attack six out of 13
knuckles, covering 98.4% of lookups and have a perfect reputation score. Average is better, but is much
more vulnerable to slandering and self-promotion. One could note that in Drop-off, the node is ignoring its
own score to its detriment. Making the score more centered on the node’s own local score, however, means
not obtaining any significant benefit from sharing reputation over only using first-hand observations.

One could attempt to design a scheme specifically to counter this attack, but it must also resist slandering
and self-promotion attacks. For example, one could weight the scores of distant knuckles more heavily
than nearby knuckles to reflect greater use by distant knuckles. Unfortunately, weighting the scores of
any knuckles more heavily gives them greater power to perform slandering or self-promotion. Another
countermeasure is to use a DHT in which all fingers are used equally. This suggests that Salsa, in which all
local contacts are used equally [12], is more suitable for shared reputation. Considering the combined effect
of the use-based attack, the limited benefits shown in Section 4.7, and the overhead of shared reputation, we
recommend against shared reputation in ReDS.

6 Related Work
In a paper about secure routing in peer-to-peer networks (focusing on Pastry, but generalizable to other
protocols), Castro et al. [4] argue that secure routing requires secure assignment of identifiers, secure routing
table maintenance, and secure message forwarding. Secure assignment of identifiers is done through the use
of a certificate authority (CA) which binds identifiers to IP addresses. Solving the problem of secure routing
table maintenance requires modification of the Pastry protocol to introduce additional constrained routing
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tables. Lastly, secure message forwarding is approached by detecting failed routes and then applying route
diversity. Route diversity is achieved by forwarding multiple messages until they reach a node which has
the target node for a key in its neighbor set. We argue that ReDS can be used effectively for any system
designed along the lines of Castro et al.’s secure routing primitive.

In a scheme focusing on Chord, Harvesf et al. [7] describe an algorithm using replica placement to
improve routing robustness in a peer-to-peer network. Specifically, by placing several replicas of a key
uniformly around the Chord network, disjoint routes to the individual replicas are created, which makes it
likely that at least one search for one of the replicas will use a route with no compromised nodes. This
approach of replication is orthogonal to our work (indeed Kad too uses multiple ‘replica roots’). ReDS
ensures that searches for each replica will succeed with higher probability, and thus fewer replicas need to
be retrieved, or fewer replicas are needed in the first place.

Mickens et al. propose a system called “Concilium” [11], which attempts to distinguish between mali-
cious behavior and network problems and assigns blame to nodes if they are found to subvert searches. It
also depends on secure identifiers (e.g., using a CA) like the scheme by Castro et al. [4]. Concilium focuses
more on diagnosis and identifying malicious nodes. It requires nodes to perform network tomography as
well as propagate ‘Blame’ messages downstream to identify malicious nodes, both of which require coor-
dination. ReDS does not try to implicate and remove bad nodes, but simply avoids them, thereby limiting
the cost of false positives and allowing for fast decisions. ReDS also does not require nodes to coordinate
reputation information among themselves, reducing overhead and complexity.

Malicious attacks in DHTs can be partially addressed by using the concept of quorums. A quorum is
a group of nodes that effectively acts as an atomic unit, replacing individual peers in the DHT. Quorums
consist of O(log n) nodes where n is the total number of nodes in the system. There are several different
approaches to create and maintain quorums [3, 6, 13, 17, 22]. Young et al. propose a quorum-based sys-
tem [22] that can tolerate a large fraction of malicious peers — strictly less than 1/3-fraction of a quorum.
We note, however, that if 10-20% of the nodes are attackers, a substantial fraction of quorums will be con-
trolled by attackers. ReDS can thus improve outcomes for quorum-based systems by applying reputation at
the quorum level instead of the node level.

7 Conclusions
We presented ReDS, a reputation-based mechanism from improving the resilience of searches in determin-
istic and non-deterministic DHTs such as Halo (based on Chord) and Kad (based on Kademlia) against
malicious nodes. We showed how information from failed searches can be used collaboratively to avoid
effectively malicious activity in the network. Our results improve significantly over Halo and Kad, showing
that even exclusively local observations for reputation information can deliver large gains to the success rate
when used collaboratively. We analyzed the potential for shared reputation mechanisms and a novel attack
against shared reputation. We hope our work stimulates more research in reputation systems for structured
peer-to-peer networks where structural information can be exploited for enhanced resilience against attack-
ers.
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