
The Generalized Loneliness Detector and Weak
System Models for k-Set Agreement

Martin Biely, Peter Robinson, and Ulrich Schmid

Abstract—This paper presents two weak partially synchronous system modelsMantiðn�kÞ andMsinkðn�kÞ, which are just strong enough

for solving k-set agreement: We introduce the generalized ðn� kÞ-loneliness failure detector LðkÞ, which we first prove to be sufficient

for solving k-set agreement, and show that LðkÞ but not Lðk� 1Þ can be implemented in both models.Mantiðn�kÞ andMsinkðn�kÞ are

hence the first message passing models that lie between models where V (and therefore consensus) can be implemented and the

purely asynchronous model. We also address k-set agreement in anonymous systems, that is, in systems where (unique) process

identifiers are not available. Since our novel k-set agreement algorithm using LðkÞ also works in anonymous systems, it turns out that

the loneliness failure detector L ¼ Lðn� 1Þ introduced by Delporte et al. is also the weakest failure detector for set agreement in

anonymous systems. Finally, we analyze the relationship between LðkÞ and other failure detectors suitable for solving k-set

agreement.

Index Terms—Distributed systems, models of computation

Ç

1 INTRODUCTION

IN recent years, the quest for weak system models (resp.
failure detectors [21]), which add just enough synchrony

(resp. failure information/fairness [50]) to purely asynchro-
nous systems to circumvent impossibility results for agree-
ment problems, has been an active research topic in
distributed computing. Most work in this area falls into one
of the following two categories: 1) Finding weak(est) failure
detectors and 2) defining weak partially synchronous mod-
els that add just enough synchrony to the asynchronous
model for solving a given agreement problem—more specif-
ically: consensus, set agreement or k-set agreement. In the
k-set agreement [23] problem, one considers n processes,
each starting with a (possibly different) initial value; (cor-
rect) processes must decide on one of the initial values such
that no more than k different values are decided upon sys-
tem-wide. Set agreement resp. consensus refers to the special
case k ¼ n� 1 resp. k ¼ 1 (where all processes have to
decide on the same value).

Historically, the first of the aforementioned impossibil-
ity results is the FLP result by Fischer et al. [33], which
established that consensus among n processes is impossi-
ble to solve in asynchronous systems if just f ¼ 1 process
may crash. Only later it has been shown that similar
results hold for the k-set agreement problem in asynchro-
nous systems with up to f ¼ k crashes [17], [39], [53]. In

the context of consensus, the eventual leader oracle V [20],
which eventually outputs the identifier of one correct pro-
cess everywhere, was identified as the weakest failure
detector for solving consensus a) for shared memory sys-
tems and b) for message passing systems where a majority
of the processes is correct. Research then shifted towards
weak partially synchronous models that allow to imple-
ment V. The first implementation of V was provided in
[42] and was based on a variant of the partially synchro-
nous model of [30]. The subsequent quest for the weakest
synchrony assumptions for implementing V was started
by [3], and resulted in a series of papers [3], [4], [43], [40],
[31] in which the number of required timely links has been
reduced considerably. In [40], it was shown that a single
eventual moving f-source, i.e., a correct process that even-
tually has f (possibly changing) timely outgoing links in
every broadcast, is sufficient for implementing V, and thus
for solving consensus. Conversely, [9] revealed that V is
sufficient for implementing an eventual ðn�1Þ-source. In
the most recent paper [31], the intermittent rotating f-star
assumption was introduced, which can be seen as a further
generalization of the timely f-source assumption.

For message passing systems, V was initially only
known to be sufficient for consensus when n > 2f ,
whereas for shared memory the result also holds for the
wait-free case (i.e., f ¼ n� 1). The apparent gap was even-
tually closed by Delporte-Gallet et al. [26], where it was
proved that the quorum failure detector S is the weakest
for implementing shared memory in message passing sys-
tems (also in those that allow a majority of the processes
to fail). Moreover, the combination of S and V was shown
to be the weakest failure detector for solving consensus
for any number of failures in message passing systems.
Note that S can be implementing in asynchronous mes-
sage passing systems with a majority of correct processes.

Turning to (k-)set agreement, we note that most of the
existing work is devoted to weak failure detectors. In [56], a
failure detector called anti-V was shown to be the weakest

� M. Biely is with EPFL IC IIF LSR, INF 233 (Bâtiment INF), Station 14,
Lausanne 1015, Switzerland. E-mail: martin.biely@epfl.ch.

� P. Robinson is with the Division of Mathematical Sciences, Nanyang
Technological University, 21 Nanyang Link, SPMS MAS #03-01, Singa-
pore 637371. E-mail: peter.robinson@ntu.edu.sg.

� U. Schmid is with the Embedded Computing Systems Group, Vienna
University of Technology, Treitlstrasse 3, 2nd floor, Wien 1040, Austria.
E-mail: s@ecs.tuwien.ac.at.

Manuscript received 11 Sept. 2012; revised 13 Feb. 2013; accepted 26 Feb.
2013; date of publication 19 Mar. 2013; date of current version 21 Feb. 2014.
Recommended for acceptance by R. Baldoni.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.77

1078 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

1045-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

for set agreement in shared memory systems [55]. Like V,
anti-V also returns the identifier of some process. The cru-
cial difference to V is that anti-V eventually never outputs
the identifier of some correct process and does not need to
stabilize on a single process identifier. A variant of anti-V,
called anti-Vk, returns n� k processes and has been proved
in [32], [35] to be the weakest failure detector for k-set agree-
ment in shared memory systems.

In [28], the “loneliness” failure detector L was shown to
be the weakest failure detector for ðn�1Þ-set agreement in
message passing systems.

With respect to general k-set agreement, [14], [16] intro-
duced the quorum family Sk and proved that it is neces-
sary for solving this problem. The paper also proved that
the failure detector family Pk ¼ hSk;Vki coincides with the
weakest failure detectors hS;Vi for k ¼ 1, and with L for
k ¼ n� 1. Herein, Vk is a generalization of V introduced
in [49], which returns sets of k process ids that eventually
stabilize and contain a correct process. However, for gen-
eral values of 24 k4n� 2, it turned out [11], [18], [51]
that Pk is not sufficient and thus not the weakest failure
detector for k-set agreement. Thus, the quest for the weak-
est failure detector for general message passing k-set agree-
ment is still open.

In sharp contrast to the considerable efforts spent on
failure detectors for k-set agreement surveyed above, very
little is known about partially synchronous models for this
problem. Besides some time complexity results in systems
where periods of synchrony and asynchrony alternate [5],
we are only aware of one related approach (albeit for
shared memory systems), namely, the set timeliness
approach for k-set agreement in shared memory systems
introduced in [1], [2]. Consult Section 3.3 for a more
detailed relation of our models & results and existing ones.

This paper introduces both a weak failure detector and
weak partially synchronous models for solving k-set agree-
ment in wait-free message passing systems, i.e., where at
most f ¼ n� 1 of the n processes in the system may crash.
The detailed contributions are as follows:

a) The failure detector LðkÞ: We introduce the generalized
“(n� k)-loneliness” failure detector LðkÞ in Section 2, which
generalizes the loneliness failure detector L ¼ Lðn� 1Þ
from [28]. In Section 4, we show that LðkÞ is sufficient for
solving k-set agreement, by giving an algorithm and prov-
ing it correct. We also establish that there is no algorithm
that solves ðk� 1Þ-set agreement with LðkÞ.

In Section 5, we compare LðkÞ to the limited scope fail-
ure detector Sn�kþ1 with respect to the failure detector hier-
archy [21]. For the border cases (k ¼ 1 and k ¼ n� 1), we
show that one of the two failure detectors is strictly stron-
ger than the other; for any other choice of k, however, they
are incomparable. As a consequence, neither LðkÞ nor
Sn�kþ1 can be the weakest failure detector for general k-set
agreement. We also analyze the relationship of LðkÞ to the
quorum failure detector S and its generalization Sk, which
is known to be necessary for solving k-set agreement [16]
and hence weaker than LðkÞ.

b) Weak system models: In Section 3, we introduce two
novel system modelsMantiðn�kÞ andMsinkðn�kÞ, which allow
to implement LðkÞ and hence to solve k-set agreement.
Model MantiðxÞ is a time-free model based on expressing

synchrony via message ordering properties, whereas model
MsinkðxÞ is similar in spirit to partially synchronous models
like [3], [30], [50]. We also prove that Mantiðn�kÞ and
Msinkðn�kÞ are too weak for solving ðk� 1Þ-set agreement.
To the best of our knowledge, these models are hence the
first message passing models that provide just enough syn-
chrony to solve k-set agreement, but no stronger agreement
problem (including consensus). Note that we also show
that neither Mantiðn�kÞ nor Msinkðn�kÞ is strong enough to
implement the limited scope failure detector Sn�kþ1, which
is known to be sufficient for implementing k-set agreement
[46]. This indicates that the models are closer to what is
necessary for k-set agreement than models that allow
implementing Sn�kþ1.

c) Anonymous systems: In Section 6, we turn our attention
to anonymous systems (without (unique) process identi-
fiers). We explain how to derive anonymous versions of
our system models and introduce an LðkÞ-based k-set
agreement algorithm. As it does not use process ids, it fol-
lows from [28] that L is also the weakest failure detector
for set agreement in anonymous systems. Finally, we dis-
cuss the relation between Lð1Þ and failure detectors AP
and AV, and its impact on the quest for the weakest failure
detector for consensus in anonymous systems.

For conciseness, a number of definitions, results and
proofs have been relegated to the online supplement [12] of
this paper.

2 SYSTEM MODELS AND PROBLEM DEFINITION

The models we consider in this paper are based on the
standard asynchronous model of [33], which we denote by
Masync: It comprises a set P of n distributed processes,
which communicate via message passing over a fully-
connected point-to-point network made-up of pairs of uni-
directional links with finite but unbounded message
delays. Links need not be FIFO but are assumed to be reli-
able.1 Every process executes an instance of a distributed
algorithm and is modeled as a deterministic state machine.
Its execution consists of a sequence of instantaneous local
steps, where a single process performs a state transition
according to its transition function, in addition to either
receiving a (possibly empty) set of previously sent mes-
sages or sending messages to an arbitrary set of processes
(including itself). A run a of a distributed algorithm con-
sists of a sequence of local steps of all the processes. For
analysis purposes, we assume the existence of a discrete
global clock with time instants taken from the infinite set
T . Whenever, a process takes a step the clock ticks (i.e., it
advances by one time unit). Note that processes do not
have access to this clock. For simplicity, we assume
that T ¼ IN.

A correct process is correct if it takes infinitely many
steps in a run. The algorithm run by a process can halt by
entering a terminal state, in which it remains for infinitely
many steps (receiving but discarding all messages sent to
it). By contrast, a faulty process is one that takes only a
finite number of steps. In its last step, a process can omit

1. In [12, Section II.A], we briefly discuss relaxations of this
assumption.

BIELY ET AL.: THE GENERALIZED LONELINESS DETECTOR AND WEAK SYSTEM MODELS FOR K-SET AGREEMENT 1079

to send some, but not all, messages it is required to send
by its code.2 We call a process alive at time t if it takes a
step at or after t, and crashed otherwise.

The failure pattern of a is a function F : T ! 2P that out-
puts the set of crashed processes at a given time t. Clearly,
8t5 0 : F ðtÞ � F ðtþ 1Þ. Moreover, let F ¼

S
t50 F ðtÞ be

the set of faulty processes. The set of possible failure pat-
terns is called environment. In this paper, we admit any
environment that allows up to n� 1 crashes, i.e., we con-
sider the wait-free [38] case.

A run a is admissible in Masync if 1) a message is only
received at time t by process p if it was sent by some process
q to it at some time t04 t, and 2) every message sent to p is
eventually received if p is correct.

2.1 kk-Set Agreement

In the k-set agreement problem [23], every process starts
with a proposal value v from a finite3 domain V and must
eventually irrevocably decide on some value as follows:

k-Agreement: Processes must decide on atmost k
different values system-wide.

Validity: If a correct process decides on v, then v
was proposed by some process.

Termination: Every correct process must eventually
decide.

For k ¼ n� 1, the problem is also referred to as set
agreement, whereas k ¼ 1 is equivalent to uniform consen-
sus [22] (as the agreement property ties together the deci-
sion values of both correct and faulty processes). Note
that it is well known that k-set agreement is impossible in
purely asynchronous systems when f5 k processes might
crash [17], [39], [53].

2.2 Failure Detectors

A failure detector [21] D is an oracle that can be queried
by processes in any step, before making a state transition.
The behaviour of D in a run a depends on the failure pat-
tern F , which defines the set of admissible failure detector
histories. The value of a query of a process p in a step at
time t is defined by the history function Hðp; tÞ, which
maps process identifiers and time to the range of output
symbols of D.

We denote the model where runs are admissible in
Masync and processes can query failure detector D in any
step as ðMasync;DÞ. If an algorithm A solves problem P in
ðMasync;DÞ, we say that D solves P . We say that some algo-
rithm AD!D0 transforms D to D0, if for any run of an asyn-
chronous system equipped with D (with failure pattern F)
it maintains an output variable outputD0 that simulates
legal (admissible for F) failure detector histories of D0 at
every process. We say that D0 is weaker than D and say D
is stronger than D0, if such an algorithm AD!D0 exists. If
there is also an algorithm AD0!D, we say that D and D0 are
equivalent. If no such algorithm AD0!D exists, we say that
D is strictly stronger than D0; strictly weaker is defined

analogously. If neither AD!D0 nor AD0!D exists, then we
say that D and D0 are incomparable. A failure detector D0 is
weakest for problem P if D is weaker than any failure detec-
tor D that solves P .

Recently, it was shown in [28] that the “loneliness”-
detector L is the weakest failure detector for message
passing set agreement. Intuitively speaking, there is (at
least) one possibly faulty process where L perpetually out-
puts FALSE, and, if all except one process p have crashed, L
eventually outputs TRUE at p forever.

We now present our generalization of L for k-set agree-
ment introduced in [10], which we denote by LðkÞ (with
L ¼ Lðn� 1Þ). Instead of loneliness, it enables processes to
detect “ðn�kÞ-loneliness”. Formally speaking, a process p
is ðn�kÞ-lonely at time t in a run a, if p =2F ðtÞ and jF ðtÞj5 k
in a.

Definition 1. The ðn�kÞ-loneliness detector LðkÞ outputs
either TRUE or FALSE, such that for all environments E and
8F 2 E it holds that there is a set of processes P0 � P; jP0j ¼
n� k and a correct process q such that:

8p 2 P0 8t : Hðp; tÞ ¼ FALSE; (1)

jF j5 k¼)9t 8t05 t : Hðq; t0Þ ¼ TRUE: (2)

Before discussing other failure detectors for k-set agree-
ment, it is worthwhile to recall that a failure detector is
called realistic [24] if and only if it can be implemented in
a synchronous system with f ¼ n� 1; otherwise it is non-
realistic. Moreover, we say that a model M is non-realistic
if a non-realistic failure detector can be implemented in
M. Most�efaoui et al. [47, Theorem 2]] have shown that
k 5 n=2 is a necessary and sufficient condition for LðkÞ to
be realistic.

Another class of failure detectors for k-set agreement
are the limited scope failure detectors introduced in [37],
[45], which output sets of process ids. Such failure detec-
tors have the strong completeness property of the strong
failure detector S [21], but their accuracy is limited to a
set of processes called the scope; see [12, Definition 1]. In
the special case where the scope comprises all processes,
Sn coincides with S.4 It was shown in [46] that Sn�kþ1 is
sufficient for k-set agreement.

While the weakest failure detector for message passing k-
set agreement is still unknown, Bonnet and Raynal have
introduced the quorum family Sk in [16] (see [12, Definition
2]), and shown that Sk is necessary for solving k-set agree-
ment, i.e., that any failure detector X that allows to solve k-
set agreement can be transformed into Sk.

3 WEAK SYSTEM MODELS FOR SET AGREEMENT

In this section, we introduce two system modelsMantiðxÞ and
MsinkðxÞ, which restrict the set of admissible runs in Masync

by weak synchrony conditions. By implementing LðkÞ in
bothMantiðn�kÞ andMsinkðn�kÞ, we show that they are strong
enough for solving k-set agreement. The models differ in the
way how synchrony properties are added: MantiðxÞ uses

2. This definition allows “unclean” crashes. The assumption that at
least one message is sent in the last step is for simplicity only: A crash
that causes all messages to be lost is modeled as a crash before this step.

3. We assume that jV j5n.
4. For the case k > f (which is not relevant here as f ¼ n� 1) [45]

also provides a transformation TSk!S .

1080 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

message-ordering and is hence time-free, whereas MsinkðxÞ

relies on classical partial synchrony assumptions [30].

3.1 The Model MMantiðxÞ

In some application domains, e.g., systems-on-chip [34],
message-driven execution models [13], [52], [54], where
computing steps are triggered by the arrival of messages
instead of the passage of time, can be advantageous over
the usual time-driven execution model. The main advantage
here is that there is no need for dedicated clocks to trigger
steps. For a more detailed discussion of this issue, we refer
the interested reader to [54, Section 5].

The model MantiðxÞ presented in this section belongs to
the aforementioned category of message-driven models.
Inspired by the round-trip-based model introduced in [44],
[48], we specify our synchrony requirements as conditions
on the order of round-trip message arrivals. Computations
proceed in asynchronous local (i.e., uncoordinated) rounds:
At the start of its round, process p sends a ðqueryÞ-message5

to all processes, including itself. If a process receives a
ðqueryÞ-message from some process q, it sends a ðresponseÞ-
message to q. Once a round ends, all further responses to
the query are discarded by the system. Clearly, such behav-
iour could be implemented by attaching sequence numbers
to all queries.

In [44], a round ends when n� f responses have been
received. In a wait-free setting like ours, this means that a
round ends when the first response arrives. By contrast, in
MantiðxÞ, a round ends when a process receives its own
response: This triggers an end�round event, upon which
the process obtains the set of all processes that have
responded in this round.

The synchrony condition of our model is encapsulated in
the central concept of an x-anti-source:

Definition 2 (xx-Anti-Source). A correct or faulty process p is
an x-anti-source, if, whenever p sends a ðqueryÞ to all remote
processes it will receive ðresponseÞ-messages from at least x
remote processes before process p starts a new round.

As discussed in considerable detail in [54], such a
time-free specification does not mean that there is also a
time-free implementation of an x-anti-source. Still,
bounded link delay ratios, rather than bounded absolute
delay values, are sufficient for asserting the existence of
an x-anti-source.

Note that an anti-source, as we have previously intro-
duced it [10], is not the same as a 1-anti-source: In the for-
mer, a round ended after receiving the first response like
in [44]. Thus, an anti-source was defined as a process
whose round-trips with itself is never the fastest. The sub-
tle difference is that a 1-anti-source can receive any num-
ber (up to n) of ðresponseÞ-messages, while an anti-source
can only receive one. Moreover, a 1-anti-source will always
see its own ðresponseÞ while this is not the case for an anti-
source. Fig. 1 shows an example execution where process p
is a 1-anti-source. That is, in Fig. 1, an algorithm running
on p will—besides its own response—only see the response

of p1 for the first request and only the response of p2 for the
second request.

Definition 3. Let a be a run of a distributed algorithm. Then, a is
admissible inMantiðxÞ if the following holds:

1. Run a is admissible inMasync.
2. At least x processes are an x-anti-source in a.

3.1.1 Detecting k-Loneliness in ModelMantiðkÞ

Algorithm 1 provides an implementation of the k-loneliness
failure detector Lðn� kÞ in MantiðkÞ. A process sets its
outputL to TRUE if and only if it receives responses from less
than k remote processes. A process that is a k-anti-source
will thus never change its variable outputL to TRUE.

Theorem 1. Lðn� kÞ is implementable inMantiðkÞ.

Proof. Let p be a k-anti-source in a run of Algorithm 1. At
the start of every round, process p sends a ðqueryÞ-
message tagged with the round number to all other
processes. By the definition of a k-anti-source, p never
receives ðresponseÞ-messages from less than k remote
processes. Process p will therefore always pass the test in
Line 8 and start a new round. It follows that p never
reaches Line 11, that is, its outputL remains FALSE forever,
which entails Property (1) in Definition 1.

To show Property (2), consider a run a where at
least n� k processes crash. Let q be a correct process in
a. Then, there is a time after which all faulty processes
have crashed, and thus cannot respond to q’s query.
That is, there will be some query such that q will get
only responses from other correct processes. As there
are less than k such processes, clearly, the test in
Line 8 will fail and q will set outputL to TRUE once and
forever in Line 11. tu

p

p1

p2

r1 r2

Fig. 1. An execution of an algorithm in modelMantiðxÞ where process p is
a 1-anti-source. For the sake of readability, we have included only the
messages p sees by the end of its rounds. That is, we omitted the late
responses as well as ðqueryÞ-messages sent by p1 and p2 and the corre-
sponding ðresponseÞ-messages.

5. In [44], query and response messages are allowed to carry addi-
tional data. We omit this possibility here, since it is not needed to imple-
ment LðkÞ.

BIELY ET AL.: THE GENERALIZED LONELINESS DETECTOR AND WEAK SYSTEM MODELS FOR K-SET AGREEMENT 1081

3.1.2 Discussion ofMantiðxÞ

As shown in [47, Theorem 2], LðkÞ is not realistic, i.e., it can-
not be implemented in a synchronous system with up to
n� 1 crash failures if 2k < n. With respect to Lðn� kÞ, this
translates into the condition 2ðn� kÞ < n and hence n < 2k
for Lðn� kÞ not being realistic. Since Lðn� kÞ can be imple-
mented in MantiðkÞ, this sheds some light on the relation
betweenMantiðkÞ and the wait-free synchronous model.

We start our considerations with the following simple
observation: If a process p is a 1-anti-source, it cannot be
the only correct process, because after all other processes
have crashed, no process remains to guarantee that it
will receive a response from a remote process to each
query. In general, no k-anti-source can be among the last
k alive processes. Now, consider MantiðkÞ for n < 2k: The
model requires the existence of k processes that are k-
anti-sources. As long as some k-anti-source is alive, it
requires k other processes to be alive as well. Conse-
quently, i) if only i 4 k processes are alive at some point
in a run, then none of them can be a k-anti source. On
the other hand, ii) when only j < k processes have
crashed at some point in a run, then least one of the k
required k-anti-sources must be alive. When
n ¼ iþ j < 2k, then these two contradicting cases can
happen simultaneously at some time: This happens in
every run where the number of alive processes ever
becomes 4k, although the number of crashed processes
is still <k. This gives raise to the following observation:

Observation 1. When n < 2k, there are no admissible runs
in MantiðkÞ where i 4 k processes are correct and
n� i < k are faulty.

On the other hand, in a run where at least f 0 5 k pro-
cesses crash, less than k additional processes can remain
alive in case of n < 2k. Hence, the only runs where i) and
ii) are guaranteed not to hold true simultaneously at some
time in case of f 0 5 k are “trivial” admissible runs with at
least k initially dead k-anti-sources.

Therefore, it turns out thatMantiðkÞ and the synchronous
model with f ¼ n� 1 are incomparable in case of n < 2k:
On the one hand, the synchronous model is obviously stron-
ger thanMantiðkÞ since it requires every process to receive all
messages from correct processes in a round. On the other
hand, MantiðkÞ is stronger than the wait-free synchronous
model, since the failure bound f ¼ n� 1 cannot be “tight”
in a non-trivial run ofMantiðkÞ: The existence of just one not
initially dead k-anti-source does not allow more than
f ¼ k� 2 crash failures.

Observation 2. Model MantiðkÞ for n < 2k (and hence
Mantiðn�kÞ for 2k < n) are non-realistic, in the sense that
there are runs in the synchronous wait-free model that
are not admissible inMantiðkÞ.

All runs in a synchronous system with n < 2k pro-
cesses where at most f ¼ k� 2 can crash are admissible in
MantiðkÞ, however.

3.2 The ModelMsinkðxÞ

The modelMsinkðxÞ is a weak variant of the classic partially
synchronous models [29], [30], as are the weak-timely link
(WTL) models [3], [4], [40], [43]. Essentially, all those

models assume that processes are partially synchronous
and try to minimize the synchrony requirements on com-
munication delays.

In the modelMantiðxÞ introduced before, there is no time
bound on the duration of a round-trip, as only the arrival
order or response messages matters. Our second model
MsinkðxÞ enforces a similar ordering by means of explicit
communication delay bounds and message timeouts. A
na€ıve approach would be to simply assume a bound on
the round trip time, which is essentially equivalent to
requiring a moving bi-directional timely link from one pro-
cess. This assumption would make one process perma-
nently 1-accessible (in the notation of [43]), though, which is
unnecessarily strong.

As in [29], we assume two bounds F and D, where F

bounds the relative speed of processes, whereas D bounds
the transmission delay of a timely message m, i.e., the
number of steps processes can take during the transmis-
sion of m. We say that a message m is delivered timely
over the link ðp; qÞ iff it is received by q not after q has
taken D steps after p has sent the message.6 Note that this
definition implies that all messages sent to a crashed pro-
cess (or a process that crashes before taking D steps) are
considered to be delivered timely.

Although we use D and F to describe synchrony as in
[29], [30], MsinkðxÞ differs from these models w.r.t. the
atomicity of steps: We assume that processes can both
receive and broadcast (i.e., send multiple messages) in
the same step. Although this assumption is not really
vital, it considerably simplifies our algorithm and its
proof: As Algorithm 2 employs step-counting and asyn-
chronous rounds, we would otherwise have to argue
about a process being in the middle of broadcasting a
message (which would take n steps, i.e., up to nF time),
which complicates the definition and analysis of round
switching.

As in the WTL models (and in contrast to [29], [30]), we
do not assume D to hold for all messages. Rather, we base
our synchrony conditions on “sinks”, i.e., processes that
can always receive some messages timely.

6. Note that D refers to steps of the receiver here, as in [29], [50] and
contrasting [30], where D is measured in some notion of real-time.

1082 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

Definition 4 (xx-Sink). A correct or faulty process q is an x-sink
in a run a, if there is a set P of jP j ¼ x processes, which do
not crash earlier than q, such that any message sent by p 2 P
to q is delivered timely to q.

Observe that the decisive difference between q being a
x-sink and p being a perpetual 1-source (in the notation of
[3]) is that q may crash in our model.

Note that we implicitly assume that all processes ini-
tially start-up at the same time (T ¼ 0) as usual. All our
reasoning below would also apply, however, if we
allowed sinks to start-up later: All that is actually needed
is that no message from p is successfully received by q
after D time.

Definition 4 is not the end of the road, however, as this
synchrony requirement can be further weakened in case of
algorithms with a “round-like” structure—that is, algo-
rithms where each process repeatedly sends messages to all
other processes, as it is often the case with heartbeat-based
failure detectors. For such algorithms, we also provide an
alternative (and in fact even weaker) definition of an x-sink,
where the timely processes P may change. It is similar in
spirit to the timely f-source model with moving timely links
[40], albeit complicated by the fact that we cannot rely on a
single (send-) event as a common reference point here. For
i 5 1, let AðiÞ be the set of (alive) processes that perform
the ith broadcast step (at least partially, in case of a crash
during the step) starting round i. Moreover, let sðiÞ be the
time (according to our global clock) of the step in which the
last process performs its ith broadcast.

Definition 5 (xx-Sink’). A process q is an x-sink’ in a run a if
for every i51 it holds that

a. if jAðiÞ n fqgj 5 x, then there is a set P ðiÞ with
jP ðiÞj 5 x such that 8p 2 P ðiÞ, q timely receives the
ith message sent by p.

b. Otherwise, if jAðiÞ n fqgj < x, then q does not take D

or more steps after sðiÞ.
As a message is—per definition—timely when sent to a

process that does less than D steps after the message was
sent, we have that initially dead processes are always x-
sinks’. Moreover, item (b) ensures that an x-sink is never
able to “time out” more than n� x remote processes, even if
not enough messages are sent that could arrive timely.

Definition 6 (Model MsinkðxÞ). Let a be a run of a distributed
algorithm. Then, a is admissible in MsinkðxÞ if the following
holds:

1. Run a is admissible inMasync.
2. There is a bound F, such that every correct process takes

at least one step in any interval of time containing F

steps of any other process. Moreover, there is a bound D

on the maximum number of steps taken by any process
during the transmission of a timely message.

3. At least x processes are x-sinks in a.

Note that, in contrast to MantiðxÞ, the model Msinkð1Þ is
equivalent to theMsink model introduced in [10].

At a first glance, it might be surprising that model
MsinkðxÞ is a non-eventual model, i.e., a model where all
model properties must hold at all times. This is necessary
in order to implement LðkÞ (see Definition 1), however,

which is a non-eventual failure detector. In fact, this is no
peculiarity of set agreement: The weakest failure detector
for ðn�1Þ-resilient consensus is hS;Vi, which also involves
the non-eventual S (see [25]).

The non-eventuality of LðkÞ also implies that the model
parameters F and D must be known and have to hold
right from the start: After all, n� k processes, namely, all
the ðn�kÞ-sinks in Msinkðn�kÞ, must never falsely suspect
ðn�kÞ-loneliness and set their output to TRUE, as this
would otherwise violate (1). Although it would be suffi-
cient if only the x-sinks knew the model parameters F

and D, we do not assume that the sinks are known in
advance, so all processes must know these parameters.

3.2.1 Detecting k-Loneliness in ModelMsinkðkÞ

Algorithm 2 shows a simple protocol that implements
Lðn� kÞ in model MsinkðkÞ. Variable outputL contains the
simulated failure detector output. Every process p periodi-
cally (every h steps) sends out ðalive; phaseÞ-messages that
carry the current phase-counter i. In addition, p keeps track
of the number of ðalive; phÞ-messages received from differ-
ent other processes in the array seen½ph�. In case it did not
receive at least k messages by the end of the current phase i
in Line 10, it sets outputL TRUE in Line 12.

Theorem 2. Algorithm 2 implements failure detector Lðn� kÞ in
modelMsinkðkÞ for f ¼ n� 1.

3.3 Discussion ofMsinkðxÞ

As detailed in [12], the k-sinks used in MsinkðkÞ provide
considerably weaker communication synchrony than (per-
petual) k-sources, as used in the WTL model [4], [40]. Like
MantiðkÞ, MsinkðkÞ is also non-realistic for n < 2k (and
hence Msinkðn�kÞ for 2k < n), though.

Interestingly, the fact that LðkÞ and hence k-set agree-
ment can be implemented in Msinkðn�kÞ is also in accor-
dance with results obtained in the generalized set
timeliness model of [2], despite the fact that the latter has
been devised for shared memory systems. As opposed to
classic partially synchronous processes [29], where every
individual process must be timely with respect to every
other individual process, in the sense that it makes at
least one step when the other process made F steps, [2]
requires such a property only for sets of processes: In
model Sij;n, there must be at least one set I of size i that
is timely with respect to some other set J of size j, in the
sense that within F steps of (possibly different) processes
in J , some process in I must make at least one step. The
authors proved that k-set agreement is solvable in Sij;n, in
the presence of up to f crash failures, iff i4k and
j� i 5 f þ 1� k.

Now consider Msinkðn�kÞ, which guarantees n� k pro-
cesses q1; . . . ; qn�k that act as ðn�kÞ-sinks, i.e., receive
timely the messages from at least n� k other processes. In
order to do so, every qi must receive timely from at least
one process outside fq1; . . . ; qn�kg. This is in accordance
with the findings of [2], if one considers J ¼ P (which
includes the n� k-sinks) and I ¼ P n fq1; . . . ; qn�kg: Since
i ¼ k and j ¼ n here, the above equations tell that k-set
agreement is solvable; since one can implement LðkÞ in
Msinkðn�kÞ, this is indeed in accordance with our findings.

BIELY ET AL.: THE GENERALIZED LONELINESS DETECTOR AND WEAK SYSTEM MODELS FOR K-SET AGREEMENT 1083

3.4 kk-Set Agreement Impossibility

In Section 4, we provide an algorithm that solves k-set
agreement with LðkÞ, which in turn is implementable in
Mantiðn�kÞ (Theorem 1) and Msinkðn�kÞ (Theorem 2). In this
section, we will show that it is impossible to solve k0-set
agreement for k0 < k in either model. Note carefully that
this result reveals that the parameter k precisely character-
izes the k-set agreement solvability border in bothMantiðn�kÞ

and Msinkðn�kÞ, for every choice of n (both models are non-
realistic for 2k < n, however).

Theorem 3. It is impossible to solve k-set agreement among n
processes inMantiðxÞ for k 4 n� x� 1.

Proof. Assume, for the sake of a contradiction, that some
algorithm A solves this problem and consider runs of A
where the x required x-anti-sources are initially dead.
Since there are no further synchrony requirements in
MantiðxÞ, all remaining processes can communicate totally
asynchronously. Thus, there is a one-to-one relationship
between these runs and the runs A produces in an asyn-
chronous system of n0 ¼ n� x processes of which
f 0 ¼ n0 � 1 ¼ n� x� 1 ¼ processes can crash. However,
due to the k-set impossibility results of [17], [39], [53],
there is no algorithm that solves k-set agreement in an
asynchronous system where f 0 out of n0 processes may
crash in case of k 4 f 0. tu
The analogous result forMsinkðxÞ is provided in [12].

4 SOLVING kk-SET AGREEMENT WITH LLðkÞ
In this section, we present an algorithm that solves k-set
agreement in an (anonymous) asynchronous system aug-
mented with a failure detector LðkÞ. In addition, we
prove that it is impossible to solve ðk� 1Þ-set agreement
with LðkÞ.

The algorithm for solving ðn�1Þ-set agreement with L
presented in [28] requires a total order on process identi-
fiers. By contrast, our Algorithm 3 solves k-set agreement
for any 1 4 k < n on top of LðkÞ and works even in
anonymous systems. Note carefully that this means that
processes neither need to know the unique id of the
sender of a message nor that they need to be able to dis-
tinguish messages from different senders.

Algorithm 3 proceeds in asynchronous rounds, made
up of one or more computing steps that comprise receiv-
ing zero or more messages, querying the failure detector
(LðkÞ in our case), doing some local computation, and
optionally broadcasting a message. The messages sent by
a process in our algorithm contain the current estimate x
and the current round number. In every round r,
0 4 r 4 kþ 1, every process p that has not yet decided
queries its failure detector and decides if LðkÞ outputs
TRUE. Otherwise, p checks if it has received n� k round r
messages from remote processes; note that all the checks
are non-blocking and are checked anew in every step. If
so, p updates its current estimate x to the minimum of
the received values.

At a first glance, it appears counterintuitive that pro-
cesses terminate after kþ 2 rounds. After all, it would be
reasonable to expect that harder agreement tasks like
consensus require more rounds than, for example,

ðn� 1Þ-set agreement. The reason why this is not the
case here is that LðkÞ itself becomes much weaker for
values of k close to n� 1, since there are less processes
that perpetually output false. To argue informally why
kþ 2 rounds are required by our algorithm, consider an
execution where in every round r < k (i.e., within k
rounds), exactly one process decides in Line 9 and hence
no longer participates in later rounds. Thus, rþ 1 pro-
cesses decide by the end of round r < k via Line 9, and
r processes do no longer participate in round r 4 k. As
we will prove in Lemma 4 below, in round r, the remain-
ing processes could decide on at most k� r different val-
ues (either in Line 9 or 20) in this case. If the algorithm
had a loop bound less than kþ 1, i.e., terminated at the
end of some round r4k, we could end up with
rþ 1þ k� r ¼ kþ 1 decision values. On the other hand,
deciding at the end of round kþ 1 is safe, since no more
than k processes can decide via Line 9 as LðkÞ can output
TRUE at no more than k processes.

4.1 Proof of Correctness

We denote by Xr the possibly empty array containing all
x-values of processes in the system (with repetitions
allowed) that completed the assignment in Line 17 while
rnd ¼ r. Note carefully that the x-value of a process q that
decides via Line 9 in round r is not contained in Xr; this
does not imply, however, that no process p could decide
on the same decision value as q (after all, repetitions are
allowed). We assume that Xr is ordered by decreasing
values, i.e., Xr½1� is the maximal value, if it exists. Fur-
thermore, we denote the number of unique values in Xr

by ur. If no process reaches Line 17 in round r, the array
is empty and both jXrj and ur are zero.

Lemma 4. For any round r 5 0, the number of unique values in
Xr satisfies ur 4 k� ar, where ar is the number of processes
which never sent ðROUND; r; xÞ.

Proof. First, we observe that x is updated by a process p
only after receiving n� k ðROUND; r; yÞ messages

1084 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

from other processes, that is, p knows about n� kþ 1
values.

Let p be the process which assigns the largest value x0

in Line 17. Since process p computes x0 as the minimum
of the n� kþ 1 round r values in the multi-set S, it must
consist of n� kþ 1 values y 5 x.

Considering that jXrj 4 n� ar, it follows from
S � Xr that only n� ar � ðn� kþ 1Þ 4 k� ar � 1 val-
ues in Xr can be strictly smaller than x0. Thus, processes
assign at most k� ar different values to x in Line 17
(and subsequently send them as ðROUND; rþ 1; xÞ-
messages). tu

Lemma 5. Processes do not decide on more than k differ-
ent values.

Proof. Regarding the number of different decision values,
processes deciding due to receiving a ðDEC; yÞ message
(Line 13) make no difference, since some other process
must have decided on y using another method before.
Thus we can ignore this case here.

What remains are decisions due to LðkÞ being TRUE

(Line 9) and due to having received n� k messages in
round kþ 1 (Line 20). For each r 5 0, we denote by ‘r
the number of processes which have decided due to
their failure detector output being TRUE while rnd ¼ r.
Thus, the number of processes that have decided in
Line 9 with rnd 4 r for some r 5 0 is S

r
s¼0‘s. In the

following, we use sr as an abbreviation for this sum.
Since processes halt after deciding, we can deduce that
the number ar of processes which do not send round r
messages is at least sr�1. Thus, Lemma 4 tells us that
ur 4 k� sr�1. Now assume by contradiction that there
are actually D > k different decisions, with
D 4 ukþ1 þ skþ1. Note that that D is the number of dif-
ferent values decided on in Line 20 plus those that
ever decided based on LðkÞ, which is obviously at
most ukþ1 þ skþ1. It can be less, since processes need of
course not decide on different values. Thus we get
ukþ1 > k� skþ1, and by using the above property of ur

for r ¼ kþ 1, we deduce that skþ1 > sk, and thus
‘kþ1 5 1. These processes must have decided on some
values in Xk, however, which implies D 4 uk þ sk, as
obviously x 2 Xkþ1) x 2 Xk. We can repeat this argu-
ment until we reach D 4 u1 þ s0 ¼ u1 þ ‘0. Here,
Lemma 4 gives us the trivial upper bound u1 4 k,
which entails the requirement ‘0 5 1 as D > k.

By now, we have shown that, assuming D > k deci-
sions ‘r 5 1 for r 2 f0; . . . ; kþ 1g. In other words we
have deduced that skþ1 5 kþ 1 processes have
decided due to their LðkÞ output being TRUE. This con-
tradicts property (2) of LðkÞ, however, thus proving
Lemma 5. tu

Theorem 6. Algorithm 3 solves k-set agreement in an asyn-
chronous system without unique process ids augmented
with LðkÞ.

Proof. It is immediately apparent from the code that the
algorithm also works in anonymous systems, since
every process sends its round-r message at most once.
Validity is evident, since no value other than the initial
values v of processes are ever assigned directly or

indirectly to x. k-Agreement follows from Lemma 5,
and since either n� k processes send messages in
each round or some process has LðkÞ ¼ TRUE, every
correct process terminates. tu
Theorem 6 showed that LðkÞ is sufficient for k-set agree-

ment. We now prove that it is not (much) stronger than nec-
essary, as LðkÞ is too weak to solve ðk�1Þ-set agreement.

Theorem 7. No algorithm can solve ðk�1Þ-set agreement with
LðkÞ, for any 2 4 k 4 n� 1.

Proof. We assume for the sake of a contradiction that
such an algorithm A exists. Now consider the failure
detector history where LðkÞ outputs TRUE at processes
Pt ¼ fp1; . . . ; pkg, while it outputs FALSE at the n� k
processes Pf ¼ fpkþ1; . . . ; png. This defines a legal his-
tory for LðkÞ in any run where one of the processes in
Pt is correct. For our proof we now consider the set
of runs where all processes in Pf crash initially. Let
this set be R. Now we consider the set of runs of A in
an asynchronous system consisting of the k processes
p1; . . . ; pk equipped with the dummy failure detector
[36] that always outputs TRUE. Let this set be S. Due to
the impossibility of solving set agreement in the asyn-
chronous system [17], [39], [53], A cannot solve
ðk� 1Þ-set agreement in all runs in S. Take any such
run ". Clearly, " is indistinguishable to some run in R
to all processes in Pt. Thus, A cannot solve ðk� 1Þ set
agreement in all runs in R, that is, in the asynchro-
nous system augmented with LðkÞ. tu

5 RELATION BETWEEN LðkÞ AND OTHER FAILURE

DETECTORS

In [12, Section 4], we analyze how the LðkÞ failure detector
relates to some important other failure detectors for mes-
sage passing k-set agreement. The results are presented
in Fig. 2.

6 LðkÞ IN ANONYMOUS SYSTEMS

In this section, we will focus on anonymous systems,
where processes do not have unique identifiers but can
at most distinguish their neighbors via local port num-
bers, cp. [6], [8], or can distinguish multiple copies of the

Fig. 2. Failure detector classes for wait-free k-set agreement. A unidirec-
tional arrow from X to Y indicates that failure detector X is stronger than
Y ; note that this relation is transitive. Arrows in both directions corre-
spond to equality, while the crossed-out arrows indicate incomparability.
Failure detectors located within shaded boxes are sufficiently strong for
solving the k-set instance given in the column header. The middle col-
umn thus shows the “solvability gap,” where the (currently) unknown
weakest failure detector will fit in.

BIELY ET AL.: THE GENERALIZED LONELINESS DETECTOR AND WEAK SYSTEM MODELS FOR K-SET AGREEMENT 1085

same message by other means, i.e., are numerate in the
notion of [27]. Failure detectors for anonymous resp.
homonymous system (where processes may share the
same id) have been studied in [15] resp. [7]; a weakest
failure detector for consensus has been given in [19].

6.1 Implementing LðkÞ
Given that we have provided an algorithm that solves
k-set agreement using LðkÞ without the need for unique
identifiers, one natural question to ask is whether this
also applies for our algorithms implementing LðkÞ.

For Algorithm 2, we note that it just counts the number of
ðalive; phÞ messages for each phase ph. So as long as line 13
is triggered by each (identical) message, the algorithm also
works in anonymous systems. Moreover, since it does not
require the knowledge of n, it is also a uniform algorithm
[15], as long as k does not depend on n. Given that Algo-
rithm 2 implements Lðn� kÞ, assuming this independence
might seem self-contradictory. However, this contradiction
disappears when considering the aggregate of Algorithm 2
and Algorithm 3 together.

Some considerations related to Algorithm 1 for MantiðxÞ

can be found in [12, Section 4].

6.2 Relations to Anonymous Failure Detectors

From [28], we know that L can be extracted anonymously
from any failure detector D that solves set agreement using
some algorithm A: Every process executes an independent
instance of A (without any other process participating)
using D as its failure detector. The simulated L outputs
TRUE at p only when A has terminated at p. In conjunction
with our Theorem 6 applied for k ¼ n� 1, this implies the
following fact:

Corollary 8. L is the weakest failure detector for set agreement in
anonymous message passing systems.

With respect to consensus, [15] provided an in-depth
analysis of various failure detectors for anonymous sys-
tems, in particular, the identity-free perfect failure detector
AP and the identity-free eventual leader oracle AV, see [12,
Definitions 3 and 4].

In [15], it was conjectured that ðAS; AVÞ �AP is the
weakest failure detector for solving anonymous consen-
sus. This �-combination is defined as the failure detector
that outputs ? for an arbitrary finite prefix and then
chooses an output that is admissible for either ðAS; AVÞ
or AP at every process.

In [12, Section 4], we disprove this conjecture by showing
that ðAS; AVÞ �AP cannot be extracted from Lð1Þ.
Theorem 9. Consider an anonymous asynchronous system of

at least three processes. Failure detectors ðAS; AVÞ �AP
and Lð1Þ are incomparable.

Corollary 10. Neither ðAS; AVÞ �AP nor Lð1Þ is the weak-
est failure detector for solving consensus in an anonymous
asynchronous system.

Note that it is not yet known whether every problem
has exactly one class of weakest failure detectors also in
anonymous systems, as it is the case for non-anonymous
systems (cf. [41]). Therefore, ðAS; AVÞ �AP � Lð1Þ could

be seen as a promising candidate for a weakest failure
detector for consensus in anonymous systems.

7 CONCLUSIONS

We introduced two novel message passing models
Mantiðn�kÞ and Msinkðn�kÞ that provide enough synchrony
for solving k-set agreement and showed how to imple-
ment our generalized ðn� kÞ-loneliness failure detector
LðkÞ in these models. Part of our future research will
focus on the still ongoing chase for the weakest failure
detector for message passing k-set agreement, both in
non-anonymous and anonymous systems.

ACKNOWLEDGMENTS

A preliminary version of this paper [10] was accepted at
OPODIS ’09; some material of the present paper has
been relegated to an online supplement [12]. Our work
was supported by the Austrian BM:vit FIT-IT project
TRAFT (proj. no. 812205) and the Austrian Science Foun-
dation (FWF) projects P20529 (PSRTS) and S11405 (RiSE).
Peter Robinson was also supported in part by Nanyang
Technological University grant M58110000 and Singapore
Ministry of Education (MOE) Academic Research Fund
(AcRF) Tier 2 grant MOE2010-T2-2-082.

REFERENCES

[1] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“Partial Synchrony Based on Set Timeliness,” Proc. 28th ACM
Symp. Principles of Distributed Computing (PODC ’09), pp. 102-110,
2009.

[2] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“Partial Synchrony Based on Set Timeliness,” Distributed Comput-
ing, vol. 25, no. 3, pp. 249-260, 2012.

[3] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“On Implementing Omega with Weak Reliability and Synchrony
Assumptions,” Proc. 22nd ACM Symp. Principles of Distributed
Computing, pp. 306-314, July 2003.

[4] M.K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“Communication-Efficient Leader Election and Consensus with
Limited Link Synchrony,” Proc. 23th ACM Symp. Principles of Dis-
tributed Computing (PODC ’04), pp. 328-337, 2004.

[5] D. Alistarh, S. Gilbert, R. Guerraoui, and C. Travers, “Of Choices,
Failures and Asynchrony: The Many Faces of Set Agreement,”
Algorithmica, vol. 62, no. 1/2, pp. 595-629, 2012.

[6] D. Angluin, “Local and Global Properties in Networks of Process-
ors (Extended Abstract),” Proc. 12th Ann. ACM Symp. Theory of
Computing, pp. 82-93, 1980.

[7] S. Arevalo, A. Fernandez Anta, D. Imbs, E. Jimenez, and M.
Raynal, “Failure Detectors in Homonymous Distributed Sys-
tems (with an Application to Consensus),” Proc. 32nd Int’l
IEEE Conf. Distributed Computing Systems (ICDCS ’12), pp. 275-
284, June 2012.

[8] H. Attiya, M. Snir, and M.K. Warmuth, “Computing on an Anony-
mous Ring,” J. ACM, vol. 35, no. 4, pp. 845-875, 1988.

[9] M. Biely, M. Hutle, L.D. Penso, and J. Widder, “Relating Stabiliz-
ing Timing Assumptions to Stabilizing Failure Detectors Regard-
ing Solvability and Efficiency,” Proc. Ninth Int’l Symp. Stabilization,
Safety, and Security of Distributed Systems, vol. 4838, pp. 4-20, Nov.
2007.

[10] M. Biely, P. Robinson, and U. Schmid, “Weak Synchrony Models
and Failure Detectors for Message Passing k-Set Agreement,”
Proc. Int’l Conf. Principles of Distributed Systems (OPODIS ’09),
pp. 285-299, Dec. 2009.

[11] M. Biely, P. Robinson, and U. Schmid, “Easy Impossibility Proofs
for K-Set Agreement in Message Passing Systems,” Proc. 15th Int’l
Conf. Principles of Distributed Systems (OPODIS ’11), pp. 299-312,
2011.

1086 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

[12] M. Biely, P. Robinson, and U. Schmid, Supplement: The Generalized
Loneliness Detector and Weak System Models for k-Set Agreement,
2013.

[13] M. Biely and J. Widder, “Optimal Message-Driven Implementa-
tions of Omega with Mute Processes,” ACM Trans. Autonomous
and Adaptive Systems, vol. 4, no. 1, article 4, 2009.

[14] F. Bonnet and M. Raynal, “Looking for the Weakest Failure Detec-
tor for K-Set Agreement in Message-Passing Systems: Is Pk the
End of the Road?” Proc. 11th Int’l Symp. Stabilization, Safety, and
Security of Distributed Systems (SSS ’09), vol. 5873, pp. 129-164,
2009.

[15] F. Bonnet and M. Raynal, “Anonymous Asynchronous Systems:
The Case of Failure Detectors,” Proc. 24th Int’l Conf. Distributed
Computing, pp. 206-220, 2010.

[16] F. Bonnet and M. Raynal, “On the Road to the Weakest Failure
Detector for K-Set Agreement in Message-Passing Systems,” Theo-
retical Computer Science, vol. 412, no. 33, pp. 4273-4284, 2011.

[17] E. Borowsky and E. Gafni, “Generalized FLP Impossibility Result
for T-Resilient Asynchronous Computations,” Proc. 25th Ann.
ACM Symp. Theory of Computing (STOC ’93), pp. 91-100, 1993.

[18] Z. Bouzid and C. Travers, “ðanti-Vx � SzÞ-Based k-Set Agreement
Algorithms,” Proc. 14th Int’l Conf. Principles of Distributed Systems,
pp. 189-204, 2010.

[19] Z. Bouzid and C. Travers, “Brief Announcement: Anonymity,
Failures, Detectors and Consensus,” Proc. 26th Int’l Symp. Distrib-
uted Computing (DISC ’12), pp. 427-428, 2012.

[20] T.D. Chandra, V. Hadzilacos, and S. Toueg, “The Weakest Failure
Detector for Solving Consensus,” J. ACM, vol. 43, no. 4, pp. 685-
722, June 1996.

[21] T.D. Chandra and S. Toueg, “Unreliable Failure Detectors for Reli-
able Distributed Systems,” J. ACM, vol. 43, no. 2, pp. 225-267, Mar.
1996.

[22] B. Charron-Bost and A. Schiper, “Uniform Consensus is Harder
than Consensus.,” J. Algorithms, vol. 51, no. 1, pp. 15-37, 2004.

[23] S. Chaudhuri, “More Choices Allow More Faults: Set Consensus
Problems in Totally Asynchronous Systems,” Information and Com-
putation, vol. 105, no. 1, pp. 132-158, 1993.

[24] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, “A Realistic
Look at Failure Detectors,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN ’02), pp. 345-353, 2002.

[25] C. Delporte-Gallet, “Tight Failure Detection Bounds on Atomic
Object Implementations,” J. ACM, vol. 57, pp. 22:1-22:32, May 2010.

[26] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P.
Kouznetsov, and S. Toueg, “The Weakest Failure Detectors to
Solve Certain Fundamental Problems in Distributed Computing,”
Proc. 23rd ACM Symp. Principles of Distributed Computing
(PODC ’04), pp. 338-346, 2004.

[27] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, A.-M. Kermar-
rec, E. Ruppert, and H. Tran-The, “Byzantine Agreement with
Homonyms,” Proc. 30th Ann. SIGACT-SIGOPS Symp. Principles of
Distributed Computing (PODC), pp. 21-30, 2011.

[28] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann,
“The Weakest Failure Detector for Message Passing Set-
Agreement,” Proc. 22nd Int’l Symp. Distributed Computing
(DISC ’08), pp. 109-120, 2008.

[29] D. Dolev, C. Dwork, and L. Stockmeyer, “On the Minimal Syn-
chronism Needed for Distributed Consensus,” J. ACM, vol. 34,
no. 1, pp. 77-97, Jan. 1987.

[30] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the Pres-
ence of Partial Synchrony,” J. ACM, vol. 35, no. 2, pp. 288-323,
Apr. 1988.

[31] A. Fern�andez and M. Raynal, “From an Asynchronous Intermit-
tent Rotating Star to an Eventual Leader,” IEEE Trans. Parallel and
Distributed Systems, vol. 21, no. 9, pp. 1290-1303, Sept. 2010.

[32] A.F. Anta, S. Rajsbaum, and C. Travers, “Brief Announcement:
Weakest Failure Detectors via an Egg-Laying Simulation,” Proc.
28th ACM Symp. Principles of Distributed Computing (PODC),
pp. 290-291, 2009.

[33] M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of Dis-
tributed Consensus with One Faulty Process,” J. ACM, vol. 32,
no. 2, pp. 374-382, Apr. 1985.

[34] M. F€ugger and U. Schmid, “Reconciling Fault-Tolerant Distrib-
uted Computing and Systems-On-Chip,” Distributed Computing,
vol. 24, no. 6, pp. 323-355, 2012.

[35] E. Gafni and P. Kuznetsov, “The Weakest Failure Detector for
Solving K-Set Agreement,” Proc. 28th ACM SIGACT-SIGOPS
Symp. Principles of Distributed Computing (PODC ’09), 2009.

[36] R. Guerraoui, M. Herlihy, P. Kouznetsov, N. Lynch, and C. New-
port, “On the Weakest Failure Detector Ever,” Proc. 26th Ann.
ACM Symp. Principles of Distributed Computing (PODC ’07),
pp. 235-243, Aug. 2007.

[37] R. Guerraoui and A. Schiper, “‘Gamma-Accurate’ Failure
Detectors,” Proc. 10th Int’l Workshop Distributed Algorithms (WDAG
’96), pp. 269-286, 1996.

[38] M. Herlihy, “Wait-Free Synchronization,” ACM Trans. Program-
ming Language Systems, vol. 13, no. 1, pp. 124-149, 1991.

[39] M. Herlihy and N. Shavit, “The Asynchronous Computability
Theorem for T-Resilient Tasks,” Proc. 25th Ann. ACM Symp. Theory
of Computing, pp. 111-120, 1993.

[40] M. Hutle, D. Malkhi, U. Schmid, and L. Zhou, “Chasing the Weak-
est System Model for Implementing Omega and Consensus,”
IEEE Trans. Dependable and Secure Computing, vol. 6, no. 4, pp. 269-
281, Oct.-Dec. 2009.

[41] P. Jayanti and S. Toueg, “Every Problem Has a Weakest Failure
Detector,” Proc. 27th ACM Symp. Principles of Distributed Comput-
ing (PODC), pp. 75-84, 2008.

[42] M. Larrea, A. Fern�andez, and S. Ar�evalo, “Optimal Implementa-
tion of the Weakest Failure Detector for Solving Consensus,” Proc.
19th IEEE Symp. Reliable Distributed Systems (SRDS), pp. 52-59,
Oct. 2000.

[43] D. Malkhi, F. Oprea, and L. Zhou, “V Meets Paxos: Leader Elec-
tion and Stability without Eventual Timely Links,” Proc. 19th
Symp. Distributed Computing (DISC ’05), vol. 3724, pp. 199-213,
2005.

[44] A. Mostefaoui, E. Mourgaya, and M. Raynal, “Asynchronous
Implementation of Failure Detectors,” Proc. Int’l Conf. Dependable
Systems and Networks (DSN ’03), pp. 22-25, June 2003.

[45] A. Most�efaoui and M. Raynal, “Unreliable Failure Detectors with
Limited Scope Accuracy and an Application to Consensus,” Proc.
19th Conf. Foundations of Software Technology and Theoretical Com-
puter Science, pp. 329-340, 1999.

[46] A. Most�efaoui and M. Raynal, “K-Set Agreement with Limited
Accuracy Failure Detectors,” Proc. 19th Ann. ACM Symp. Principles
of Distributed Computing (PODC ’00), pp. 143-152, 2000.

[47] A. Most�efaoui, M. Raynal, and J. Stainer, “Relations Linking Fail-
ure Detectors Associated with K-Set Agreement in Message-
Passing Systems,” Proc. 13th Int’l Conf. Stabilization, Safety, and
Security of Distributed Systems (SSS), pp. 341-355, 2011.

[48] A. Mostefaoui, M. Raynal, and C. Travers, “Crash-Resilient Time-
Free Eventual Leadership,” Proc. 23rd IEEE Symp. Reliable Distrib-
uted Systems (SRDS ’04), pp. 208-217, 2004.

[49] G. Neiger, “Failure Detectors and the Wait-Free Hierarchy
(Extended Abstract),” Proc. 14th Ann. ACM Symp. Principles of dis-
tributed computing, pp. 100-109, 1995.

[50] S.M. Pike, S. Sastry, and J.L. Welch, “Failure Detectors Encapsu-
late Fairness,” Distributed Computing, vol. 25, no. 4, pp. 313-333,
2012.

[51] P. Robinson, Weak System Models for Fault-Tolerant Distributed
Agreement Problems Ph.D. dissertation, Technische Universit€at
Wien, 2011.

[52] P. Robinson and U. Schmid, “The Asynchronous Bounded-Cycle
Model,” Proc. 10th Int’l Symp. Stabilization, Safety, and Security of
Distributed Systems (SSS’08), vol. 5340, pp. 246-262, Nov. 2008.

[53] M. Saks and F. Zaharoglou, “Wait-Free K-Set Agreement Is
Impossible: The Topology of Public Knowledge,” SIAM J. Comput-
ing, vol. 29, no. 5, pp. 1449-1483, 2000.

[54] J. Widder and U. Schmid, “The Theta-Model: Achieving Syn-
chrony without Clocks,” Distributed Computing, vol. 22, no. 1,
pp. 29-47, Apr. 2009.

[55] P. Zielinski, “Automatic Classification of Eventual Failure
Detectors,” Proc. 21st Int’l Symp. Distributed Computing, (DISC ’07),
vol. 4731, pp. 465-479, Sept. 2007.

[56] P. Zielinski, “Anti-V: The Weakest Failure Detector for Set
Agreement,” Proc. 27th ACM Symp. Principles of Distributed Com-
puting (PODC ’08), pp. 55-64, 2008.

BIELY ET AL.: THE GENERALIZED LONELINESS DETECTOR AND WEAK SYSTEM MODELS FOR K-SET AGREEMENT 1087

Martin Biely received the master’s degree in
computer science in 2002 and the PhD degree
in 2009, both from the Vienna University of
Technology, Austria. From 2004 to 2009, he
was at the Department of Computer Engineer-
ing at the Vienna University of Technology. In
2009 and 2010, he was a Lix-Qualcomm-fel-
low at Ecole Polytechnique, France. Since
2010, he has been a postdoctoral researcher
at the Distributed Systems Laboratory of
EPFL, Switzerland. His current research

encompasses theoretical, algorithmic, and systems aspects of fault-
tolerant distributed computations.

Peter Robinson received the PhD degree in
computer science from the Vienna University of
Technology. He is a postdoctoral research fellow
at the Nanyang Technological University. His cur-
rent research focuses on theoretical aspects of
distributed computing. This comprises the design
of distributed algorithms and the development of
new models for distributed computation. He
received the Best Paper award at the 14th Inter-
national Conference on Distributed Computing
and Networking (ICDCN 2013) and at the 10th

International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS 2008).

Ulrich Schmid studied computer science and
mathematics and also spent several years in
industrial electronics and embedded systems
design. He is a full professor and the head of the
Embedded Computing Systems Group at the
Institut f€ur Technische Informatik at TU Vienna.
He authored and coauthored numerous papers
in the field of theoretical and technical computer
science and received several awards and prices,
like the Austrian START-price 1996. His current
research interests focus on the mathematical

analysis of fault-tolerant distributed algorithms and real-time systems,
with special emphasis on their application in systems-on-chips and net-
worked embedded systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1088 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

