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Abstract—Distributed systems without trusted identities are particularly vulnerable to sybil attacks, where an adversary creates
multiple bogus identities to compromise the running of the system. This paper presents SybilDefender, a sybil defense mechanism that
leverages the network topologies to defend against sybil attacks in social networks. Based on performing a limited number of random
walks within the social graphs, SybilDefender is efficient and scalable to large social networks. Our experiments on two 3,000,000
node real-world social topologies show that SybilDefender outperforms the state of the art by more than 10 times in both accuracy and
running time. SybilDefender can effectively identify the sybil nodes and detect the sybil community around a sybil node, even when the
number of sybil nodes introduced by each attack edge is close to the theoretically detectable lower bound. Besides, we propose two
approaches to limiting the number of attack edges in online social networks. The survey results of our Facebook application show that
the assumption made by previous work that all the relationships in social networks are trusted does not apply to online social networks,
and it is feasible to limit the number of attack edges in online social networks by relationship rating.

Index Terms—Sybil attack, social network, random walk

1 INTRODUCTION

ISTRIBUTED systems are vulnerable to sybil attacks [1],

[2], in which an adversary creates many bogus
identities, called sybil identities, and compromises the
running of the system or pollutes the system with fake
information. The sybil identities can “suppress” the honest
identities in a variety of tasks, including online content
ranking, DHT routing, file sharing, reputation systems, and
Byzantine failure defenses.

Sybil attacks can be mitigated by assuming the existence
of a trusted authority, which can rate-limit the introduction
of fake identities by requiring the users to provide some
credentials, like social security number, or by requiring
payment. However, such requirements will prevent users
from accepting these systems, as they impose additional
burdens on users.

Recently, there has been an increasing interest in
defending against sybil attacks in social networks [3], [4],
[5], [6], [7]. In a social network, two user identities share a
link if a relationship is established between them. Each
identity is represented as a node in the social graph. To
prevent the adversary from creating many sybil identities,
all the previous sybil defense schemes are built upon the
assumption that the number of links between the sybil
nodes and the honest nodes, also known as attack edges, is
limited. As a result, although an adversary can create many
sybil nodes and link them in an arbitrary way, there will be
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a small cut between the honest region and the sybil region.
The small cut consists of all the attack edges and its
removal disconnects the sybil nodes from the rest of the
graph, which is leveraged by previous schemes to identify
the sybil nodes. Note that the solution to this problem
is nontrivial, because finding small cuts in a graph is an
NP-hard problem. To limit the number of attack edges,
previous schemes assume that all the relationships in social
networks are trusted and they reflect the trust relationships
among those users in the real world, and thus, an adversary
cannot establish many relationships with the honest users.
However, it has been shown that this assumption does not
hold in some real-world social networks [8].

In the past few years, online social networks have gained
great popularity and are among the most frequently visited
sites on the web. The large sizes of these networks require
that any scheme aiming to defend against sybil attacks in
online social networks should be efficient and scalable.
Some previous schemes can achieve good performance
on a very small network sample (2,000 nodes in [5] and
30,000 nodes in [3]), but their algorithms are computation-
ally intensive and cannot scale to networks with millions of
nodes. For the schemes that performed evaluation on
million-node samples of online social networks, SybilGuard
[7] admits O(y/nlogn) sybil nodes per attack edge, where n
is the number of honest nodes; SybilLimit [6] improves over
SybilGuard by accepting O(logn) sybil nodes per attack
edge, but it is still away from the theoretical lower bound
by a logn factor. In addition, both SybilGuard and
SybilLimit identify one sybil node at a time, and thus, to
detect the sybil region all the nodes in the social graph need
to be examined.

To address the weaknesses of previous work, in this
paper, we propose SybilDefender, a centralized sybil
defense mechanism. It consists of a sybil identification
algorithm to identify sybil nodes, a sybil community
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detection algorithm to detect the sybil community sur-
rounding a sybil node, and two approaches to limiting the
number of attack edges in online social networks. Our
scheme is based on the observation that a sybil node must
go through a small cut in the social graph to reach the
honest region. An honest node, on the contrary, is not
restricted. Now, if we start from a sybil node to do random
walks, the random walks tend to stay within the sybil
region. The main contributions of this work include:

e Based on performing a limited number of random
walks within the social graphs, our proposed sybil
identification and sybil community detection algo-
rithms are more efficient than previous techniques
for large social networks.

e We evaluate SybilDefender using two large-scale
social network samples from Orkut and Facebook,
respectively. The results show that the performance
of our sybil identification algorithm approaches the
theoretical bound, and it outperforms SybilLimit, the
state-of-the-art sybil defense mechanism that applies
to large social networks, by more than 10 times in
both accuracy and running time. In addition, our
sybil community detection algorithm can effectively
detect the sybil community around a sybil node with
short running time.

e We propose two practical techniques to limit the
number of attack edges in online social networks,
and develop a Facebook application to demonstrate
the feasibility of one of the techniques. The survey
results of our Facebook application show that the
assumption made by previous work that all the
relationships in social networks are trusted does not
hold in online social networks, and it is feasible to
limit the number of attack edges in online social
networks by relationship rating.

A preliminary version of this paper was presented in [9].
Herein, we design a Combo algorithm that combines the
sybil identification algorithm with the sybil community
detection algorithm, which reduces a large portion of
computation overhead of the latter. We also present the
weighted versions of the sybil identification and sybil
community detection algorithms, and evaluate their per-
formance on a weighted social network sample. The
behavior of the sybil identification algorithm over several
designs of trust-driven random walks is analyzed in the
evaluation section. Additionally, we add more evaluation
results of our algorithms, such as their performance over
much larger sybil regions, as well as the detailed survey
results of our Facebook application.

2 REeLATED WORK

One promising way to defend against sybil attacks in social
networks is to leverage the social network topologies. Yu
et al. proposed decentralized algorithms, SybilGuard [7]
and SybilLimit [6], to determine whether a suspect node is
sybil. SybilGuard and SybilLimit both rely on the assump-
tion that social networks are fast mixing (explained later),
and the number of attack edges is limited. To identify sybil
nodes, the schemes leverage random routes, a special kind
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of random walks in which each node uses a precomputed
random permutation as a one-to-one mapping from incom-
ing edges to outgoing edges. SybilGuard suffers from high
false negatives, as each attack edge may introduce
O(y/nlogn) sybil nodes without being detected. The
improved version of SybilGuard, SybilLimit, reduces this
value to O(log n), which is still larger than the proved lower
bound (1) [6] by a logn factor. Moreover, to detect the
sybil region with SybilGuard or SybilLimit, all the suspect
nodes in the social graph need to be tested. By contrast,
with our sybil community detection algorithm, the sybil
community around a sybil node can be detected in one run
of the algorithm.

GateKeeper [4] is another decentralized sybil defense
scheme that heavily relies on the assumption that the social
networks are random expander. This is a strong assumption
that has not been validated by previous research. Our
evaluation shows that GateKeeper suffers from high false
positive and negative rates and cannot effectively identify
sybil nodes on the real-world asymmetric social topologies.

Sybillnfer [3], a centralized sybil defense algorithm,
leverages a Bayesian inference approach that assigns a sybil
probability, indicating the degree of certainty, to each node
in the network. It achieves low false negatives at the cost of
high computation overhead. The overall time complexity of
Sybillnfer is O(|V[*1og |V|), where V is the set of vertices in
the social graph. In the evaluation, Sybillnfer handled
networks with up to 30,000 nodes, which is much smaller
than the size of regular online social networks. In contrast,
SybilDefender only relies on performing a limited number
of random walks in the social graph, and it is scalable to
large networks.

Some previous solutions mitigate sybil attacks through
the use of computational puzzles or CAPTCHAs [10]. These
approaches can limit the rate at which sybil identities are
introduced into the systems, but they cannot identify the
existing sybil identities. They can be used in conjunction
with the scheme proposed in this paper.

3 SysTEM MODEL

We denote the social network as a graph G consisting of
vertices V' and edges E. There are n honest users in the
social network, each with one identity, denoted as an honest
node in V. There are also one or more malicious users in the
social network, each with a number of sybil identities. Each
sybil identity is denoted as a sybil node in V. A relationship
between two identities in the social network is represented
as an edge connecting the two corresponding nodes in G.
The edges in G are undirected. We name the edge between
a sybil node and an honest node an attack edge. The sybil
region consists of all the sybil nodes, while the honest region
consists of all the honest nodes. All the sybil nodes are
controlled by an adversary. Thus, the adversary can create
arbitrary edges within the sybil region.

SybilDefender is built on the following assumptions:

The honest region is fast mixing. Fast mixing means a
random walk of length O(logn) is long enough such that
with probability at least 1 —1, the last traversed node is
drawn from the node stationary distribution of the graph
[7]. Generally speaking, random walks in a fast mixing
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graph converge quickly to the stationary distribution. The
stationary distribution is a probability distribution 7 for V/
such that ¥ = TP, where P is the transition matrix of the
random walk process. At each step of the random walk, the
transition probability from node ¢ to j is P;; = %’, where d;
is the degree of node i. A;; =1 if i and j are connected,
otherwise A;; =0. It can be easily proved that 7;, the
stationary probability of node i, is equal to % Yu et al. [6]
have shown that the real-world social networks are fast
mixing. The previous sybil defense schemes [3], [6], [7] are
also built upon this assumption.

Omne known honest node. Like previous schemes [3], [6], [7],
we assume that there is at least one known honest node in
the social network. This node is the starting point of our
sybil identification algorithm.

The administrator knows the social network topology. This
means that SybilDefender is a centralized sybil defense
mechanism. Considering that all the current online social
networks are under centralized control, it is natural for the
administrators of these networks to take charge of mitigat-
ing sybil attacks.

The size of the sybil region is not comparable to the size of the
honest region. Given the large user base of the current online
social networks (Facebook (over 500 million), Twitter (over
200 million), Orkut (over 120 million)), it is reasonable to
assume that the adversary cannot create such many sybil
identities, especially considering that signing up a new user
account always includes verifying an email address, provid-
ing some personal information, and solving CAPTCHAs.

The number of attack edges is limited. As a result, when the
adversary creates many sybil nodes, there will be a
disproportionately small cut between the honest region
and the sybil region. The existence of a small cut disturbs the
fast-mixing property: the mixing between the honest nodes
is fast, while the mixing between the honest nodes and the
sybil nodes is slow. Previous schemes limit the number of
attack edges by assuming that the honest users only
establish links with their real-world friends [3], [4], [6], [7],
which has been shown to not hold in online social networks.
The experiment by Bilge et al. [8] shows that on Facebook,
the acceptance rate of friendship requests from a bogus
account is around 20 percent. If an adversary launches a
sybil attack, all the links created in this way are attack edges.
We will address this problem in Section 4.4.

4 SyBILDEFENDER DESIGN

SybilDefender consists of three components: A sybil
identification algorithm, a sybil community detection
algorithm, and two supporting approaches to limiting the
number of attack edges. The three components can be used
in conjunction to best mitigate sybil attacks. The task of the
sybil identification algorithm presented in Section 4.1 is to
determine whether a suspect node is sybil. Then, we show
how to efficiently detect the sybil community around a sybil
node with our sybil community detection algorithm
presented in Section 4.2. The reason why we need the
second algorithm is that simply examining all the nodes in
the social graph to find the sybil community is impractical.
In Section 4.3, we present a Combo algorithm that combines
the sybil identification algorithm with the sybil community
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detection algorithm. Finally, both algorithms are built upon
the assumption that the number of attack edges is limited.
In Section 4.4, we propose two approaches to supporting
this assumption in online social networks.

4.1 Sybil Identification Algorithm

In this section, we present a sybil identification algorithm
that takes the social graph G(V, E), a known honest node h,
and a suspect node u as input, and outputs whether u is
sybil or not. Our algorithm is based on random walks. A
random walk on a graph is defined by the sequence of
moves of a particle between nodes of G. If the particle is at
node i with degree d;, then the probability that the particle
follows the edge (4, j) and moves to a neighbor j is 1/d;.

The intuition of our sybil identification algorithm is that,
as there is a small cut between the honest region and the
sybil region, the random walks originating from a sybil
node tend to get “trapped” into the sybil region. Also,
because we assume that the size of the sybil region is not
comparable to the size of the honest region, the number of
nodes traversed by the random walks originating from an
honest node will be larger than the number of nodes
traversed by the random walks originating from a sybil
node, as long as the random walks are long enough to
exhibit the difference between the sybil region and the
honest region, and we perform the random walks many
times. For simplicity, we define the number of times one
node being traversed by a set of random walks as the
frequency of that node. Note that one node may be traversed
by the same random walk multiple times.

The sybil identification algorithm consists of two phases,
Algorithms 1 and 2. The first phase takes G' and h as input,
and outputs the thresholds used by the second phase to
identify sybil nodes. It only needs to be invoked once for
each social network topology. As shown in Algorithm 1, the
algorithm first performs f short random walks with length
l; = logn originating from the known honest node h. The f
ending nodes are drawn from the node stationary distribu-
tion of the honest region, since we assume that the honest
region is fast mixing. Following the proof in [11], the ending
nodes are all honest nodes with high probability. After this
the known honest node h and the f ending nodes are
treated as judge nodes, from which the algorithm sets up the
criterion to identify sybil nodes. Note the possibility that
sybil nodes may exist in the group of the judge nodes does
not influence the effectiveness of the algorithm, due to their
very limited number. Starting from a minimum length [,
to a maximum length [,,,,, with an interval of 100 hops, for
each length /, the algorithm performs R (ranging from 1,000
to 2,000 in our evaluation) random walks originating from
every judge node, and counts the number of nodes whose
frequency is no smaller than a threshold ¢, which is a small
constant (five in our evaluation). The algorithm collects f +
1 such values for each length [. Then it computes the mean
and standard deviation of the f+ 1 values and outputs a
tuple (I, mean, stdDeviation).

Algorithm 1. PreProcessing(G, h).
1. J={h}
2: fori=1to f do
3:  Perform a random walk with length I, = logn
originating from h
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4:  J = JU{the ending node of the random walk}
5: end for

6: 1= lnin

7: while | <= l,,,, do

8:  fori=J.first() to J.last() do

9: Perform R random walks with length !
originating from node i
10: Get n; as the number of nodes with frequency no
smaller than ¢
11: end for
12: output (I, mean({n; : i € J}), stdDeviation({n; : i €
J1)

13: l=1+100
14: end while

As shown in Algorithm 2, to determine whether a
suspect node wu is sybil, the algorithm first performs R
random walks with an initial length [ = [, originating from
u. lp is larger than or equal to [, used in Algorithm 1.
The algorithm then compares the number of nodes whose
frequency is no smaller than ¢ with the mean value in
tuple (I, mean, std Deviation) outputted by Algorithm 1. If
the former is smaller than the latter by an amount larger
than stdDeviation * « (o =20 in our evaluation), we
consider u is sybil and end the algorithm. Otherwise, the
algorithm doubles I and repeats the process, until [ is larger
than [,,,4,. If  is still not identified as sybil when the value of
l reaches I,,q,, we consider it honest and end the algorithm.

Algorithm 2. Sybilldentification(G, u, tuples from Alg.1).

1. = l()

2: while [ <= I,,,, do

3: Perform R random walks with length [ originating
from u

4:  m = the number of nodes whose frequency is no
smaller than ¢

5:  Let the tuple corresponding to length [ in the outputs
of Algorithm 1 be (I, mean, stdDeviation)

6: if mean — m > stdDeviation * « then
7: output u is sybil
8 end the algorithm
9: end if
10: Il=1%2

11: end while
12: output u is honest

Given a social graph G(V, E) and a known honest node
h, lnez, the maximum random walk length that decides
when to end the algorithm, can be determined as follows:
We do R random walks originating from h with length /...
The number of nodes with frequency no smaller than ¢
should be larger than |V|/2. Given that we assume the sybil
region is smaller than the honest region, l,,,, determined in
this way is large enough for R random walks originating
from a sybil node to cover the sybil region, so as to exhibit
the difference between the random walks originating from
an honest node and from a sybil node. Our algorithm
adaptively tests the suspect node while doubling the
random walk length each time. This guarantees that the
algorithm can identify the sybil nodes in differently sized
sybil regions: for small sybil regions short random walks
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are already enough, while for large regions long random
walks need to be performed, because the footprint of short
random walks in a large sybil region may be similar to that
in the honest region. A theoretical analysis of our sybil
identification algorithm is provided in Appendix A in the
supplementary file, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2013.9.

4.2 Sybil Community Detection Algorithm

After one sybil node is identified, our sybil community
detection algorithm can be used to detect the sybil
community surrounding it. The sybil community detection
algorithm takes the social graph G(V, E) and a known sybil
node s as input, and outputs the sybil community around s.
The sybil node s can be identified by our sybil identification
algorithm or any previous scheme. We define a sybil
community as a subgraph of G consisting of only sybil
nodes, and there is no small cut in this subgraph. The
reason why we make this definition is that if a small cut
does divide the sybil region into two parts S; and S,, and
the known sybil node s is in S, then, from the point of view
of s, the honest region and S, are similar, because there is
already a small cut between S; and the honest region and
also a small cut between S; and Ss. When there is a small
cut in the sybil region, our algorithm can detect the sybil
community s is in.

Our algorithm relies on performing partial random walks
originating from s. Each partial random walk behaves the
same as the simple random walks used in the previous
section, except that it does not traverse the same node more
than once. Therefore, when a partial random walk reaches a
node with all the neighbors traversed by itself, this partial
random walk is “dead” and cannot proceed. This property
makes a partial random walk originating from a sybil node
less likely to leave the sybil region, compared with a simple
random walk, because many such walks “die” when they
hit the border of the sybil region. Similar to the sybil
identification algorithm, the intuition behind this algorithm
is that the partial random walks originating from a sybil
node tend to be trapped within the sybil region, and thus,
we can detect the sybil community by examining the nodes
traversed by the partial random walks.

The sybil community detection algorithm consists of two
phases, Algorithms 3 and 4. The task of Algorithm 3 is to
estimate the needed length of the partial random walks
used in Algorithm 4. Starting from an initial length /, the
algorithm performs R partial random walks originating
from s and counts the ratio of dead walks, which are the
walks that cannot proceed before they reach the required
length. If this ratio is smaller than 3, a threshold close to 1
(0.95 in our evaluation), the algorithm doubles the current
length and performs the partial random walks again. This
process is repeated until the dead walk ratio is no smaller
than 3. Then, the algorithm outputs the current random
walk length [. The reasoning is that the number of
untraversed sybil nodes is very small (often equals to 0 in
our evaluation) when the dead walk ratio is close to 1 and
with a relatively large R (2,000 in our evaluation).
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Algorithm 3. WalkLengthEstimation(G, s).
1 1=1y/2

2: deadWalkRatio =0
3: while deadWalkRatio < (3 do
4. l=1%2
5: deadWalkNum = 0
6 for:=1to R do
7 Perform a partial random walk originating from s
with length !
8: if the partial random walk is dead before it
reaches [ hops then
9: deadW alk Num++
10: end if
11: end for

12: deadWalkRatio = deadWalkNum/R
13: end while
14: output !

Algorithm 4. SybilRegionDetection(G, s, ! from Alg.3).
1: Set the frequency of all the nodes to be 0
2: fori=1to Rdo

3: Perform a partial random walk originating from
node s with length !

4: s.frequency++

5. forj=1tol do

a

Let the ;' hop of the partial random walk be
node k
k. frequency++
end for
end for
traversedList = Sort the traversed nodes by their
frequency in decreasing order
11: counter =0

12: S=10

13: do

14: counter = conductance(S)

15: for i = traversedList. first() to traversedList.last()
do

16: if node i € S then

17: continue

18: if conductance({i} U S) <= conductance(S) then

19: S={i}us

20: while (counter > conductance(S5))

21: output S

Algorithm 4 takes G, s, and the estimated length [ as
input and outputs the sybil community surrounding s. The
reason why we need Algorithm 4 is that not all the nodes
traversed by the partial random walks in Algorithm 3 are
sybil nodes, as some walks pass the small cut and enter the
honest region, and we need an algorithm to select the sybil
nodes from the set of traversed nodes. To achieve this,
Algorithm 4 leverages a metric called conductance [12],
defined as follows: Let d be the sum of the degrees of all the
nodes in set S, and a be the number of edges with one
endpoint in S and one endpoint in S. Then, the conductance
of S'is a/d. The conductance of a set S measures the quality
of the cut between S and S: the smaller the conductance is,
the smaller the cut is. Since we assume that there is a small
cut between the honest region and the sybil region, using
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conductance as the objective of the greedy algorithm fits the
problem well. In this algorithm, we let the conductance of
an empty set be 1.

Algorithm 4 runs by first performing R partial random
walks originating from the known sybil node s, with the
length decided by Algorithm 3. Then, the algorithm sorts all
the traversed nodes by their frequency in decreasing order.
Starting from the first node, which is always s, the algorithm
iterates the sorted list and adds the encountered node to set
S if doing so does not increase the conductance of S. After
all the nodes in the sorted list are examined, the algorithm
records the current conductance value, starts a new iteration
from the top of the list, and examines each node that is not in
S. This process is repeated until the conductance value stays
the same at the end of two consecutive iterations. Then, the
algorithm outputs S as the detected sybil community. The
intuition is that by performing the partial random walks
originating from a sybil node with suitable length many
times, the sybil community surrounding the sybil node is
covered by the partial random walks. Also, the sybil nodes
tend to be in front of the honest nodes in the sorted list,
because a large number of partial random walks cannot
enter the honest region, due to the existence of the small cut
between the honest region and the sybil region. As a result,
the greedy algorithm will first try to add the nodes that are
more likely sybil to S. This algorithm only relies on
performing R partial random walks originating from a
sybil node, which makes it very efficient and scalable to
large-sized social networks.

4.3 Combine Sybil Identification with Sybil
Community Detection

Our sybil identification algorithm takes as input a suspect
node, and outputs if the suspect node is sybil. In
comparison, our sybil community detection algorithm takes
as input a sybil node, and outputs the sybil community
surrounding the sybil node. Each algorithm consists of a
preparation phase and a detection phase. In this section, we
consider how to efficiently combine the two algorithms,
such that by running the Combo algorithm once, the
administrator is able to learn if the suspect node is sybil,
and if it is, the sybil community around it.

The Combo algorithm consists of two phases, Algo-
rithms 1 and 5. Algorithm 1 only needs to be run once for
each target social graph. Algorithm 5 takes as input a
suspect node u, the tuples from Algorithm 1, and the social
graph G, and it outputs u’s identity (sybil or honest) as well
as the sybil community surrounding wu (if sybil). The
intuition of the Combo algorithm is that, if we find a sybil
node, instead of performing partial random walks as in
Section 4.2 to detect the surrounding sybil community, we
directly analyze the simple random walks derived in the
identification method. The analysis is based on the
conductance measure. We sort the nodes by their frequency,
the number of times being traversed by the simple random
walks, in decreasing order, and iteratively add nodes to the
detected sybil set, until the conductance value stays the
same at the end of two consecutive iterations.

Algorithm 5. Combo(G, u, tuples from Alg.1).
1: 1=
2: while | <= l,,,, do
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3:  Perform R random walks with length [ originating
from u

4:  m = the number of nodes whose frequency is no
smaller than ¢

5:  Let the tuple corresponding to length [ in the outputs
of Algorithm 1 be (I, mean, stdDeviation)

6: if mean —m > stdDeviation * o then
7: output u is sybil
8: traversedList = Sort the traversed nodes by
their frequency in decreasing order

9: counter =0

10: S=10

11: do

12: counter = conductance(.S)

13: for i = traversedList. first() to

traversedList.last() do

14: if node i € S then

15: continue

16: if conductance({i} U S) <=

conductance(S) then

17: S={i}us

18: while (counter > conductance(5))

19: output S

20: end the algorithm

21: end if

22: l=1%x2

23: end while
24: output u is honest

It is easy to see that the Combo algorithm behaves the
same as the sybil identification algorithm (Section 4.1) when
identifying sybil nodes, while it diverges from the sybil
community detection algorithm (Section 4.2) in that it
reuses the simple random walks performed in the identi-
fication phase to search for the sybil community. The
advantage is that it avoids estimating the partial random
walk length (Algorithm 3) and performing partial random
walks (Algorithm 4), and thus incurs much smaller
computation overhead. However, compared with partial
random walks, the simple random walks originating from a
sybil node are more likely to escape the sybil region. Our
evaluation in Section 5 shows that replacing partial random
walks with simple random walks slightly impact detection
accuracy, while it significantly reduces running time of the
algorithm. Therefore, the Combo algorithm provides a
tradeoff between efficiency and accuracy: to detect sybil
nodes, users can use the Combo algorithm if running time is
a concern. Otherwise, they can use the stand-alone sybil
identification and sybil community detection algorithms if
detection accuracy is more important.

4.4 Limiting the Number of Attack Edges

Our algorithms rely on the assumption that the number of
attack edges is limited. However, it has been shown that not
all the relationships in online social networks are trusted
[8]. In this section, we propose two approaches to limiting
the number of attack edges in online social networks.

4.4.1 Relationship Rating

One approach to limiting the number of attack edges
in these networks is to allow the users to rate their

2497

relationships. To demonstrate this, we develop a Facebook
application named Rate Your Relationships. The users of the
application can rate each of their relations on Facebook
either as “Friend” or “Stranger,” where “Stranger” means
the user hardly has any impression about this relation. In
this way, the user’s relations are classified into two
categories. The number of attack edges can be limited
by removing the relationships rated as stranger from the
social graph when applying the sybil defense schemes.
The rationale is that even if an adversary can create many
links between the sybil identities and the honest identities,
it is hard for him to convince the honest users that those
sybil identities are their acquaintances. The survey results
of our Facebook application are presented in Appendix F,
available in the online supplemental material.

4.4.2 Activity Network

We can also use the concept of activity network [13], [14] to
limit the number of attack edges. Activity network is a
network graph that is based on the interaction between
users, rather than mere relationship. It contains all the
nodes from its social network counterpart, but only a subset
of edges. Two nodes share an edge in an activity network if
and only if they have interacted directly through the
communication mechanisms or applications provided by
the corresponding social network. In other words, a social
network is transformed into an activity network by
removing the weak connections with no user activity. If
the sybil defense schemes leverage the topologies of the
activity networks, the number of attack edges an adversary
can create can be further limited. Notice that using activity
network only raises the difficulty for the attackers to create
many attack edges, but it cannot fundamentally prevent
attackers from generating activity links between sybil nodes
and honest nodes, as shown by Boshmaf et al. [15] through
the use of socialbot networks.

5 EVALUATION

5.1 Data Sets and Experiment Setup

In this section, we evaluate the effectiveness of SybilDe-
fender using two data sets [14], [16] from Orkut and
Facebook, respectively. The Orkut data set consists of
3,072,441 nodes and 117,185,083 edges, with an average
degree of 76.28, while the Facebook data set consists of
3,097,165 nodes and 28,377,481 edges, with an average
degree of 18.32. To the best of our knowledge, these are the
largest data sets that have ever been used in evaluating the
sybil defense schemes that leverage social network topol-
ogies. The reason why the average degree of the Facebook
data set is much smaller than the Orkut data set is that the
Orkut data set is a breadth-first sample of the Orkut social
graph, which maintains the topological properties of Orkut
like average degree; on the other hand, the Facebook data
set is a regional network in Facebook. Two nodes share an
edge in this data set if and only if both of them are members
of the same regional network, and they are Facebook
friends with each other. By evaluating the performance of
SybilDefender on these two data sets, we show that
SybilDefender applies to social networks with different
topological properties.
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TABLE 1
False Positive and Negative Rates of the Sybil Identification Algorithm (1,000 Attack Edges)
10 sybil nodes per attack edge (10000 sybils) 5 sybil nodes per attack edge (5000 sybils)
Orkut Facebook Orkut Facebook
PA Model ER Model PA Model ER Model PA Model ER Model PA Model ER Model
}41 + }41 — P1+ }n — 141+ }41 — bw+ }41 — }(1+ }(1 — Pw + }41 — }(1+ Pw — }41 + }41 —
1000RWs 0 0 0 0.11% 0 0.07% | 0.1% | 0.16% 0 0.02% 0 0.28% 0 0.22% | 0.1% | 0.54%
1500RWs 0 0.01% 0 0.11% | 0.4% | 0.08% | 0.2% | 0.1% 0 0.02% 0 0.32% | 0.3% | 0.12% | 0.2% | 0.44%
2000RWs 0 0 0 0.04% | 0.3% | 01% | 0.5% | 0.1% 0 0 0 0.22% | 0.5% | 0.04% | 0.5% | 0.4%

In the experiments, we used the preferential attachment
(PA) model [17] and the Erdos-Rényi (ER) model [18] to
construct sybil regions. Both models are widely used in
network analysis. The networks constructed with the PA
model are scale-free, which means their node degrees
follow a power-law distribution, a well-accepted property
of social networks [14], [16], [19]. The topologies built
through the ER model, on the other hand, are random
networks with no particular bias, which emulate the
arbitrary structures of sybil regions that may be created
by attackers. Both the PA and the ER models have been
used in previous research to build sybil regions [3], [5], [20].
In our experiments, to build a sybil region and connect it to
a real-world social network sample, we follow the sugges-
tion by Yu et al. [7] that the most effective way for an
adversary to launch a sybil attack is to first compromise a
small number of existing nodes, so as to quickly increase the
number of attack edges. We first randomly select nodes
from the data set to be compromised nodes, until the
number of edges between the compromised nodes and
the other nodes is gy, which is the number of attack edges.
The compromised nodes are all sybil nodes. They introduce
~ additional sybil nodes, and establish a connected scale-
free topology through the PA model, or a connected
random topology through the ER model among all the
sybil nodes. We label all the other nodes in the data set as
honest nodes, i.e, we do not consider other types of
malicious users in the real data sets. The average degree of
the sybil region built with the PA model is set to be equal to
the average degree of the corresponding data set, while the
average degree of the sybil region built with the ER model
ranges from 8 to 11, representing a sparse topology
compared with realistic social networks. Note that in the
evaluation of some previous schemes, the social network
samples are first preprocessed by removing nodes with
small degrees [3], [5], [6], to prevent such nodes from
degrading the effectiveness of these schemes. Instead, we
did not make any modification on the published data sets.

Besides the PA and ER models, in our experiments we
also tried other graph construction models to build sybil
regions, including Kleinberg’s synthetic social network
model [21], the Forest Fire model [19], the Random Walk
model [19], the Nearest Neighbor model [19], and the
transitive linking model [22]. The evaluation results
obtained by using these models are very similar to those
obtained by using the PA and ER models. We only present
the results of the PA and ER models for brevity. We admit
that to the best of our knowledge, there is no real-world
evidence that the sybil regions are created following a
particular model, as the adversary can be arbitrarily

malicious. Thus, to address this limitation, we evaluated
our algorithms with a variety of popular graph models, and
present the representative results.

5.2 Evaluation of the Sybil Identification Algorithm

Yu et al. [6] proved that for all the sybil defense mechanisms
that leverage the fast-mixing property, the number of
admitted sybil nodes per attack edge is lower bounded by
)(1). The rationale is that the fasting mixing property of the
network is not disrupted if each attack edge introduces few
sybil nodes. In this section, we will show that the
performance of our sybil identification algorithm ap-
proaches this theoretical bound, and our algorithm outper-
forms SybilLimit by more than 10 times in both accuracy
and running time. An experimental verification of the
intuition of our sybil identification algorithm is presented in
Appendix B, available in the online supplemental material.

To evaluate our sybil identification algorithm, the
parameters we used in the experiments are as follows:
lmin = 100, lpqe = 10,000, Iy = 1,000, t =5, o =20, I, =20,
f =100, R € {1,000,1,500,2,000}. When building the sybil
regions, we set the number of attack edges to be 1,000. We
define the false positive rate as the percentage of the honest
nodes identified to be sybil, and the false negative rate as the
percentage of the sybil nodes identified to be honest. In the
experiments, we obtain the false positive and negative rates
of our algorithm. As we use large-scale topologies in the
experiments, it is infeasible to examine all the honest nodes
to get the exact false positive rate. To estimate the false
positive rate of our algorithm, in each experiment we
randomly select 1,000 honest nodes as suspects and use our
sybil identification algorithm to test them. To get the false
negative rate, in each experiment we use our algorithm to
test every sybil node. In the experiments, we vary the
number of sybil nodes per attack edge. For each value, we
evaluate the algorithm on two real-world topologies, using
two sybil region construction models, and with three values
of R, the number of random walks performed in the
algorithm, respectively.

Table 1 shows the results when each attack edge
introduces 10 sybil nodes. It is easy to see that our
algorithm achieves very low false positive and negative
rates in all the cases. We find that all the sybil nodes that
cannot be correctly identified are compromised nodes, as
they are on the small cut between the honest region and the
sybil region. Similarly, all the falsely identified honest
nodes are close to the small cut. Table 1 also shows the
results when each attack edge introduces five sybil nodes.
We observe that with the increase of the number of random
walks performed in the algorithm, the false positive rate
raises, while the false negative rate decreases. The reason is
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TABLE 2
False Positive and Negative Rates (1,000 Attack
Edges, One Sybil Node per Attack Edge)

Orkut Facebook
PA Model PA Model
T F- T -
1000RWs 0 0.6% 0% 6.2%
1500RWs 0 0.7% | 0.4% | 4.4%
2000RWs 0 0.2% 0% 1.4%

that the more random walks are performed, the smaller the
standard deviation of the number of nodes whose fre-
quency, the number of times being traversed, is no smaller
than ¢ is. As a result, the threshold 7 increases when more
random walks are performed, which makes it less likely for
a sybil node to be identified as honest, and vice versa for
honest nodes.

Table 2 shows the results when each attack edge
introduces only one sybil node. The false negative rate for
the Facebook data set is higher than the results shown in
Table 1. This is because the difference between the coverage
of the random walks originating from an honest node and
from a sybil node becomes smaller compared with the cases
when each attack edge introduces more sybil nodes. The
experimental results show that our sybil identification
algorithm can identify nearly all the sybil nodes when each
attack edge introduces 10 or five sybil nodes, and an
overwhelming majority of sybil nodes when each attack
edge introduces one sybil node, both with very low false
positive rate. More evaluation results of our algorithm are
provided in Appendix C, available in the online supple-
mental material, and in Appendix D, available in the online
supplemental material, we compare the performance of our
algorithm with other sybil defense schemes.

5.2.1 Evaluation of the Sybil Identification Algorithm on a
Weighted Social Network

As mentioned in Section 4.4, activity network is a social
network model that takes the activities between users into
account. Similarly, given the user activity information, a
social network can be transformed into a weighted graph,
by assigning a weight to each edge based on the number of
interactions between the two end nodes. There are also
other forms of weighted social networks, for example, the
trust networks whose edge weights denote the level of trust
[23], and the networks of coauthorship, where an edge
weight is the number of papers coauthored by the two end
users [24].

To investigate the performance of our sybil identification
algorithm on such weighted social networks, we use the
data set provided by Wilson et al. [14]. The data set is an
undirected, weighted graph. It has the same set of nodes
and the same topology as the Facebook data set used in our
previous evaluations. However, each edge in the graph is
assigned a weight, based on the number of interactions
(wall posts and photo comments) between the two end
nodes. For example, assuming user i and user j are friends
in the data set, if the number of interactions between ¢ and j
is 10, then the weight of edge ij is 10. Otherwise, if there is
no interaction between ¢ and j ever, then the weight is 0. In
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TABLE 3
False Rates of the Sybil Identification Algorithm
on a Weighted Social Network
10000 sybils 5000 sybils

PA Model ER Model PA Model ER Model
FT F- FT F- FT F- FT F-
0.7% | 0.15% | 0.5% | 0.21% | 0.7% | 0.20% | 0.7% | 0.56%

total, this weighted graph records 17,644,327 interactions
between 3,097,165 users, which means that on average each
user takes part in 11.4 interactions.

In our sybil identification algorithm, at each intermediate
node of a random walk, all its neighbors are treated equally
when selecting the next hop. To extend this algorithm to
weighted social networks, we take the edge weights into
account when choosing the next hop, and define weighted
random walks. At each step of a weighted random walk, the
transition probability from node i to j is P = Aiﬁ:jﬁ” !,
where w;; is the weight of edge ¢j, d; is the degree of node 4,
and w; is the sum of weights of all the edges connecting
node i. A;; =1 if i and j are connected, otherwise A4;; = 0.
As a result, the higher weight an edge has, with higher
possibility the weighted random walk will traverse that
edge. The modified sybil identification algorithm runs by
performing weighted random walks.

Table 3 shows the false rates of the modified sybil
identification algorithm on the weighted social network
sample. The number of attack edges is 1,000, R = 2,000. The
other parameters used in the algorithm are equal to the ones
used in previous evaluations. When constructing the sybil
regions, we randomly assign weights to the edges connect-
ing sybil nodes, such that the average weight is equal to the
average weight of our data set. The results illustrate that our
algorithm achieves similar performance on the weighted
graph: both false positive and negative rates remain low.

5.2.2 Evaluation of Trust-Driven Random Walks

Mohaisen et al. [25] proposed several designs of random
walks that incorporate trust between nodes in social
graphs, and studied their impact on the performance of
SybilLimit. Their findings suggest that these modified and
biased random walks model trust and influence SybilLi-
mit’s performance differently. In this section, we evaluate
the performance of our sybil identification algorithm
operating with these trust-driven random walks on our
Facebook data set. In the experiments, the number of attack
edges is fixed at 1,000, R = 2,000, and the sybil region is
built with the PA model.

For lazy random walks, the transition probability form
node 7 to node j is 13“ if jis a neighbor of ¢, aif i = j, and 0
otherwise, where o is a parameter characterizing the trust
level, and d; is the degree of node i. The false rates of the
sybil identification algorithm over lazy random walks
(e =0.2) is shown in Table 4, which are similar to the
results of simple random walks presented in Table 1. The
reason is that by capturing the random walk in the current
node with probability «, the laziness actually reduces the
effective length of random walks by «, which does not
degrade performance given a small «.
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TABLE 4
False Rates of the Sybil Identification Algorithm
Operating with Trust-Driven Random Walks
lazy similarity-based

random walk random walk
# of sybils | 10000 5000 1000 | 10000 5000 1000
FT 0 0.1% 0.3% 0.4% 0.4% 0.5%
F- 0.13% | 0.34% | 2.6% | 0.17% | 0.42% | 1.7%

At each step of an originator-biased random walk, the
transition probability from the current node to the
originator of the random walk is «, and with probability
1— o« the next hop is chosen uniformly among the
neighbors of the current node. In the experiments, we
found that when operating with originator-biased random
walks, our sybil identification algorithm cannot effectively
identify sybil nodes. The coverage of the originator-biased
random walks are severely limited by their inherent
“discontinuity”: At each step the random walk is moving
back to the originator with probability o. Since our sybil
identification algorithm is built upon the intuition that the
coverage of random walks starting from an honest node is
larger than the random walks starting from a sybil node, the
originator-biased random walks do not fit our algorithm.

For two nodes ¢ and j and their sets of neighbors N; and
Nj, the similarity between i and j is defined as S;; = %D]\fo .
At each step of a similarity-based random walk, the
transition probability from node i to one of its neighbors j is

Sij+1
ZkeN,, (Sik‘ + 1) ’

i.e., the more similar two adjacent nodes are, with higher
possibility a similarity-based random walk will traverse
the link connecting the two nodes. Table 4 shows the false
rates of the sybil identification algorithm operating with
similarity-based random walks. The results are comparable
to those obtained over the weighted social network
(Table 3). This is because like the weighted random walks
are biased based on link weights, the similarity-based
random walks are biased according to the similarity
between each pair of adjacent nodes.

5.3 Evaluation of the Sybil Community Detection
Algorithm

To evaluate our sybil community detection algorithm, the
parameters we used in the experiments are as follows:
lo =100, 8 =0.95, R = 2,000. We test the algorithm on two
social topologies, with the sybil region built through two
models, respectively. The number of attack edges is 1,000,
and the size of the sybil region depends on how many
sybil nodes are introduced by each attack edge. As the goal
of our sybil community detection algorithm is to detect the
sybil community surrounding a known sybil node, when
running each experiment we randomly select a sybil node
as the starting node of our algorithm, and we get the
percentage of the sybil nodes that can be detected, as well
as the number of the honest nodes that are falsely detected.
We repeat each experiment 20 times and calculate the
mean value.
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TABLE 5
Accuracy of the Sybil Community Detection
Algorithm (1,000 Attack Edges)

10 sybil nodes per attack edge (10000 sybils)
Percentage of Number of falsely
found sybil nodes | detected honest nodes

Orkut | Facebook [ Orkut Facebook
PA model | 99.91% 99.82% 0.3 0.3
ER model | 99.85% 99.84% 0 0.7

5 sybil nodes per attack edge (5000 sybils)
Percentage of Number of falsely
found sybil nodes | detected honest nodes

Orkut | Facebook | Orkut Facebook
PA model | 99.86% 99.66% 0.1 0.8
ER model | 99.74% 99.66% 0.1 0.2

1 sybil node per attack edge (1000 sybils)
Percentage of Number of falsely
found sybil nodes | detected honest nodes

Orkut | Facebook | Orkut Facebook
PA model 99.4% 98.4% 0.1 1.1
ER model 98.7% 98.3% 0.1 0.3

Table 5 shows the results when each attack edge
introduces 10 sybil nodes, five sybil nodes, and one sybil
node, respectively. It is easy to see that our algorithm can
detect an overwhelming majority of the sybil region in all
the experiments, and the numbers of falsely detected honest
nodes are very small: on average less than one honest node
is falsely detected in each experiment. The undetected sybil
nodes are all compromised nodes, the sybil nodes directly
connecting to the honest nodes through attack edges. More
evaluation results of our algorithm, including its accuracy
over much larger regions and the accuracy of a weighted
version of the algorithm, are provided in Appendix E,
available in the online supplemental material.

5.4 Evaluation of the Combo Algorithm

In this section, we evaluate the performance of the Combo
algorithm presented in Section 4.3. Since the Combo
algorithm behaves the same as the sybil identification
algorithm when identifying sybil nodes, we measure the
running time and accuracy of the Combo algorithm after a
sybil node has been found and the algorithm is used to
detect the sybil community surrounding the sybil node, and
compare it with our sybil community detection algorithm.

In the experiments, we fixed the number of attack edges
at 1,000, and evaluated the Combo algorithm when the
number of sybil nodes in the sybil region is 10,000, 5,000,
and 1,000, respectively. The sybil region is constructed
with the PA model. As mentioned in Section 4.3, the
advantage of the Combo algorithm over the stand-alone
sybil community detection algorithm is that the former
reuses the simple random walks performed in the
identification method, and thus avoids estimating partial
random walk length and performing partial random walks,
which significantly reduces computation overhead. For
instance, on a single core of an Intel Xeon 2.93-GHz
processor, the running time for the Combo algorithm to
detect a 1,00,000-node sybil region constructed with the PA
model and connecting to the Orkut graph is 91 seconds,
while for the stand-alone sybil community detection
algorithm it is 257 seconds, almost three times longer.
Table 6 shows the accuracy of the Combo algorithm for
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TABLE 6
Accuracy of the Combo Algorithm
Percentage of Number of falsely
found sybil nodes | detected honest nodes
Orkut | Facebook | Orkut Facebook
10000 sybils | 99.82% 99.64% 0 0.4
5000 sybils | 99.68% 99.40% 0.2 1.0
1000 sybils 98.4% 96.5% 0.2 1.2

sybil community detection. All the results are averaged
over 20 runs. Compared with the accuracy of the sybil
community detection algorithm in Table 5, the detection
rate is slightly lower. This is because the Combo algorithm
detects the sybil community by analyzing simple random
walks originating from a sybil node, instead of partial
random walks that are more likely to be trapped within the
sybil region.

6 CONCLUSION

In this paper, we present SybilDefender, a scheme that
leverages network topologies to defend against sybil
attacks in large social networks. SybilDefender consists of
a sybil identification algorithm, a sybil community detec-
tion algorithm, and two approaches to limiting the number
of attack edges in online social networks. Our evaluation
on two large-scale real-world social network samples
shows that SybilDefender can correctly identify sybil
nodes, even when the number of sybil nodes introduced
by each attack edge approaches the theoretically detectable
lower bound, and that it can effectively detect the sybil
community surrounding a sybil node with different sizes
and structures.
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