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Abstract—In wireless sensor networks (WSNs), it has been observed that most abnormal events persist over a considerable period of

time instead of being transient. As existing anomaly detection techniques usually operate in a point-based manner that handles each

observation individually, they are unable to reliably and efficiently report such long-term anomalies appeared in an individual sensor

node. Therefore, in this paper, we focus on a new technique for handling data in a segment-based manner. Considering a collection of

neighbouring data segments as random variables, we determine those behaving abnormally by exploiting their spatial predictabilities

and, motivated by spatial analysis, specifically investigate how to implement a prediction variance detector in a WSN. As the

communication cost incurred in aggregating a covariance matrix is finally optimised using the Spearman’s rank correlation coefficient

and differential compression, the proposed scheme is able to efficiently detect a wide range of long-term anomalies. In theory,

comparing to the regular centralised approach, it can reduce the communication cost by approximately 80 percent. Moreover, its

effectiveness is demonstrated by the numerical experiments, with a real world data set collected by the Intel Berkeley Research

Lab (IBRL).

Index Terms—Wireless sensor network, anomaly detection, distributed computing, spatial analysis, Spearman’s rank correlation coefficient,

differential compression
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1 INTRODUCTION

WIRELESS sensor networks (WSNs) have found many
critical applications in harsh or even hostile envi-

ronments, such as forest fire detection and battlefield sur-
veillance [1]. The size and cost constraints imposed on a
sensor node result in it having scarce resources, such as a
small memory capacity, weak computing power, narrow
communications bandwidth and limited energy [2]. More-
over, a network self-organised by sensor nodes is very
susceptible to communication failures because of the
unreliable communication paradigm [3]. Therefore, WSNs
are extremely vulnerable to random faults and cyber
attacks, and inevitably subjected to their resultant anoma-
lies. According to the literature [4], it has been generally
recognised that anomaly detection is usually an effective
means against these anomalies.

As most abnormal events (either random faults or cyber
attacks) tamper with a victim node for a long period, this
node is often found to exhibit a long-term abnormal pattern
in terms of the sensed measurement or network traffic; for
example, an exhausted node will produce measurements

with a large variance due to low battery voltage [5] and,
consequently, its measurements behave very noisily for a
certain period of time. Second, a node that suffers from a
calibration error may continuously produce unusually large
or small constant measurements. In the physical layer, a
deceptive jammer may transmit a random signal or constant
stream of bytes into the network [6], [7] in which case a
long-term abnormal pattern will occur in the network traffic
of every jammed node.

However, existing anomaly detection techniques, as
detailed in Section 2, usually operate in a point-based man-
ner that handles each observation individually. For a long-
term anomaly, they are not directly applicable as further
analysis has to be conducted to make a final decision even if
all the observations have been handled separately. What is
worse, a long-term anomaly does not necessarily mean that
every observation is distinctly abnormal and, sometimes,
none of the observations is abnormal by itself but when
they occur together as a data segment, it is abnormal and,
conceptually, identical to the collective anomaly defined in
[8]. Therefore, we have to exploit innovative techniques for
specifically addressing long-term anomalies.

In terms of long-term anomalies, we suppose that techni-
ques working in a segment-based manner will outperform
conventional point-based techniques. First, making a deci-
sion with a data segment that contains multiple observa-
tions contaminated by an abnormal event is often easier.
Second, it is possible to reduce computational and commu-
nication costs by eliminating the information redundancy
existing in the data segments. Formally, a collection of con-
tinuous-time observations is defined as a data segment
whether it is of sensed measurements or network traffic
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and, in the rest of this paper, unless stated otherwise, a data
segment in which multiple contaminated observations are
involved is referred to as an ‘anomaly’.

According to the literature, the following are the four
most common types of anomaly.

� Type-I Constant. Some successive observations in the
data segment are constant.

� Type-II Burst. A few observations in the data segment
are extremely larger or smaller than usual.

� Type-III Small Noise. Some observations in the data
segment are disturbed by small noise of which the
variance may be influenced.

� Type-IV Large Noise. Some observations in the data
segment are disturbed by large noise which leads to
a significant increase in the variance.

Fig. 1 illustrates these types by using an idealised case in
which there is a total of six data segments collected from a
cluster of neighbouring nodes, with each represented by a
solid line (red- abnormal, blue- normal). Due to the linear
relationships existing among spatially proximal sensor nodes
[9], [10], the neighbouringmeasurements should exhibit very
similar patterns over the same period of time. Consequently,
we are motivated to identify the anomalies by measuring the
minimum prediction variance of each data segment with
respect to the rest and, if a data segment is distinct in terms of
its prediction variance, it is identified as an anomaly.

To exploit the spatial correlations, a prediction variance
detector is proposed in this paper. In a cluster, the data seg-
ments collected by themember nodes (MNs) during a period
of time are considered random variables and, by predicting
each variable with the others in turn, the cluster head (CH)
can separately obtain a set of prediction variances. Then, an
anomaly is detectable through constructing a statistical
quantity that follows a chi-squared distribution, where a

confidence interval is established as the threshold.Moreover,
this statistical quantity is updated in real time to track the
dynamics of the measurements. Essentially, the proposed
detector depends upon the sample covariance among the
variables. If the sample covariance matrix is obtained
through collecting all the local data segments centrally, the
communication cost will be prohibitively expensive. Instead,
each MN is allowed to transmit the compressed difference
sequence and sample standard deviation corresponding to
its local data segment, and then the sample covariance
matrix can be approximately retrieved by taking advantage
of the Spearman’s rank correlation coefficient. In comparison
with conventional raw data segment transmission, retrieving
the approximated sample covariance matrix can reduce the
communication cost by 80 percent on average. Finally, we
evaluate the proposed detector with a wide range of numeri-
cal experiments for which the data set is generated by the
Intel Berkeley Research Lab (IBRL) [11].

The rest of this paper is organised as follows: Section 2
introduces the related work; derivation of the prediction
variance detector is detailed in Section 3; in Section 4, the
approach that approximates the sample covariance matrix
with the Spearman’s rank correlation coefficient is intro-
duced; the numerical experiments and evaluation are dis-
cussed in Section 5; and, finally, Section 6 provides a
summary of this paper. Moreover, in the supplementary
file, Section 1 presents the network model and Section 2
summarises all the algorithms as well as the full scheme.

2 RELATED WORKS

In WSNs, the anomaly detection techniques often make
decisions by analysing the sensed measurements and/or
network-related information which can be roughly classi-
fied as statistical [12], [13], [14], [15], support vector
machine (SVM) [16] and cluster analysis [17], [18]. Further-
more, a statistical technique can either be parametric or
nonparametric, according to whether the underlying dis-
tribution is known (assumed) a priori or not respectively.
Liu et al. proposed a parametric technique by assuming
that, as the measurements collected from the neighbour-
hood of a monitor node follows a multivariate normal dis-
tribution, the Mahalanobis squared distance follows a chi-
squared distribution. The monitor node reports a measure-
ment as abnormal if it falls outside the confidence interval
constructed with the probability density function (PDF).
On the contrary, a nonparametric techniques is able to esti-
mate the PDF without any prior-knowledge, whereby an
observation is identified as abnormal if its probability
(referring to the estimated PDF) is smaller than a thresh-
old. The two typical categories of the nonparametric tech-
niques are histogram [13], [14] and kernel density
estimation (KDE) [15]. The techniques based on SVM and
clustering analysis exploit the principle of classification
similarly, in which a data set is partitioned into single or
multiple maximally dense regions and an observation fall-
ing outside them is an anomaly.

In addition, anomaly detection is closely related to fault
detection [5], [19], [20], [21]. Sharma et al. [5] divided the fault
detection techniques into four categories, i.e., rule-based,
estimation, time-series analysis, and learning-based. In the

(a) Type-I Constant (b) Type-II Burst

(c) Type-III Small Noise (d) Type-IV Large Noise

Time Time

Time Time

Fig. 1. Anomaly types.
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technique proposed by Chen et al. [19], a measurement is
considered a fault if it deviates significantly from its previous
measurements and more than half of the neighbouring mea-
surement. Ding et al. [20] attempted to detect faults with a
lower communication cost in which a measurement is com-
pared only with the median of its neighbouring measure-
ments. Guo et al. [21] implemented fault detection by
analysing a type of network-related information, received
signal strength (RSS), rather than sensed measurements. It
ranks the sensor nodes in terms of the RSS and their respec-
tive distances to the event, and a fault is raisedwhen a signif-
icant mismatch between the detected sequence and the
estimated sequence occurs. Since anomalies and faults can
be detected using similar techniques, in the remaining text, a
fault is considered as the same as an anomaly.

3 PREDICTION VARIANCE DETECTOR

In this section, we will present the detailed derivation of a
prediction variance detector. First, the concept of prediction
variance is detailed, while a simplified form is derived to
facilitate its implementation in practice. Second, it shows
that the prediction variance can be constructed as a statisti-
cal quantity that follows a chi-squared distribution based
on Cochran’s theorem, which enables to identify an anom-
aly with the concept of interval estimation and, therefore,
leads to the detector.

3.1 Prediction Variance and Its Simplified Form

Although there are no explicit evidences demonstrating that
spatial correlations exist in all the types of the data collected
from a cluster of spatially proximal sensor nodes, it has
been widely recognised that most types of sensed measure-
ments are spatially correlated [9], [10]; for example, the cli-
mate data such as temperature, humidity, atmospheric
pressure and wind obtained in a close neighbourhood by a
cluster of sensor nodes will appear to be very similar. There-
fore, in this paper, we focus mainly on those spatially corre-
lated sensed measurements. Table ‘Notation list’
summarises the notations used in this section, which is
enclosed in the supplemental file, which can be found on
the Computer Society Digital Library at http://doi.ieeecom-
putersociety.org/10.1109/TPDS.2014.2308198.

Given a cluster of sensor nodes, their measurements
during a period of time are considered as a set of real-
valued random variables Z ¼ X1; X2; . . . ; Xmf g, where
the subscripts denote the indices of the sensor nodes and
m the total number. Any variable X 2 Z can be estimated
by a linear combination of the remaining variables Ẑ ¼
Z � Xf g, i.e.,

X ¼ X þ " ¼
Xm�1

i¼1;Xi2Ẑ
wiXi þ "; (1)

where X is the estimator, w the weight and " the estimation
error.

According to the ordinary kriging [22], a constraint com-
mitted to this estimator is unbiasedness, i.e.,

E "ð Þ ¼ 0: (2)

Supposing that EX1 ¼ EX2 � � � ¼ EXm ¼ mX and mX 6¼ 0,
this constraint yields that

Xm�1

i¼1

wi ¼ 1 (3)

due to

E "ð Þ ¼ 1�
Xm�1

i¼1

wi

 !
mX ¼ 0: (4)

Then, the weights W ¼ w1 w2 � � �wm�1½ �T in the form of a
vector can be solved by minimising the variance of the esti-
mation error, i.e.,

W ¼ argmin
W

Var "ð Þ: (5)

Suppose that the sample covariance matrix is denoted by

Q ¼
cX1X1

� � � cX1Xm

..

. . .
. ..

.

cXmX1
� � � cXmXm

2
64

3
75;

where c stands for the sample covariance between two vari-
ables. By removing the row and column from Q in which X
participates, we obtain the submatrix A. Furthermore, we
obtain a subvector B by eliminating cXX from the column of
Q in which X participates and write cXX as C for short.
Therefore, we have

Var "ð Þ ¼ Var X1 X2 � � � Xm�1 X½ �T W

�1

� �� �

¼ W

�1

� �T
Var X1 X2 � � � Xm�1 X½ �T
� � W

�1

� �

¼ W

�1

� �T A B

BT C

� �
W

�1

� �
¼ WTAW �BTW �WTBþ C:

(6)

Formally, the optimisation problem is expressed by

minimise
W

WTAW �BTW �WTBþ C

subject to 1T �W ¼ 1;
(7)

which can be solved by the method of Lagrange multipliers
with the Lagrange function constructed as

L W; uð Þ ¼ WTAW �BTW �WTBþ C þ 2u 1T �W � 1
� 	

;

(8)

where u is a Lagrange multiplier. Next, @L
@W ¼ 0 produces

2WTA� 2BT þ 2u � 1T ¼ 0

! AW þ 1 � u ¼ B:
(9)

Together with the constraint 1T �W ¼ 1, they give

A 1
1T 0

� �
W
u

� �
¼ B

1

� �
: (10)

576 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015



Therefore, the weights can be expressed by

W
u

� �
¼ A 1

1T 0

� ��1
B
1

� �
: (11)

According to equation (6), we have

Var "ð Þ ¼ WT AW � 2Bð Þ þ C: (12)

Substituting equations (3), (9) and (11) into equation (12),

Var "ð Þ ¼ C �WT 1 � u þBð Þ

¼ C � B

1

� �T W

u

� �

¼ C � B

1

� �T A 1

1T 0

� ��1 B

1

� �
:

(13)

Varð"Þ is exactly the so-called prediction variance. During
each period of time, there is a covariance matrix that retains
the relationships among the MNs, according to which the
prediction variance of a MN actually reflects its minimal
degree of deviation with respect to the others of MNs. In
addition, the measurements taken from a small neighbour-
hood are strongly correlated and often expose quite similar
patterns. Thus, the prediction variance is a good indicator
of the abnormality of a MN and, if a MN’s Varð"Þ deviates
greatly from the others, its current data segment should be
reported as abnormal.

While obtaining Varð"Þ from Equation (13), as a m�m
matrix needs to be inverted, the second term is a little com-
plicated. It should be noted that its special form allows it to
be simplified by the blockwise inversion (BI) algorithm [23]
which inverts a matrix according to the relationship

a b

c d

� ��1

¼ a�1 þ a�1b d� ca�1bð Þ�1
ca�1 �a�1b d� ca�1bð Þ�1

� d� ca�1bð Þ�1
ca�1 d� ca�1bð Þ�1

" #
;

where a, b, c and d are submatrices, a and d must be square,
a is nonsingular and the Schur complement d� ca�1b must
be nonsingular. It is easy to validate that ½A 1

1T 0� meets all the
above constraints. Inserting a ¼ A, b ¼ 1, c ¼ 1T and d ¼ 0
into Equation (13), produces

Var "ð Þ ¼ C � b0 � b1 b2 � 1ð Þ2; (14)

where

b0 ¼ BTA�1B;

b1 ¼ � 1T �A�1 � 1� 	�1

b2 ¼ 1 �A�1B

:

8<
: (15)

Equations (14) and (15) provide a simplified form for the
prediction variance, and the dimension of the matrix
inversion in equation (13) is reduced from m to m� 1 in
Equation (15).

3.2 Detector

In a cluster, a detector is only located in the CH and, provid-
ing the covariance matrix is available, the prediction

variance can be employed as the indicator of abnormality
because using the covariance matrix, the CH is able to sepa-
rately obtain the prediction variance of each MN. Subse-
quently, an automated algorithm is expected to identify
anomalies which has a fundamental challenge: how to select
an appropriate threshold.

We make an assumption about the estimation error " that
" � Nð0; s2

"Þ and the observations of " are independent,
where s2

" is the variance of ". At this time, according to
Cochran’s theorem [24], Varð"Þ can be constructed as a sta-
tistical quantity that follows a chi-squared distribution. If
we consider Varð"Þ as a variable, say Y ¼ Varð"Þ, then

m� 1ð Þ Y
s2
"

� x2
m�1: (16)

It should be noted that Varð"Þ must be the sample variance
(unbiased) of " and, in fact, this constraint is met by using
the sample covariance matrix Qwhich can be easily verified
through the simplest m ¼ 2 case. As the true variance s2

" is
not known, we treat it alternatively with

E Yð Þ ¼ E
s2
"

m� 1
x2
m�1

� �
¼ s2

": (17)

Substituting equation (17) into equation (16) yields

m� 1ð Þ Y

E Yð Þ � x2
m�1; (18)

where EðY Þ will be replaced by its unbiased estimator mY

(the mean value of Y ) in practical applications. Given a

small probability a (a 2 ð0; 0:5Þ), e.g., 0.005, the lower and

upper confidence bounds for a chi-squared distribution

can be acquired by F�1
x2
m�1

ðaÞ and F�1
x2
m�1

ð1� aÞ respectively,
where F denotes a cumulative density function (CDF). A

confidence interval can be established as the threshold

that distinguishes between the normal and abnormal, in

the form

F�1
x2
m�1

að Þ; F�1
x2
m�1

1� að Þ
� �

:

A normal observation of Y should reside in this interval as a

result of the high probability ð1� 2aÞ.
The above analysis does not yet take into account the

period of time. Since the dynamics of sensed measurements
change over time, the variance in the estimation error is cor-
respondingly time-varying, as is its mean value mY . Conse-
quently, we have to track mY in real time. Supposing that the
period of time is denoted by t, t 2 Z and it is assumed that no
anomalies exist in the network at the very beginning, the
detector can start with an initialmt

Y that reflects a normal pat-
tern. Alternatively, we can also specify an initial mt

Y accord-
ing to the past experience (if known). During the ðtþ 1Þth
period of time, correspondingly, the set of the predication
variances obtained by the CH is denoted by Y tþ1 and

Y tþ1 ¼ ytþ1
1 ; ytþ1

2 ; . . . ; ytþ1
m


 �
;

where ytþ1 stands for a specific observation of Y tþ1.
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If Y tþ1 is contaminated by some abnormal observations,
the mean value of Y tþ1 itself is not reliable. Detecting it
directly with mtþ1

Y may unexpectedly result in either a high
false positive rate (FPR) or low detection accuracy (ACC).
However, mtþ1

Y must be relative to mt
Y to some extent as the

dynamics of sensed measurements often change smoothly.
Thus, we neutralise mtþ1

Y with mt
Y by employing

m̂tþ1
Y ¼ �mt

Y þ 1� �ð Þmtþ1
Y (19)

as the estimate of mean value, where � 2 ð0; 1Þ is a neutralis-
ing factor. For relatively fast-changing dynamics, � should
be specified as being smaller than 0:5 or, conversely, lager
than 0:5. If ytþ1

i (i ¼ 1; 2; . . . ;m) satisfies

m� 1ð Þ y
tþ1
i

m̂tþ1
Y

2 F�1
x2
m�1

að Þ; F�1
x2
m�1

1� að Þ
� �

; (20)

the data segment obtained by ith MN is regarded as
being normal; otherwise abnormal. Finally, mtþ1

Y is reset
as the mean value of Y tþ1 after removing the abnormal
observations.

4 APPROXIMATING SAMPLE COVARIANCE MATRIX

All a prediction variance detector depends on is the covari-
ance matrix which is not known but has to be estimated.
The sample covariance matrix is the simplest unbiased esti-
mator and can be easily acquired by a centralised approach.
However, it is well known that in a WSN the communica-
tion cost is often several orders of magnitude higher than
the computational cost [1]. It will be very expensive for the
CH to collect all the local data segments from the MNs and
obtain the sample covariance matrix centrally. Thus, we
need to explore an alternative estimate for the covariance
matrix, especially for communication efficiency.

Distributed computing often helps to reduce the commu-
nication cost; for example, Wiesel and Hero [25] proposed a
distributed covariance matrix estimator based on a very nat-
ural intuition: each node estimates its local covariance with
respect to its neighbours and the covariance matrix is finally
obtained by aggregating these local estimates. Although its
communication cost is low, this estimator is essentially
derived from a known graphical model, i.e., the conditional
independence graph topology must be known a priori. Sim-
ilar distributed estimators can be found in [26], [27]. How-
ever, as its advantage results from the sparsity of the
covariance matrix, which is not available everywhere, such
a distributed estimator may be applicable to only typical
‘large p small n’ problems.

Without requiring any prior knowledge, we have to
exploit a nonparametric estimator while meeting the con-
straint in the communication cost. As the proposed detector
is located in the application layer, we count the communica-
tion cost in terms of the number of transmitted bytes, with
4 bytes usually required to hold a real-valued sensed mea-
surement (i.e., double data type [28]); for example, suppos-
ing that each MN collects equal-sized n measurements
during a period of time, given n ¼ 20, each MN has to
spend 20� 4 ¼ 80 bytes on transmitting its local data seg-
ment to the CH in order to obtain the sample covariance
matrix using a regular centralised approach.

It has been widely reported that spatially proximal
sensed measurements are highly correlated [9], [10], [29]
due to the dense deployment of sensor nodes that continu-
ously monitor physical phenomena. The near-perfect linear
correlation also implies significant monotonicity which
motivates us to replace the Pearson’s correlation coefficient
r with its rank correlation coefficient, particularly the
Spearman’s correlation coefficient r. Then, transmitting the
rank sequence corresponding to a data segment will achieve
an immediate 75 percent reduction in the communication
cost, as 1 byte can exactly accommodate a rank (i.e., an
unsigned 8-bit integer data type [28]). However, the size of
a rank sequence can be further reduced through differential
compression and, according to the numerical experiments,
an additional approximate 10 percent saving can be
achieved, as detailed in the next two sections.

4.1 Retrieving Sample Covariance Using
Spearman’s Rank Correlation Coefficient

The Pearson’s r between two variables Xi and Xj is
defined as

rXiXj
¼ cXiXj

sXi
sXj

; (21)

where cXiXj
is the sample covariance between Xi and Xj,

and sXi
and sXj

denote the sample standard deviations for
Xi andXj respectively. Conversely, we have

cXiXj
¼ rXiXj

sXi
sXj

: (22)

If a reliable substitute for r can be obtained at lower cost, it
will enable us to efficiently retrieve the sample covariance
without degrading performance.

The Spearman’s r is known as the special case of the
Pearson’s r between two ranked variables [30]. However,
unlike the Pearson’s r, it emphasises the monotonic relation-
ship between two variables as, whenXi is linearly correlated
with Xj, it is evidently also monotonic with respect to Xj

and, at this time, r appears very close to r. Since linear rela-
tionships are enforced by grouping spatially proximal sensor
nodes together, in practice, it is reasonable to replace rwith r.

Let S ¼ s1 s2; . . . ; sn½ � denote the rank sequence, where
1 � si � n, i ¼ 1; 2; . . . ; n, and tied ranks are permitted. If
any tied ranks are found in S, it has to identically reassign
the mean rank (the average of their positions in ascending
order) to them which yields a reassigned rank sequence S.
Then, the Spearman’s r can be computed from

rXiXj
¼ rSiSj

¼
cSiSj
sSi

sSj

; (23)

where Si and Sj denote the reassigned rank sequences for
Xi and Xj respectively, and sSi

and sSj
are their sample

standard deviations. When there are no tied ranks, it is sim-
ple to obtain them through

rXiXj
¼ 1� 6 Si � Sj

� 	
Si � Sj

� 	T
n n2 � 1ð Þ ; (24)

where Si and Sj are the rank sequences ofXi andXj respec-
tively. The example given in Table 1 explains how to
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calculate the reassigned rank sequences and, by inserting Si

and Sj into Equation (23), rXiXj
¼ �0:333.

An exceptional case is that the sample covariance
between Xi and any Xj will be 0 if the observations of Xi

are constant. Although the Pearson’s r and Spearman’s r
are both undefined for this case, we can immediately set
rXiXj

as 0 instead. Once the rank correlation coefficients and
sample standard deviations are ready, each sample covari-
ance can be approximately retrieved by

cXiXj
¼ rXiXj

sXi
sXj

; (25)

which eventually constructs an approximated sample
covariance matrix Q by traversing i; j ¼ 1; 2; . . . ;m.

Moreover, a constant variable Xi will lead to the second
exceptional case. Let Ẑ denote Z � Xif g and, for anyX 2 Ẑ,
its submatrix A (defined in the last section) is not invertible
as A is singular. A badly scaled (almost singular) A may
also occur when n is smaller than or comparable to m
because of ‘large p small n’. While dealing with such a
(almost) singular A, the Moore-Penrose pseudo-inverse Ay

is substituted for A�1 to ensure the numerical stability [31].
Firstly, A is factorised by the singular value decomposition
(SVD) so that

A ¼ U
X

V T ;

where U and V T are m�m real unitary matrices and
P

a
m�m diagonal matrix with only nonnegative entries. The
Moore-Penrose pseudo-inverse is defined as

Ay ¼ V
Xy

UT ;

where
Py is obtained from

P
by substituting the recip-

rocal for each positive diagonal entry. Then, as it is easy
to verify that

AAy ¼ U
X

V TV
Xy

UT ¼ U
XXy

UT ;

AAyA ¼ U
XXy

UTU
X

V T ¼ U
X

V T ¼ A:

Based on the Spearman’s rank correlation coefficient,
each MN can only transmit its sample standard deviation
and rank sequence to the CH which immediately achieves
an approximate 75 percent reduction in the communica-
tion cost.

4.2 Transmitting Compressed Difference Sequence

By observing the rank sequences that the MNs transmit, we
find that information redundancy is widespread as a result
of the tied ranks and intrinsic monotonicity of the sensed

measurements. Based on the difference sequence, it is able
to completely manifest the redundancy, enabling the num-
ber of bytes to be further reduced through differential com-
pression [32]. Given a rank sequence S, we define its (first
order) difference sequence Ŝ as

Ŝ ¼ s1js2 � s1 � � � sn � sn�1½ � ¼ s1jD1 � � �Dn�1
� 

: (26)

For the same example cited in the last section, we have

Ŝi ¼ 7j1 �6 0 0 0 0 �1½ �;
Ŝj ¼ 1j5 �1 �1 �1 �2 6 0½ �;

�

regarding Xi and Xj respectively. Intuitively, the repeated
‘0’ in Ŝi and the repeated ‘�1’ in Ŝj should be compressed
into a shorter sub-sequence before being transmitted.

In order to ensure that 1 byte can accommodate any ele-
ment of a difference sequence Ŝ, we have to handle negative
values in a special way. As, normally, 1 byte is only allowed
to hold a non-negative integer in the range from 0 to 255
(28 � 1), we restrict the largest data segment to 127 (i.e.,
n � 27 � 1) so that half the space can be reserved for settling
negative values. At this time, any element of S ranges from
1 to 127 and that of Ŝ from �126 to 126. Regarding any
Di 2 Ŝ, i ¼ 1; 2; . . . ; n� 1 and Di � 0, we can force it to be
positive through

Di ¼ Di
�� ��þ 27 � 1 ¼ Di

�� ��þ 127: (27)

Thus, the value range becomes

1; 2; . . . ; 126|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
positive values:1,2,...,126

������� 127; 128; . . . ; 254|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
nonpositive values:0,�1,...,�126

8><
>:

9>=
>;

and it should be noted that 0 is no longer used. Following
the above example, there are

Ŝi ¼ 7j1 134 127 127 127 127 128½ �;
Ŝj ¼ 1j 5 128 128 128 129 6 127½ �:

�

If a value is found to be successively repeated more than
twice in Ŝ, these identical values will be summarised by a
sub-sequence D 0 t½ �, where D is its repeated value, 0 an
indicator of its repetition and t 	 3 the number of times
repeated. Accordingly, as Ŝi and Ŝj will be compressed into

Ŝi ¼ 7j 1 134 127 0 4 128½ �;
Ŝj ¼ 1j 5 128 0 3 129 6 127½ �;

�

1 byte can be saved for transmitting Ŝi. Although no instant
benefit is brought to Ŝj, the compressor is at least lossless
and will not result in a higher communication cost, with the
compressed difference sequence denoted by Ŝ



.

When a Ŝ


arrives at the CH, the CH checks whether any

sub-sequence exists in the form of D 0 t½ � and, by expanding
the D value t times, can obtain the raw difference sequence
Ŝ. Secondly, it replaces any Di 2 Ŝ (i ¼ 1; 2; . . . ; n� 1) and
Di 	 127 with Di ¼ 127� Di, and retrieves the raw rank
sequence S by

S ¼ s1js2 ¼ s1 þ D1 � � � sl ¼ sl�1 þ Dn�1
� 

: (28)

TABLE 1
Example: Computing Reassigned Rank Sequences
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Each MN reports its Ŝ


and local sample standard deviation

s to the CH which, after working out all the raw rank
sequences, acquires Q by using either Equation (21) or
Equation (22).

5 NUMERICAL EXPERIMENTS AND EVALUATION

5.1 Experimental Data Set

The network deployed at the IBRL collected humidity, tem-
perature, light and voltage measurements once every half a
minute between 28/02/2004 and 15/04/2004. For the exper-
imental data sets, we select a measurement every 1 minute
between 00:00 01/03/2004 and 23:59 02/03/2004, with the
very few missing measurements fixed using interpolations,
to obtain a total of 2880 data points. Without loss of general-
ity, we use only the temperature and humidity measure-
ments for the following numerical experiments.

Excluding the two damaged nodes, there are 52 active
nodes in this network which, as previously mentioned, can
be partitioned into seven clusters using fixed-width cluster-
ing. All the numerical experiments are conducted using the
fourth cluster which covers 11 nodes, as shown in Fig. 2,
from which we assume a CH is selected. The two data sets
collected from this cluster are denoted by D1 and D2 for
temperature and humidity respectively.

Supposing that the size of a data segment is given by n,
each data set is actually comprised of ‘�m data segments,
where ‘ ¼ 2880

n

� �
and m ¼ 11 and, during each period of

time, there are m data segments corresponding to the MNs.
First, we label the anomalies in the raw data set by perform-
ing the proposed detector with a manually adjusted �, with
an optimal � fixed to each data set if we think the resultant
labelling matches the ‘ground truth’ shown by its plot. The
labels computed from the optimal � are kept in a ‘�m
labelling matrix L0, where ‘0’ and ‘1’ denote normal and
abnormal respectively. However, as evaluating the pro-
posed detector with L0 is meaningless because the labelling
is obtained by itself, we evaluate the performance by artifi-
cially injecting some anomalies while considering L0 syn-
thetically. In particular, the anomaly is only randomly
injected into a MN during each period of time and the 4 can-
didate anomaly types are attempted separately. Table
‘Anomaly injector’ (enclosed in the supplemental file, avail-
able online) summarises these deliberately designed

injectors by which the low order moments (i.e., the mean
and variance) are only slightly influenced; in other words,
an injected anomaly is not significantly distinguishable by
its mean and variance. Supposing that the labels of the
injected anomalies are represented by a ‘�m matrix M,
where ‘0’ and ‘1’ stand for ‘as is’ and ‘injected’ respectively
(i.e., normal and abnormal). We finally obtain a labelling
matrix L1 by L1 ¼ L0 þM which is used for the perfor-
mance evaluation.

5.2 Experiments and Performance Metrics

We test n ¼ 20 and n ¼ 40 for D1 and D2 respectively and,
by setting their optimal � as 0:1 and 0:2 (as detained in the
previous section) respectively, about 5 percent of each data
set contains anomalies and five experiments are conducted.
Experiments (1)-(4) test the four anomaly types separately
to determine how the detector performs for each type of
anomaly. Experiment (5) tests a case for which the anomaly
type is randomly chosen which may be closer to a real-life
setting. The initial mt

Y is estimated by averaging the predic-
tion variance obtained from the first period of time after
removing the abnormal observations (if any), which are
exactly 0:0002 and 0:006 for D1 and D2 respectively and, the
confidence level a is invariably equal to 0:0001, such that
F�1
x2ð10Þ 0:0001ð Þ ¼ 0:889 and F�1

x2ð10Þ 0:9999ð Þ ¼ 35.
As, if some additional anomalies are injected, the ground

truth appearing in the raw data sets will change, L0 is no
longer accurate for labelling and, the increased number of
anomalies indicates that a larger � has to be selected to miti-
gate the inaccuracy caused by contaminated observations.
Therefore, each experiment is repeated with a range of �
(from 0 to 1) and the performance evaluation is concerned
mainly with the injected anomalies. The ACC is defined as
the rate that the number of injected anomalies can success-
fully be detected divided by the total number (i.e., ‘), with a
false positive caused if the data segment is neither an
injected anomaly nor an anomaly labelled by L0 but still
reported as an anomaly. Given the labelling matrix L pro-
duced by the detector, the ACC and FPR can be simply
obtained by

ACC ¼ 1� number of 1 in M�L½ �
‘ ;

FPR ¼ number of 1 in L�L1½ �
‘�m :

(
(29)

Apart from the above two performance metrics, we are very
interested in determining by how much the communication
cost is reduced through transmitting compressed difference
sequences which can be measured using the average saving
rate (ASR) acquired by dividing the mean value of the
reduced number of transmitted bytes during each period of
time by ‘, i.e.,

ASR ¼ 1�mean transmitted bytesð Þ
‘

: (30)

Fig. 3 shows the experimental results for D1 and D2 in
which the ACCs and FPRs are shown in the form of
ROC curves with respect to the values of � ranging from
0 to 1 and, in particular, the ASRs are presented for
every experiment (5) in Fig. 4.

Fig. 2. A cluster in the network.
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Furthermore, we conduct two experiments for compari-
son; in the former, the algorithm proposed in [20] is
employed as a representative of point-based anomaly detec-
tion techniques and, in the latter, it examines the perfor-
mance degradation caused by approximating a sample
covariance matrix. The experimental configurations are
same as that of the aforementioned experiment (5), except
some parameters specially adjusted. The algorithm is
described in Algorithm 6 point-based median detector (PMD),
where the threshold h (h > 1) determines the deviation of
an observation from the median of its neighbouring obser-
vations to be considered as abnormal. After the labels are
produced for all the observations using Algorithm 6, they
are rearranged to coincide with the data segments and, if
more than 0:1� n abnormal observations are involved in a
data segment, it is identified as an anomaly. Based on the
metrics given in Equation (29), in the first experiment, h is
evaluated from 1 to 2with a step width of 0:1, which produ-
ces two RoC curves, as shown in Fig. 5, for D1 and D2

respectively. Then, in the second experiment, the sample
covariance matrices are obtained through the regular cen-
tralised approach and their performances are compared

with those of the proposed distributed approach, with the
results shown in Fig. 6.

5.3 Experimental Results and Evaluation

Regarding the Type-I anomalies, it can achieve 92 percent
ACC with only a 3 percent FPR for D1 when � ¼ 0:85 and,
providing that � 	 0:5, the ACC usually stays above 85 per-
cent with a FPR of less than 5 percent. ForD2, the best perfor-
mance is a 75 percent ACC and 6percent FPR which appears
at � ¼ 0:85. For the Type-II anomalies, the ACC gradually
increases from 80 percent to an average of 90 percent for D1,
where the FPR finally reaches 5 percent whereas, for D2, the
ACCs approximately stabilise at 75percent when the FPRs
are smaller than 5 percent. The Type-III and Type-IV anom-
alies seem much easier to identify whereby, for both D1 and
D2, the ACCs can exceed 75 percent with a wider range of �,
namely � 	 0:6 and their the highest FPRs are limited to 5
and 8 percent respectively. Fig. 3 a shows that the ACC rises
to 75 percent when � ¼ 0:1 and then remains above 80 per-
cent when � 	 0:5, where the peak FPR is 5 percent. For D2,
it produces a similar curve but a worse ACC (a stead 75 per-
cent) and higher peak FPR (8 percent). Overall, D1 outper-
forms D2, mainly because a shorter data segment is more
sensitive to injected anomalies than difference between

Fig. 3. Experimental results of ROC fromD1 andD2:

Fig. 4. Experimental results of ASR fromD1 andD2.

Fig. 5. Experimental results of ROC (PMD) fromD1 andD2.
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temperature and humidity. Finally, Fig. 4 shows that the
ASRs are around 12 and 6.5 percent for D1 and D2

respectively.
According to Fig. 5, comparing with the ‘mixed’ shown

in Figs. 3 and 4, the proposed scheme outperforms the
point-based scheme significantly with 90 and 80 percent
ACCs on average for D1 and D2 respectively and FPRs
lower than 10 percent. However, the best performance of
using the point-based scheme is only around 40 percent
ACC when the FPRs are smaller than 20 percent. If approxi-
mating the sample covariance matrices with the concept of
Spearman’s rank correlations coefficient, from Fig. 6, it can
be observed that there is a slight performance degradation
which, in particular, includes a 10 percent reduction in the
ACCs on average and an approximate 2 percent increase in
the FPRs.

Based on the above observations, several conclusions can
be drawn. The proposed scheme is most capable of tackling
Type-III and Type-IV anomalies, but a little weaker in
terms of Type-I anomalies while Type-II anomalies are
fairly ambiguous and as sometimes, it is difficult to differen-
tiate them from transient anomalies, we suppose that a
slightly lower performance is reasonable when handling
Type-II anomalies. Nonetheless, the scheme performs satis-
factorily with mixed-type anomalies which mostly reflects
practical situations. Regarding the selection of �, a value
larger than 0.5 is often preferred when a relatively large
number of anomalies are present in a cluster. At the same
time, it should be larger for a longer data segment, as con-
firmed by the optimal values of 0:1 and 0:2 for D1 and D2

respectively, as previously mentioned. According to the
experimental results, differential compression does not lead
to as great an improvement as we expected. We find that
repeated elements are widespread in the difference sequen-
ces, but only a subsequence covering more than three
repeated elements is compressible using the proposed algo-
rithm. Actually, any length of repeated elements can be
largely compressed by encoding if it focuses on decreasing
the number of transmitted bits. We still assume the repeated
elements are summarised by D 0 t½ �, where t 	 2. The sim-
plest algorithm is to encode D and t together without count-
ing the indicator symbol ‘0’, which consumes only up to
8þ log2n bits (definitely less than 2 bytes) and then the
reduction in the communication cost is quite considerable.
However, this work is outside the scope of this paper as bit-
level optimisation is generally a task to be accomplished by

the link layer rather than the application layer. The final
two experiments demonstrate that, although, the scheme
suffers a slight degradation in performance because of
approximating the sample covariance matrix, its perfor-
mance is still within an acceptable level and much better
than that of a point-based technique.

6 CONCLUSIONS

In this paper, a new segment-based anomaly detection tech-
nique for handling long-term anomalies by exploiting the
spatial correlation existed among neighbouring sensed
measurements, with its detector realised through a track-
able parameterised statistical quantity, is proposed. In addi-
tion, the sample covariance matrix is approximated
according to the concepts of the Spearman’s rank correla-
tion coefficient and differential compression such that the
computational cost is greatly reduced. The effectiveness
and efficiency of this technique is demonstrated using the
data set of the IBRL. However, it is highly dependent on the
assumption that the data are spatially correlated as this is
the only situation in which predictability and information
redundancy occur. From such a limitation, several further
research question arises: (1) if spatial correlations are not
significantly present, it may utilise other metrics to measure
the difference between two data segments such as similar-
ity; and, (2) the prediction variance is now derived from a
linear estimator but it is entirely possible to realise the same
idea with a nonlinear estimator, which may adapt to more
generalised cases.

REFERENCES

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless Sensor Networks: A Survey,” Computer Networks,
vol. 38, no. 4, pp. 393-422, 2002.

[2] D.W. Carman, P.S. Kruus, and B.J. Matt, “Constraints and
Approaches for Distributed Sensor Network Security,” Technical
Report 010, NAI Labs, The Security Research Division Network
Assoc., Inc., http://www.cs.umbc.edu/courses/graduate/
CMSC691A/Spring04/papers/nailabs_report_00-010_final.pdf,
Sep. 2000.

[3] P. Baronti, P. Pillai, V.W.C. Chook, S. Chessa, A. Gotta, and Y.
F. Hu, “Wireless Sensor Networks: A Survey on the State of
the Art and the 802.15.4 and ZigBee Standards,” Computer
Comm., vol. 30, no. 7, pp. 1655-1695, http://www.sciencedir-
ect.com/science/article/pii/S0140366406004749, May 2007.

[4] M. Xie, S. Han, B. Tian, and S. Parvin, “Anomaly Detection in
Wireless Sensor Networks: A Survey,” J. Network and Computer
Applications, vol. 34, no. 4, pp. 1302-1325, 2011.

[5] A.B. Sharma, L. Golubchik, and R. Govindan, “Sensor Faults:
Detection Methods and Prevalence in Real-World Datasets,” ACM
Trans. Sensor Networks, vol. 6, no. 3, pp. 1-39, 2010.

[6] D.R. Raymond and S.F. Midkiff, “Denial-of-Service in Wireless
Sensor Networks: Attacks and Defenses,” IEEE Pervasive Comput-
ing, vol. 7, no. 1, pp. 74-81, Jan.-Mar. 2008.

[7] S. Wen, Y. Xiang, and W. Zhou, “A Lightweight Intrusion Alert
Fusion System,” Proc. 12th IEEE Int’l Conf. High Performance Com-
puting and Comm. (HPCC), pp. 695-700, 2010.

[8] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 1-58, 2009.

[9] M.C. Vuran, €O.B. Akan, and I.F. Akyildiz, “Spatio-Temporal Cor-
relation: Theory and Applications for Wireless Sensor Networks,”
Computer Networks, vol. 45, no. 3, pp. 245-259, 2004.

[10] A. Jindal and K. Psounis, “Modeling Spatially Correlated Data in
Sensor Networks,” ACM Trans. Sensor Networks, vol. 2, no. 4,
pp. 466-499, 2006.

[11] Intel Lab Data, http://db.csail.mit.edu/labdata/labdata.html,
2014.

Fig. 6. Comparisons between centralised and approximated sample
covariance matrices.

582 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 2, FEBRUARY 2015



[12] F. Liu, X. Cheng, and D. Chen, “Insider Attacker Detection in
Wireless Sensor Networks,” Proc. INFOCOM ’07, pp. 1937-1945,
2007.

[13] M. Xie, J. Hu, and B. Tian, “Histogram-Based Online Anomaly
Detection in Hierarchical Wireless Sensor Networks,” Proc. IEEE
11th Int’l Conf. Trust, Security and Privacy in Computing and Comm.
(TrustCom), pp. 751-759, 2012.

[14] M. Xie, J. Hu, S. Han, and H.-H. Chen, “Scalable Hypergrid K-
NN-Based Online Anomaly Detection in Wireless Sensor
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 24,
no. 8, pp. 1661-1670, Aug. 2013.

[15] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki,
and D. Gunopulos, “Online Outlier Detection in Sensor Data
Using Non-Parametric Models,” Proc. 32nd Int’l Conf. Very Large
Data Bases, pp. 187-198, 2006.

[16] S. Rajasegarar, C. Leckie, J.C. Bezdek, and M. Palaniswami,
“Centered Hyperspherical and Hyperellipsoidal One-Class Sup-
port Vector Machines for Anomaly Detection in Sensor
Networks,” IEEE Trans. Information Forensics and Security, vol. 5,
no. 3, pp. 518-533, Sep. 2010.

[17] S. Rajasegarar, C. Leckie, M. Palaniswami, and J.C. Bezdek,
“Distributed Anomaly Detection in Wireless Sensor Networks,”
Proc. 10th IEEE Singapore Int’l Conf. Comm. Systems (ICCS ’06),
pp. 1-5, 2006.

[18] M. Moshtaghi, C. Leckie, S. Karunasekera, J.C. Bezdek, S. Rajase-
garar, andM. Palaniswami, “Incremental Elliptical Boundary Esti-
mation for Anomaly Detection in Wireless Sensor Networks,”
Proc. IEEE 11th Int’l Conf. Data Mining (ICDM), pp. 467-476, 2011.

[19] J. Chen, S. Kher, and A. Somani, “Distributed Fault Detection of
Wireless Sensor Networks,” Proc. Workshop Dependability Issues in
Wireless Ad Hoc Networks and Sensor Networks, pp. 65-72, 2006.

[20] M. Ding, C. Dechang, X. Kai, and C. Xiuzhen, “Localized Fault-
Tolerant Event Boundary Detection in Sensor Networks,” Proc.
INFOCOM ’05, vol. 2, pp. 902-913, 2005.

[21] S. Guo, Z. Zhong, and T. He, “Find: Faulty Node Detection for
Wireless Sensor Networks,” Proc. Seventh ACM Conf. Embedded
Networked Sensor Systems, pp. 253-266, 2009.

[22] R. Webster and M.A. Oliver, Geostatistics for Environmental Scien-
tists (Statistics in Practice). John Wiley & Sons, 2007.

[23] T.H. Cormen, C. Stein, R.L. Rivest, and C.E. Leiserson, Introduc-
tion to Algorithms. McGraw-Hill Higher Education, 2001.

[24] K. Knight,Mathematical Statistics. Chapman and Hall/CRC, 1999.
[25] A. Wiesel and A.O. Hero, “Distributed Covariance Estimation in

Gaussian Graphical Models,” IEEE Trans. Signal Processing,
vol. 60, no. 1, pp. 211-220, Jan. 2012.

[26] V. Delouille, R. Neelamani, and R.G. Baraniuk, “Robust Distrib-
uted Estimation Using the Embedded Subgraphs Algorithm,”
IEEE Trans. Signal Processing, vol. 54, no. 8, pp. 2998-3010, Aug.
2006.

[27] A. Wiesel and A.O. Hero, “Decomposable Principal Component
Analysis,” IEEE Trans. Signal Processing, vol. 57, no. 11, pp. 4369-
4377, Nov. 2009.

[28] D. Gay, P. Levis, D. Culler, and E. Brewer, “NesC 1.3 Language
Reference Manual,” technical report, Univ of California Berkeley,
2009.

[29] M.C. Vuran and I.F. Akyildiz, “Spatial Correlation-Based Collabo-
rative Medium Access Control in Wireless Sensor Networks,”
IEEE/ACM Trans. Networking, vol. 14, no. 2, pp. 316-329, Apr. 2006.

[30] J.L. Myers and A.D. Well, Research Design and Statistical Analysis.
Lawrence Erlbaum Assoc., 2003.

[31] G. Golub and W. Kahan, “Calculating the Singular Values and
Pseudo-Inverse of a Matrix,” J. Soc. for Industrial and Applied Math.:
Series B, Numerical Analysis, vol. 2, no. 2, pp. 205-224, 1965.

[32] Y.W. Nijim, S.D. Stearns, and W.B. Mikhael, “Lossless Compres-
sion of Seismic Signals Using Differentiation,” IEEE Trans. Geosci-
ence and Remote Sensing, vol. 34, no. 1, pp. 52-56, Jan. 1996.

Miao Xie is currently working toward the PhD
degree at the School of Engineering and IT,
University of New South Wales at the Austra-
lian Defence Force Academy (UNSW@ADFA),
Canberra, Australia. His research interests
include intrusion/anomaly detection in wireless
sensor networks, network security, data min-
ing, and forecasting algorithms.

Jiankun Hu received the BE degree from Hunan
University, China, and the PhD degree in control
engineering from the Harbin Institute of Technol-
ogy, China, in 1983 and 1993, respectively, and
the master’s of research in computer science
and software engineering from Monash Univer-
sity, Australia, in 2000. He is currently a profes-
sor and research director of Cyber Security Lab,
School of Engineering and IT, University of New
South Wales at the Australian Defence Force
Academy (UNSW@ADFA), Canberra, Australia.

He has worked in Ruhr University Germany on the prestigious German
Alexander von Humboldt Fellowship from 1995 to 1996, research fellow
in the Delft University of the Netherlands from 1997 to1998, and
research fellow in Melbourne University, Australia, from 1998 to1999.
His main research interests include field of cyber security including bio-
metrics security where he has published many papers in high-quality
conferences and journals including the IEEE Transactions on Pattern
Analysis and Machine Intelligence. He has served in the editorial board
of up to seven international journals and served as Security Symposium
chair of the IEEE flagship conferences of IEEE ICC and IEEE Globecom.
He has obtained seven ARC (Australian Research Council) Grants and
is now serving at the prestigious Panel of Mathematics, Information and
Computing Sciences (MIC), ARC ERA (The Excellence in Research for
Australia) Evaluation Committee.

Song Guo (M’02-SM’11) received the PhD
degree in computer science from the University
of Ottawa, Canada. He is currently a Full Profes-
sor at School of Computer Science and Engi-
neering, the University of Aizu, Japan. His
research interests are mainly in the areas of
protocol design and performance analysis for
reliable, energy-efficient, and cost effective com-
munications in wireless networks. He received
the Best Paper Awards at ACM Conference on
Ubiquitous Information Management and Com-

munication 2014, IEEE Conference on Computational Science and Engi-
neering 2011, and IEEE Conference on High Performance Computing
and Communications 2008. He currently serves as Associate Editor of
the IEEE Transactions on Parallel and Distributed Systems. He is in the
editorial boards of ACM/Springer Wireless Networks, Wireless Commu-
nications and Mobile Computing, and others. He has also been in orga-
nizing committee of many international conferences, including serving
as a General Chair of MobiQuitous 2013. He is a senior member of the
IEEE and the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XIE ET AL.: SEGMENT-BASED ANOMALY DETECTION WITH APPROXIMATED SAMPLE COVARIANCE MATRIX IN WIRELESS SENSOR... 583



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


