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Abstract

Heterogeneous parallel computing applications often process large data sets that require multiple 

GPUs to jointly meet their needs for physical memory capacity and compute throughput. 

However, the lack of high-level abstractions in previous heterogeneous parallel programming 

models force programmers to resort to multiple code versions, complex data copy steps and 

synchronization schemes when exchanging data between multiple GPU devices, which results in 

high software development cost, poor maintainability, and even poor performance. This paper 

describes the HPE runtime system, and the associated architecture support, which enables a 

simple, efficient programming interface for exchanging data between multiple GPUs through 

either interconnects or cross-node network interfaces. The runtime and architecture support 

presented in this paper can also be used to support other types of accelerators. We show that the 

simplified programming interface reduces programming complexity. The research presented in 

this paper started in 2009. It has been implemented and tested extensively in several generations of 

HPE runtime systems as well as adopted into the NVIDIA GPU hardware and drivers for CUDA 

4.0 and beyond since 2011. The availability of real hardware that support key HPE features gives 

rise to a rare opportunity for studying the effectiveness of the hardware support by running 

important benchmarks on real runtime and hardware. Experimental results show that in a exemplar 

heterogeneous system, peer DMA and double-buffering, pinned buffers, and software techniques 

can improve the inter-accelerator data communication bandwidth by 2×. They can also improve 
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the execution speed by 1.6× for a 3D finite difference, 2.5× for 1D FFT, and 1.6× for merge sort, 

all measured on real hardware. The proposed architecture support enables the HPE runtime to 

transparently deploy these optimizations under simple portable user code, allowing system 

designers to freely employ devices of different capabilities. We further argue that simple 

interfaces such as HPE are needed for most applications to benefit from advanced hardware 

features in practice.

Index Terms

Distributed architectures; Hardware/software interfaces; Heterogeneous (hybrid) systems; Data 
communications

1 Introduction

Modern heterogeneous computing systems use CPU cores for low-latency execution of 

sequential, control-intensive application phases and employ accelerators for high-throughput 

processing of the phases that are rich in data parallelism [1]. Many supercomputers in the 

Top500 [2] and Green500 [3] lists (e.g., Titan, Tianhe-1A, Nebulae, and Tsubame 2.0) use 

accelerators (GPUs in this case) to achieve higher performance and better energy efficiency. 

Several recent examples feature multiple GPUs per node for improved energy efficiency, 

reflected in their excellent rankings in the Green500 list.

Figure 1 presents the heterogeneous system model targeted in this paper. One or many CPU 

cores (1) are attached to the host memory and to one or several devices. A device can be an 

I/O device (e.g., disk, network interface) or a compute accelerator. Some accelerators are 

directly connected to the host memory (2), such as the on-chip GPU in AMD Fusion APU 

[4]. Other accelerators, such as discrete NVIDIA GPUs [5], and I/O devices contain 

dedicated device memories (3). Some devices can access the memories of other devices, 

such as NVIDIA Fermi/Kepler GPUs connected to the same PCIe bus. Moreover, some 

devices can directly access host memory (4), such as NVIDIA and AMD GPUs. To the best 

of our knowledge, all existing heterogeneous systems can be mapped to this model. In this 

paper we assume GPUs as accelerators, but all presented techniques can be applied to other 

classes of accelerators.

To effectively utilize a multi-device computing system, application developers need to 

distribute large data sets into device memories. Within a heterogeneous computing cluster, 

application-level data exchange between devices involves interactions between node-level 

APIs such as CUDA [5], OpenCL [6], or GMAC [7], and inter-node APIs such as MPI. 

While MPI hides the complexity of the system interconnect topology and inter-node routing, 

there is currently no similar node-level interface. Therefore, developers are left with the 

challenging task of code versioning needed to effectively use a wide variety of hardware and 

drivers with very different capabilities.

In this paper we present the Heterogeneous Parallel Execution (HPE) programming interface 

and its runtime system. HPE enables multi-device applications to efficiently exchange data 

while preserving developer productivity and application maintainability. HPE is available to 
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CUDA and OpenCL developers as a user-level library. It allows applications to allocate 

memory objects that can be accessed by any device or CPU in the system. The HPE runtime 

transparently handles data copies needed for discrete device systems (i.e., independent 

memory systems) or address remapping for some integrated device systems (i.e., memory 

system shared by CPUs and accelerators).

Both CUDA and OpenCL allow applications to interact with all devices in the system. 

However, the physical bus topology of the system dictates the level of interaction and data 

exchanges allowed between devices. As a result, programmers write application code to 

discover the physical system topology and implement different code paths for each type of 

system configuration. This represents a significant effort resulting in large, hard-to-maintain 

application code base.

HPE builds a simple, consistent programming interface based on three major features. First, 

all device address spaces are combined with the host address space to form a Unified Virtual 

Address Space, or UVAS. Starting with the Fermi generation, all NVIDIA GPUs support 

UVAS [8] based on virtual memory. In this paper, we propose a simple segmentation-based 

UVAS design for devices with no virtual memory support, where all device memory 

locations also have a corresponding host address that is formed by adding a higher-order bit 

pattern to the device address.

Second, the UVAS allows the HPE runtime to easily track the up-to-date version of the 

object, transfer data between a host and a device before kernel calls, and after kernel returns, 

to build an Asymmetric Distributed Shared Memory (ADSM) [7] system. It also allows the 

HPE runtime to intercept the pointers passed to function calls and reliably locate the up-to-

date versions of objects being passed. The simple relation between a device address and its 

corresponding host address allows lock-free implementation of HPE runtime.

Third, every CPU thread can request a data exchange between any two devices, and devices 

can access the data in any other device’s memory. The HPE runtime manages thread-to-

device connection and performs intermediate data copies when necessary to realize this 

abstraction. Host code can use simple memory copy calls to control data exchange between 

devices. Such a simple interface allows HPE to automatically optimize data exchanges 

between devices; eliminating the need for application code to handle different system 

topologies.

In this paper, we analyze the effect of the device hardware capabilities on the complexity 

and performance of HPE implementation. We show that with appropriate device architecture 

support, the HPE runtime can take full advantage of the physical bus bandwidth while 

maintaining developer productivity and application maintainability and portability. The 

main contributions of this paper are: (1) A simple software memory segmentation scheme 

that allows all device memory space locations in a system to have unique system-wide 

virtual addresses (UVAS). This scheme allows the runtime to efficiently and reliably 

identify the hosting device of any data by inspecting the upper bits of its virtual address. (2) 

An efficient runtime for multi-device data sharing and exchange in HPE. The proposed 

UVAS scheme enables the runtime to easily determine the location of data and perform 
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remote accesses transparently. Furthermore, when a CPU thread performs a data exchange 

between two devices, the HPE runtime supports a virtualized peer DMA and transparently 

chooses between hardware device-to-device transfers, if available, or a double-buffered 

software-managed transfer that uses intermediate copies in the host memory. (3) An 

evaluation of the performance of HPE. The implementation of HPE features in the NVIDIA 

Fermi and Kepler GPUs provided an opportunity to evaluate the benefit of HPE on real 

hardware. Experimental results show that HPE delivers 1.3× communication bandwidth 

improvement without hardware support, and 2× more bandwidth when hardware supports 

peer-DMA. On real hardware, HPE delivers speedups of up to 1.6× for 3D finite differences, 

2.5× for 1D FFT and 1.6× for Mergesort compared to the base implementation.

This paper is organized as follows. Section 2 presents the necessary background, analyzes 

existing inter-device data communication techniques and presents the motivation of this 

paper. The HPE model and an analysis of how it improves programmability of 

heterogeneous parallel system are presented in Section 3. A discussion of the design and 

implementation alternatives for the HPE model is in Section 4. An experimental evaluation 

of implementation techniques is presented in Section 5. This paper is compared to other 

works in Section 6. Section 7 concludes this paper.

2 Background and Motivation

2.1 NVIDIA CUDA

Here we highlight only the key CUDA concepts referenced in the rest of the paper. 

Comprehensive discussions of the CUDA are available elsewhere [5]. OpenCL [6] is a 

programming model similar to CUDA. However, OpenCL kernels can only use pointers 

passed as arguments. Therefore, OpenCL does not support using data structures that use 

pointers. OpenCL supports many device types (e.g., AMD, NVIDA and Intel GPUs, multi-

core x86 and IBM Power7 processors, and the IBM Cell BE), which involves handling a 

wide range of underlying system topologies in the application; making HPE even more 

beneficial.

A CUDA context is the GPU analog of an OS process. Each context has its own page-table 

that defines the GPU virtual address space, and its state (i.e., registers and scratch-pad 

memory). Up to CUDA version 3.X, the runtime API binds each context to a CPU thread for 

its lifetime. As we will explain later, HPE enables inter-CPU-thread sharing of contexts, 

which has also been recently adopted by the programming interface and runtime 

implementation of CUDA 4 and beyond. In this paper we use CUDA contexts, but all of the 

concepts discussed are equally applicable to OpenCL contexts.

2.2 Multi-device Domain Decomposition

Multi-device applications partition input and output data and computation among the 

devices present in the system (i.e., domain decomposition). There are often inter-domain 

data dependencies between the different phases of computation, making inter-device 

communication necessary. This pattern is found in many HPC applications such as fluid 

dynamics simulation, n-body problems, spectral analysis, and financial and weather 

simulation. We use finite difference computation as a driving example [9].
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A finite difference method is an iterative process on volumetric data that represents a 

physical space for simulating a phenomenon described by differential equations, often 

involving large data sets that can benefit from GPU acceleration. Domain decomposition 

assigns a portion of the input and output data (i.e., domain) to each GPU in the system, as 

illustrated in Figure 2b. With enough GPUs, the entire data set can reside collectively in the 

GPU physical memories.

The main loop of finite difference iterates over the steps of a simulation. For each step, the 

value of each point in the output volume is calculated by a stencil computation, illustrated in 

Figure 2a, that takes as input the value at the point and its neighbors. The output volume of 

the current step becomes the input for the next step. The stencil computation for the points at 

the boundaries of a partition (i.e., boundary data) requires input values from neighboring 

partitions (i.e., halo data). GPUs exchange data between simulation steps, so exchange 

efficiency is critical to the scalability of such applications.

Listing 1 shows the CUDA host code for one simulation step of the finite difference 

example assuming the CUDA 3 programming model. Figure 3 shows a diagram with the 

steps required to perform the boundary exchange and the synchronization scheme used by 

the CPU threads in each MPI process. The id variable identifies the CPU thread within the 

MPI process, while global_id is the identifier of the CPU thread across all the MPI processes 

of the application. Before the main loop, the application allocates four semaphore arrays 

(l_bound sem[], r_bound_sem[], l_halo_sem[], r_-halo_sem[]), two arrays of host memory 

buffers (l_-bound_host[], and r_bound_host[]), and two extra buffers for the data received 

from MPI calls (l_halo_-host and r_halo_host). The size of the semaphore and host memory 

buffer arrays is equal to the number GPUs.

2.3 Multi-Device Data Communication

Each loop iteration in Listing 1 starts by calling the GPU stencil code to compute the output 

volume (line 2). Then, all CPU threads exchange the boundary and halo data with their left 

(i.e., id−1) and right (i.e., id+1) neighbors. However, the outermost left CPU thread in a 

process (i.e., id = 0) needs to exchange its left boundary and halo cells with a MPI process 

running on a different node. Analogously, the outermost right thread in a process (i.e., id = 

num_gpus–1) will communicate with another MPI process to exchange its right boundary 

and halo points. The outermost left and right threads in the whole simulation (i.e., global_id 

= 0 and global_id = last id) do not have left and right neighbors and, therefore, do not 

perform such communications.

CUDA 3.X permanently binds one GPU to each CPU thread, with no direct access other 

GPUs. This limitation forces data exchange in Listing 1 to be implemented using a two-

stage proxy pattern. In the first stage, the CPU thread copies the boundaries from the device 

to host memory buffers (l_bound_host[id] in line 5 and r_bound_host[id] in line 8). These 

copies are shown as arcs (1a) and (1b) in Figure 3. Once the left boundary data has been 

copied to a host memory buffer, the CPU thread signals its left neighbor that new data is 

available by posting the r_halo_sem[id−1] semaphore (line 12 and arc 2a). An analogous 

synchronization mechanism (l_halo_sem[id+1] semaphore) is required for the right 

boundary data (line 14 and arc 2b). Outermost threads perform a data exchange using 

Cabezas et al. Page 5

IEEE Trans Parallel Distrib Syst. Author manuscript; available in PMC 2015 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MPI_SendRecv (lines 18 and 28) and update their halos in using the received data (lines 23 

and 33).

The CPU thread starts the second stage by waiting for its neighbor to finish copying 

boundary data to the host memory buffers (r_bound_host[id−1] and l_bound_host[id+1]). 

This is done by waiting on the semaphores for these host memory buffers: r_halo_-sem[id] 

and l_halo_sem[id] respectively (lines 38 and 45, arcs 3a and 3b). This synchronization is 

not needed by the outermost boundary data because it is explicitly requested through MPI. 

Then, the CPU thread copies the boundary data from each host memory buffer to the halo 

cells on the device (lines 39 and 46, arcs 4a and 4b), signals its neighbors that the data from 

the host buffer has been consumed (lines 42 and 49, arcs 5a and 5b) and waits, before the 

next iteration, for the signals from the neighbors (lines 52 and 54, arcs 6a and 6b) using 

semaphores (l_bound_sem[id] and r_bound_-sem[id]). Finally, in and out pointers are 

swapped so the output becomes the input in the next step.

2.4 Performance Considerations

The code in Listing 1 performs poorly due to serialization of data exchange and 

computation. A stencil implementation that overlaps data communication and GPU 

computation, omitted due to space constraints, first computes the left and right boundary 

data in the GPU. Then, the stencil computation for the bulk volume is performed while the 

boundary data is exchanged. However, this implementation still performs poorly for large 

boundary data. For instance, a typical seismic simulation requiring a 4-point boundary data 

with a cross section of 2048×2048 single-precision points (64 MB) would take 16 ms if the 

peak 8 GBps PCIe 2.0 ×32 bandwidth is achieved in both directions. Furthermore, this 

implementation requires one 64 MB host pinned memory buffer per boundary to be 

exchanged. Pinned memory tends to be a scarce resource, so such large host pinned memory 

requirements can easily harm the system performance.

Double-buffering is typically used to reduce the data transfer time. In our previous example, 

the application allocates two 2 MB host pinned memory buffers per boundary. One of the 

buffers is used to transfer a block of the source boundary data to the host while the second 

buffer is used to transfer the previous block to the destination device. This implementation 

mostly hides the cost of data transfers in one of the directions, effectively doubling the data 

transfer memory bandwidth. In our seismic simulation example, double-buffering reduces 

the total transfer time down to 8 ms.

The performance benefits of double-buffering come at the cost of code complexity. Besides 

the semaphores in Listing 1, two more semaphores are required per host pinned memory 

buffer. These semaphores protect the contents of the host pinned memory buffer used by 

ongoing data transfers to the destination GPU, and avoid starting transfers to the destination 

GPU before the data has been completely transferred to the host memory. It also requires the 

programmer to insert a new level of loops to iterate over the original exchange code in 2MB 

transfer steps. The additional synchronization calls, the management of several host memory 

buffers, and the usage of asynchronous memory transfers greatly increase code complexity.
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The complexity of the application code increases further to support the different 

heterogeneous topologies illustrated in Figure 1. Different data exchange code paths are 

required to avoid memory copies in systems where CPU and GPU share the same physical 

memory. As a consequence, development and maintenance costs of multi-GPU codes easily 

become unaffordable.

As we will show in the next section, with the HPE architecture support, an HPE runtime 

allows the developers to make simple memcpy API calls and transparently performs all 

optimizations appropriate for the underlying hardware topology and device capability.

3 Heterogeneous Parallel Execution

In this section we present the Heterogeneous Parallel Execution (HPE) model, built around 

three novel mechanisms to improve the performance and programmability of heterogeneous 

multi-device systems: multithreaded device-sharing, unified virtual address space, and 

multi-device and/multi-threaded Asymmetric Distributed Shared Memory (ADSM). Each 

mechanism is illustrated with CUDA code using the stencil example discussed above. All of 

the concepts discussed here can be applied to other programming models, heterogeneous 

devices, and applications.

3.1 Multi-threaded Device Sharing

A major limitation of CUDA prior to version 4.0 is the permanent and exclusive binding of 

only one GPU context to each CPU thread. This limitation forces programmers to 

implement communication between accelerators with intermediate data copies to host 

memory buffers (i.e., proxy pattern described in Section 2). That is, the host memory serves 

as an intermediate switch for routing data from one device memory to another device 

memory. Such implementations negatively impact application performance: a CPU thread 

requiring data from a GPU bound to another CPU thread must wait until this data is copied 

to host memory by the other thread. Another undesirable side effect is that both CPU threads 

might copy their halo data from host memory to device memory at almost the same time 

resulting in PCIe bus contention, giving each CPU thread less than half of the peak PCIe 

bandwidth.

HPE enables several CPU threads to concurrently access the same GPU context. Listing 2 

shows the stencil code when CPU threads are allowed to access any device in the system. 

Figure 4 reflects the updated synchronization scheme used by the CPU threads. The first 

noticeable modification is that device buffers (in and out) are now global variables 

accessible by all CPU threads. Now, only the outermost left and right CPU threads must 

copy the data to be exchanged to host memory (lines 11 and 23, not shown in Figure 4 for 

brevity) since CPU threads within the same node can access the GPU context of its 

neighbors. Then, they then send this data and receive the updated halo points using MPI 

(lines 13 and 25).

The local communication code (lines 36 and 43) becomes a device-to-device memory copy 

because all CPU threads can access both the source and destination GPU memories. This is 

enabled by the multi-threaded device sharing support in HPE. In this case, each CPU thread 
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waits on the l_halo_sem[id] and r_halo_-sem[id] (lines 35 and 42) for the data produced by 

other threads to be ready before triggering the data transfer. Once the data exchange is done, 

each CPU thread notifies the completion of its data copy activity by posting the 

l_bound_sem[id−1] and r_bound_-sem[id+1] semaphores (lines 39 and 46). Finally, the 

input and output pointers are exchanged. Notice that this exchange must wait (lines 49 and 

51) until after the other threads consume the data because the device pointer data structures 

are shared by several CPU threads.

The first programmability benefit shown in the code in Listing 2 is that synchronization 

points (i.e., calls to semaphores) are conceptually easier to understand. The thread that needs 

the data performs the wait operation just before performing the data exchange, and the post 

operation afterward. This is in contrast to the code in Listing 1, where these two semaphore 

calls are made by separate CPU threads: the proxy thread performs the wait call, while the 

post operation is done by the consumer CPU thread.

The second benefit is the simplified abstraction of different system architectures. The 

application code calls a device-to-device memory copy. The runtime system provides 

several hardware-dependent implementations. In a system where compute accelerators share 

the same physical memory, it is implemented as a single memory copy. However, if both 

accelerators do not share the same memory and peer-to-peer memory transfers are not 

supported, the runtime system provides a double-buffered implementation using 

intermediate host pinned memory buffers. This hardware-independence greatly reduces the 

amount of code required to achieve high performance in different system architectures. 

However, programmers still have to explicitly identify source and destination devices in the 

memory copy function.

3.2 UVAS and Remote Memory Access

A common characteristic of the codes in Listings 1 and 2 is that the same virtual memory 

address might refer to multiple host and device memory locations on different computational 

units (i.e., CPU or accelerator). The most important consequence of virtual memory aliasing 

is the inability to perform remote memory accesses between devices. Neither the host nor 

the devices can determine at runtime the physical memory that a given pointer variable is 

referring to. Therefore, memory copy operations require a source and destination device/host 

(e.g., cuda Memcpy Host To Device in Listing 1, and device[id]/ host in Listing 2).

HPE defines a Unified Virtual Address Space (UVAS), where a virtual memory address 

unequivocally identifies a single location in a device/host physical memory. This feature 

allows the host or any device to easily determine the source and destination memories of the 

memory transfer operations. Coupling the UVAS with hardware support for remote memory 

transfers (e.g., GPU Direct [10]), GPUs can transparently access remote memory locations 

through regular pointers. Listing 3 illustrates the programmability benefits provided by the 

UVAS in our stencil example. Figure 5 also shows that the synchronization scheme is much 

simpler. First, the device-to-device memory copies that implement the domain boundary 

exchange between accelerators in the same node are removed, since the kernel code directly 

accesses the boundary data of the neighboring domains. The kernel launch now receives an 

additional parameter id that identifies the current domain and is used by the kernel code to 
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determine the index of the pointers that belong to the neighboring domains. After a kernel 

execution, the CPU thread signals that the boundary data (i.e., halo data for other CPU 

threads) is available for the next kernel call using the write_sem semaphore of the left and 

right neighbors (lines 5 and 7, arcs 1a and 1b). Then, the outermost CPU threads must still 

copy the boundary data to an intermediate host memory buffer (lines 11 and 21) before 

exchanging halo data with neighbour MPI processes for the next iteration (lines 12 and 22). 

Another host to device copy is needed to update the halo data in the corresponding device 

memories (lines 17 and 27). Finally, each CPU thread waits for the neighbor CPU threads to 

finish (lines 30 and 32) before exchanging the input and output pointers.

Another benefit of the UVAS is that fewer parameters are required by memory copy calls 

(lines 6, 12, 16 and 22). The UVAS enables the runtime system to determine both the source 

and destination device/host of a memory copy by inspecting the source and destination 

addresses, eliminating the need for programmers to specify it.

3.3 Multi-threaded ADSM

Despite the benefits provided by the UVAS, the code in Listing 3 still presents a major 

programmability drawback. As discussed in Section 2, overlapping MPI transfers with 

device↔host transfers to reduce the communication time is key to achieving high 

performance. This optimization requires different source code paths for systems with 

separate device and host memories, and systems where a single memory is shared among the 

accelerators and the host.

HPE supports an extension of the Asymmetric Distributed Shared Memory (ADSM) model 

[7] to multithreaded and multi-accelerator systems. We define a consistency model for 

concurrent accesses from CPU threads, that relies on the common inter-thread 

synchronization mechanisms. Moreover, on systems where accelerators and CPU have 

separate memories, the runtime system captures MPI calls (e.g., using library interposition) 

and based on the virtual address passed as source and destination buffers determines the 

accelerator hosting the data, and double buffers the MPI transfer. This is performed by 

splitting the MPI transfer into several smaller MPI transfers to overlap them with the 

device↔host transfers. On system architectures where the CPU and compute accelerators 

share the same physical memory the runtime performs a simple MPI transfer.

Listing 4 shows an example stencil code when the ADSM model is incorporated. The 

explicit memcpy API calls before and after MPI transfers have been removed (lines 6 and 

13).

The ADSM included in HPE raises the level of abstraction; by providing a high-level 

abstract machine model, the runtime can efficiently map data exchange and I/O operations 

to all potential heterogeneous system architectures. The simplified MPI calls in Listing 4 is 

an example of the benefits of this higher level of abstraction.
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4 HPE Design and Implementation

In this section we present the design and implementation of the three virtualization 

mechanisms used in HPE: device-sharing, unified virtual address space, and multi-device 

and/ multi-threaded ADSM. Although we illustrate each mechanism using NVIDIA CUDA 

and GPUs, all concepts presented here can be applied to other programming models (e.g., 

OpenCL) and heterogeneous devices (e.g., Intel Xeon Phi).

We implement a fully functional version of the HPE model on top of Global Memory for 

Accelerators (GMAC [7], [11]), a publicly available user-level library. GMAC runs on 

GNU/Linux, MacOS X and Windows systems, supports both CUDA and OpenCL, and has 

been tested on a wide range of systems. Many of the implementation techniques discussed in 

this section have been adopted in the implementation of the CUDA 4/5 runtime library. As a 

result, these techniques have been validated extensively with production use.

4.1 Device Sharing using Floating Contexts

The CPU submits commands (i.e., kernel calls, memory copy requests, and memory 

allocations) to the accelerator, typically involving several writes to control registers. These 

registers are exposed as part of a CUDA context. Hence, if several CPU threads 

concurrently access the same CUDA context, a race condition might occur. HPE provides a 

safe way for several threads to interact with the same CUDA context.

In a simple implementation, when a CPU thread calls functions that interact with an 

accelerator, the HPE runtime locks the context before issuing the command. Once the 

command has been completely pushed to the hardware, the HPE runtime unlocks the context 

before returning to the application code. However, this implementation might incur large 

overheads if several CPU threads contend for the same GPU context. To minimize 

contention, the HPE runtime extensively uses asynchronous operations and polling loops. 

On each API call, the runtime first locks the associated GPU context, then queues the call to 

be performed asynchronously, and immediately releases the GPU context. These queues are 

implemented on top of CUDA streams and are transparently managed by the runtime. To 

provide synchronous semantics, after this first stage, the runtime implements a polling loop; 

during each polling iteration, the GPU context is locked, the polling operation executed, and 

the GPU context unlocked. If the poll indicates that the previous operation has not finished, 

the CPU thread waits until the next iteration. The amount of time to wait is determined by 

the overhead of the CUDA API calls to access the GPU hardware state. In current 

generation systems, using 20 μseconds waits allows up to 16 CPU threads to efficiently 

share the same GPU context.

4.2 Remote Accelerator Memory Accesses

Enabling a device to access another device’s memory allows application code to pass an 

object in another device’s memory as a kernel argument, as shown in Listing 4. It also 

enables direct memory transfers between accelerators’ memory and I/O devices, bypassing 

the host memory. While this can be implemented in software by relying on page-faults 
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during accelerator execution, similarly to the host side of current ADSM implementations, 

the cost of triggering page faults in accelerator code might void their performance benefits.

Peer-DMA builds a unified physical address space using the physical memory ranges of the 

devices and the device identifiers. It allows devices to directly communicate through DMA 

requests. In every memory operation, the accelerator checks the source/destination 

accelerator of the access. It then performs a local access or creates a remote DMA request, 

accordingly. Since GPU memory subsystems typically are non-coherent, memory accesses 

served by remote accelerators can be safely cached to avoid future remote requests during 

kernel execution. Moreover, they do not introduce memory coherence traffic. However, 

cached data need to be invalidated at major barrier synchronization points or memory fences 

to ensure memory consistency across GPUs.

4.3 Unified Virtual Address Space

The goal of UVAS is to allow every object in the system, no matter which physical memory 

it resides in, to have a unique virtual address for use by application pointers. A UVAS can 

be implemented by mapping each accelerator and host physical memory location into unique 

virtual memory addresses. In general, this requires all devices to have address translation 

capability and all address translation data structures of all devices to be inspected when the 

runtime needs to allocate, free, or determine the physical location of an object.

We propose a software-based UVAS implementation based on memory segmentation 

(Figure 6) for devices with little or no support of virtual memory. A virtual memory 

subspace is assigned to the host and each accelerator present in the system. The maximum 

size of each memory subspace is given by the number of bits in accelerator physical 

addresses (e.g., 40 bits for NVIDIA GPUs, 1 TB). These memory subspaces only contain 

mappings for data hosted in one processor physical memory. We use the upper bits of the 

virtual address to identify the accelerator where the data is hosted. The HPE runtime assigns 

a bit pattern to each device in initialization time. On API calls taking pointers as input 

parameters (e.g., memory copy operations), HPE determines the virtual address subspaces 

involved in the operation. In the accelerator code, those bits that identify the virtual address 

subspace must be discarded in each memory access. Some processors already ignore the 

upper bits of the address, otherwise this transformation can be transparently inserted by the 

compiler. For example, a pointer to virtual address 0x000200 00001000 will be truncated to 

0x00 00001000, which is a valid accelerator physical address, and 2 will be used to identify 

the accelerator that holds the data.

However, using the software segmentation technique has some limitations. For example, 

since each virtual address space is mapped to the whole continuous physical address space 

of an accelerator, it is not possible to transparently distribute data structures by mapping 

different virtual address ranges across accelerators. Therefore, data structures must be split 

into chunks and use different pointers to access the appropriate chunks. On the other hand, 

devices with virtual memory support can have a continuous representation of a distributed 

data structure in the UVAS and, therefore, only need a single pointer for the whole data 

structure.
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4.4 Multi-Threaded ADSM

Fully coherent heterogeneous systems, where both host and accelerators can coherently 

access any physical memory in the system would provide a straightforward support for 

devices to access each other’s physical memory in HPE. For example, with full coherence 

support, an I/O device would be able to access the data in an accelerator physical memory 

through a pointer parameter of an I/O library call. However, such implementations are likely 

to highly penalize the accelerator execution due to extra memory coherency traffic required 

on any memory access, sent through a system interconnect that typically has much lower 

bandwidth than that is expected from a DRAM system. Even systems where host and 

accelerators are integrated in the same chip, such as AMD Fusion APUs [4], show a 

noticeable memory bandwidth degradation from 21 GBps to 7 GBps when the accelerator 

uses a coherent bus to access to memory.

Our HPE implementation uses the ADSM mechanisms provided by the GMAC user-level 

library [7]. GMAC provides a simple API that allows to allocate memory objects in the 

accelerator memories that can also be accessed by host code. This is implemented by 

keeping data structures duplicated in both host and accelerator memory. Memory coherence 

actions that update data in GPU memory are implemented as a two-step process. First, data 

from the host memory is DMA copied to the accelerator memory, and then the host memory 

containing the CPU copy of the data is protected as read-only to detect further 

modifications. Analogously, updates to the copy in host memory are implemented in GMAC 

as a three step process. First, the protection bits for the host memory containing the data are 

set to read-write, then a DMA transfer updates the contents of host memory, and finally, the 

protection bits for that region of host memory are set to read-only to allow detection of 

modifications by the CPU. However, this implementation is unsuitable for multi-threaded 

environments due to potential race conditions during DMA transfers. For instance, consider 

the case where a CPU thread accesses the host memory being updated by a concurrent DMA 

transfer. Such memory accesses are not detected, nor prevented because the protection bits 

for that memory are set to read-write for the DMA transfer. A similar race condition appears 

when updating the contents of the accelerator memory.

We extended GMAC with user-level memory shadowing to avoid race conditions during 

memory coherence actions. For each object, GMAC creates an internal shadow mapping 

(with R/W access permission) of the host copy. During memory coherence actions, GMAC 

uses the internal mapping of the data structure as source or destination for DMA transfers, 

while the user-accessible mapping remains protected. Hence, any attempt to access a data 

structure while it is being modified triggers a page fault exception that GMAC manages by 

locking the accessing thread until the DMA transfer is done. A drawback of this mechanism 

is that the amount of virtual memory address space for objects accessed both from CPU and 

devices is effectively doubled. On the other hand, this scheme does not impose any 

performance penalty. This shadowing technique allows GMAC to support multi-threaded 

ADSM while remaining portable across operating systems. Thanks to this extension, host 

code such as MPI calls may take objects in GPU memory as arguments, as we showed in 

Listing 4.
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4.5 HPE support in CUDA and NVIDIA GPUs

CUDA versions prior to 4.0 avoid race conditions by binding each CUDA context to a 

single CPU thread. Starting in version 4.0, CUDA adopts the floating context mechanism 

thus allowing several CPU threads access the memory of all the GPUs in the system. Thanks 

to the UVAS, the runtime automatically determines the contexts involved in each operation 

and binds it to the calling thread. Moreover, Kepler GPUs implement 32 independent 

hardware queues, which enable the concurrent execution of commands in the GPU coming 

from separate CUDA contexts. Each CUDA context owns its own page table, so the GPU 

operating system driver needs to be modified to allow separate CUDA contexts to share the 

same GPU virtual address space [12].

NVIDIA Fermi/Kepler devices have support for UVAS and remote memory access. Current 

hardware support for remote memory access relies on the peer-DMA mechanism (i.e., GPU 

Direct [10]). However, it is limited to GPUs in the same PCIe bus. Since Fermi/Kepler 

devices have a shared last-level cache, the location of data needs only to be determined 

when they miss in this cache. A request to the local memory is created if the access is local. 

A peer-DMA request is created, otherwise.

The Maxwell family of GPUs is also expected to offer an efficient DSM model similar to 

ADSM, thus removing the need for manual memory coherence.

5 Experimental Evaluation

All experiments were run on a system containing a dual Intel Intel(R) Xeon(TM) E5620 at 

2.40 GHz with 24 GB of DDR3 RAM memory, and 4 NVIDIA C2070 6 GB GDDR5 GPU 

cards. Mellanox Technologies MT26428 QDR 11 40 Gbps Infiniband network adapters are 

used in those tests that require network communication. The CPU sockets are connected to 

different PCIe 2.0 32x buses, each connected to two GPUs. Peer-DMA is enabled for GPUs 

on same bus. All machines run a GNU/Linux system, with Linux kernel 3.8.0 and NVIDIA 

driver 304.88. Benchmarks were compiled using GCC 4.7.3 for CPU code and NVIDIA 

CUDA compiler 5.5 for GPU code. Execution times were measured using get time of day, 

which offers a μsecond granularity, for the host code and CUDA events for GPU code and 

memory transfers. All results show the average of 30 runs; samples higher than the 

arithmetic average plus/minus the variance were considered outliers and discarded.

We evaluate the performance impact of the HPE features using the CUDA runtime and 

GMAC. GMAC provides features presented in this paper that have not been included in 

CUDA yet, like multi-threaded ADSM.

5.1 Benchmarks

Two synthetic benchmarks were used to characterize inter-device data copies. The first 

benchmark is a one-way data copy from a source device to a destination device. This 

communication pattern is found in n-body simulations, where the particles moving out from 

one domain are sent to the neighbouring domain. This benchmark produces no contention on 

the PCIe bus, which provides an environment where software locking costs can be 

measured. The second benchmark is a two-way data copy between devices. This inter-
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device communication pattern is found in most multi-device computations. Applications 

present a wide range of data exchange sizes; for instance, waveguide simulation typically 

requires exchanging hundreds of kilobytes, fluid dynamics simulations tens of megabytes, 

and FFTs hundreds of megabytes. To account for these scenarios, experiments were run 

using data exchange sizes ranging from 256 KB to 256 MB. These benchmarks also 

evaluated the locking overhead required for multi-threaded device sharing. Experiments are 

run for different communication schemes (naive, pinned, double-buffered) implemented on 

CUDA with no HPE features (CUDA-base), and GMAC (HPE) with and without peer-DMA 

support.

The performance of HPE was also measured using real-world applications. Current 

benchmark suites for GPUs like Parboil [13] and Rodinia [14] target single-GPU systems 

and do not stress data communication. Therefore, we have developed CUDA (using the 

previously mentioned communication schemes) and HPE versions of the following well-

kown computations. We use a CPU thread for each GPU in the node. Each of these threads 

launches kernels on their assigned GPU but also access other GPUs to perform 

device↔device memory transfers when needed. 3D finite differences (stencil) is the driving 

example used in Section 2. 1D FFT application (fft) implements a Fast Fourier Transform 

on a 1D input vector using the Radix-2 Cooley-Tukey algorithm. This algorithm performs n 

steps in which different elements are combined. The combination pattern changes at each 

step and, therefore, in the multi-GPU implementation, data must be exchanged between 

different pairs of GPUs at each step. We use the multi-GPU implementation of mergesort 
found in [15]. The input vector is divided into chunks that are individually sorted by each 

GPU. Then, a swap phase merges the sub-vectors into a sorted vector whose contents are 

logically distributed among the memories of the GPUs.

We have also developed two synthetic benchmarks to convey the benefits of the techniques 

implemented in our HPE runtime to optimize the communication with I/O devices. The first 

benchmark measures the time needed to transfer a file from disk to the GPU memory using 

four different implementations: user uses a regular user-level allocation to store the contents 

of the file and then transfer it to the GPU memory; pinned uses pinned memory instead of a 

user-level allocation; double-buffering uses two small pinned buffers to minimize the usage 

of pinned memory and to overlap the disk and GPU memory transfers. The second 

benchmark measures the time needed to send data across GPUs in different nodes through 

MPI. The following configurations are compared: user uses a regular user-level allocation to 

store the contents of the transfer before calling to send/ receive data from the network; 

pinned uses pinned memory instead (it exploits the GPUDirect technology that enables 

Infiniband interfaces to use the pinned memory allocated through CUDA); HPE uses two 

small pinned buffers to overlap network and CPU↔GPU transfers.

5.2 Inter-device Data Transfers

Figure 7 (left) shows the one-way inter-device communication throughput delivered by each 

implementation for different communication sizes. Peer-DMA always delivers the highest 

throughput because there are no associated software communication overheads. Peer-DMA 

also delivers the highest throughput for two-way data exchange, as shown in Figure 7 
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(right). For a one-way communication, HPE with no peer-DMA support delivers 70% 

compared to hardware peer-DMA HPE for large data communication sizes due to the costs 

of performing intermediate copies to the host memory. However, Figure 7 (right) shows that 

the throughput delivered by hardware peer-DMA is almost 2× faster than the software 

emulated peer-DMA for a two-way data exchange. This additional performance penalty is 

due to contention for exclusive access to the source and destination GPU contexts, which are 

being used concurrently by all CPU threads.

Figure 7 (left and right) also shows that the double-buffering strategy is always the optimal 

software implementation. The benefit of double-buffering becomes noticeable for data 

communications larger than 1 MB, when double-buffering starts overlapping of host-to-

device and device-to-host data transfers. The pinned implementation transfers all the data to 

a pinned buffer in host memory and, therefore, does not overlap data transfers. Still, the 

throughput delivered by this scheme is a 40% higher than the base implementation.

Figure 8 shows the total wait time for HPE and CUDA-base Double-buffering. Locking time 

in HPE is shorter than in CUDA-base Double-buffering, except for two-way communication 

of small halo sizes. HPE only requires exclusive access to the GPU context for the duration 

of the API call that enqueues an asynchronous data transfer between the host and the device; 

after the DMA command has been requested to the hardware, the PCIe configuration 

registers can be used to request new DMA transactions. This is in contrast with the double-

buffering implementation in CUDA-base, which requires exclusive access to the 

intermediate host buffer for the duration of each data transfer. For small size data transfers, 

the total time CUDA-base requires exclusive access to the intermediate buffer is short (few 

data is transferred) and, it shows a better behaviour than HPE.

As the data communication size increases, CUDA-base requires locking the intermediate 

buffers for longer times, so the time each CPU thread waits to initiate the next data transfer 

increases. Inter-device data communication in HPE does not require waiting for any other 

CPU thread to bring the data to the intermediate host buffers. Hence, the lock time due to 

exclusive access to the GPU context only grows on the number of API calls required for the 

communication, which grows linearly with the data communication size. The smaller 

locking time for medium and large inter-device communication accounts for the extra 

throughput provided by HPE.

5.3 Application Benchmarks

Figure 9a shows the speedup of different implementations of stencil over the base CUDA-

base version. In this application, boundaries are exchanged in every iteration with the left 

and right neighbors. Due to the limited support of remote accesses in current NVIDIA GPUs 

(only works for GPUs in the same PCIe bus), we use explicit data transfers in all the 

implementations. The points to be exchanged are computed first and are transferred 

concurrently with the rest of the computation, in order to hide the data transfer costs. The 

size of the data being transferred goes from 1 MB to 9 MB for the tested input datasets. 

Results show speedups that range from 1.04× to 1.23× for 2 GPUs and from 1.15× to 1.63× 

for 4 GPUs in the HPE version when peer-DMA is available. The largest improvements are 

obtained for small to medium input datasets, where the data transfer/computation ratio is 
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high, as shown in Figure 10a. In these cases, the data transfer cannot be completely masked. 

The improvement is greater in the 4-GPU configuration because, in the general case, each 

domain exchanges twice as data as the 2-GPU case and, therefore, the improvements in the 

memory transfers are more pronounced.

The 1D FFT application is communication bound and, therefore, greatly benefits from the 

HPE model. As shown in Figure 10b, all configurations except HPE with peer-DMA support 

spend at least 86 % of the application time in data exchange routines, when using 2 GPUs 

and 87% for 4 GPUs. On hardware with peer-DMA, HPE exchange time is reduced to 80% 

for 2 GPUs and is at least 5% lower than the base implementation for 4 GPUs. This 

reduction results in speedups (see Figure 9b) that range from 1.58× to 2.6× for 2 GPUs over 

the naive CUDA 3 implementation and 1.17× to 1.61× for 4 GPUs. HPE with no peer-DMA 

support delivers speedups of 1.15× to 1.42× performance improvements over the base 

version for 2 GPUs and 1.01× to 1.6× for 4 GPUs (except for the smallest input dataset, 

since a single buffer is transferred). The performance of the double buffering 

implementation and HPE for 4 GPUs is closer because peer-DMA transfers across different 

PCIe buses are not currently supported, so intermediate copies are performed on the host 

memory. Moreover, the effect of the peer-DMA transfers is limited when using 4 GPUs 

because our FFT algorithm performs memory swaps between pairs of GPUs and these may 

be serialized if they involve the same GPU.

Mergesort shows notable speedups when using HPE with peer-DMA transfers. This 

application swaps chunks of data between GPUs in order to merge the sorted subarrays into 

the final sorted array. When 4 GPUs are used, a first swap step is performed between GPUs 

0 and 1 and GPUs 2 and 3 (to produce two sorted subarrays) and a final swap step is 

performed to merge them into the final array. Figure 9c reports speedups that range from 

1.25× to 1.50× for 2 GPUs and 1.45× to 1.66× for 4 GPUs. This benchmark also benefits 

from remote accelerator memory access, but current hardware restricts the utilization of this 

mechanism to GPUs connected to the same PCIe bus. Remote memory accesses are used 

during the pivot search to determine which data needs to be exchanged between pairs of 

GPUs. Using remote memory accesses delivers much better performance than copying the 

necessary data across GPUs (required by HPE when GPUs connected to different PCIe 

buses, and by CUDA 3). The percentage of time devoted to communication decreases as the 

dataset increases for 2 GPUs. The additional communication steps required in the 4 GPU 

implementation make the communication/ computation ratio increase with the input dataset 

size.

5.4 Communication with I/O devices

The use of pinned memory is key for achieving fast transfers between I/O devices and the 

host memory. Pinned memory becomes even more important for transfers between devices 

(e.g., disk and GPU). Since these devices usually have their own private address spaces, they 

rely on intermediate copies to host memory for communication. If user-level memory 

allocations are used, the OS has to perform a number copies to/from these allocations to 

(system-managed) pinned buffers before starting a DMA transfer. Figure 11 shows that 

pinned memory is 2.2× to 2.7× faster than the base version. Overlapping some of the disk 
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and GPU transfers provides even better performance (2.5× to 3.4×). HPE run-time matches 

the hand-tuned implementation (2.4× to 2.9×) while hiding the complexity of this technique.

5.5 Inter-node Communication (MPI)

Communicating GPUs across nodes requires moving data between the GPUs’ memories and 

the buffers in the network interfaces. While future systems will be able to perform P2P 

transfers between them, currently data has to be stored in host memory. Moreover, pinned 

memory must be used to avoid extra copies in the network interface driver. Figure 12 shows 

that using pinned memory provides up to 2× better performance in GPU→GPU and 

GPU→host memory transfers, and up to 2.6× in host→GPU, than regular pageable 

allocations. Furthermore, the double-buffering implemented in HPE run-time for some MPI 

calls further improve the performance, providing speedups greater than 4×.

6 Related Work

Most research on system support for heterogeneous systems focuses on policies to manage 

the different properties (e.g., memory access latency) of heterogeneous processors and 

resource sharing (e.g., shared caches in many-core processors). The MIT Exokernel [16] 

supports heterogeneity by exposing the hardware diversity to user-level applications. The 

HPE model, like other high-level abstractions, can be implemented as a user-level library on 

top of the MIT exokernel. The Infokernel [17] supports hardware diversity by providing 

abstractions that expose the internal OS kernel state to user-level.

Rossbach et al [18] propose a new abstraction called PTask for processes that run on the 

accelerator and the addition of ports and channels to represent the communication graph 

among regular processes and PTasks. Using this scheme, unnecessary memory transfers 

among CPU and GPU memories can be avoided since the placement of memory objects is 

known to the system runtime. Moreover, more advanced scheduling policies can be 

implemented by taking advantage of the features provided by the accelerators in the system 

(e.g., concurrent GPU execution and memory transfers). However, this solution requires 

programmers to use new abstractions in their programs to support accelerators while HPE 

aims to simplify current abstractions to provide a model in which accelerators are used 

transparently.

Language-based programming models have been proposed to deal with multiple 

accelerators, usually built on top of CUDA and-or OpenCL. Universal Parallel C (UPC) has 

been extended in [19] to transparently access data allocated in GPUs. UPC uses a Hybrid 

Partitioned Global Address Space in which each CPU thread is bound to one shared 

segment, that can be either in host memory or in GPU memory, but not both. Each thread is 

bound to the same memory segment during its lifetime. HPE allows a single CPU thread to 

manage several devices and devices to be shared among threads.

Task-based runtimes allow transparent benefits from the parallelism of the system by 

dynamically scheduling tasks on all available processors/accelerators. Ayguadé et. al. 

presented GPUSs in [20]. GPUSs relies on annotations to host functions and CUDA kernels, 

used by a source-to-source compiler to create a data dependency graph, that is used to 
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schedule kernel execution, allocate memory and perform data copies among memories when 

necessary. Augonnet et. al. presented StarPU in [21], a library and runtime system for 

heterogeneous architectures. It provides data structures and functions to abstract the 

computational kernels as codelets and define dependencies among them. Input and output 

data handlers for codelets must be defined to automate data management. The runtime 

schedules codelets and performs the necessary memory copies. Programming models hide 

accelerator memories and expose a single address space to the programmer. Task-based 

runtimes can benefit from HPE’s ability of providing the best transfer scheme in different 

system organizations.

7 Conclusions

HPE greatly simplifies the task of programming multi-accelerator applications for 

heterogeneous parallel systems, by removing the need for applications to explicitly perform 

intermediate copies and complex synchronization patterns. We have implemented the HPE 

model and its associated techniques into GMAC, a user-level library that is publicly 

available at [11]. The techniques presented here, unified virtual address space based on 

segmentation, shadowed coherence buffers in asymmetric distributed shared memory, 

remote peer memory access, and peer DMA, as well as the CUDA devices that support some 

HPE features provided an opportunity for us to quantify the benefit of these features on real 

hardware. Experiments show that the HPE runtime transparently exploits devices that comes 

with hardware support for HPE features and significantly improves performance when such 

hardware is present in the system. We show that simple, portable application code based on 

HPE often achieves performance comparable to complex custom-written code even in 

systems that do not have good hardware support for HPE techniques. We have outlined the 

GPU hardware support required to efficiently implement the proposed UVAS. We further 

argue that without simple interfaces like HPE, the advanced GPU hardware support will 

unlikely be used by most software applications in practice.

Experimental results show that the HPE model eases programming of multi-accelerator 

applications while providing performance improvements of 2× compared to the best data 

transfer scheme implemented on top of CUDA 3. We have also analyzed the impact of HPE 

on three real benchmarks. Results show improvements that range from 5% in compute-

bound benchmarks and up to 2.6× in communication-bound benchmarks. Finally, 

experiments show that HPE transparently implements sophisticated communication schemes 

that can deliver up to a 2.9× speedup in I/O device transfers.
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Fig. 1. 
Generic heterogeneous system hardware model
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Fig. 2. 
Data dependencies in a 27-point 3D stencil computation, for each point and volume
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Fig. 3. 
Exchange steps and synchronization in a stencil computation using the CUDA 3 

programming interface. Legend: solid arrows represent semaphore updates and dashed 

arrows represent data copies.
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Fig. 4. 
Exchange steps and synchronization in an stencil computation when GPUs are shared across 

CPU threads.
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Fig. 5. 
Exchange steps and synchronization in an stencil computation when UVAS is available.
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Fig. 6. 
Unified Virtual Address Space implementation using the upper bits of the virtual address 

space to identify the accelerator where data is hosted.
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Fig. 7. 
Measured throughput for different data communication sizes.
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Fig. 8. 
CPU thread wait time for different inter-device data communication sizes.
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Fig. 9. 
Speedup over single GPU execution different input dataset sizes.
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Fig. 10. 
Percentage of time devoted to memory transfers over the total execution time.
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Fig. 11. 
Disk↔GPU transfer speedups of HPE compared to the base synchronous version.
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Fig. 12. 
MPI transfer speedups of HPE compared to the base synchronous version.
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Listing 1. 
Host code of Stencil Computation using the CUDA 3 programming interface.
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Listing 2. 
Host code of Stencil Computation when GPUs are shared across CPU threads
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Listing 3. 
Host code of Stencil Computation when UVAS is available
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Listing 4. 
Host code of Stencil Computation when ADSM is available
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