
Parallel Application Signature
for Performance Analysis and Prediction

Alvaro Wong, Dolores Rexachs, and Emilio Luque

Abstract—Predicting the performance of parallel scientific applications is becoming increasingly complex. Our goal was to

characterize the behavior of message-passing applications on different target machines. To achieve this goal, we developed a

method called parallel application signature for performance prediction (PAS2P), which strives to describe an application based

on its behavior. Based on the application’s message-passing activity, we identified and extracted representative phases, with

which we created a parallel application signature that enabled us to predict the application’s performance. We experimented with

using different scientific applications on different clusters. We were able to predict execution times with an average accuracy

greater than 97 percent.

Index Terms—Parallel application, performance prediction, application signature

Ç

1 INTRODUCTION

TO measure the performance of a parallel machine,
researchers have often used a set of application kernels

as benchmarks. However, it is not always possible to charac-
terize the performance using only benchmarks [1], as each
benchmark usually reflects a narrow set of kernel applica-
tions at best. Computers exhibit different performance
indices associated with applications as they run them. Accu-
rately predicting the performance of parallel applications is
becoming increasingly complex, but the time required to run
the application thoroughly is an onerous requirement, espe-
cially if we want to predict the performances of different
systems.

It is important to determine which system is more
appropriate to execute a scientific algorithm and predict its
execution time. Accurate performance estimations are thus
instrumental in helping a system resource scheduler effi-
ciently schedule user jobs. if the system resources adminis-
trators know the number of requested resources and how
long the resources are requested using the signature, they
can make an efficiently queued plan for the system.

We propose the extraction of valuable information about
the performance characteristics of an application and lets us
predict the performance of the application on parallel
machines (clusters) and use this information without need-
ing to run the full application. This performance characteri-
zation (the signature) will constitute the performance
metadata of an application.

The system throughput is defined as the number of jobs
completed per unit of time and is an important performance
metric for users, who expect minimal response time. The

signature can help the system administrators who are con-
cerned with the overall resource utilization by knowing the
execution time of the application due to the use of the signa-
ture. A job schedule can maximize the system throughput
especially in high-throughput computing clusters.

To determine the performance of a parallel application,
our methodology can help the user to compare using differ-
ent structuring strategies, minimizing the communication
delays, quickly and precisely. The signature execution time
(SET) is shorter than the application execution time (AET),
allowing the user (developer) to concentrate on the signifi-
cant portions of the application (phase), which are the com-
ponents of the signature.

We have created a methodology called parallel applica-
tion signatures for performance prediction (PAS2P), that
consists of two stages:

A) Application analysis and signature generation. PAS2P
analyzes the application behavior with a specific data set
(workload), in a previous work [2], we explain how we can
predict the performance changing the workloads.

To characterize message-passing applications, PAS2P
instruments and executes applications on a base machine
and produces a trace log. The collected data are used to char-
acterize computation and communication behavior. Fig. 1
shows an overview of our approach. To obtain the machine-
independent applicationmodel, the traces are assigned time-
stamps from a global clock according to causality relation-
ships between communication events, using an algorithm
inspired by Lamport and Time [3]. We thus obtain a single
logical trace of the complete distributed system. When we
have the logical trace, it is important to identify themost rele-
vant sequences (phases).

Our goal at this point is to gather these phases and assign
them a weight; such phases will be selected to constitute the
signature according to their weight (number of times they
occur), and their execution time.

B) Performance prediction. When we have the signature,
we can execute it on different systems. The signature meas-
ures the execution time of each phase and estimates the

� The authors are with the Computer Architecture and Operating System
Department, Universitat Autonoma de Barcelona, Barcelona, Spain.
E-mail: alvaro@caos.uab.es, {dolores.rexachs, emilio.luque}@uab.es.

Manuscript received 21 June 2013; revised 28 May 2014; accepted 29 May
2014. Date of publication 8 June 2014; date of current version 5 June 2015.
Recommended for acceptance by B. de Supinski.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2329688

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015 2009

1045-9219 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

entire application run time on each system by aggregating
all relevant phase execution times (PhaseET) using the
obtained weights.

To evaluate the quality of the predicted performance, we
conducted a set of experiments to extract signatures fromdif-
ferent applications, including CG, BT, LU and SP from NPB
[4], Sweep3D [5], Parallel Ocean Model (POP) [6], SMG2000
[7], GROMACS [8] and MD Moldy [9]. We ran the obtained
signatures on three different clusters, using a different num-
ber of nodes (cores) and including different interconnection
networks. We were able to predict the execution time with
an average accuracy of more than 97 percent.

In the following section, we present related work. In
Section 3, we describe the proposed methodology. In
Section 4, we present the performance prediction model.
Section 5 provides the experimental results and discusses
the obtained prediction results, and Section 6 presents
the performance of the PAS2P tool. In the last section,
we present conclusions and future work.

2 RELATED WORK

Gustafson [10] proposed a method that creates two profiles,
a hardware signature and an application signature. For this
method, information about the application workload, hard-
ware characteristics and mapping becomes necessary. In
our proposed method, these hardware characteristics are
obtained when the signature is executed. Its execution time
is smaller than the execution time of the entire application,
the signature carries out a fast characterization of the
machine.

Other studies have focused more on the creation of an
application signature. Laura et al. [11] extracted the signa-
ture of an application using tools that allowed them to cap-
ture its profile, emphasizing memory access patterns. They
ran these results on a network simulator to predict the par-
allel application performance. The difference between this
approach and our approach is that our signature is the real
code of the application; when we execute it on different par-
allel computers, real memory access patterns and the real
computational resource requirements are used to evaluate
the performance.

Sodhi et al. [12] and Wu et al. [13] claimed that it is possi-
ble to obtain a benchmark of an application using execution
traces. They extracted information from the communications

trace seeking similarity between those communications and
creating mimic code to measure application performance.
We propose the extraction of inter-process communication
information from the trace and the attachment of computa-
tional timing. We used this method to create a signature by
means of checkpoints, i.e., using application segments to pre-
dict application performance instead of creatingmock-ups.

Girona et al. [14] is a performance predictor simulator
for message-passing applications. It helps users develop
and tune parallel applications on any machine while pro-
viding an accurate prediction of their performance on
the target parallel machine. In our approach, we create a
signature that represents the application; this signature
can be executed on different systems quickly without
needing a simulator.

The SimPoint tool [15] searches for phases in the behav-
ior of parallel programs on shared-memory machines.
Perelman et al. first focus on demonstrating the ability to
identify similar intervals of execution across threads in a
single run. Finally, phase analysis is used to select simula-
tion points to guide multi-threaded simulation. Our tech-
nique creates a methodology to generalize the focus to a
broader spectrum, i.e., all message-passing scientific appli-
cations, and to create a signature.

Bohrer et al. [16] is a simulation system used to model
systems based on the PowerPC architecture. It provides
construction blocks for the creation of simulators that
range from functional to highly accurate but increases the
simulation time. Conversely, what we propose is the crea-
tion of a signature of the parallel application that repre-
sents the same application and is executed on real
machines, with the potential advantage of running it on
different real systems quickly (as its run time is only a
small fraction of the execution time of the entire applica-
tion). Without a network simulator, it can also be executed
in simulated systems under development.

Yang et al. [17] developed a methodology for predicting
applications using “partial performance”. They argued that
it is enough to observe partial executions of a parallel appli-
cation because codes are iterative and behave predictably
after an algorithm initialization period. According to their
methodology, a limited number of time steps are used to cap-
ture the performance of an application, which are main-
tained throughout the entire execution. Our signature
intends to analyze the entire execution to provide better pre-
diction quality.

Casas et al. [18], show an approach focused on the auto-
matic detection of phases of an MPI application execution.
This detection is based on Wavelet Analysis. They focus on
scientific applications that are executed using thousands of
processors, generating huge tracefiles and using visualiza-
tion tools as Vampir [19]. In the same area, Noeth et al. [20]
show amethod to compress tracefiles while maintaining low
overhead. A major problem for visualization tools is the size
of the tracefiles. If we reduce the size of the tracefile to ana-
lyze, the tool will still have to visualize thousands of pro-
cesses. The algorithms that detect phases are related to our
work to reduce the tracefiles, but our goal is that the users
can analyze their applications, extract the phases and con-
struct the signature to predict the application execution time
on target machineswithout requiring visualization tools.

Fig. 1. PAS2P overview.

2010 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

In this paper, we have refined the PAS2P stages of analy-
sis and performance prediction. We extended the method to
create the signature automatically, making it transparent to
the user, allowing the creation and execution of the signa-
ture in parallel environments using any MPI library. We
describe the stages and algorithm optimizations of the
methodology centered on a single stage unlike the previous
published papers. We developed an extensive experimental
validation, since we were able to generate signatures by
accessing a larger number of cores.

3 PAS2P METHODOLOGY

Applications typically possess highly repetitive behavior,
and parallel applications are no exception [21], [22]. To
characterize the computational-related and communication-
related behavior of parallel applications, we identify these
repetitive portions of an application. We use this informa-
tion to create a signature that, when executed, allows the
prediction of the execution time for the machine on which
the signature was run.

As Fig. 2 shows, a sequence of stages is necessary to
obtain the relevant portions (phases) of an application and
their weights. With this information, we create a completely
machine-independent signature for each application that
can be executed on other systems in a shorter amount of
time, as the signature execution time is a small fraction of
the entire runtime of an application. Finally, we predict the
full execution time of the parallel application by adding the
execution time of all phases multiplied by their weights.

In this section, we describe each stage of the PAS2P
methodology. Section 3.1, namely data collection, describes
the application instrumentation. Section 3.2 describes the
application model, which is a machine-independent model.
Section 3.3 describes how we identify the patterns by
extracting phases, and Section 3.4 describes the signature.

3.1 Data Collection

To instrument the applications, we must collect their com-
munication and computation times. We create a dynamic
library, libpas2p, using LD_PRELOAD to produce a trace of
the binary (application). To instrument the application with
libpas2p, it will be necessary that the application is com-
piled with dynamically linked libraries. Libpas2p intercepts
the MPI functions before the MPI library executes it.

Starting from the concept of “Basic Block” (BB) [21],
which is a code sequence with exactly one entry point and
one exit point, we define similar concepts for parallel
applications:

Event. The action of sending or receiving a message.

The event structure contains the following information:

� Id. Event identifier (given in order of occurrence).
� Physical time. time at which the event occurs.
� Logical time (LT). time at which the event occurs

depending on communications events.
� Process. process where the event occurs.
� Type of event. þK (if it is a Send) or –K (if it is a

Receive), where K is the number of involved
processes.

� Size. the communication volume of the message
being transmitted (Bytes).

� Number of event. the number of the event in the
process.

� Relation. the relation between one event and another,
e.g., a Send event belongs to the same message as a
Receive event.

3.2 Parallel Application Model

In parallel applications, logical ordering between comput-
ing nodes becomes necessary. To achieve this, we move
from multiple physical local clocks to a single logical global
clock. In a previous study [23], we showed a logical clock
based on the order of precedence of events across processes,
as defined by Lamport and Time [3]. In order to analysis the
application, the happened-before relation is used [24] to
evaluate the feasibility of using distributed computing
infrastructures such as clusters or computational grids.

When we increased the number of processes, we found
that the prediction quality was falling. An increasing num-
ber of phases meant that these phases could be grouped as
similar. This problem occurred because there is a nondeter-
ministic ordering of receives.

To solve the non-deterministic event (reception) prob-
lem, we introduced an algorithm [25] inspired by Lamport.
Using this algorithm, we defined a new logical ordering in
which, when one process sends a message at a logical time,
its reception is modeled to arrive at LT þ 1 and never after-
wards, as in Fig. 3. The Lamport algorithm assigns the LT
using happened before, but the Receive events occur as [non-
deterministic] events. PAS2P ordering assigns the LT to the
Recv event, based on the relation between the Recv and the
Send event. In the case of collective communications
(MPI_Bcast, MPI_Allreduce, MPI_Alltoall, etc.) and bar-
riers, when a collective communication occurs, we select
from all processes the event with the biggest LT and we
assign LTþ 1 to the events that compose the collective com-
munication in all application processes. We show the flow-
chart of the algorithm in Appendix A of the supplementary

Fig. 2. PAS2P methodology.

Fig. 3. Lamport to PAS2P ordering.

WONG ET AL.: PARALLEL APPLICATION SIGNATURE FOR PERFORMANCE ANALYSIS AND PREDICTION 2011

material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2014.2329688.

We now describe the operation of the algorithm through
an example (Figs. 4 and 5 and Table 1), where we take the
first event of each process and, as shown in Table 1, drop/
insert it from/into the queue. The first column corresponds
to the events being removed from the queue, the second col-
umn corresponds to events currently in the queue, and the
third column shows the events being inserted into the
queue.

Execution starts with the insertion of the first events from
each process, IDs 1, 7, 13, and 19, into the queue (first step).
We then remove the event with ID 1 from the queue (second
step) and insert the event with ID 2 into the queue (third
step), as in Table 1. As the event with ID 1 (CurrentEvent)
has been removed from the queue, we must search for an
event (BackEvent) from the same process (fourth step) and
assign the corresponding LT. As the event with ID 1 is the
first event in the process, we assign LT ¼ 0 (fifth step) and
LT ¼ 1 (sixth step) to the reception event. The event with
ID 7 is then removed (Table 1), and the same procedure of
assigning a LT to the events we are removing from the
queue is followed until the queue is empty (seventh step).

When all events have been assigned a LT, we introduce
a new concept: Tick: Logical time unit. We create a logical
trace, where the LTs are assigned using the LT for the
Send (LTSend) and Reception (LTRecv) events, as in
Fig. 4. We know that the message reception ordering may
change in the execution due to variable delays in the
interconnection network; therefore, we perform a permu-
tation only inside the LTRecvs of the logical trace so that
the reception events are in ascending order. Finally, after
locating the events, we divide the LTRecv into more LTs,
as in Fig. 5; i.e. there can only be one event for each pro-
cess at a particular LT.

3.3 Pattern Identification

To identify the most relevant portions (phases) of the paral-
lel application, we have proposed a method [26] where we
define a parallel basic block (PBB) as the computational
time delimited by two ticks. The first tick is defined as an
Entry Point and has at least one event, and the second tick is
defined as the Exit Point, also having at least one event.
PBBs with similar behavior (computational time between
two events or communication volume and type of commu-
nication of each event) are renamed, as they essentially com-
prise the same PBB.

The proposedmethod to extract these phases creates them
directly from the logical trace. Unlike the previously pro-
posed algorithm for detecting phases, we can now identify
phases as similar when before in our previous algorithm, we
could not; therefore, we created a robust similarity algorithm
generating fewer phases, through which the prediction qual-
ity increased. This method generates the longest possible
phases; i.e. until another event occurs or is repeated and has
the same type of communication in any process. Every time
one phase grows in a tick, we search for an existing phase
using similarity.

To explain the pattern identification algorithm, we use
an example of a master/worker application where the
workers start sending amessage to themaster then themas-
ter sends responses back to the workers illustrated in Fig. 6.
Appendix B, which is available in the supplemental mate-
rial section, shows the flowchart of this algorithm. We use
these figures to describe how the algorithm extracts the
phases from the logical trace. The steps we follow are:

1) A Startpoint is created and defined as the beginning
point of a phase by a tick, from the first tick of the
logical trace, as in Fig. 6a.

Fig. 4. Physical trace to logical trace.

Fig. 5. Final logical trace.

TABLE 1
Dropped-Off/Inserted Events into Queue

Drop-off Event Queue Insert Event

1 7, 13, 19 2
7 13, 19, 2 8
13 19, 2, 8 14
19 2, 8, 14 20
2 8, 14, 20 3
8 14, 20, 3 9
14 20, 3, 9 15
20 3, 9, 15 21
3 9, 15, 21 No more events

2012 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

2) The phase extends to the following tick if it is not the
end of the logical trace, as in Fig. 6b. Every time it
expands by a tick, the existing phases are searched
for a match.

3) If there is a process where no event with the same
communication type occurs, we return to step 2 until
this events occurs, as in Fig. 6c.

4) If an event with the same type of communication
occurs:

a) Verify whether the first repeated event is in the
Startpoint; if so, we search by similarity (step 5)
if the phase already exists.

b) If the repeated event is not in the Startpoint, as in
Fig. 6d, the phase is partitioned into two sub-
phases:

- Phase a. Begins at the Startpoint and ends
just before the repeated event occurs.

- Phase b. Begins at the tick where the first
repeated event occurs and ends just before
the second repeated event occurs with the
same type of communication.

5) The similarity is used to determine whether the
phase already exists and meets this criteria:

a) The phase sizes (number of ticks) to be compared
must be the same.

b) Every event in the phase is compared thus:

- We make a comparison of two events to
see if they have the similar communication
type and the communication volume.

- A computational time between two
events: if two events have similar compu-
tational time (greater than or equal to
85 percent).

- A communication of type “0” represents
that no event occurred at the tick of a pro-
cess; when we compare “0” communica-
tion with any communication type, we
label them as similar events.

c) A phase is similar if the number of similar events
is greater than or equal to 80 percent (configura-
ble value) of the total number of events that com-
prise the phase.

- If a phase is similar, the weight of the exist-
ing phase increases.

- If it is not similar, it is saved as a new
phase.

6) We go back to step 1 to create a Startpoint from the
tick at which the last saved phase ends, as in Fig. 6e.

After completely shifting the logical trace, we obtain the
phases shown in Fig. 6f, create weights for each phase and
define the relevant phases.

Weight. This will be given by the frequency at which each
phase repeats.

Relevant phase. A phase representativeness is given if the
phase represents 1 percent or more of the entire application
execution time. This is, when its weight multiplied by the
phase execution time is equal or greater than 1 percent of
the total application runtime.

Fig. 6. Steps of the extraction phases algorithm

WONG ET AL.: PARALLEL APPLICATION SIGNATURE FOR PERFORMANCE ANALYSIS AND PREDICTION 2013

3.4 Parallel Application Signature

In this section we show how PAS2P constructs the signature
once the phases have been obtained. After analyzing the
trace files generated by the PAS2P instrumentation, the
phases and their weights are saved in a phase table. Fig. 7
shows an example of this table, obtained from the execution
of an application with four processes. It contains the start-
point and endpoint of each phase that will be used to mea-
sure its execution time. Each row of the table represents a
phase, whose startpoint and endpoint are defined by the
number of sends where the phase occurs. The last two col-
umns show the Phase ID and the weights of the phase.

The checkpoint operation is implemented before the
starting point of the specific phase to guarantee the correct
warm-up time for the machines components (e.g., cache
and TLBs) [27] as shown in Fig. 8. When the Startpoint of a
phase occurs during execution, it sends a signal to all pro-
cesses to coordinate and make the coordinated checkpoint
[28]. Previous work on PAS2P used the BLCR library [29],
which requires installation at the kernel level. We have ana-
lyzed different checkpointing libraries and selected the
DMTCP library [30], which is a transparent user-level
checkpointing library. The DMTCP creates snapshots of the
application and the dynamically linked libraries and creates
a binary that will contain the statically linked libraries.

To construct the signature, we have to instrument the
application (binary); to do this, we use the same library we
have been using to create the trace logs. This library inter-
acts with the application, as well as with the external librar-
ies. Another issue is how to detect relevant phases during
the execution of the application. So, to construct the signa-
ture, we re-run the application loading the Libpas2p library
and the phase table to instrument and detect where the
phases occur.

As shown in Fig. 9a, Libpas2p detects a phase and calls
the DMTCP library to create the checkpoint. Once it is
done, the DMTCP returns the control to the Libpas2p to
add the checkpoint into the signature. After completing
the checkpoint for the last phase, the signature terminates
the execution because it is not necessary to continue its
execution. Finally we generate the signature, which is an
instrumented code that knows where each phase begins
and ends. A demonstration about the construction of the
signature using the phase table of Fig. 7 is available in
Appendix C of the supplementary material.

4 PREDICTION METHODOLOGY

To predict the execution time (PET) of the application on a
target machine, Equation (1) is used. When we multiply the
execution time of each phase (PhaseETi) by its weight (Wi
defined as the number of phase repetitions), we obtain the
application execution time

PET ¼
Xn

i¼1

ðPhaseETiÞðWiÞ: (1)

Run the signature means executing its constituent phases,
the signature restarts the first checkpoint and after the
warm-up begins measuring from the point a phase starts
until it ends (communication events) as in Fig. 10. When a
phase is measured, the signature terminates the checkpoint
execution and restarts the next checkpoint. This method is
repeated for all phases, as shown in Fig. 9b. Finally, the sig-
nature applies the Equation (1) to predict the execution time.
A demonstration about execution of the signature is avail-
able in Appendix C of the supplementarymaterial.

Fig. 7. Table of phases to construct the signature.

Fig. 8. Create the coordinated checkpoint.

Fig. 9. Libpas2p calls to DMTCP to make and restart the checkpoint.

Fig. 10. Measuring phases.

2014 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

As Fig. 11 shows, the signature execution time comprises
from the time it takes to restart the checkpoint to measure
phase A until it finishes the prediction model. When phase
A is measured, the signature terminates the checkpoint exe-
cution and restarts at the next checkpoint. When phase B is
measured, all processes generate MPI messages to inform
process 0 that they have finished and process 0 applies
Equation (1) to predict the application execution time.

5 EXPERIMENTAL RESULTS

In this section, we validate the prediction methodology
demonstrating that the signature works and is able to obtain
an accurate prediction of the application in a short time (sig-
nature execution time). Section 6 gives more details on the
set of experiments we carried out in order to show the over-
head generated by the instrumentation, the time required to
analyze the tracefiles and the construction time of the signa-
ture. We show the signature execution for each application
on three clusters, varying the number of cores. We predict
their execution times and report the prediction quality of
each signature. Table 2 shows the characteristics of these
machines.

To evaluate the prediction quality and validate the pro-
posed methodology, we performed an experimental evalua-
tion on target machines, labeled A, B, C and for the
experiments with different ISA (Cluster D) we show them
in Appendix E, available in the supplemental material. We
present the results obtained for the CG, BT and SP from the
NPB, Sweep3D, POP, and SMG2000.

The method used to obtain the results involves execut-
ing each application, as shown in Fig. 1. We add a new

block named experimental validation, illustrated in Fig. 12,
where we execute the application on base machine to
extract the signature and then we execute the signature in
target machine changing the mapping policies to obtain
the predicted execution time (PET). Finally, we execute the
whole application on target machine to compare the pre-
dicted execution time with the application execution time
to obtain the prediction execution time error (PETE).

To present how we obtain the predicted execution time,
Table 3 shows information about the execution carried out in
the base machine, as well as how we select the relevant
phases based on the total number of them there, and once the
signature has been constructed, Table 3 shows information
about the execution of the signature, each phase’s execution
time and the signature prediction results. We executed the
application MD Moldy with 256 processes to analyze and
extract the phases to construct the signature. Table 3 also
shows the size of the trace file and time required to analyze
the trace file produced by the instrumentation, as well as its
size (5.2 GB). When we analyzed the trace file, we extracted
the 13 phases that compose the total application behavior.
From here, to construct the signature we selected the most
relevant phases, those ID’s that represent 1 percent or more
of the application execution time.

To obtain the prediction execution time (PET), it is neces-
sary to execute the signature on the target machine to mea-
sure each phase execution time. This time also includes the
computation and communication time of each phase on the
target machine. Finally, using Eq. (1), we obtain the pre-
dicted execution time. In the same Table 3, we perform the
same procedure, that is, we execute the application LU from

Fig. 11. The signature execution time.

TABLE 2
Clusters Characteristics

Cluster Characteristics

Cluster A Processor: Dual-Core Intel Xeon 5150 2.66 GHz,
128 Memory: L2 4 MB, 8 GB RAM DIMM,
cores Network: Gigabit Ethernet.
Cluster B Processor: 2 x Quad-Core Intel Xeon E5430, 2.66 GHz
64 Memory: L2 2 x 6 MB, 16 GB RAMDIMM
cores Network Gigabit Ethernet.
Cluster C Processor: 4 Intel Xeon Quad-core E7350 2.66 GHz
256 Memory: L2 2 x 4 MB 16 cores, 48 GB RAM SDRAM
cores Network: ConnectX IB Mellanoxcard
Cluster D Processor: 16 ItaniumMontvale SMP NUMA
169 Memory: 128 GB RAM
cores Network: Infiniband 4 x DDR at 20 Gbps.

Fig. 12. Experimental methodology.

TABLE 3
Extraction and Execution of Phases on Cluster C

MDMoldy analysis

Number of processes: 256, Input data: tip4p
Size of log trace: 5.2 GB
Time to analyze the log trace: 336.78 Sec
Total of phases: 13, Relevant phases: 4

Relevant
Phase ID

PhaseET (Sec) Weight (PhaseET)*(Weight)
(Sec)

1 0.003018 100,000 301.80
2 0.006131 89,976 551.64
3 0.000949 199,998 189.79
4 0.009387 9,998 93.85
Application Execution Time (Sec): 1169.31
Signature Execution Time (Sec): 1.69

WONG ET AL.: PARALLEL APPLICATION SIGNATURE FOR PERFORMANCE ANALYSIS AND PREDICTION 2015

NAS Parallel Benchmarks, and GROMACS with a different
number of processes. See Appendix D, which is available in
the supplemental material. Appendix D, available in the
online supplemental material, presents information about
the analysis and its relevant phases, as well as their weights
used to construct the signature and ultimately predict the
execution time of each application.

We applied our prediction methodology to the above
applications to extract phases and obtain the application
signatures. After running the signatures from all applica-
tions, we obtained the execution time for each phase and
the signature execution time, the SET is the sum of the exe-
cution times of all constituent phases. To obtain the pre-
dicted execution time, we multiply the execution time of
each phase by the weight vector given by the PAS2P tool
and add the times obtained.

5.1 Construct the Signatures on Cluster A (Base
Machine) and Predict the AET for Target
Machine

In this section we have constructed the signature on base
machine (cluster A), aiming to validate our methodology
being able to make predictions changing the mapping poli-
cies. Information about the executions on the base machine
is shown in Appendix F, available in the online supplemen-
tal material. Once we have the signature, we take the signa-
ture to predict the performance for target machine (cluster
B). We executed the applications shown in Table 4, which
also shows the number of processes and the workload used
for the application analysis to extract the signature.

Table 5 shows the results from cluster B (target machine)
with different number of cores, indicating that the applica-
tion runtime may vary depending on the number of cores,
the core architecture (i.e., CPU speed, CPU cache, and inter-
connection between the cores) and the interconnection net-
work. When comparing columns 3 (SET) and 7 (AET), it can
be seen that the SET is notably shortened compared with
the AET. Column 4 shows the percentage value obtained by
dividing the SET by the AET, showing that the signature
represents a small fraction of the application execution
time. Column 5 shows the predicted execution time. Finally,
column 6 presents the prediction execution time error.

These results show that the signature execution time
decreased by 98.26 percent, meaning that the signature rep-
resents 1.74 percent of the application execution time. We
also see that the prediction quality has an average accuracy
of over 97.55 percent.

5.2 Construct Signatures on Cluster C (Base
Machine) and Predict the AET for Target
Machine

We used the same applications and changed the number of
processes and workload for cluster C. As shown in Table 6,
we instrumented each application to generate a tracefile to
be used as input for the PAS2P tool giving phases and
weights, which we use to build the signatures on the base
machine. The information about the execution of the signa-
ture on the base machine is presented in Appendix F, avail-
able in the online supplemental material.

After generating signatures on cluster C, we moved them
to cluster A to predict the time that the application takes to
run. In this case, we have two different interconnection net-
works: cluster C has an Infiniband network, and cluster A
has a Gigabit Ethernet network; each rack in cluster A has
two dual-core processors, and cluster C has four quad-core
processors.

We used cluster A as the target machine and executed
the signature to obtain the prediction execution time for the
application. As Table 7 shows, a yielding maximum error of
6.4 percent appears when we execute the entire application
due to the execution of the relevant phases and not the total
number of phases that the application has.

We have generated signatures with 256 processes on the
base machine using 256 cores, the target machine (cluster A)
has 128 cores; therefore, on cluster A, we mapped the signa-
ture assigning two processes to share the same core. The
data shown in Table 7 allows us to analyze the signature
executions on target machine. As we can see, once we have
migrated the signature to a target machine that has fewer
cores than the base machine on which it was created, the
prediction error is still low and the SET compared with the
AET is maintained below 8 percent.

TABLE 4
Parameter of the Applications

Application Processes Workload

CG, BT, SP 64 Class C
Sweep3d 32 Sweep.250 13 iterations
SMG2k 64 �n 200 solver 3
POP 64 Synthetic with 150 iterations

TABLE 5
Predictions for Cluster B (Target Machine)

Appl. Cores SET
(Sec)

SET versus
AET(%)

PET
(Sec)

PETE(%) AET
(Sec)

CG-64 32 8.42 0.29 2793.42 1.90 2847.42
64 4.87 0.32 1504.66 0.48 1511.91

BT-64 32 13.47 0.80 1652.65 0.9 1667.64
64 10.19 0.77 1302.76 0.55 1309.91

SP-64 32 2.04 0.24 808.76 1.28 819.17
64 2.08 0.51 388.367 3.05 400.55

SMG2k 32 16.75 2.63 633.23 0.38 635.61
64 64 8.37 10.15 162.87 2.32 166.74

Sweep 16 4.32 0.17 2494.36 0.06 2492.74
3d-32 32 3.01 0.22 1328.04 0.40 1322.62

POP-64 32 22.79 1.41 1608.85 0.17 1611.59
64 18.36 1.79 1016.01 0.61 1022.28

SET: Signature Execution Time, SET versus AET: 100(SET/AET).
PET: Predicted Execution Time, AET: Application Execution Time.
PETE: Prediction Execution Time Error.

TABLE 6
Parameter of the Applications

Application Processes Workload

CG, BT, SP 256 CLASS D
SMG2k 256 �n 200 solver 3 1200 iterations
Sweep3d 256 Sweep.200 13 iterations

2016 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

Finally, we ran the selected applications on the three
clusters with different characteristics, generating signatures
from 32 to 256 processors. In this case, we obtained an over-
all prediction error of 3 percent.

As a summary of our experimental results, we conclude
that the proposed prediction methodology using signatures
to predict the application execution time has enabled us to
achieve two main objectives.

The first objective was to create a signature that had the
same behavior as the application with an average prediction
error of 3 percent. A portion of this error depends on the
number of relevant phases that form the signature. If we
take all the application phases, including both the relevant
and not-relevant phases (initialization phases and finaliza-
tion phases), this prediction error is reduced because the
application execution time is the sum of the execution times
of all phases.

The second objective was to make the prediction execu-
tion time fall within a bounded time using the signature
execution. In this experimental validation, the signature
execution time represents 1.74 percent of the total applica-
tion execution time.

6 PERFORMANCE OF THE PAS2P TOOL

In this section, we show the overhead and the time PAS2P
requires to instrument, analyze and construct the signature.
We carried out an additional set of experiments using
Sweep3d and sweep.150 as input. We have also used the
CG, BT, SP, FT and LU applications from NAS using the
class D as input. In SMG2K we used as input -n 200 -solver
3 -iterations 550 compiled with 128 processes. The applica-
tions mentioned above were executed on cluster C, then we
proceeded to analyze and construct the signature to execute
it afterwards, using this same cluster as a target machine.

Once PAS2P finished instrumenting the applications, we
obtained the tracefiles. The size of the tracefiles is shown in
column TFSize of Table 8. Column TFAT shows the time
PAS2P requires to be able to analyze, create the application
model and extract the phases. In the same Table 8, the
Total Phases column gives the number of phases detected
on every application used and from which we select the
most relevant. The last column signature construction time
(SCT) gives the time required to construct the signature.
Being able to construct the signature requires to re-running
the application in order to make the checkpoints, which

we need to execute the relevant phases. To get the SCT we
have to measure from the re-execution application until
the last checkpoint saved, adding the time needed to make
checkpoints.

The PAS2P tool instruments the application generating
an overhead as shown in Table 9. We had previously exe-
cuted the applications without any instrumentation (AET)
to be able to compare them with the execution of the appli-
cation instrumented by PAS2P (AETPAS2P). The overhead
caused by PAS2P instrumentation depends on the number
of communication events that the applications have to per-
form. In this case, of all the applications we tested, LU has
the highest overhead.

The same Table 9 shows the SET, which is the time
required to measure the phases and predict the execution
time of the application. Comparing both columns (AET ver-
sus SET) we can see that there is a considerable reduction in
the AET. The last column shows the overhead given by total
time it takes to generate and run the signature to achieve a
performance prediction on target machine. We must point
out that the construction of the signature is created only one
time on base machine, then, to predict the performance,
we migrate the signature to the target machines without the
need to analyze the application again. Is an important note
that the application FT has the highest overhead. When we
analyzed the phases of the application (Table C.2 of the
Appendix C, available in the online supplemental material),
we found out that the highest weight was 20, meaning the
application has little repetitiveness. The overhead in FT is
due to the high SCT, this is, if we have to construct the

TABLE 7
Predictions for Cluster A (Target Machine)

Appl. Cores SET
(Sec)

SET versus
AET(%)

PET
(Sec)

PETE(%) AET
(Sec)

CG-256 128 59.52 2.03 2971.10 1.6 2922.24

BT-256 128 17.78 1.48 1182.67 1.5 1200.85

SP-256 128 17.53 0.77 2411.35 6.4 2265.40

SMG2k
256

128 120.17 1.75 6783.47 1.0 6858.17

Sweep
3d-256

128 82.28 7.62 1043.01 3.5 1079.13

SET: Signature Execution Time, SET versus AET: 100(SET/AET).
PET: Predicted Execution Time, AET: Application Execution Time.
PETE: Prediction Execution Time Error.

TABLE 9
Time Required to Obtain the Signature and Predict

Appl. AET
(Sec)

AETPAS2P
(Sec)

SET
(Sec)

Overhead

CG 512.10 522.29 11.4 1.37X
BT 846.42 848.09 35.41 1.31X
SP 1816.58 1831.08 37.38 1.13X
LU 623.41 668.44 24.64 1.96X
FT 371.03 387.38 68.66 2.62X
Sweep3d 439.28 455.81 43.48 1.49X
SMG2K 788.24 794.59 22.47 1.10X

AET: Application Execution Time.
AETPAS2P: Application Execution Time with PAS2P.
SET: Signature Execution Time.
Overhead: AETPAS2PþTFATþSCTþSET/ AET.

TABLE 8
Performance of the PAS2P Tool in Order to Extract the Phases

and Construct the Signature

Appl. TFSize TFAT
(Sec)

Total
Phases

Relevant
Phases

SCT
(Sec)

CG 593 MB 45.73 7 5 130.42
BT 292 MB 22.82 14 8 216.21
SP 617 MB 52.59 16 10 149.59
LU 5.2 GB 393.01 25 2 142.24
FT 512 KB 0.76 5 4 518.23
Sweep3d 1.8 GB 105.64 12 5 52.00
SMG2K 32 MB 10.27 7 3 43.20

TFSize: Tracefile Size, TFAT: Tracefile Analysis Time.
SCT: Signature Construction Time.

WONG ET AL.: PARALLEL APPLICATION SIGNATURE FOR PERFORMANCE ANALYSIS AND PREDICTION 2017

signature we have to make a checkpoint to the phase but at
the same time we have to guarantee the warm up of
machine, therefore, the checkpoint is made after the phases
have occurred a series of times, which is why the SCT is
greater than the AET. Anyway, the signature is constructed
only once in base machine. To predict the performance in
difference machines only we have to execute the same sig-
nature in a very bounded time.

In case the application does not have a repetitiveness (com-
munication repetitiveness), PAS2P can extract the phases, but
the time to execute the phases will be similar as to execute the
whole application. Another example is the master/worker
pattern, where the master sends the job to the workers, then
the workers compute and when they end the job send their
results to the master. In this kind of applications PAS2P
detects one phase with a weight of 1 and executing this phase
will be the same as to execute thewhole application.

7 CONCLUSIONS AND FUTURE WORK

The PAS2P methodology allows us to generate a model of a
parallel application and automatically extract its most sig-
nificant phases to create a signature whose execution lets us
predict the application’s performance on different parallel
computers. We tested our methodology over different clus-
ters using a set of scientific applications, varying the num-
ber of cores or CPU type. We used dual core, 2 � quad-core
and 4 � quad-core. In addition, we used different intercon-
nection networks, such as Gigabit Ethernet and Infiniband,
obtaining an average 97 percent prediction quality. As a
utility, using the signature as meta-information allows us to
evaluate the execution time of programs in service queues
in order to provide useful information for schedulers.

To predict the performance of an application, we construct
a signature that depends on the number of processes the
application itself has executed. Nevertheless, the signature is
able to execute using different mappings, increasing or
decreasing the number of CPUs to know the application exe-
cution time using different system resources. The prediction
that the signature gives would only be useful for the data set
employed in the construction of the application signature. To
predict with a different data set, we would have to re-execute
the application for each one of them, in order to analyze and
extract the phases thatwill compose the signature.

PAS2P has some limitations when it comes to extracting
phases of applications with very little communication repet-
itiveness. When this happens, the runtime of the phases
would be very similar to the execution time of the entire
application. Additionally, PAS2P cannot predict I/O appli-
cations. Another limitation is that we cannot port the signa-
ture to the target machine since the target machine has a
different ISA than the base machine. In this case, we can just
construct the signature again, using the information from
the phases and weight extracted in the base machine.

We propose that the PAS2P tool be used to help pro-
grammers identify performance issues when designing sci-
entific algorithms, enabling the generation of a parallel
application model. PAS2P allows us to easily create a signa-
ture that can be executed on other machines by simply
extracting the application phases. It also enables us to pre-
dict how the application‘s performance will be on target

machines by its execution. We have tested our methodology
on a set of scientific applications, making variations on the
number of nodes and the interconnection networks, obtain-
ing a good prediction quality.

ACKNOWLEDGMENTS

This research was supported by theMEC-MINECO-MICINN
Spain, under contracts TIN2007-64974 and TIN2011-24384.

REFERENCES

[1] J. McCalpin and C. Oakland, “An industry perspective on perfor-
mance characterization: Applications vs benchmarks,” Proc. 3rd
Annu. IEEE Workshop Workload Characterization, Sep. 2000.

[2] J. Canillas, A. Wong, D. Rexachs, and E. Luque, “Predicting paral-
lel applications performance using signatures: The workload
effect,” in Proc. 9th IEEE/ACS Int. Conf. Comput. Syst. Appl., Dec.
2011, pp. 299–300.

[3] L. Lamport and C. Time, “The ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[4] D. Bailey, E. Barszcz, J. Barton, and D. Browning. (1991, Jan.). The
NAS parallel benchmarks, Int. J. High Perform. Comput. [Online].
Available: http://hpc.sagepub.com/cgi/content/abstract/5/3/63,
pp. 158–165.

[5] A. Hoisie, O. Lubeck, and H. Wasserman. (2000, Jan.). Perfor-
mance and scalability analysis of teraflop-scale parallel architec-
tures using multidimensional. J. High Perform. Comput. Appl.
[Online]. Available: http://hpc.sagepub.com/cgi/content/
abstract/14/4/330, vol. 14, no. 4, pp. 330–346.

[6] J. Vetter, “Performance analysis of distributed applications using
automatic classification of communication inefficiencies,” in Proc.
14th Int. Conf. Supercomput., NewYork, NY,USA, 2000, pp. 245–254.

[7] P. N. Brown, R. D. Falgout, J. E. Jones, Jim, and E. Jones,
“Semicoarsening multigrid on distributed memory machines,”
SIAM J. Sci. Comput., vol. 21, pp. 1823–1834, 2000.

[8] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “Gromacs 4:
Algorithms for highly efficient, load-balanced, and scalable
molecular simulation,” J. Chem. Theory Comput., vol. 4, no. 3,
pp. 435–447, 2008.

[9] K. Refson, “Moldy: A portable molecular dynamics simulation
program for serial and parallel computers,” Comput. Phys. Com-
mun., vol. 126, no. 3, pp. 310–329, 2000.

[10] J. Gustafson. (2012, Jun. 23). A new approach to computer per-
formance prediction [Online]. Available: http://hint.byu.edu/
documentation/Gus/France/France.html

[11] A. S. Laura, L. Carrington, N. Wolter, and T. San, “A framework
for performance modeling and prediction,” in Proc. ACM/IEEE
Supercomput., 2002, pp. 1–17.

[12] S. Sodhi, J. Subhlok, andQ. Xu. (2008, Jan.). Performance prediction
with skeletons.Cluster Comput., vol. 11, no. 2, pp. 151–165, 2008 .

[13] X. Wu, V. Deshpande, and F. Mueller, “Scalabenchgen: Auto-
generation of communication benchmarks traces,” in Proc. IEEE
26th Int. Parallel Distrib. Process. Symp., May 2012, pp. 1250–1260.

[14] S. Girona, J. Labarta, and R. M. Badia, “Validation of dimemas
communication model for MPI collective operations,” in Proc.
7th Eur. PVM/MPI Users’ Group Meeting Recent Adv. Parallel
Virtual Mach. Message Passing Interface, London, U.K., 2000,
pp. 39–46.

[15] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and
C. Dulong, “Detecting phases in parallel applications on shared
memory architectures,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2006, p. 68.

[16] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R.
Rockhold, C. Lefurgy, H. Shafi, T. Nakra, R. Simpson, E. Speight,
K. Sudeep, E. Van Hensbergen, and L. Zhang, “Mambo: A full
system simulator for the powerpc architecture,” SIGMETRICS
Perform. Eval. Rev., vol. 31, no. 4, pp. 8–12, 2004.

[17] L. T. Yang, X. Ma, and F. Mueller, “Cross-platform performance
prediction of parallel applications using partial execution,” in
Proc. IEEE/ACM Supercomput.: High Perform. Netw. Comput. Conf.,
2005, p. 40.

[18] M. Casas, R. M. Badia, and J. Labarta, “Automatic phase detection
and structure extraction of MPI applications,” Int. J. High Perform.
Comput. Appl., vol. 24, no. 3, pp. 335–360, 2010.

2018 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 7, JULY 2015

[19] H. Brunst, D. Kranzlm€uller, M. S. Muller, and W. E. Nagel, “Tools
for scalable parallel program analysis: vampir ng, marmot,
and dewiz,” Int. J. Comput. Sci. Eng., vol. 4, no. 3, pp. 149–161, Jul.
2009.

[20] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. R. de Supinski,
“Scalatrace: Scalable compression and replay of communication
traces for high-performance computing,” J. Parallel Distrib. Com-
put., vol. 69, no. 8, pp. 696–710, Aug. 2009.

[21] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in
applications,” in Proc. Int. Conf. Parallel Archit Compilation Tech.,
Jan. 2001, pp. 3–14.

[22] E. Perelman, M. Polito, J. yves Bouguet, J. Sampson, B. Calder, and
C. Dulong, “Detecting phases in parallel applications on shared
memory architectures,” in Proc. Int. Parallel and Distributed Process.
Symp., 2006, pp. 25–29.

[23] A. Wong, D. Rexachs, and E. Luque, “Parallel application sig-
nature,” in Proc. IEEE Int. Conf. Cluster Comput. Workshops, Aug.
31, 2009–Sep. 4, 2009, pp. 1–4.

[24] H. Brunst, D. Kranzlm€uller, M. S. Muller, and W. E. Nagel, “Tools
for scalable parallel program analysis: vampir ng, marmot,
and dewiz,” Int. J. Comput. Sci. Eng., vol. 4, no. 3, pp. 149–161,
Jul. 2009.

[25] A. Wong, D. Rexachs, and E. Luque, “Parallel application signa-
ture for performance prediction,” in Proc. Int. Conf. Parallel Distrib.
Process. Tech. Appl., 2010, vol. 2, no. 408–414.

[26] A. Wong, D. Rexachs, and E. Luque, “Pas2p tool, parallel applica-
tion signature for performance prediction,” in Proc. 10th Int. Conf.
Appl. Parallel Sci. Comput.—Volume Part I, 2012, pp. 293–302.

[27] G. Hamerly, E. Perelman, and B. Calder, “How to use simpoint to
pick simulation points,” ACM SIGMETRICS Perform. Eval. Rev.,
vol. 31, no. 4, pp. 25–30, 2004.

[28] J. Hursey, J. M. Squyres, and A. Lumsdaine. (2006, Jul.). A check-
point and restart service specification for open MPI, Indiana
Univ., Bloomington, IN, USA, Tech. Rep. TR635 [Online]. Avail-
able: http://www.cs.indiana.edu/cgi-bin/techreports/TRNNN.
cgi?trnum=TR635

[29] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart
(BLCR) for linux clusters,” J. Phys. Conf. Series, vol. 46, no. 1,
pp. 494–499, 2006.

[30] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent
checkpointing for cluster computations and the desktop,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process., May 2009, pp. 1–12.

Alvaro Wong is an associate researcher at the
Computer Architecture and Operating System
Department, University Autonoma of Barcelona,
Spain. He has worked in performance prediction
of HPC applications in the ITEA 2 European Proj-
ect No 09011, research centers, and industries.
He has coauthored a total of 11 full-reviewed
technical papers in journals and conference pro-
ceedings.

Dolores Rexachs is an associate professor at the
Computer Architecture and Operating System
Department, University Autonoma of Barcelona
(UAB), Spain. She has been the supervisor of
seven PhD thesis and has been invited lecturer in
Universities of Argentina, Brazil, Chile, and Para-
guay. The research interests include parallel com-
puter architecture, parallel I/O subsystem, fault
tolerance in parallel computers, tools to evaluate,
predict, and improve the performance in parallel
computers. She has coauthoredmore than 50 full-

reviewed technical papers in journals and conference proceedings.

Emilio Luque is a professor at the Computer
Architecture and Operating System Department,
University Autonoma of Barcelona, Spain. Invited
lecturer at universities in US, South America,
Europe, and Asia, key note speaker in several
conferences and leader in several research
projects funded by the European Union (EU),
Spanish government, and different industries. His
major research areas are: parallel and distributed
simulation, performance prediction, and efficient
management of multicluster-multicore systems

and fault tolerance in parallel computers. He has supervised 19 PhD the-
sis and coauthored more than 230 technical papers in journals and con-
ference proceedings.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WONG ET AL.: PARALLEL APPLICATION SIGNATURE FOR PERFORMANCE ANALYSIS AND PREDICTION 2019

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

