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Abstract—There are plenty of idle computational resources on However, there are two constraints, which restrict the
the Internet, which could potentially be used for accompliting  development of crowdsourcing systems. First, the existing
huge tasks. More and more applications are being designed crowdsourcing platforms, such as Amazon MTurk, lack an
for exploring those idle resources. In this paper, we focus advertising mechanism to timely recruit participants qals
on the idle computational resources, including both human yn6wn as workers): It is hard for a newly created task to attra
intelligence and machine computing abilities, in mobile scial enough participants in a relatively short time, unless tsk t

networks (MSNs). Based on the unique features of MSN, we . ttracti £ M i iy
design a new cooperative system, called social-crowdsourg. The owner gives a very attractive payment. Many oli-line Woser

distributed and infrastructure-free features of the systen make ~ WhO are eager to do certain types of tasks, are not able to
it more attractive than traditional crowdsourcing platfor ms. In ~ be timely aware the existence of the new tasks. Moreover,
the proposed system, a huge work is gradually partitoned ito  plenty of people do not even know of the existence of certain
smaller pieces, and is propagated from node to node. However platforms, let alone the tasks on them. Secondly, the ctirren
how to partition and allocate these segments is a critical mblem, system is centralized and platform-specified, and theeefibr
which directly affects the work's completion time and systen i not flexible and robust enough. The workers, accustomed to
throughput. Due to the lack of global information, indepencent  gne platform, are less likely to participate in anotherfpla’s

relay nodes are likely to make conflicted decisions, which Wi tasks, and the unavailability of these platforms will coetply

cause an unbalanced workload distribution on participating g : o
nodes. In this paper, we find that, for a work at different destroy most of the existing crowdsourcing applications.

processing stages, one should adopt distinct workload exahging In this paper, we create a distributed and self-organized
schemes, moving from a progressive method to a consenvative crowdsourcing scheme within mobile social networks (MSNs)
one. Based on this observation, we propose an adaptive woddd 164 gial-crowdsourcing. The main idea of the social-

allocation scheme, in which a participating node can gradudy crowdsourcing scheme is that, after recruiting a workeg, th
switch his decision strategy according to the workload statses 9 ' g ’

of neighboring nodes. By using our approach, system througput task not only gets the workers ab|I|t|es,, but also the resesl
can be significantly improved, and large works can finish witin ~ Potentially contributed by the worker’s related people.rOu
a nearly optimal time. Unlike in traditional scheduling problems, ~ scheme creates a multilayered outsourcing structure, &nd e
we take a human’s rejection, contact delay, and social sinality plores the idle computing resources withéocial domains.

into consideration. Extensive simulation results show thiaour Instead of waiting for others to log in to a crowdsourcing
proposed algorithms can successfully make full use of the liel platform, select your tasks, and work on them, our system
resources in MSNs. directly sends the task to the potential workers via multi-
Keywords—Mobile social networks, outsourcing, potential re-  NOP social contacts. By using the scheme, users can self-
source, social-crowdsourcing, work partition. organizedly build up a crowdsourcing system for a task, or

it can also be used as an extension of workers in conventional

crowdsourcing systems.
. INTRODUCTION

Example task in social-crowdsourcing: One may meet
following situation: when thinking about a problem, we

could be used. But we do not remember which article it

orh t?blgt corr_lgr)]utetrsd we ma;t/h_leavte ttrr;em.turned c;1n for a5 " Although we have saved all of the papers in electronic
whole day without doing anything to thém, even whén Weq,.;ments, finding the article is still hard since that idea

’ 3may be semantically described. Solely going through all of

are using them, only a portion of the machine’s computation
resources have been utilized, let alone the human intaltige documents’ contents is extremely time-consuming; insteed
&an recruit friends for seeking the article.

that is wasted each day. In order to make better use of the
idle resources, several centralized crowdsourcing ptojeave
been implemented, such as Boinc [1], Folding@home [2], and The procedure of social-crowdsourcing: A task owner
Amazon MTurk [3]. In these projects, a project owner uploadga mobile device’s user) first creates a social-crowdsagrci

a large and time-consuming task onto a server in advance [4fask by including both the electronic documents and job de-
and volunteers participate in certain parts of the task whep  scription. Once it is done, the owner becomes the first worker
are idle. The tasks may relate to human intelligence, such and begins to locally search the article. Note that the task
seeking an object from images, or the tasks may simply usewner could be the owner of the documents, or a worker, who
the computational resources of idle machines, such asrigain undertakes a portion of a task from the conventional crowd-
a model or solving complex mathematic functions. sourcing platform. In social-crowdsourcing, any part&ipcan



further recruit new workers via any kind of social conta&ist C (H 0 E 0.9 @ 0.8
example, when a worker physically comes across his social
A APE SRS MR

contactor, such as friends or colleague, the participaietsce S & 9 o ¢
will automatically send a message to the contactor and &sk hi @ B
willingness to participate in the task. If the answer is ya&s, D E 0.9

portion of the documents will be transferred from the worker (4) contact situations at time t (c) user contact graph
to the contactor via shortwave radio, and then, both of them FOL

can go through the papers in parallel. When a participant e A Sy=14 Sp=11 Sc=I8
) . LY C SO _ _ _
is able to access free Internet, such as in vicinity of a free @‘\‘%} AP Sp=12 S =18 Sg=15
WiFi access point, or the participant agrees to use cellular Ay =5 Aye=8 Ayp=9

networks to transmit social-crowdsourcing’s workload,ca®
directly send the helping message or transfer a certain amou
of workloads to his friends via network-storages, such aailem
instant messaging (IM), or dropbox. Later, when his friegels
Internet connection (e.g. 3G/4G or free WiFi), their desice
will automatically fetch the data. When a patrticipant finde t
result, he will return the article’s id to the task owner et
cellular network. Note that only a few participants need toresults show that our proposed schemes can significantly

Agp =9 Agp =T Agp=10
Aep =5 Agr =T

(b) contact situation at time t+At (d) parameters

Fig. 1. Workload allocation in social-crowdsourcing. Sbadd users indicate
the ones carrying work segments. Idle users are representibé color white.

return, and the size of the package is very small. increase the system’s overall throughput.
Remuneration; For workers’ payment, we adopt MIT
DARPA Cha"enge Team’S SCheme: the Winnel’ WhO findS the || SYSTEM MODEL AND PROBLEM FORMULAT|ON

article gets half of the total bonus; the worker, who invited

winner, gets one fourth of the total; the people who invitedA. System Model

the inviter gets one eighth, and so on. The main advantage . . . . :

of this incentive scheme is that users, who do not want to Ve clonS|der adtyplgal MSN, which conS|st§M mort])|le g
personally seek the paper from the documents, are stiingill USers (&lso named nodes). ligtrepresent a node. Each node

to participate and propagate the task to their social comtge IS @ssociated with a constant processing spggdand we
assume that, once a node participates in a task, it will rogt st

During work segments’ dissemination processes, the estidntil the task has been finished. Social-crowdsourcinglires
mation of assigned workloads to each social contactor is aultiple rounds of recruiting via social contacts: a user’s
critical problem. Essentially, a selected allocation alpon ~ workload will be outsourced to his friends, friends’ friend
directly affects not only the whole work’s completion tinfejt ~ and so on. Essentially, a huge work is gradually partitioned
also the resource utilization rate of the social-crowdsimgr  and propagated from friend to friend. In our model, a work
system. In this paper, we address the following questiarergi  consists of several work segments, and a work segment is the
huge works originating at random nodes, by what strateggmallest uncleavable data unit. The workload of a node is the
can the works’ segments be appropriately disseminatedgluri total number of work segments that have been assigned to it.
stochastic contacts, such that the system’s throughpubean Any user could be a task’s owner (also called a source node),
maximized? Due to the distributed feature of our systens, thiand more than one task could exist in the system.
problem is not trivial. Take Fig. 1 as an example. Whén ) . , )
meetsC, A should leave some extra workload @, such In social-crowdsourcing, information exchanges during an

that C' can forward these extra work segments to his futureind of social contacts: locally or remotely. For local cacts,
encounterD at an earlier time. When transmits work seg- WO nodes should physically encounter each other (like siode
ments toB, he must also counB’s potential workloads given contacts in DTN), and data is transmitted via shortwaveoradi

by B's other friends. In short, a worker has to take others’'€mote contacts indicate the situations that two remoém@s

future potential contactors, accepting probabilitiesytacting communicate with one another via cellular network or free

delays, current workloads, processing speed, and the impaéNiFi—based Internet. In practice, da_ta transmission ofatem
of common friends into account. contacts can be implemented by using network storages, such

as email, IM, or dropbox. When a worker contacts his friend

To solve the problem, we first propose a distributed work-for the first time after participating in a task, the frienchca
load allocation algorithm based on the historical inforimat  determine whether to join in the task. We u3g to represent
of worker’'s 1-hop neighbors. Consider the fact that, no matterthe accepting probability. Once agreed, their devices aviH
who owns the work and how large the work is, a worker'stomatically adjust the workloads whenever they contaceoth
overall computing ability should be a fixed value; we furtherparticipants of the task, until it is completed. For any vwesrk
propose a distributed algorithm for pre-estimating eadthetso  he may physically encounter other participants, stocbalbfi
future computing ability. By comparing the work-completin For the participants, who agree to use cellular networkeat a
progress patterns of these two algorithms with those of théime, they may query the working progress of their friendd an
optimal ideal case, we finally propose an adaptive solufitie.  adjust the workloads, once in a while. As for the workers, who
adaptive scheme automatically switches the work allonatio use free Internet to transmit workload, they also can do same
methods according to the work segments’ propagation statuthings whenever they get free Internet. Clearly, the cdimgc
Our solutions not only work under the single work, singleinterval between a pair of workers is a random variable, and
source condition, but also are applicable in the situatiohs we use\ to represent the average inter-contacting time. Table |
multiple works and multiple sources. Extensive simulationsummarizes the common symbols used in this paper.



TABLE I. COMMON NOTATIONS

workloads of the future potential contactors?’ Since seyme

Notation _ Description are disseminated based on multi-hops relay, the partitipan
‘C;' nodeff SOC'?'(Contfctdgf)é‘Ph? =<V.E> must carry an appropriate workload for their future cordest

i a participant (user/noae
M total number of nodes The estimation of future encountered nodes’ capacities is
Si userV;’s local computing speed iees . .

® userV;'s future potential ability difficult, not only because of the uncertainty of their canta
Py the accepting probability betwedr; and V; times and acceptance decisions, but also the double cguntin
(i?ij(t) an?;née:] t(gfmgg?npr?krfg'gg b:%e?;g,vj within ¢ of the abilities of their common friends. For instance, Fig.

ij Vi inter- ing ti weeh, V; . : : ;
NG the nsighbo, set omgon contact graph” (c) is a possible contacting graph among six users. \Mign
E() the expected value forwards workloads td/z, he should not only considérg’s
w wasted computing resources i i i
A exchanged workload capacrfy, but a]so the potential workloads given By, Vg,
@, the assigned workload on nod& andVr; otherwise Vg may overload. Also, whelrs forwards
A workload transition matrixA = [A;] workloads toV¢, he should make a decision on whether to
L the size of the original work : ) ;

give Vp's work segments td/ for further relay. Obviously,

. V4 could also keep the segments and directly forward them to

Note that we Eanqpt let all friends of a worker share oney, |ater, or give them td/z. Even if V4 selected a relay path
network storage “box” due to the security and trust reasonsg v/, with the highest probability, the realistic shortest centa
Social-crowdsourcing has a concept of commitment: at anyath could be another one. Note that our problem is essigntial
time, a work segment only belongs to one worker. If we pulgitferent from the conventional delay-tolerant networRg )
the workload in one box and let the worker’s friends to fetchgi,dies. In our problem, any idle node could be a work
the data based on their dynamic needs, some workers maygment's consumer. Since the optimal result happens when a
maliciously modify others’ work segments in order to preven yyorkers simultaneously complete their workloads, we sthoul

them from winning the bonus (the friends of a user may not bgysiq the unbalanced workload distribution among workers,
friends). In order to avoid using complex security mech@sis  \yhich has never been considered in DTN.
we do not let multiple users share a network storage.

. IIl. SoLUTION OVERVIEW
B. Problem Formulation and Challenges _
) ) ) o A. Key Observations
Social-crowdsourcing is a distributed system. From a

source node, how to allocate the segments of a given work Compared with traditional online social networks and
during stochastically contacts becomes a fundamentalgurgb ~ delay-tolerant networks, MSNs have several unique feafure
which directly influences the completion time of the work. which influence the performance of a solution. In this pag, w
The goal of the paper is to opportunistically maximize the ~ Present some important features of MSNs on our problem.
overall throughput of a social-Crowdsourcing system. Since The number of participants, in the initial phase, highly in-
work segments are transmitted hop-by-hop, at each '”Smtnceéluences the whole work’s completion time. Roughly speaking
segment relay, a relay node must estimate how many workloadge number of participants at this phase affects the speed of
he will keep, and how many workloads should be forwarded Qo segment propagation. This observation is consistétht w
the social contactors. The optimal allocation happens WhEN  {he research results in the field of maximizing social infeeen
each participating node begins to work as early as possitle a |, o, model, work segments are disseminated to particigati
(2) all participants complete their assigned work at theesampgqes via multiple relays. If a node does not carry enough
time. However, due to the lack of real-time global informati ok segments, he may locally process all the segments
and the accurate future encountering times, it is impos$dfl  petore contacting other idle nodes. Progressively esimgat
nodes to provide an optimal allocation. the abilities of a new participant and its future contactarsld

The social-crowdsourcing system can be abstracted as rgduce the likelihood of this condition happening, but doul
stochastic bucket network: each node is a huge bucket ariso cause the imbalanced distribution of work segments.
there is a hole at the bottom of each bucket. The size of the |, social-crowdsourcing, it is inevitable to have multiple

holes may be different (which means the computing speed Qfggment-relaying flows pass the same node. However, whether
each node may be different). Stochastically, we can pouesOmy,e confluence is beneficial or not is determined by whether
amount of water from one bucket to another (which modelsyg sjtyation could potentially reduce the work's compigti

the workload reassignments during social contacts).aliyfi  time. During the initial phase of segment propagation, flow

only one bucket has water (the original large job), and wetwane,nyergence may result in overloads, while, at a later time,
to find a local scheme to determine the amount of transmitted g provides chances for re-balancing the workload.

water such that the water in the whole system can be drain

as quickly as possible. For the rest of the paper, we will Due to the lack of real-time global information, it is ex-
not discriminate how a social contact is conducted (locaily tremely hard to estimate the future potential encounteesod
remotely), since all types of social contacts can be alsiac carrying workloads. However, the amount of transferredkwor
as stochastic data exchange between friends. loads essentially relates to the workloads’ differences/éen

) , a pair of contactors, instead of their absolute workloads.
In order to estimate the amount of transmitted work-

loads during social contacts, the relay nodes must be abl§ -
; 4y : . Main ldea
to answer the following two questions: ‘how to describe a
node’s local computing ability and the overall abilities o In this paper, we propose an adaptive scheme for allocating
future encountered nodes?’ and ‘how to estimate the caryinwork segments. Instead of assigning the accurate worktoad t



node on the first try, wéuzzly divide the whole process into t
three phases. Phase one intends to assign an approximately

corrected amount of workload onto each region; phases two i
used for dynamically re-balancing the workloads within Bma
regions, and the final phase ends the work by opportunistical
transferring the unbalanced workloads to idle nodes.

In the first phase, since a majority of nodes have not

obtained the work yet, we us® aggressive scheme to estimate
nodes overall computing abilities, including the potential
abilities from the future contactors. Therefore, for eacie
we consider docal computing speed and afuture potential
speed, which indicates how much help a node could potentially
obtain from future opportunistic contactors. Since there a

inappropriate and impossible. Considering that the agyres
scheme cannot provide a fine adjustment of workloads, idstea

we take the overall speed that a node could get via thé

opportunistic contacting paths as the criteria. This rmetri
can integrate transmission delay and accepting rate tegeth
and avoids the double-counting problems caused by comm
friends. Although the work segments are physically propegja
via random paths, our metric essentially computes the ¢ggec
sum of speed that the whole system could provide to the nod

where Cs =TT, o1 Auwutt/uutr

ransmitting time follows hypoexponential distribution:

(t+tat ot t) =D Cap X Agapre ot (2)

s=1

S Qir

— A575+1) andt =
1 +ta+ -+t

After iteratively exchanging information with friends, n-
odes learn the system parameters withithop, such as
computing speed, average accepting rate, and average inter
contacting time. Based on this information, a contact graitih

be locally created on each node, which records the idestitie
of a node’s contactors, together with the system parameters
Besides the system parameters, each node may also store cer-

tain auxiliary information about its direct contactorscuas

a node’s potential ability (which will be introduced in Siect

IV. D.) Note that, in our system, a node may also record others
xpected completion times. However, such values are not in
real-time, and the node can only learn distant nodes’ erplect
completion times via multi-hop contacts. For instance,iq E

o(ﬁ)' nodeV, never contact¥, but it can learn/z's expected

completion time via nodd/g’s historical estimation. After
encountering withVgz, Vg may estimate its finishing time

Pased on the carrying workload at the contacting time, and

record the value together with a time stamp. Whénmeets

As for the second phase, when two users contact eacliz, he could update his record abdit by using the newest

other, they will use their stored neighbor’s historical Woad
status information to estimate the work’s finishing timedan
will further make workloads’ adjustments based on it. The
second phase is the transition phase. The intuition behin

this mechanism is that, once each node’s neighbors have

the same completion time, the workloads are balanced a
distributed among all participating nodes. By exploring th
two contactors’ direct neighborhood information, one egte
his local view to2-hop. Based on an estimated completion
time distribution, a node proportionally assigns weigltshte
aggressive scheme and the conservative scheme.

The locally stored historical information used in phase twog
is collected during a pairwise contact. It may have alreagly b A

come outdated before making a workload allocation dec:;isionC

some nodes could complete their assignments earlier thhan oty
ers. At the final phase, nodes simply transfer some unfinisheﬁl)
work segments to the randomly encountered contactors. Tr}ﬁ

method, used in this phase, purely considers each nodep
neighborhood status and that of the current contactors.

historical estimation.

B. Neighbor Status-based Finishing Time Estimation (NSFT)

d . _
In our system, after each instance of pairwise contacts, a

de is able to estimate the work’s finishing time within its

-hop neighborhood. The estimation of finishing time is not
trivial, due to the fact that nodes may adjust their workkad
among other neighbors at any time. Therefore, the recorded
carrying workload of a neighbor node may have already been
changed at the time of estimation.

Algorithm 1 shows our procedure for approximating the
shing time. Without loss of generality, we assume that
Igorithm 1 is running on nod#&,,, and nodé/,, is the current
ontactor ofV/,,. Since a useV; could be the common contactor
f both nodesV, andV,, the first step of Algorithm 1 is
eliminate the double counting problem. We virtually spli
€ common contactov; into two virtual nodes, and use its
accepting probabilities to weight each virtual node, asnsho
by Algorithm 1, line 5. Essentially, line 5 splits the cangyi

ini

workload and the local computing speed according to the

IV. SOLUTION DETAILS
A. Contact Frequency and Contact Graph

We assume that the inter-contacting tirhdetween any
two nodesV; andV; follows exponential distribution with the
pairwise contact rate;; (A;; > 0). The contacting probability
density functions (PDF) are represented as follows:

Qij(t) = Aij x e~ Nt 1)
where Q;;(t) stands for the contacting probability between
nodesV; and V; within time intervalt. Assume that there
is a r-hop transmitting path from nod®&; to nodeV, with
edge weights\; 1, A1,2,- -+ , Ar—_1,-. According to [5], the total

corresponding accepting probability, and exclusivelyuadiy
assigns a portion of the carrying workloads and speetf,to
andV,, respectively. The advantage of this approach is that,
after virtually splitting, the completion times of the twartwal
nodes are still equal to those &f. Via this way, nodeV,,

is able to rationally estimate the real possible impactsisf h
neighbors’ workloads and computing abilities.

Although workload adjustments may happen at any time,
here,we are only interested in a set of time periods, which
could potentially come at the cost of wasting computing
resources. More specifically, within nodeu’s 1-hop neigh-
borhood, computing resources will be wasted if workload
adjustment happens during the condition that some neighbor
have finished all of their workloads while others are still



Algorithm 1 Neighbor Status-based Finishing Time Estima-Algorithm 2 Local 1-hop Status-based Workload Adjustment

tion (NSFT)
1: [*Assume NSFT is running om and the other encounter ig/

1: /[*Assume it is running oru and the other encounter ig/
2: Getwv's 1-hop information fromv

2: Find w andv’s common neighborsV(u) N N (v) 3AW + [®y — DPy|/2
3: for Vi € N(u)\v do 4: while NSFT(u, AW) # NSFT (v, AW) do
4: if i € N(u) N N(v) then 5. if NSFT(u,AW) > NSFT(v,AW) then
5: Split the recorded workload and speeds of the common 6: if ®, > AW then
neighbor ofu andv: 7: D, +— O, — AW, O, +— O, + AW
P; +— P; x y2n Piup , 8+ S x y2n Pi“P 8: else
/*Eliminate the double counting problem of the common 9 AW @,
neighbors ofu andv*/ 10: else
6: Based onu’s local record, estimate each neighbor’s finishing time 11: if ®, > AW then
{®:/S;}, and Sort{®;/S;} U ®,,/S, in ascending order 12: Dy — Oy + AW, Oy + P, — AW
7: for ¥i € N(u)\v do 13: else
8: if ®;/5; < ®,/Su then 14: AW +— @,
9: Compute the expected wasted computing resolifteic- 15 AW <+ AW/2
cording to Equation (3) 16: Send/receiveAW amount of workload to the other contactor
10: [*Wasted resource exists whenis working whilei is idle*/
11:  if ®;/S; > @, /S, then e ©
12: Compute the wasted resourd®, by Equation (3), and (5] e /N it
update a temporary variabte: ¢tp < min {tp, W, /S.} O @ e ® ®
[*Resource is wasted whenis idle while the neighbors of o—9% ® PS A .O
u are working*/ —o /N2 oy ©
. . o _—0 ©
B8 W W+ (ZVi,iEN.(u)\U,@i/Si<<I>u/Su Si +Su) X tp o @ )

14: Estimate the finish timeég:

tr[Tvien e PitPutW]/[Tvien o SitSu

Fig. 2. Contacting graph of example data set.

. . . C. Local 1-hop Satus Information-based Workload Allocation
working. After getting an approximated value of the wasted

computing resources, can estimate his finishing time by first Whenever two users contact each other, they could real-

summing it up with the real workloads, and then dividing thelocate their workloads such that the work can be completed
result by the summation of weighted speeds, as shown bgt the same time. Intuitively, after exchanging and updgtin
Algorithm 1, line 14. their recorded neighborhood information, each node cameigu

_ _ out an ideal size of the transferred workloads by using NSFT

From the viewpoint ofV,,, he only needs to care about gigorithm. Here, we adopt the binary search algorithm to

the workload adjustment between him and his neighbors. FQistimate the size. Note that, in our model, both contactors

the neighbor nodgV;}, who will finish its current workload = ¢oyid run the NSFT algorithm and get the same value of the

beforeV, (Algorithm 1 line 8), we can estimate the wasted yransferred workloadATW. Algorithm 2 gives the procedure.
computing resource at a nodég, W;, as the product o¥/;’s

computing speed and the expected time delay aftdinishes In order to check the effectiveness of this-hop

the work. Assume,,..; is the next contacting time between information-based algorithm, we compare it with the optima

nodesV, andV;, then we have: result and the naive result, respectively. In the naive ,case
after two nodes meet each other, workloads are reallocated

W; = S; X El(tnest — ®i/Si), ®i/Si < tnext < Pu/Su) according to their local processing speed. The optimaltrésu

B, /Su based on posteriori knowledge: after events have happatfied,
=5; x / (t —®;/S;) e~ dt (3) nodes’ contacting times and accepting decisions are redord
®;/S; and known. Based on this information, the optimal scheme

_ simply finds out the fastest relay paths from the work owner
For each nodé’;, who completes the corresponding works node to any other participants. The optimal scheme catsilat
before V,,, we need to calculate &; and sum them up e earliest work segment arriving time of each node, and, the
(Algorithm 1 line 9). However, as for any nodg;, who assigns an appropriate amount of workloads to the partitipa

finishes his works afte¥,, (Algorithm 1 line 11), onlyV.'s  gych that they will finish the job at the same time.
wasted computing resources will be considered (sihge

records only1-hop information, the wasted resources dur- Figs. 3 to 7 illustrate the workloads’ average diffusion
ing the workload propagation directly betweéfy’s 1-hop  patterns on a regular contacting graph (as shown by Fig. 2)
neighbors are ignored.) Therefore, for the node group wittwith the growth of observation time. The contacting graph is
a completion time larger thak,,, we only need to find the based on karate club social graph [6]. When generating these
earliest completing time: after this timé/, may get new figures, we keep each node’s acceptance decision fixed, and
work segments again (Algorithm 1, line 12.) One may noticerepeat the simulatiom0 times by randomly creating different
that, whenV,, finishes his workloads and is in idle status, encountering times. On these graphs, the intensity of thg gr
the neighbors with earlier completing times must also be.idl color at position(z,y) represents the carrying workload on
So, we also estimate their wasted resources during thedperimodey at timex. We use the absolute work amount to represent
from V,, completing his workload to getting new segmentsthe unfinished workloads being carried on each node. The
(Algorithm 1, line 13). darker a line's color is, the more workloads that are held



by a node. If a node becomes idle, we use white color tonly V,, has a huge work with sizé, what is the expected
represent it. The work’s processing progression is shown immount of workload that each df,’s neighbors,V,, can

Fig. 8. In order to more accurately describe the contrimgtio obtain? We use the NSFT algorithm, which is discussed in
of different schemes, we also consider an extreme socigection IV.B. However, the NSFT assumes that a pair of nodes
contacting graph, where the nodes form a chain and each noti@as already met. In the current problem, nodésand V,

only has contact with the previous two nodes and next twanay or may not come across each other. Similar to previous
nodes. The simulation results of this special contactirplgr analysis, we need to measure the expected amount of wasted
are given by Figs. 9 to 14. computing resourced; [W,], beforeV,, meetsV, and transfers

iq. 3 h der th ) h hWorkload to it. Here, we estimate the wasted workloads as
From Fig. 3, we can see that, under the naive scheme, t W,] = S, x E [inter-contacting time= S, /Au,. Let &,

work segments do not fully spread. Many nodes barely havgndq)v be the workloads on nodds, andV,, after encounter.
work segments, and for some other_nodes (such as nodes 1'fﬂey should satisfy the following two conditions:

5), they have not obtained appropriate amount of workload:
there are many white-colored intervals between the gray one L=3,+%,+ 5,/ v 4)
From thez-axis, we can see that it takes almd€00 units

of time to finish the work. In Fig. 8, the slope of the brown- NSFT(®y) = NSFT(®u) ()
diamond curve indicates the overall processing speed Imgusi We usep,,,, to represent the expected percentage of workloads
the naive scheme. In this example, since nodes fail to teansf that nodeV,, can get fromV,,.

an appropriate amount of the workload to other nodes, only P

a limited amount of computing resources is used. Moreover, Puv = Py X — (6)
during the simulation, we also find that the completion time _ ) L__

of this scheme is unpredictable, and is influenced by thavhere P, is the accepting probability betwedn, and V.
contacting sequences. As for the optimal result, shown byVithout loss of generality, we defing,,, as the following:

Fig. 7, we can see that, during the initial phase (the fitst E[L - ®,] N N (w) [Puy % (L — ®,)]

units of observation time), work segments are quickly sprea Pun = 7 v == 7 “ iz @)
among nodes. As we have mentioned, in the optimal result, all x ZveN(u) uv

participants complete their work at the same time. By normalizingp.,,,, for all of u’s neighbors, we get a workload

Compared with the naive scheme, thehop status transition matrixA = [Ay, .

information-based algorithm (Fig. 4) can quickly disseate A = Puv (8)
the workloads during the initial phase; however, from a long “ ZveN(u) Puv

term perspective, the transferred amount at this phaseajs in . .
propriate, and therefore, some nodes are out of work quickl o(rj each noldeVu, th_e comp(ljjtau?n Ofﬁ“v fprfeach nelghbodr

By further checking the size of assigned workloads, we fino[10 eV, only requires nodev,’s 1-hop information, and
that the scheme underestimates certain nodes’ potenidily nerefore, each node can locally compute the transitiogei
abilities, especially during the initial phase. From thewi Auo 10 eac_h nelghbor. Note that the transition matfixs not

of the percentage of completed work, as shown in Fig. 7, wé Symmetric matrix, amEvGN(u)ﬂVu Auwo = 1.

observe a better result in which, the slop of the green-staec Theorem 1: The transition matrix,A = [Ay,]arx s, has

is Iarger_than the brown_-dlamond one. The S|m_ul'c_1t|on result 5 stationary distributiong x5, such thatlimy,_,., A* = 1r,

the chain-style contacting graph gives us a similar reg@ylt. \here1 is the column vector with all entries equal

comparing Figs. 11 and 12, we can clearly see thatithep , ,
status information-based algorithm can better propagaté w Proof: We can model the propagation process of a single
segments than the naive scheme. However, by observing tH¥rk segment by a time-homogeneous Markov chain. Each
locations of the darkest points between Figs. 12 and 9, ihsee USer (node) is a state. The state transition probabilityvierg

the initial participants should transfer more work segraeat by the transition matrix4, which is introduced in Section IV.

the contactors. D. According to book [5] (Theorenh.1), a Markov chain has a
unique stationary distribution if it is irreducible and aipelic.
D. Potential ability-based Workload Allocation According to our scheme (Algorith.lines 3 to 6) for

generating the transition matrid, all considered states are
Influenced by the HITS algorithm [7], [8], which is used accessible by the algorithm executing notg. Since the
for rating Web pages, we propose an algorithm for measuringommunication between nodes is bidirectional, any state in
and ranking a node’s potential future computing abilitytth@ 4 can access any other state by following a transition path
node could obtain by recruiting other nodes. Essentiaklylet  through nodé/,. Therefore, the Markov chain is irreducible.
each node be associated with two features: a local computing . . .
speed and a potential speed. However, unlike the traditiona !N our model, the average inter-contacting time between
link analysis problems, the links in our model are assodiate any pair of nodes is greater than zero. Thefefo're’ .the. vg;ﬂue 0
with both accepting rate and random contacting delay. Fofuu IS non-zero. A state in a Markov chain is aperiodic if the
addressing this problem, we design a special weight on ea ate’s transition probability to itself is greater thamweSince

link, which can successfully integrate the number of frignd gl states in our model have the self-loop, the Markov ch.a.m
contacting delays, and accepting decisions together is aperiodic. Based on the above two features of the transiti

matrix A, the corresponding Markov chain has a stationary
1) Weights of Contacting Edges: For a nodeV,, we con-  distributionr = [m;  mo - mar]. 5 = Y oo mix Aij (7 > 0),
sider the following situation: if all neighbors &, are idle and and Zj:o mi = 1. ]
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2) Estimation of Potential Ability: During the computation iteration, the approach must normalize each node’s redorde
of nodeV,,’s potential ability, both the local computing ability score by the total of the current scores; otherwise, theescor
of a neighbor nod#®,, and its potential ability should be regard- will not converge.
ed asV,'s potential ability. However, on a social contacting ,
graph, since each node has more than one contactor, a node '€ second approach is based on random walk. By analyz-
must equally split its abilities among the neighbors. Here, ing the definition function 015‘5”), we can see that the value of

adoptA,, as the weights for splitting. Lei(f) represent/,’s Sff) is essentially the sum of the computing speeds that each

potential ability, then it can be recursively defined asdieihg: ~ node can contribute t&, along the opportunistic contacting
paths. In the second approach, each node sends out several

Se) — Z Ay X [Sgp) + SU} (9)  random walkers. Each walker is associated with a score hwhic
indicates the amount of speed that the originated node can
contribute to the walkers’ current resident node. Whenewver
where S, is the local computing speed of a node, afig, is  walker passes a node, the resident node records the current
the transition probability from nod#, to V;,. One may note score of the walker, and the walker randomly selects its next
that the value of4,, is related to the selected value &6f  destination from the direct neighbors of the resident node.
In reality, instead of computing a single value, we calailat Note that, with each transition from node to node, the walk’s
a series of different values dfL) = (L1, Ls,---,Lx), and  carrying score will be reduced according to the edge weight,
weigh the corresponding results. Ayv. A walker stops moving when its score becomes less than
a pre-defined threshold. The potential ability is approxeda
by the sum of a node’s recorded scores. Although the second
approach is fully distributed, in reality, the whole prosesay
Yake a long time and involve a lot data packages.

vEN (u)

There are two common ways to compute the potential abil
ity. The first approach is similar to the computing procechfre
the HITS algorithm: each node may simply store a temporar
score S (t), iteratively exchange the recorded score with
neighbors, and update the score by usiﬁg)(lﬁ +1) = For simplifying the problem, we let each node gradually

(») learn other nodesA,,,, and speeds via several rounds of node
2oven @) Avu X {S” () + S”} - Ideally, after several rounds of pairwise contacting. Each node locally creates the what@ko

exchangeSff) (t) becomes stable. However, at the end of eaclkcontacting graph and computes the potential ability. One ca



Algorithm 3 Potential ability-based Workload Allocation workloads gradually becomes smaller, and the undertaken

1: /*Assume the algorithm is running ovi,*/ workload of each node trends to stable. Therefore, at thialini

2: [*Generation of the edge weights in matrik*/ phase, we allocate the workloads mainly based on each node’s
3: for Every nodev € N(u) do expected potential ability. Here, we adopt the potentiditgb

4. for Every L; lnLgLume , Lx) do based workload allocation method (Algorithm 3.) Because
5: ComputeA(s? for each sampling workload size  most nodes have not participated in the new work, and the
6: Compute the weighted average 4f., based on the size distri- \yorkload partition decisions are made based on the average

bution of real works
7: [*ComputeV,, and its neighbors’ potential abilit§®*/
8: Learn other nodesA., and S, via pairwise contacting

condition, the workload allocation scheme used in this phas
is more progressive than those of the later phases.

9: Compute potential ability by equation 9 As time grows, the accepting decisions of a majority of
10: /*Workload allocation scheme on node/ nodes become clear. The workload allocation process grad-
11: Exchange and update state information with ually enters the second phase, which focuses on balanced

12: if V,, is contactingV,, and ®,, + ®,, > 0 then
130 @ D+ By, a ¢ (SutBSY)/(SutSu+BST +5SH))
14 Py +—ad, &, + (1 — )

distributing workloads among the real participating nod&s
typical feature of phase two is that all participating nodes
physically working on the same work’s segments, simultane-
ously. Nodes in our model essentially perform two operation

®) ) ) i processing work segments one-by-one, and re-balancing the
compute the value of.; either by directly using equation 9, remaining workloads among the contactors within severpsho
then computingS x 1 x m, whereS, s is the speed vector.  amount of workload has been transmitted from the source node

3) Workload Allocation: Once obtaining the potential a- O €ach region, due to the uncertainty of nodes’ accepting
bilities of direct contactors, a pair of encountering nodesdecision, the realistic workload distribution among diffiet
can redistribute their workloads according to their pdgnt regions may not be balanced. Therefore, we combine the
abilities. Algorithm 3 shows the procedure for potentialigh ~ Potential ability-based method with the locathop status-
based work segments allocation. The basic idea of Algorghm based approach (Algorithm 2): the former approach helps to
is that, during the propagation of work segments, espgcall re-balance workloads between dnfferent regions, and_mlerla
the initial phase, if participating nodes can roughly eaten ©On€ re-allocates the workloads within each local region.

the overall ability of each work assigning flow, the work  pyring the final stage, some nodes complete their work
segments could be disseminated more uniformly. Note thaind become idle again, while some other nodes are still
the potential ability is a rough estimation about a parias  working. Opportunistically and locally re-balancing hdee t
future computing capacity. In practice, one should considetop priority. Consider the fact that the locghop status-based
both the potential ability and local speed by assigningatert approach holds more accurate neighborhood completion time
weights to them (Algorithm 3 line 13). information than the aggressive one. Hence, at the finabstag

Fig. 5 shows the diffusion process after using Algorithm 3.W€ focus on using the-hop status-based scheme.
This approach has a better performance than does Algorithm 2 Our adaptive solution basically combines the poten-
and it assigns more appropriate amount of work segments tgal ability-based approach together with the locghop
the participants. From Fig. 5, we can see that a large part ghformation-based one. However, how to identify the three
participants (nodes5 to 34) are assigned with more workloads phases discussed above, and how to smoothly switch between
within the first400 units of observation time. The completion the two approaches, is critical. Clearly, at the initialgeta
progression of a given work is presented in Fig. 8; Fromthe expected work completion times are highly unbalanced,
the very beginning, Algorithm 3 beats Algorithm 2. However, where the expected finishing times for the initial particiga
based on the algorithms, we know that théop status-based are much higher than others. Meanwhile, at the final stage,
approach’s local workload adjustment is better than thahef the completion times are more uniformly distributed. Since
potential ability-based scheme: by further comparing Mig. there is not a clear boundary between each stage, we use the
with Fig. 5, we can see thdthop status-based approach usegistribution of the expected completion times as an indicat
more idle resources on nod&so 15. However, in Figs. 12 and which is able to quantitatively describe how much closer
13, we did not see such a difference. Probably due to thg chaie current system status is to the initial stage (a highly
structure, al-hop status-based approach cannot equilibratjiased distribution) and the final stage (a uniform distiin).
the workloads well. Based on the respective advantages @fowever, since the real-time global statuses are not #laijla
the 1-hop status-based scheme and the potential ability-baseHe completion times’ distribution is purely based on each
scheme, we wonder whether we could combine them togethefode’s local recording of the finishing time information abo

and get a better result. other nodes. As we have mentioned in Section IV. A, a node
may learn other nodes’ expected completion times by maltipl
E. Adaptive Scheme rounds of information exchanging between different nodes.

Workload allocation process can be fuzzily partitionea int We adopt the entropy of the completion times’ distribu-
three phases. Initially, most nodes are idle, but theirisgal tion [9] as the metric. LetAW? be the amount of trans-
accepting decision is unknown. In this phase, the largkescaferred workloads by using the potential ability-based sobe
propagation of workloads, in a balanced way, should be the\¥! be the transferred workload by adopting a lotaiop
first priority of an allocation scheme. As more and more node#nformation-based scheme, apgdbe the percentage of nodes
participate in the cooperative work, the amount of exchdngewith completion timet;. The transferred work amount in our



Algorithm 4 Time Adaptive-based Scheme @ Sa=1  Ap=1/5 Ay=1/5

1: /*Assume the algorithm is running on nodé&*/ A KA Sp=0.01 Az =1/5 W, =1000
2: for Every contact betweel, and its neighbord/, do @’)@-\B & @ S =1 A —=1/10 W.=1000
. b C BD D
3:  Exchange and update state information > T, ¥ S 210 A =1/S W =0
4:  Compute the completion time’s distributidmp; } D= = B E
5. a+ l+log ' (M) x Y, pilog(p:) Se=30 A =1/10
6: ComputeAW? and AW' by calling Algorithms 2 and 3 (a) user contact graph (b) parameters
7 AW+ ax AWP + (1 —a) x AW!

Fig. 15. A simple example about workload allocation in sbcia
crowdsourcing. Shadowed users indicate the ones carrymdx segments.
Idle users are represented by the color white.

adaptive scheme is determined as follows: removing the edge betwedry and Vg, the mutual potential

AW =a x AWP 4 (1 — a) x AW (10)  abilities of them becomé and6.62. As a result,Vz will get

S pi % log(p) (0.01 4+ 6.62) x 1000/(1 + 0 4 0.01 4 6.62) ~ 869 units of
Ly Pi X O8Pi) (11) workload. Note that the computation of the potential spesed i
log(M) related with the size of work. Here, we present another gmpl

where o is a mixing parameter, and/ is the total number approach to compute the potential speed. After temporarily
of a work’s participants. Whep; = 0, we assign zero to the removing the edge betweer, and Vg, the potential speed
computing result ofp; x log(p;). During the computing of ©Of Vs can be estimated d3pc + (1 — Asc)AspApC]Sc +

a, we compare the entropy of the current completion times{Asp + (1 = Asp)AscAcplSp + (ABcAcE + ABDADE —
distribution with that of the uniform distribution, whictsi ABcAceEABpADE)SE = 2.764. By using this scoreV will

equal t03",, 1/M x log(1/M) = —log(M). get(0.01 +2.764) x 1000/(14 0+ 0.01 4 2.764) ~ 735 units
of workload.
Algorithm 4 shows the procedure of our adaptive scheme.

Note that more than one work may coexist in our system. Sincg;  Fyrther Discussion

the goal of this paper is to maximize the system’s overall o )

throughput, here, we do not discriminate the segments from In reality, it is possible that a work has more than one
different works. Figs. 6 and 14 show the workload diffusionowner. For example, a study group possesses a certain amount
pattern by using the adaptive scheme. By Comparing F|g @f data, which needs to be processed. Each member of the
with Figs. 4 and 5, we can clearly see that the adaptiv@roup could be the work's owner. In order to guarantee that
scheme takes the advantage of both the potential abilsgda the work segments that originated from different membevs ha
scheme and the locathop status-based scheme: in the initialthe same work identity, the group may choose the smallest
stage, workloads are widely and appropriately dissemihateidentity of its group members, and concatenate it with the
among participants, and at the later stage, workloads aadiyo ~ releasing time as the work’s identity. For ease of descnipti
equilibrated among neighbors. In Fig. 8, the proposed adapt We call such casesultiple sources conditions. We can assume
solution is the best approximation algorithm. However, aghat there is a virtual node, which only has contact with each
for the simulation result on the special chain-style coiimgc ~ Of the group members. Since the workload allocation process
graph, although the adaptive scheme still beats all othedt all nodes, in multiple sources conditions, is the same as

solutions, its excellence is smaller than that of the sitita  that in the single source condition, our proposed adaptive
on the regular contacting graph. workload allocation scheme can still function well. Essaliy;,

the multiple sources conditions just shorten the lengthhef t
initial propagation phase. Since the work segments’ diffius
patterns are similar to the patterns of a single source tiondi
Take Fig. 15 as an example. Assume that, at time we do not provide the illustration figures.

nodesV, and Vg come across each other for the first time
(after the work arrived the system), and Fig. 15 (b) give
the parameters about participants. The carrying workladds
V4 and Vp are 1000, respectively. All other nodes have zero
workload. After the contact betwedr, and Vg, intuitively,
V4 should transfer a large portion of workload ¥, since
Ve has more potential computing resources. However, if w
assign workload only based on local speé&d, can only get
0.01 x 1000/(1 4 0.01) = 10 units of workload. According
to the currentl-hop information of Vg, the 1-hop status-
based scheme first considers the available computing resour
within Vg's neighborhood excepts, and then it will assign
834 workloads toVs such that the expected finishing times of
V4 andVp are166 and 167. Note that the estimation of the Note that, when multiple works coexist in a system, min-
finishing time also considers the impacts from the neighbbrs imizing the works’ completion time becomes a very difficult
Vp. If we adopt the potential ability-based scheme, the oVeralproblem. The segments from different works inevitably will
potential abilities ofl’y andVp are1.87 and8.49. However, compete for the computing resources. Moreover, since Isocia
we should not directly use these scores, since the score@s$ cowcrowdsourcing is a fully-distributed system, and the mpkes
the potential speeds coming from both sides. By temporarilypf a work is determined by the finishing time of the last

a=1+

F. Example

S Any node could be the owner of a work. Therefore, it is
possible that different works coexist in our system. Clgafl
there is always a large time gap between the arriving times of
different works, our schemes definitely work. However, it is
also possible that some works arrive while other works have
not been completed yet. Clearly, the coming of new works
emay cause an unignorable difference between the recorded
workload statuses of other nodes and their real conditions.
However, since the goal of our paper is to maximize the
system’s overall throughput, instead of minimizing eachkigo
completion time, all of our discussed schemes do not need to
discriminate the segments of different work.
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optimal scheme 0.8

‘ HEAE workloads according to the contactors’ local computingesise
[C—14 works uniformly arrive

0.7 speed, the allocation scheme based on each contactor’s local

2
© 0.6

o

8o = 1-hop historic information is calledne-hop, the algorithm that
15 ;gi pre-calculates a participant’s future potential comptibility
220 2 0s is calledpotential, and the algorithm that adaptively switches
B2 E o2 different allocation methods is calleadaptive. In order to

compare these solutions with the optimal results, after the
1000 2000 3000 0.0] whole observation is completed (posterior knowledge), we fi
observation time optimal adapive one-hop  speed_ potential the optimal allocation and usaptimal to represent it. Based
on the posterior knowledge, one can compute the shortdst pat
from source to participants, and the optimal allocation lban
found by letting all participants complete their workloadtze
segment, it is very hard for a node to appropriately allocatessame time. Although this algorithm is useless in practice, w
the computing resources to different works based on the’siodecan use its result as a comparison criterion.
local view. One possible research direction is to exploee th
backpressure routing algorithms [10]-[12]. However, kmli
the traditional routing problems, social-crowdsourciogs not
have the concept of message destination. We leave the proble  The evaluations use both synthetic data and real data.
for minimizing the completion time as our future work. In the synthetic simulation, we use a real social network
data set called karate club [6]. However, since in real life
the social-crowdsourcing system always contains too much
diversity, such as users’ computing features, in order tokiy
and accurately find out the changing trends of our interested
ttributes, in each simulation, we only change one variable
e work source nodes are randomly selected, and each
mulation is executed0 times. There are34 users, and
gverage inter-contacting time between each pair of nodes is
hiformly distributed from40 units of time to100 units of
me. The computing speed of nodes also follows a uniform
istribution from0.0001 to 10 units of work per unit of time.

w
=]

Fig. 20. Multiple works: case 5 Fig. 21. Throughput rate comparison

A. Evaluation Setup and Comparison Metric

Figs. 16 to 20 illustrate the work segments’ diffusion
patterns under different work allocation approaches. myitte
simulation, we randomly createworks with a relatively large
size. However, unlike the results in single source conljtio
the work’s processing progression curves are closer to ea
other. In order to clearly observe the differences betweegi
schemes, instead of drawing the processing progressiqigra
we consider the system throughput rate by each schem
as shown by Fig. 21. From the simulation results, we finaﬁ
that, comparing to other schemes, the coexistence of n‘mltipo|

works has a negative effect on tiiehop information-based The total size of a work is set @90, 000 units. The accepting
solution. One possible explanation is that, among all st rates are uniformly distributed in the interval frang5 to 0.99
the 1—(;10dp infokrlmactiion—:)asgdhﬁolutiog hngIy dtept(;nds on tlh?Ve take3, 000 uni)t/s of time as the length of an obsefvat'ion
recorded workloads of neighbor nodes; due to the arrival o ’ ; )
more frequently. When the changing rate exceeds the récord nd we onlv use the data that w);s collected dL?rin qda r':ime
updating rate about a majority of neighbors, nodes will make y g day '
wrong workload allocation decisions, which could also tesu For efficient comparison, we adopt two metrics: percentage
in a chain reaction. Although the adaptive scheme also useasf completion and system (average) throughput rate. As we
the historical information, it still has the best performanThe  have mentioned in the introduction, the more nodes that join
reason is that, whenever a node receives a statue of infilomat the system at an earlier phase, the sooner the work can
indicating the existence of a new work, the node will mainlybe completed. The first metric can clearly show how well
use the workload allocation decision based on potentitityabi  work segments are disseminated and processed within the
Therefore, the chain reaction of the wrong decisions isdaai  systems at any time. By using this metric, one can observe
the impacts of different methods on work segment diffusion.
The second metric calculates the utilization of the system’
available resources. The system throughput rate is compute
In this section, we conduct extensive simulations to evalas the ratio between the number of computing resources that
uate the performances of our proposed algorithms. For easeve been used during an observation (the time intervakéefo
of comparison, we call the naive scheme, which simply splitsa majority of work segments has been completed) and the total

V. PERFORMANCEANALYSIS AND EVALUATION
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number of available resources that the system can provideuting speeds on the system throughput rate. We let the
Due to the existence of work segments’ propagation delaysaverage speed gradually change from a relatively low speed
system throughput rate can never redcld%, even for the to a high speed. During this process, we check the system
optimal result. The closer that a scheme comes to appragchirthroughput rate under three distinct conditions: a systeth w
the optimal result, the higher the system throughput rate isa single work, a system with multiple works (periodically
The simulation basically consists of three parts. The fiest p arrived), and a system with multiple randomly arrived works
focuses on the allocation of a single work on a regular socialMe also test our scheme on real trace with a single work
contacting graph, the second part shows the results regardi source. All simulation results show that, with the avergugsesl
multiple works coexisting in our system, and the last paregi growing upward, the throughput of all workload allocation

the results based on real trace. methods decrease. When nodes have higher computing speeds,
obviously, the completion time of the works can be reduced.
B. Evaluation results As a result, the effect of the amount of wasted resources

during the work segments’ propagation phase exacerbages th
Fig. 22 shows the impacts of average accepting ratio oBystem’s overall throughput. We further check the influence
task’s processing progress. During the simulation, we teep of the average computing speed on the changing pattern of
average inter-contacting time of nodes uniformly disttélili  completion time. For a given fixed-size work, with the grogvin
from 40 to 100 time units. The computing speeds are alsospeed, the completion time becomes smaller, but the reglucin
randomly and uniformly generated with the inter@l 10]  speed is not linear. One possible explanation is that, wi¢h t
units of work per unit time. The minimal average acceptancgrowth of the speed, a task can be finished before other werker
rate is 35%, and the maximum i99%. In Fig. 22, thez-  participate in the task. One interesting phenomenon in Fg.
axis represents the observation time, and gfexis indicates s that, comparing to the situation of single work source, th
the percentage of workloads that have been completed hyerformance of one-hop scheme becomes worse when multiple
the observed time. We can see that, with the growth of thevorks coexisting in the system. Since the contacts in our
accepting rate, the speed-based allocation scheme perforigystem are intermittent, we think this phenomenon is relate
worse. One possible explanation is that when there are mokgith the timeliness of historic neighborhood workload netso
participants in the system, the scheme cannot properly-deteOne way to solve the problem is to assign a time window for
mine the workloads during each time of contacts. However, agsach node’s historic records. The length of the window must
the average accepting rate grows, it processes more quicklge related with the node’s contacting rates with others. For
the shape of its curve becomes closer to the upper left cofner example, we can first set up a threshblbout contact times,
the graph. For the other four methods, their work’s processi and then compute the expected time for a node to have
progresses also become better at the high accepting rateimes of contacts with others. The expected tiche will
scenario. Since the percentage of completion lines mayheco be used as the window’s size. Once a record about historic
closer to each other, for the rest of evaluation, we focusen t workload expires, it will be invalid.
average value of the system throughput rate.
Fig. 23 shows the impacts of average accepting ratiq '\eXl. We consider the influence of the size of works.
n social-crowdsourcing, a system’s computing resourees a

on the system throughput rate. With the increasing of th ted during th o i h E h
average accepting rate, all schemes’ system throughpes ratVasted auring the segme,n S propagation phase. For a huge
Work, its work segments’ propagation times are relatively

are growing upward. When the system has only a single tas mall, compared to its completion time. Therefore, in gaher

Fig. 23 (a)), the growing speed of the optimal scheme is muc
gasgt]er th(arz)the ogther foguresolutions an%l therefore, thera i € System throu_ghput rate of a 'afge Wo_rk must be greatertha
gap between the optimal result ar;d others Howéver whelhat of a small-sized work. The simulation results are c®nsi
there are multiple tasks (Figs. 23 (b) and (c)), the optimafent With our qualitative analysis. In Fig. 25, the throughp
scheme, the adaptive scheme, and the potential-abilggeba rates increase anng_ with growing work SIZES. When there is
scheme have similar throughput rates at the higher aceppti nly a single work in the system, there is a small gap on
rates. One possible explanation is that, when there is desing he throughput values of the OP“”?a' scheme and the others.
y However, when the system contains multiple works, such a

work within a social-crowdsourcing system, a certain antoun di Th for this ph i that. wh
of computing resources is wasted due to the inappropriatd2P d!Sappears. 1he reason for this phenomenon Is that, when
odes fully-occupy work segments (from plenty of tasks),

workload assignments; however, when the system contai L
g y r{%e nodes always possess unfinished segments. Therefore,

multiple works from different sources, those unused resssir h i task’ ¢ K ind thei
are taken by other works, and therefore, the system thrculghpw €n propagating a tas S Segments, WOrkers areé using their
resources on another task; no system resources are wasted.

lines become closer to the optimal one in multiple works
condition. Fig. 23 (d) gives the simulation results on real
trace. Note that our approximation algorithms only conside
the pairwise contacts, but in this real trace, there araitos
where a group of users encounter each other at the same ti
In these situations, we simply assign a sequential ordeaith e
pair of contacts, and then apply our algorithms. For Fig. 2
(d), we can see that the system throughput rate goes up wi
the increasing of accepting rate and becomes relativeblesta
at high accepting rate part.

Fig. 26 shows the impacts of users’ average inter-conftgctin
time. The average inter-contacting time directly affedis t
n{éequency of the segments’ redistribution among nodes. The
more frequently segments are exchanged, the more likely it
js that the workloads of workers are balanced. As shown by
hig. 26, all schemes’ system throughput rates are decigasin
with the growth of average inter-contacting time. Moregver
all of them have a similar decreasing rate. It seems that the
average inter-contacting time has a similar influence on all
In Fig. 24, we check the impacts of users’ average comworkload allocation approaches.
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Fig. 25. Impacts of the size of works on the system throughatet

Fig. 27 shows the impact of the number of work sourcesincrement with the growth of the number of sources. Since the
In this simulation, we assume that there is a huge workiotal number of users is a fixed value, increasing the number
the segments of which are owned by several users. Unlikef work owners can reduce its completion time, but the speed
the condition of multiple works, here, the multiple sourcemust converge to the condition that every node has already
condition requires that all owners of a single work put thepossessed his corresponding workload at the beginning.
work into social-crowdsourcing at the same time. During the : . . .
simulation, we gradually increase the number of the work When a social-crowdsourcing system contains multiple
segments’ owners from to 10. The total size of the whole WOTks, the arrival of a new work may disturb the current
work is a fixed value, and all work sources are randoml;ﬂ"orkload d|_str|but|ons. In this S|mulat_|on, we want to qhec
selected. From Fig. 27, we can see that our proposed adaptife€ mutual influence among works. Fig. 28 shows the impact

scheme has the highest system throughput rate, compar@ the number of coexisting works on our system, especially
yyhen the works randomly come at different times. If one work

to the other three approaches. All methods experience > 4
PP P %as not been finished while the other works appear, there must
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be certain interference between the old and the coming nethere is not an internet connection. Paper [20] proposed an
works. In simulation, there ar2to 10 works randomly coming archetype for building a distributed crowdsourcing sysiem
during the observation time. The total length of the obstsma DTN. In this paper, we extend their model on mobile social
is set as3, 000 units of time. The works’ arrival times follow networks, and further analyze the schemes for opportunis-
a uniform distribution. Also, the works’ owners are randgml tically allocating work segments among participants. When
selected, and the total size of the works is a fixed value. Weletermining nodes’ workloads, our schemes take contacting
observe the system throughput rate decrease with the growttelay, computing speed, acceptance probability, the nuofbe

of the number of works. Moreover, all of them have a similarinitial work sources, and the existence of resource cortipeti
increasing pattern. Fig. 28 shows that the coexisting otiplal ~ works, into consideration.

works do influence the workload assignments. o o .
Scheduling is a process of determining how to commit

“Since the arrival of a new work may interfere with the machines (executants) among a variety of works. Based on
existing ones, in this part of simulation, we check the intpac the number of executants, scheduling can be categorized int
of works’ arriving densities. We let works be perlOd!Ca"y Sing|e_machine Schedu”ng [21] or mu|tip|e_machine sched
generated at some random nodes, and we gradually increaggy [22]. Generally speaking, the scheduling method used in
the period from50 to 300 units of time, which means the thjs paper belongs to the multiple-machine scheduling.h&s t
arriving densities change from high to low. Fig. 29 givespame suggests, multiple-machine scheduling tries to mpake u
simulation results: with the growth of the length of periptt®  schedules for different executants. However, in our model,
system throughput rate decreases. Although our approximat gata segments are transferred based on nodes’ opportunisti
algorithms try to assign certain workloads to nodes such thaontacts. We cannot explicitly assign an exact work segmient

they can complete the task at the same time, the real finishingorkload, to a specific machine in advance, like the tradilo
times are different; In fact, lots of resources are wastathdu  muyitiple-machine scheduling did.

the a work’s ending stage. When works arrive in a shorter
period, the nodes, who just finished the previous work, are Scheduling in distributed systems involves load-balance
able to work on the new one. and congestion control [23]. For the heterogeneous system,
where nodes have different computing abilities, partiole
workloads are considered. Usually, a task is divided into
different-sized segments, according to the capabilityheifirt

In crowdsourcing [3], [13], [14], a tedious work is often executants [24], [25]. But in our problem, the size of an
subdivided into smaller pieces, which are then assigned tassigned workload is not only related with the local commiti
an undefined group of workers [15]. However, the currentability of a node, but also the abilities of the node’s future
crowdsourcing systems are centralized [16]. Workers proaacontactors. Backpressure routing [10] is an algorithm fgr d
tively join a crowdsourcing platform and seek tasks. Whemamically adjusting traffic over a multi-hop network. Howeey
using a crowdsourcing platform [17], [18], inevitably, seame  backpressure routing is hard to implement in a fully-distted
has to pay a fee for using the centralized server. For examplstyle, and it aims at enhancing the throughput of a network,
currently, Mturk collects al0% commission on top of the while, our problem focuses on designing a local algorithm fo
amount that you paid for your work [19]. Moreover, thesereducing the completion time of works. Adopting backpressu
centralized platforms cannot assign works to the workers ifouting may not be a good solution for our problem.

VI. RELATED WORK



VII. CONCLUSION [17]

In this paper, we proposed a new crowdsourcing systenyg;
called social-crowdsourcing. Unlike the traditional eutsc-
ing platforms, our system is a distributed and self-orgeiz [19]
system, which explores the social relations among usergzo
Based on the proposed system, we consider the problem
of workload partitioning and allocation among users. Un-
like the traditional scheduling problems, the solution tar o
problem needs trade-offs between users’ computing asiliti
participance probabilities, and their social neighbotslites.
By observing the work segments’ diffusion pattern, we find[zz]
that, at different processing stages, we should adoptrdifte
workload allocation schemes, from the progressive oneéo thyyg
conservative one. In this paper, we first propose a consesvat
approach and a progressive approach, and then, we design
an adaptive mechanism to combine the two approaches. The
proposed progressive scheme is based on the overall cargputil?4]
ability of each user's future potential contactors, and the
conservative scheme takes the historical workload statage [25]
nodes’ 1-hop neighbors into account. For automatically and
gradually switching between different approaches, we idens
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