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Abstract—The MapReduce platform has been widely used for large-scale data processing and analysis recently. It works well if
the hardware of a cluster is well configured. However, our survey has indicated that common hardware configurations in small-
and medium-size enterprises may not be suitable for such tasks. This situation is more challenging for memory-constrained
systems, in which the memory is a bottleneck resource compared with the CPU power and thus does not meet the needs of
large-scale data processing. The traditional high performance computing (HPC) system is an example of the memory-constrained
system according to our survey. In this paper, we have developed Mammoth, a new MapReduce system, which aims to improve
MapReduce performance using global memory management. In Mammoth, we design a novel rule-based heuristic to prioritize
memory allocation and revocation among execution units (mapper, shuffler, reducer, etc.), to maximize the holistic benefits of
the Map/Reduce job when scheduling each memory unit. We have also developed a multi-threaded execution engine, which is
based on Hadoop but runs in a single JVM on a node. In the execution engine, we have implemented the algorithm of memory
scheduling to realize global memory management, based on which we further developed the techniques such as sequential
disk accessing, multi-cache and shuffling from memory, and solved the problem of full garbage collection in the JVM. We have
conducted extensive experiments to compare Mammoth against the native Hadoop platform. The results show that the Mammoth
system can reduce the job execution time by more than 40% in typical cases, without requiring any modifications of the Hadoop
programs. When a system is short of memory, Mammoth can improve the performance by up to 5.19 times, as observed for
I/O intensive applications, such as PageRank. We also compared Mammoth with Spark. Although Spark can achieve better
performance than Mammoth for interactive and iterative applications when the memory is sufficient, our experimental results
show that for batch processing applications, Mammoth can adapt better to various memory environments and outperform Spark
when the memory is insufficient, and can obtain similar performance as Spark when the memory is sufficient. Given the growing
importance of supporting large-scale data processing and analysis and the proven success of the MapReduce platform, the

Mammoth system can have a promising potential and impact.

Index Terms—MapReduce, data processing, HPC

1 INTRODUCTION

N recent years, large-scale data mining and machine learning

have become increasingly popular. Hadoop [1] is a well-
known processing platform for large data sets and widely used
in many domains (e.g. Google [11], Yahoo! [5], Facebook [9],
LinkedIn [3]). Most of such companies have dedicated Hadoop
clusters, which are equipped with plenty of disks and mem-
ory to improve the I/O throughput. Other institutes developed
special systems for processing big data applications, such as
TritonSort [21]. There are increasing data processing requirements
from scientific domains as well. However, many of the scientific
research institutes or universities do not have dedicated Hadoop
clusters, while most of them have their own high performance
computing (HPC) facilities [14], [20], [12], [7], [17]. The latest
survey of worldwide HPC cites conducted by IDC (International
Data Corporation) also indicates that 67% of HPC systems are
now performing the big Data analysis [4].

We regard the HPC system as a type of memory-constrained
system, in which the memory is a bottleneck resource compared
with the CPU power. This is because the nature of HPC systems
requires the equipment of powerful CPUs for computation, while
the memory and disks are often limited, compared with CPU

power. We have surveyed the Top 10 supercomputers on the
Top500 lists from June 2010 to November 2012 that published
their memory configurations (these supercomputers are Titan,
Sequoia, K computer, JUQUEEN, Stampede, Tianhe-1A, Jaguar
Curie thin nodes, TSUBAME 2.0, Roadrunner, Pleiades, Tianhe-
1, BlueGene/L, and Red Sky). Most of these HPC servers are
equipped with less than 2GB memory for one CPU core, and
some of them with less than 1GB.

In Hadoop, the tasks are scheduled according to the number of
CPU cores, without considering other resources. This scheduling
decision leads to long waiting time of CPUs, which influences the
total execution time due to the performance gap between the CPU
and the I/O system. In Hadoop, every task is loaded with a JVM.
Every task has an independent memory allocator. A Hadoop task
contains several phases that involve memory allocation: task sort
buffer, file reading and writing, and application-specific memory
usage. Most memory allocation is pre-set with parameters in the
job configuration without considering the real tasks’ demand.
Besides, it does not have a memory scheduler for all the tasks
in a TaskTracker. These designs will lead to the problem of
buffer concurrency among Hadoop tasks. Another issue is that
disk operations in Hadoop are not scheduled cooperatively. Every
task reads and writes data independently according to its demand



without coordination, which potentially leads to heavy disk seeks.
For instance, in the merge and shuffle phases, the overhead of
uncoordinated disk seeks and the contention in accesses are so big
that the I/O wait occupies up to 50% of the total time as observed,
which significantly degrades the overall system performance.

To tackle the problem, we have developed a new MapRe-
duce data processing system, named Mammoth !, for memory-
constrained systems (e.g., HPC systems). Mammoth makes the
best effort to utilize the memory according to the existing hard-
ware configuration. In Mammoth, each Map/Reduce task on one
node is executed as a thread, and all the task threads can share
the memory at the runtime. Thread-based tasks make sequential
disk access possible. Mammoth utilizes the multi-buffer technique
to balance data production from CPU and data consumption of
disk I/Os, which implements the non-blocking I/O. Mammoth
realizes the in-memory or hybrid merge-sort instead of simply
external sorting from disks, in order to minimize the size of
spilled intermediate data on disks. Mammoth also caches the final
merged files output by Map tasks in memory to avoid re-reading
them from disks before transferring them to remote reduce tasks.
In order to coordinate various activities, these data buffers are
managed by a global memory manager and an I/O scheduler on
each node. The contributions of this paper are as follows:

1) We designed a novel rule-based heuristic to prioritize memory
allocation and revocation among execution units (mapper,
shuffler, reducer etc), to maximize the holistic benefits of the
Map/Reduce job when scheduling each memory unit.

2) We designed and implemented a multi-threaded execution
engine. The engine is based on Hadoop, but it runs in a single
JVM on each node. In this execution engine, we developed the
algorithm for memory scheduling to realize global memory
management, based on which we further implemented the
techniques of disk accesses serialization, multi-cache, shuf-
fling from memory, and solved the problem of full Garbage
Collection (GC) in the JVM.

3) We conducted the extensive experiments to compare Mammoth
against Hadoop and Spark. The results show that Mammoth
improved the performance dramatically in terms of the job
execution time on the memory-constrained clusters.

The rest of this paper is organized as follows. Section 2
demonstrates the performance problem of running Hadoop in the
memory-constrained situation and discuss the motivations of this
research. We will then present the overall design of the system in
Section 3. In Section 4 and 5, we will present the techniques for
global memory management and I/O optimization, respectively.
The results of performance evaluation will be presented and
analyzed in Section 6. Related work is discussed in Section 7.
Section 8 concludes this paper and discuss the future work.

2 MOTIVATION

This section demonstrate the main performance problems when
running Hadoop in the memory-constrained situations, which
motivates us to develop the Mammoth system. The existing
MapReduce systems usually schedule the concurrent tasks to the
compute nodes according to the number of task slots on each node.
This approach relies on the system administrator to set the number
of task slots according to the actual hardware resources. Most
existing studies about Hadoop in the literature [29], [28] choose

1. We have made Mammoth open source at the Github ,
and also added the patch at Apache Software Foundation. The
web  links are  https://github.com/mammothcm/mammoth  and
https://issues.apache.org/jira/browse/MAPREDUCE-5605, respectively.
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Fig. 1. CPU Utilization in Hadoop.
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the number of slots according to the nodes” CPU cores, and do not
take into consideration other resources such as memory or disks.
This is why the actual per-node efficiency in a Hadoop cluster is
often dramatically lower than the theoretical peak value [21].

Memory is an important resource to bridge the gap between
CPUs and I/O devices. However, we observed the following main
problems for the memory usage in Hadoop. First, the memory
management in Hadoop is rather coarse-grained. The memory size
available for a Map or Reduce task is set in a static configuration
file, and is fixed at runtime. Therefore, even after the Map tasks are
completed, the buffers used by those tasks cannot be used by the
Reduce tasks. Second, the memory mainly used by the Map tasks
is the intermediate buffer. When the buffer cannot accommodate
the intermediate data, the entire intermediate data will be spilled
to the local disk. For example, if the intermediate data for a
Map task are 100MB, but the buffer size is only 8OMB, then the
intermediate data will be spilled to the disk as an 80MB file and a
20MB file. As the result, the final merge-sort phase in Hadoop will
be largely affected by reading an 80MB file from the disk. Finally,
although different Map tasks may produce the intermediate data
with different sizes (e.g., the “grep” application), Hadoop does not
provide the mechanism for the concurrently running Map tasks to
coordinate their memory usage with each other.

The I/O operations may also cause very inefficient usage
of resources. Firstly, a merge-sort algorithm is widely used in
Hadoop [19]. In this algorithm, the operations of CPU computing
(sort) and disk spilling are mashed together. There are a multitude
of I/0O waits during this procedure. Secondly, parallel I/O is
performed in Hadoop whenever possible. However, it has been
shown in previous literature [21] that parallel I/O may cause vast
disk seeks. Especially, the situation may become even worse when
there is only one disk on a node. Finally, as mentioned above, the
Reduce tasks will have to pull the output files of the Map tasks,
which should be performed as early as possible in order to improve
the read performance. However, the file buffer in the file system
has the lowest priority of using the memory in Linux, which will
cause the so called long-tail effect revealed in [30].

In order to demonstrate the performance problems in Hadoop,
we have conducted the following benchmark experiments. The
experiment platform includes a cluster of 17 nodes. Each node
is equipped with two 8-core 2.6GHz Intel(R) Xeon(R) E5-2670
CPUs, 32GB memory and a 300GB 10,000RPM SAS disk, and
running RedHat Enterprise Linux 5 (Linux 2.6.18-308.4.1.el5).
The version of Hadoop used in the experiment is 1.0.1, running
on a 320GB dataset created by the built-in randomtextwriter. The
application we used is WordCount. The job configurations are set
to have the block size of 512MB, 8 Map-slots and 8 Reduce-slots.
We learned from the log files of the pre-executed jobs that the ratio
of intermediate data to input data is about 1.75. We adjusted the
size of the map sort buffer so that the total map output can be
exactly fitted into the buffer, thereby avoiding the costly spill-
merge process. We used the “iostat” command in Linux to record



the CPU-usage and I/O-wait information and plotted it in Figure
1, in which the x-axis represents the job runtime while the y-axis
is the ratio of CPU to I/O wait.

As shown in Figure 1, the I/O wait time still accounts for
a large proportion of the total CPU cycles, which means the
I/O operations negatively impact the CPU performance. In the
experiment, the number of map task waves is 5. From the Hadoop
job log files, we found that map tasks in different waves needed
increasingly more time to process the same sized data along with
the job running. The reason is that the size of the data that the Map
function produces is larger than what the I/O devices can consume
at the same time. At the beginning, the generated intermediate data
can fit into the memory buffer of the native file system in Linux.
When the buffer cannot hold the data anymore, CPUs have to be
idle and wait for the disks to finish all pending 1/O operations. The
situation would become even worse when the servers are equipped
with multi-core CPUs but a single disk.

However, if we only consider what was discussed above, it
appears that the memory usage in Hadoop has actually been
adjusted to optimism: every Map task performed only one spill
at the end. Then why was there so much I/O wait time? From
Section 2.1, we can know that although each Map task can hold
all the intermediate data in memory, the Reduce tasks must pull
the Map tasks’ results from the disk, that is, all the intermediate
data will be read and written once. On the other hand, the Map
tasks will use up at least 8 x 512MB x 1.75 = 7GB memory. After
the Map tasks have finished, the Reduce tasks cannot realize there
is now newly freed memory, because the reduce tasks can only use
the amount of memory designated in the configuration file before
the startup of a MapReduce job. This means that at least 7GB of
memory is wasted. From the discussions in section 2.1, we know
that this will in turn cause more I/O operations. Therefore, it can
be concluded that Hadoop will cause serious I/O bottleneck on a
memory-constrained platform.

Although we have adjusted the configurations to optimum in the
above benchmarking experiments(e.g., the size of the sort buffer
is adjusted so that all Map output can be accommodated), the
CPUs still spent a considerable amount of time waiting for the
completions of I/O operations. This is because the native Hadoop
cannot utilize the memory effectively, and as the consequence has
to perform a large number of unnecessary 1/Os. Therefore, a more
efficient strategy to utilize the memory is desired to improve the
overall system performance. Motivated by these observations, we
have designed and implemented a memory-centric MapReduce
system, called Mammoth. The system adopts the global memory
management strategy and implements a number of I/O optimiza-
tion techniques to achieve the significant performance improve-
ment on the memory-constrained platform. In the remainder of this
paper, a overall system architecture of Mammoth is introduced in
Section 3. Then Section 3.4 and 4.3 present the memory manage-
ment strategies and the I/O optimization techniques, respectively,
implemented into the Mammoth architecture.

3 SYSTEM DESIGN

This section presents the system architecture of Mammoth and
how to reform the MapReduce execution model. To improve the
memory usage, a thread-based execution engine is implemented
in Mammoth.

3.1 System Architecture

Figure 2 shows the overall architecture of the Execution Engine
in Mammoth. The execution engine runs inside a single JVM
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Fig. 2. Architecture and Workflow of Mammoth.
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(Java Virtual Machine). In Mammoth, all Map/Reduce tasks in a
physical node run inside the execution engine, and therefore in
a single JVM, which is one of the key architectural differences
between Mammoth and Hadoop. Mammoth retains the upper
cluster management model in Hadoop, i.e. the master JobTracker
manages the slave TaskTrackers through heartbeats. When the
TaskTracker obtains a new Map/Reduce task, the task is assigned
to the execution engine through RPC (Remote Procedure Call) and
the execution engine informs the TaskTracker of the task’s real-
time progress through RPC too. In Hadoop, a Map/Reduce task
runs in a separate JVM. In the execution engine, the Map/Reduce
tasks interact with the Cache Scheduler, which is responsible for
processing the memory allocation and revocation requests from
the tasks (i.e., the control flow for acquiring and returning the
buffer) and more importantly, coordinating the memory demands
among the memory management components through the Public
Pool. The I/0 Scheduler is responsible for reading the data from
the disk (through the Reader) and spilling the data from the
Public Pool to the disk (through the Spiller). Both a Map task
and a Reduce task contain 4 functional components which will
be discussed in detail in next subsection.

Mammoth implements the global memory management through
the Public Pool. The Public Pool contains a few fundamental data
structures which enable the effective memory management. The
Public Pool consists of three types of memory areas: Element
Pool, Cache Pool and Multi-buffer, each of which has a different
data structure. The Element Pool consists of the Elements. An El-
ement is a data structure consisting of index, offset, < key,value >
contents, which is similar as the data structure in Hadoop. The
Elements store the unsorted intermediate < key,value > pairs
collected by the user-defined Map function (i.e., the Mapper in a
Map Task in Fig. 3). The default size of an Element is 32K. The
Cache Pool consists of the cache units. A cache unit is a byte array
with the default size of 2M. Different from the Element Pool, the
Cache Pool is used to hold the sorted intermediate data generated
by other functional components in a Map/Reduce Task in Fig. 3.
Multi-buffer is used by the I/O Scheduler to buffer the data to
be read from and spilled to the disk. This is also why Figure 2
depicts the interaction between the I/O scheduler and the Public
Pool. The data structure of the Multi-buffer will be discussed in
detail when we discuss the I/O optimization in Section 5.

Similar as in Hadoop, the execution of a Map/Reduce job
in Mammoth also has three phases: Map, Shuffle, and Reduce.
However, in order to realize the global memory management
through the above data structures and achieve better performance,
the detailed execution flow in each phase is different, which is
presented in the next subsection.
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3.2 The Map phase

Figure 3 shows the details of the Map phase in Mammoth. The
Reader component reads the input split from HDFS into its Multi-
buffer. Mapper requests an empty Element (through the Cache
Scheduler) from the Element Pool, and reads the data from the
Multi-buffer and collects the translated < key,value > pairs into
the new Element. When the Element is full, the < key,value >
pairs in the Element is sorted. The Element holding the sorted
data is then added to the Element Queue. The Element Queue
grows as more elements are added. When the size of the Element
Queue reaches a threshold (10M by default), MSorter requests a
corresponding number of cache units from the Cache Pool, and
then merge-sorts the Element Queue and store the sorted data
into those cache units. This batch of cache units is called a cache
file. After the Element Queue is stored into the cache file, the
corresponding Elements are recycled to the Element Pool. A Sort
Buffer is designed to hold these cache files. The maximum size
of the Sort Buffer is determined by the Cache Scheduler. After
Mapper and MSorter have finished their work (i.e., the input
data of the Map task has all been converted to the form of the
cache files), Merger merges all intermediate cache files in the Sort
Buffer to a final cache file in the Send Buffer. The Send Buffer
holds the data to be consumed in the Shuffle phase. When the
Sort Buffer or the Send Buffer cannot hold the intermediate data,
it will have to be spilled to the local disk and be read into the
buffer later. The I/O requests are managed by the I/O Scheduler.

3.3 The Shuffle phase

Cache Pool get

MergeSort

read

return

“Receive Bufrd

Send Buffer

Fig. 4. The Shuffle phase in Mammoth.

In Hadoop, the reduce task starting time is decided by the
parameter “mapreduce.reduce.slowstart.completed.maps”, which
is set to be 0.05 by default. It effectively means that the Reduce
tasks will be launched shortly after the Map tasks begin. In most
cases, it brings more benefits by launching reducers early rather
than later. This is because 1) it can overlap the shuffle network I/0
with the map computation, and ii) if Reduce tasks start early, then
it is more likely that they can pull the newly written data from the
page cache, reducing the I/O data at the Map side. This is why in
the default setting of Hadoop the Reducers are launched shortly
after the Mappers begin. From the perspective of the Mammoth
design, it is also more beneficial by launching the reducers shortly
after the mappers start. This is because Mammoth manages the
data buffer in the task execution engine, and tries to send the
buffered data to the Reduce tasks as soon as possible.

There is a major difference in the Shuffle phase between
Hadoop and Mammoth. In Hadoop, the data generated by the Map

tasks is written to the local disk, and the Reduce tasks pull the data
from the local disk in the Map side to the Reduce side, which we
call passive pulling. In Mammoth, the intermediate data produced
by the Map tasks (i.e., the final cache file in the send buffer)
are actively pushed by the Map task to the Reduce tasks. When
the memory is insufficient, the send buffer may only be able to
hold part of the intermediate data and therefore some intermediate
data have to be written to the disks. The sender on the map side
knows the status of the buffer and the intermediate data in real
time, and therefore it can push the intermediate data to the reduce
side before they are written to disks. If pulling is used, the reduce
side has no idea about the status of the intermediate data (in disks
or in buffer) and may not be able to pull the data before they are
written to disks (therefore cause more I/O operations).

The design details of the Shuffle phase in Mammoth are
illustrated in Figure 4. As shown in Figure 4, there is a Sender
and a Receiver in the Execution Engine on a node. Sender sends
the file cache file in the send buffer to the Reduce tasks through the
network. More specifically, The final cache file contains the data
that need to be sent to different Reduce tasks. Sender consists of
a group of send threads, each of which is responsible for sending
the portion of data destined to a particular Reduce task. After
Sender finishes sending the final cache file, its cache units are
recycled to the Cache Pool.

At the Receiver side, Receiver also consists of a group of
receive threads, called subreceiver. When Receiver receives a
data-transfer request originated from a Send thread, it distributes
the request to the corresponding Reduce task. Then, the Reduce
task distributes the request to one of its subreceiver. The sub-
receiver requests a cache file from the Cache Pool to store the
received data. The newly allocated cache file becomes a part of
the Receive Buffer. The process described above implements the
active pushing approach for shuffling, which differentiates the
passive pulling approach in Hadoop. The data in the Receive
Buffer will be processed next by the Reduce phase.

The maximum size allowed for the Receive Buffer (and for the
Send Buffer) is decided by the Cache Scheduler at runtime, which
will be discussed in Section 4 in detail. The Receiver can predict
whether the Receive Buffer is not sufficient to hold all data being
sent by the Map tasks. If it is not sufficient, the corresponding
amount of existing data in the Receive Buffer will be merge-sorted
and spilled to the local disk through the Spiller.

As shown in Fig. 5, the final cache file in the Send Buffer is
also written to the disk through Spiller. But the writing is for
the purpose of fault tolerance, and it occurs concurrently with
Sender/Receiver sending/Receiving data. Therefore, the writing
does not stall the progress of the job. After Spiller finishes writing
data, the Map task is deemed to be completed successfully. Note
that Mammoth follows the same fault tolerance design as Hadoop.
Firstly, the map tasks’ output data are written to disks for fault
tolerance. Secondly, when a machine is down, Mammoth will re-
execute the tasks scheduled to run on the machine.

3.4 The Reduce phase

|:| [ |:|4—>‘ RSorter }—»{ Reducer }—»{ Pusher }—l

Receive Buffer
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Fig. 5. Reduce phase in Mammoth.



Figure 5 shows the details of the Reduce phase. In typical
cases, all data to be reduced are in memory (i.e., the Receive
Buffer). The Reduce phase starts with RSorter using the merge-
sort to sort the data in the Receive Buffer. However, for some
data-intensive applications or in case that the cluster nodes have
small memory sizes, the size of the total intermediate data may
be more than that of the Cache Pool. Under this circumstance,
some intermediate data must be spilled to the disk. Therefore, in
Figure 6, the sources of the data to be sorted by RSorter may be
hybrid, i.e., from both memory and disk.

After RSorter has sorted the intermediate data, Reducer begins
to process the aggregated < key,values > pairs using the Reduce
Function. Pusher pushes the final output to HDFS. The cache
units holding the final output are then returned to the Cache Pool
for recycling. Both Reader and Pusher works in a non-blocking
way to overlap CPU and I/O. Reader, RSorter-Reducer and
Pusher forms three stages of a pipeline for processing the Reduce
tasks. Note that we regard RSorter and Reducer together as one
stage. This is because RSorter merge-sorts the sorted intermediate
files so that the <key, value> pairs with the same key can be
aggregated during the sort procedure and can feed the Reducer
simultaneously. Therefore, our view is that RSorter and Reducer
are synchronized and should be treated as one pipeline stage
together. The granularity of the pipeline is one cache unit, that
is, after one cache unit is processed by a stage in the pipeline,
it is handed over to the next stage for processing. After all these
procedures are completed, the Reduce task is completed.

4 MEMORY MANAGEMENT

In this section, we will first summarize the usage of the memory
in Mammoth, describing various rules about sharing the global
memory. And then we will present the two key components of the
memory management: Cache Scheduler and Cache Pool. Finally
we will describe the scheduling algorithms that are designed to
achieve the efficient sharing of the global memory.

4.1 Memory Usage Analyses in Mammoth

Element Pool Sort Buffer
Cache Pool Send Buffer

Fig. 6. Memory usage types

In Mammoth, in order to maximum the memory utilization,
we design an execution engine, JVM, to manage most part of a
node’s memory in the application level. As discussed in section 3,
there are three types of memory usage: Element Pool, Cache Pool
and Multi-buffer (as illustrated in Figure 6). The Element Pool
is used for the Map Phase, presented in section 3.2. The Muliti-
buffer is used in the I/O Scheduler, to be described in Section 5.2.
The Cache Pool consists of three types of buffer: Map tasks’ Sort
buffer, Map tasks’ Send buffer and Reduce tasks’ Receive Buffer.

As mentioned in Section 3.1, an Element is a data structure
which contains the index, the offset arrays, and the content in the
< key,value > pairs. The additional information is mainly used
by quick-sort, which can reduce the overhead of CPU because the
swapping of < key,value > pairs can be replaced by the simply
swapping of their indices. However, since memory is constraint in
many cases, So we make size of Element Pool relatively small and
merge-sort the quick-sorted contents in Elements in the following
steps. We have optimized in-memory merge-sort which will be

Memory
usage

demonstrated in section 5.3. For sharing more fairly between the
Map tasks and recycling faster, the size of an Element will be
relatively small too, which is 32KB by default.

The size of the Element Pool can be calculated using Eq. 1.

ElementPoolSize = SpillMemSize x MapSlots (1)

In Equation (1), ElementPoolSize represents the total size of
the Elements in the Element Pool, SpillMemSize represents the
threshold memory size that a map task could use in the Element
Pool, which is 10M by default, MapSlots represents the number
of the Map slots in a TaskTracker node. Note that the size of the
Element Pool is fixed at runtime.

The multi-buffer is mainly used by Reader and Spiller to
overlap the I/O operations. However, it is likely that the CPU
computation or the disk I/O operations become the performance
bottleneck when both CPU computation and I/O operations are
being performed. For example, if the CPU produces the data faster
than the disk I/O, the disk I/O becomes the performance bottleneck
and the data will accumulate in the buffer queue. Otherwise, the
CPU computation is the bottleneck. This is the reason why every
queue in Spiller or Reader has a threshold memory size of 10MB
by default. Once the size of the accumulated data exceeds the
threshold of the queue, the CPU will be blocked until there is
the spare space in the queue. Once there are the data added to
the queue, it will be written to the disk soon. The situation for
Reader is the same, and therefore its discussion is omitted.

In the following, we will give a typical and concrete example
of the memory usage. Suppose each node has 16 CPU cores with
1GB memory per core. The execution engine JVM is configured
with the heap of size 15 GB, 2/3 of which is used for the
intermediate buffer, i.e. 10GB. The number of the Map slots for
each node is 12, while the number of the Reduce slots is 4. The
Block size in HDFS is 512MB.

As for the Element Pool, since the parameters, SpillMemSize
and MapSlots, are configured in the configuration files and fixed
at runtime, ElementPoolSize is relatively small and fixed, e.g.
10MB x 12 = 120MB. After analysing the entire workflow in
Mammoth, we find that a task will not issue more than two 1I/O
operations once. Thus, the memory used for multi-buffer will not
exceed 16 x 2 x 10MB = 320MB, and is usually much lower than
this maximum size. The rest of the memory buffer is used by
the Cache Pool, which is 10GB — 120MB — 320MB = 9560MB.
Therefore, the main task of memory management in such a system
is the management of the Cache Pool.

For many data-incentive applications, e.g. Sort, PageRank, etc.,
the size of the intermediate data is the same as that of the input
data. Therefore, since there are 12 Map tasks in one wave and the
block size in HDFS is 512MB, the size of the intermediate data
generated in one wave will be 12 x 512MB = 6GB. Usually, the
Shuffle phase can run simultaneously with the Map process and
is the bottleneck for data-incentive applications. Consequently,
the intermediate data generated in different waves of Map tasks
will accumulate. The strategies we adopt to share the Cache Pool
among the Sort Buffer, Send Buffer and Receive Buffer will be
discussed in section 4.3.

4.2 Memory Management Structure

In Mammoth, the Cache Scheduler is responsible for the memory
management, which mainly operates on the data structure, Cache
Pool, which consists of a linked list of Cache Units, is the main
data structure that the memory management operations have to
operate on.
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In Mammoth, the component handling the global memory man-
agement is the Cache Scheduler, whose role has been illustrated
in Figure 7. The tasks executing in the execution engine interact
with the Cache Scheduler for memory allocation and release.
The Cache Scheduler executes as a single model (i.e., a single
instance) in the execution engine. A simple design is to design a
single component that is responsible for all memory allocations
and revocations. However, such a design will cause the Cache
Scheduler to become a performance bottleneck at runtime. This
is because the cache scheduler must interact with the map/reduce
tasks at runtime to assign and recycle memory, and the interactions
can be very frequent. Therefore, we designed a hierarchical
structure for the Cache Scheduler, which is shown in Figure 7.

There are two layers in the Cache Scheduler. The top layer is
called the Central Ram Manager (CRM), and the middle layer
is called Ram Manager (RM). CRM uses a global memory man-
agement algorithm to dynamically adjust the memory proportions
among RMs, based on the conditions of the global memory usage
(The detailed algorithm outline will be described in the supple-
mentary file). There are two types of RMs: Map Ram Manager
(MRM) and Reduce Ram Manager (RRM). MRM is responsible
for managing the memory used by the Map tasks, while RRM is
for managing the memory used by the Reduce tasks. The tasks
(Map tasks or Reduce tasks) request or free the memory directly
from RMs (MRMs or RRM). When RMs allocate the memory to
the tasks, it comes down to allocating the memory to the three
types of buffers: Sort, Send and Receive. RMs will update CRM
of the value of their parameters at runtime, which will be used
by CRM to make the global memory management decisions. With
this hierarchical cache scheduler, adjusting the quotas is conducted
by the central ram, while interacting with tasks is performed
by the map/reduce ram manager, which helps prevent the Cache
Scheduler from becoming a performance bottleneck at runtime.

RMs allocate the memory to the tasks based on the memory
status at runtime. However, the following two general rules are
used by the Cache Scheduler for memory allocations.

a) the priority order of the three types of buffer is: Sort > Send
> Receive (the reason for this priority setting will be explained in
Section 4.3. This means that when CRM distributes the memory
between MRM and RRM , MRM is deemed to have the higher
priority than RRM (i.e., the Sort buffer and the Send buffer have
the higher priority than the Receive buffer), and that when MRM
allocates the memory to the Sort buffer and the Send buff, the
Sort buffer has the higher priority than the Send buffer.

b) Memory revocation is conducted using the priority order that
is opposite to that in memory allocation. This means that when
the memory is insufficient, Mammoth may spill the data to the
disk based on the order of Receive > Send > Sort. But different
from the allocation, the memory can be recycled unit by unit.

4.2.2 Cache Pool

Since there are frequent memory allocations and revocations in
Mammoth, there will be the big pressure on Garbage Collection
(GC) if we simply rely on JVM [18] for GC. Another problem is
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Fig. 8. Data Structure for Memory Management.

that if we rely on the file system’s buffer to cache the intermediate
data for shuffle. It is very likely that the shuffled data are still in
memory while the intermediate data produced later is flushed to
the disk, which will cause the long-tail effect. Our solution is
to design an application-level mechanism to reclaim the unused
cache space [26]. The Cache Pool is responsible for this purpose.
Moreover, an data structure, called cache file, is designed for the
Cache pool to control the management of the data cache.

As shown in Figure 8, the Cache Pool is made of a list of
cache units. When an operation requests a memory block, a cache
file, composed of a queue of cache units, will be returned. There
are the java classes, CachelnputStream and CacheOuputStream,
associated with a cache file. Therefore, accessing a cache file is
just like accessing a typical file in Java. In doing so, the way
of accessing the memory is unified and consequently the file
buffer can be managed in the application level. Memory allocation
and revocation in the Cache pool is performed by inserting and
deleting the Cache Units in the Cache pool. Since the Cache Units
are organized as a linked list in Cache pool. The overhead of
Memory allocation and revocation in Cache pool is rather low.
The pressure for garbage collection is therefore greatly reduced.
Further, Although the memory is allocated in the unit of a cache
file, the memory can be recycled by cache units in order to
accelerate the memory circulation, i.e., if any part of a cache file
is not needed, the corresponding cache units can be freed.

4.3 Memory Management Strategies

This section discusses the memory management algorithms of
the Cache Scheduler. In Mammoth, all tasks are executed as
the threads in a execution engine to achieve the global memory
management. The following issues need to be addressed in order
to optimize the efficiency of memory usage.

1) Since multiple types of buffer may be used simultaneously
in the system, the memory has to be allocated properly among
these different types of buffer.

2) Memory allocation has to be adjusted dynamically. This
is because the memory demands will be different in different
execution stages of MapReduce jobs.

This section aims to tackle the above two issues.

From last section, we know that the memory needed by the
Element Pool and the Multi-buffer is relatively small. So our
attention is mainly focused on how to manage the Cache Pool.
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Fig. 9. Execution flow for MapReduce.

In order to allocate the memory properly among different types
of buffer, i.e., Sort Buffer, Send Buffer and Receive Buffer, we
first analyze their usage pattern over time. For a MapReduce Job,
there are some important time points in its life cycle. They are
illustrated in Figure 9. The Map phase begins at #;. The Shuffle



phase begins shortly after at t,. After Map ends at t3, Shuffle is
performed for another period of time and ends at #4. Once Shuffle
ends, the Reduce phase begins, and it finally ends at 5. In different
phases of the lifecycle, there are different memory usage patterns.
The Sort Buffer is only used before t3; The Send Buffer is used
between t, and t4; The utilization of the Receive Buffer occurs
within the time period from f, to 5. These features give us the
chance to assign the three types of buffers with different priority
at runtime.

Every intermediate <key, value> pair flows from Sort Buffer to
Send Buffer and then from Send Buffer to Receive Buffer, which
forms a buffer stream. If the upstream buffer does not have higher
priority, the memory will gradually be accumulated towards the
downstream buffer and eventually, the upstream buffer will end up
having no memory to use. For example, if the Sort Buffer does not
have higher priority than the Send Buffer, then when one wave of
map tasks finish, the memory they use will be transferred to the
Send buffer and the memory in the Sort Buffer will be recycled.
When the next wave of tasks request the memory for the Sort
Buffer, they cannot force the Send Buffer to be recycled and the
intermediate data generated by them have to be spilled to the
disk. Therefore, more disk I/Os will be generated. The situation
will also happen with the pair of Send Buffer and Receive Buffer.

Our aim is that only the intermediate data that exceed the
total size of the physical memory on one node should be spilled
and read once. As shown in Figure 3, after the Map phase is
completed at 3, the Sort Buffer is not needed anymore, and no
new data (i.e., the final cache file) will be produced (by the Merger
component in Figure 3 and consume the Send Buffer. In order
to accelerate the Reduce phase, the memory allocated to the Map
tasks (through MRM) is gradually returned to the Cache Pool over
the time duration between 3 and 74, so that it can be reused by
the Reduce tasks (through RRM). In doing so, the received data
that have been spilled to the disk can be read back to the Receive
Buffer in an overlapping way, which has been described in section
3.3. We can know that only between f, and #3, may the Sort, Send
and Receive phase request the memory simultaneously. In order
to optimize performance as discussed above, we set the priorities
of the three types of buffers in the following order: Sort Buffer
> Send Buffer > Receive Buffer.

The following equations will be used by the Cache Pool to
determine the sizes of different types of buffer at runtime, in
which MaxSize is the maximum size of memory that can be
used for intermediate data, EMPoolSize is the total size of the
Element Pool, MultiBufSize is the total size of memory used by
I/O Scheduler for the I/O buffer, TotalSize is the total size of
Cache Pool, MRMSize is the size of memory that MRM can use
to allocate among Map tasks, RRMSize is the size of memory
RRM that can use among Reduce tasks, SortBufSize is the size
of Sort Buffer, CurSendBufSize is the current size of Send Buffer,
MapNum is the number of Map tasks that are running currently,
CurSortBufSize is the current size of Sort Buffer, MapSortPeak is
the peak size of each map task’s sort buffer (initialized to be 0),
i.e., the maximum size of the sort buffer in the running history of
the MapReduce job. By using the MapSortPeak, Mammoth can
reserve enough space for map tasks and prevent frequent memory
recycling from the send or receive buffer when the memory is
constrained.

TotalSize = MaxSize — EMPoolSize — MultiBu fSize
RRMSize = TotalSize — MRMSize
MRMSize = Min(SortBufSize + CurSendBufSize, TotalSize) 2)

SortBu Size = {MapS()rtPeak.X MapNum  MapSortPeak # 0
CurSortBufSize MapSortPeak =0

When one Map task is launched or completed, it will register
or unregister to MRM. In this way, MRM can know the value
of MapNum. MergeSort reserves (i.e., requests) the cache files
for Sort Buffer from MRM, and Sender unreserves (i.e., returns)
the cache units that have been shuffled from the Send Buffer and
returns them to MRM. This is how MRM counts SortBufSize and
CurSendBufSize. Every Map task calculates its MapSortPeak at
runtime, and just before it is completed, it reports to MRM its
MapSortPeak. When the values of these variables change, MRM
informs CRM and CRM decides the heap sizes for both MRM
and RRM. Similar to Map, when a Reduce task begins or ends, it
registers or unregisters to RRM, and RRM then divides RRMSize
evenly among the executing Reduce tasks. Receiver reserves
the memory for the Receive Buffer from RRM, while Pusher
unreserves the memory from the Receive Buffer and returns it
to RRM. RRM informs CRM of its memory usage condition,
which is used to determine when memory is a constraint for
the Map tasks. During the procedure of the whole workflow, the
memory usage for RMs will change and their memory quotas
will be adjusted dynamically. When the new heap size for RM is
larger than before, there is enough memory for the tasks to use.
On the contrary, when the new heap size is smaller than before,
it suggests that the memory is not sufficient and certain parts of
the buffer have to be spilled to the disk promptly. The detailed
algorithm outline for CRM scheduling memory between MRM
and RRM will be presented in the supplementary file.

5 1/0 OPTIMIZATION

In Mammoth, in addition to optimizing memory management as
presented above, we have also developed the strategies to optimize
the I/O performance: 1) designing a unified I/O Scheduler to
schedule I/O requests at runtime; 2) tackling the problem that
parallel I/O causes massive disk seeks; 3) optimizing the Merge-
sort in Hadoop.

5.1 1/0O Scheduler
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Fig. 10. I/O Scheduler architecture.

In Hadoop, because every task is executed in an individual
JVM and does not interact with each other, parallel I/Os that are
performed can cause massive disk seeks, and therefore decrease
the I/O performance (this phenomenon is also observed in the
literature [21]). To implement sequential I/O and overlap the CPU



computing and disk I/O, we have developed an I/O scheduler in
Mammoth, whose architecture is shown in Figure 10. There are
two components: Spiller andReader, responsible for write and
read operations respectively. Both components have request buffer
queues, with each queue corresponding to one I/O request. These
buffers are called multi-buffer. Each buffer queue has a priority,
used by Spiller or Reader to reorder the write/read operations.

In Mammoth, the I/O operations are divided into two types:
passive I/O and active I/O. An I/O operation is called passive
I/O when the I/O operation is generated because the intermediate
data can not be hold in the buffer and they have to be spilled
to the disk temporally. Other I/O operations are called active
I/O, such as reading the input data from HDFS, writing the final
results to HDFS, and writing the Map tasks’ intermediate results
for fault tolerance. Active I/O has higher priority than passive
I/0, because Active 1/0O is more important for the job progress
and should be performed as promptly as possible. For passive
I/Os, the operations that operate on the type of buffer with higher
allocation priority have the lower spill priority and the higher
read priority. For example, since the Sort buffer has the higher
allocation priority than the Send buffer. When the system is short
of memory, the data from the Send Buffer has the higher spill
priority to generate spare memory. If both types of buffer have
spilled the data, the Sort buffer has the higher read priority. The
detailed algorithm outline for spilling in the I/O scheduler will be
presented in the supplementary file.

5.2 Parallel 110

We have conducted an experiment about three I/O types: parallel,
sequential, and interleaved on a cluster node. The node is equipped
with one disk and 8 CPU cores, running CentOS Linux 5 and its
memory is almost used up by the applications. The program is
coded in java and executed with jdk-1.6.0. For each of the three
types of I/0, 8 x 200MB files are spilled three times, each with
different sizes of write buffer. The completion time of each spill
is recorded and the average results are plotted in Figure 11, in
which the x-axis is the size of write buffer, while the y-axis is the
completion time of the spill, representing the spill speed. What
we can observe from the results are as follows: Firstly, in most
cases, the order of the completion time is: parallel > interleaved
> sequential; Secondly, when the buffer gets bigger, the speed of
parallel I/O decreases rapidly.
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Fig. 11. Comparison among different I/O types

In theory, parallel I/Os will cause overhead due to massive
disk seeks, while sequential I/Os do not have this problem. When
there is sufficient memory, Linux file system can buffer the I/O
requests and solve this problem effectively through a series of
optimizations. However, for data intensive applications, there will
be little memory left for the file system, and the inefficiency
of parallel 1/Os will appear. In this case, sequential I/Os can
access the disk more effectively (without massive disk seeks).
However, sequential 1/Os causes the problem of unfairness. When

the granularity of interleaved I/O is set appropriate, we can achieve
a balance between efficiency and fairness. Since most memory is
used as a sequence of cache units in Mammoth, the granularity
is set as one cache unit. When spilling a cache file, the data is
added to the corresponding I/O queue cache unit by cache unit.
For the Reader, when a cache unit is full, it will pop out from
the queue and be read.

5.3 Merge-Sort

In Mammoth, the merge-sort operations are mainly performed on
the data stored in the memory, which we call in-memory merge-
sort. In the conventional Hadoop, however, the sort algorithm is
mainly performed over the data stored in the disks, which we call
the external sort. As the result, the CPU-bound sort instructions
and disk I/Os are interleaved in executions. Consequently, after
the buffer is full of the sorted data, the CPU must block and wait.
With the multi-buffer described above, we can implement non-
blocking 1/Os. As for the Spiller, the units of a cache file are
added to the Spiller’s buffer queue. After a cache unit is written
to the disk, it will be returned to the Cache Pool immediately.
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Fig. 12. Merge-sort in Mammoth.

As we know, the space complexity of the traditional merge-sort
algorithm is relatively high. In Mammoth, the cached data has a
common data structure, i.e., the cache file, which is composed
of multiple cache units. As shown in Figure 12, assume that
there are n sorted cache files to be merged, that the size of one
cache unit is U, and that the i-th (1 <i < n) cache file contains L;
cache units. Then the space complexity of the traditional merge-
sort is Y | L; x U. In Mammoth, however, after a cache unit is
not used anymore, it can be returned to the Cache Pool. Its space
complexity is n x U.

6 EVALUATION

In this section, performance evaluation is presented to verify the
effectiveness of the Mammoth system. The settings of the exper-
iments are described in corresponding sections. The performance
of Mammoth is compared against Hadoop of version 1.0.1.

6.1 Intermediate Data Size

As discussed in Section 2, the size of intermediate data has
a big impact on performance of Hadoop. Three typical built-
in benchmark applications in Hadoop are used in these experi-

ments: WordCount without Combiner, Sort and WordCount with
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Fig. 13. The performance relative to intermediate data size.



TABLE 1

Configuratons of Hadoop
Parameter Values
mapred.tasktracker.map.tasks.maximum 8
mapred.tasktracker.reduce.tasks.maximum 8
mapred.reduce.child.java.opts 2GB
mapred.map.child.java.opts 2.4GB
10.sort.factor 100
i0.sort.mb 1.7GB
io.sort.spill.percent 0.9
io.sort.record.percent 0.5
dfs.block.size 512MB

combiner. These three benchmarks represent different relations
between intermediate data and input data. WordCount without
combiner, Sort, and WordCount with combiner represent the cases
where the size of intermediate data is larger than, equal to and
smaller than the size of input data, respectively.

WordCount is a canonical MapReduce application, in which
the Map function translates every word in the input data to a
< word,1 > pair in the intermediate data and the Reduce function
sums the word’s occurrences and transmits a < word,N > pair.
WordCount without combiner refers to this version of WordCount.
Suppose that the average length of the words is x bytes. In
the intermediate data, the value of the < key,value > pair is an
integer and its length is 4 bytes in Java. Then the ratio between
the size of the intermediate data and the size of the input data
is %. The WordCount with Combiner refers to WordCount
application with a combiner function. The combiner function
aggregates the Map task’s results by summing up the word’s
occurrences and transmitting a < word,N > pair for a map task.
Based on this function, the intermediate data will be < word,N >
pairs, which will be smaller than the input words. Sort is the
useful measurement of MapReduce performance, in which the
MapReduce framework will sort the data automatically, and the
Map function just transmits all the input < key,value > items as
the intermediate items.

17 nodes are used in this set of experiments. Each node is
equipped with two 8-core Xeon-2670 CPUs, 32GB memory and
one SAS disk. One node works as the master and the rest 16 nodes
work as slaves. We will compare the performance of Mammoth
and Hadoop in terms of i) job execution time, ii) CPU utilization,
and iii) I/O utilizations. The input dataset of Sort is produced
by randomwriter (native in Hadoop). The size of the dataset for
Sort is 320GB, 20GB for each slave node. The input dataset for
WordCount is produced by randomtextwriter (native in Hadoop
too), and the size is also 320GB with 20GB for each slave
node. Each job is run independently for three times and the
collected results are then averaged. The job configurations of
Hadoop are shown in Table 1. This is the best configuration for
Hadoop according to our analysis and testing. The configurations
of Mammoth are the same as Hadoop, except that the whole
memory that all tasks are sharing the heap of the same JVM. The
heap size of the execution engine JVM in Mammoth is 32GB,
which is the total memory size in a node. Note that in Table 1,
the block size is set to be 512MB. This is because the work in
[19] shows that setting the bloack size to be 512MB in Hadoop
(instead of the common configuration of 64MB) can reduce the
map startup cost and increase the performance. Therefore, we are
not comparing Mammoth against Hadoop with the disadvantaged
configurations in the experiments.

Figure 13 shows the total execution times of three different
applications as well as the breakdown of the execution times
in three different execution phases, where WCC is WordCount

with combiner and WC is WordCount without combiner. It can
be seen from the figure, when running WC, Mammoth reduces
the job execution time significantly compared with Hadoop. The
execution time of WC in Hadoop is 4754s, while the execution
time in Mammoth is 1890s, which amounts to a speedup of 2.52x
in job execution time. The reasons why Mammoth achieves the
performance improvement are as follows:

1) Mammoth reduces the number of disk accesses. Although in
Hadoop the 1.7GB intermediate buffer in the Map tasks can hold
all the intermediate data in memory, which minimizes the 1/O op-
erations for intermediate data, Hadoop still writes the intermediate
data once and read once for the Shuffle phase. Mammoth pushes
the intermediate data to the Reduce tasks directly from memory
and performs fault-tolerance spilling in an asynchronous manner.
Therefore, there are no I/O waits in the shuffle phase. The decrease
in disk I/Os greatly improves the Map tasks’ performance. As
shown in Figure 13, the average time taken by the Map phase of
Mammoth is 249s, compared to 624s of Hadoop.

In this experiment, the number of the Map task waves is 5
(% =5). In Mammoth, Shuffle is performed from Map
tasks’ memory to Reduce tasks’ memory, and the Shuffle phase
is performed concurrently with the Map Phase. Therefore, the
Shuffle phase in Mammoth is not the bottleneck in the MapReduce
model. As shown in Figure 13, the shuffle time is 1331s , which
is almost equal to the total Map tasks’ time (5 x 249s = 1245s).
However, the Hadoop Shuffle time is 3606s, which is larger than
Map tasks’ total time (604s x 5 = 3020s).

At the Reduce side of Hadoop, the heap size for one Reduce
task JVM is 2GB and a Reduce task can use up to 70% of its
heap size (i.e. 1.4GB), called maxsize, to hold the intermediate
data from the Map tasks. When the size of the intermediate data
grows to 66.7% of maxsize, the Reduce task will write all the
intermediate data into the disk. The size of the intermediate data
for a Reduce task is about 4GB. So a Reduce task will have to
spill about 1.4GB x 66.7% % | 1qepesg7e ) = 3.7GB intermediate
data into the disk and read the intermediate data from the disk for
the Sort and Reduce operations. As for Mammoth, the heap size is
32GB. Mammoth only needs to spill 4GB x 8 —32 x 70% = 9.6GB
intermediate data into the disk, compared to 3.7GB x 8 =29.6GB
in Hadoop. This is why Mammoth gains 70% performance im-
provement over Hadoop in the Reduce Phase.

2) The second reason why Mammoth achieves the shorter job
execution time is because we improved the I/O efficiency for
data spilling. As mentioned in section 5.1 and section 5.2, a
large number of parallel I/Os will incur massive disk seeks, and
the sequential or interleaved I/O is adopted, which improves the
read/write speed. CPU computing and disk accessing are also
overlapped. In Hadoop, merge-sort is widely used. The merge-
sort operations cause the CPU to wait until the disk writes finish.
Mammoth utilizes a Multi-buffer technique to implement the
asynchronous I/O and achieves the optimized in-memory merge-
sort. Consequently, CPU does not need to wait for the completion
of I/O operations, which improves the resource utilization.

From Figure 13, we can also see that the performance im-
provements of Mammoth for the other two applications (Sort and
WCC) are not as significant as for WC (a speedup of 1.93x and
1.66x in job execution time for Sort and WCC, respectively). The
reason for this is as follows. The size of the output data produced
by a Map task is 850MB for WCC, 512MB for Sort and 30MB for
WG, respectively. As the size of the intermediate data decreases,
the problem of I/O waits becomes less serious. The CPU power
becomes a more critical element for the job execution time.



6.2

We conducted the experiments to evaluate the impact of memory
by examining the performance of both Mammoth and Hadoop
under different size of physical memory on each node. In the
experiments, 17 nodes are used and WC is run in the same way as
in Section 6.1. The experimental results are shown in Figure 14.
In these experiments, each node is equipped with 64GB physical
memory in total, and we modify the grub configuration file of the
Linux OS to set the runtime available memory volume. In order
to get the highest performance, the heap size in Mammoth and the
size of map sort buffer in Hadoop were tuned adaptively according
to the physical memory capacity. The following observations can
be made from Figure 14.

First, as the memory size decreases, the job execution time
of both Mammoth and Hadoop increases. This suggests that the
memory resource has the inherent impact on the performance of
data intensive applications.

Second, when the memory is sufficient(the cases of 64GB
and 48GB in this figure), both Hadoop and Mammoth gains
good performances in terms of job execution time. In this case,
Mammoth achieves about 1.9x speedup against Hadoop. When the
memory becomes a constraint (i.e., 32GB and 16GB in the figure),
the job execution time in Hadoop increases much more sharply
than that in Mammoth. Under these circumstances, Mammoth
gains up to 2.5x speedup over Hadoop.

The reason for this can be explained as follows. When the
memory becomes constrained, both Hadoop and Mammoth will
spill intermediate data to the local disk. As explained in section
6.1, however, Hadoop performs some unnecessary disk accesses
and the coarse-grained memory usage causes the problem of
memory constraint even more serious. The experimental results
suggest that Mammoth can adapt to different memory conditions
and achieve consistent performance improvement.

Impact of memory

6.3 Scalability

We have also conducted the experiments on an increasing number
of nodes to examine the scalability of Mammoth in terms of jobs’
execution time. The experimental results are shown in Figure 15.
In these experiments, two applications, WC and Sort, are run on
17, 33, 65 and 129 nodes, with one node as the master and the
rest as slaves. Each node is equipped with 32GB memory and the
bandwidth of the network interconnecting the nodes is 1Gbps. For
each application, there are 20GB data on every slave node.

As shown in Figure 15, the execution time of WC increases
under both Hadoop and Mammoth as the number of nodes
increases. We carefully profiled the processing of the application.
We find that the reason for the increase in the execution time of
WC is the high straggling effect occurring in the execution of
WC. The WC application is to count the occurrence frequency
of the words in the input data. Since the occurrence frequencies
of different words could be very different, the straggling effect is
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easy to occur. And as the input data becomes bigger, the likelihood
of having a longer tail is higher, which causes the increases in the
execution time. Our observation and profiling of the WC running
support this analysis, because we found that the sizes of the input
data to different reduce tasks varied greatly. This phenomenon
was also observed in [22], which is summarized as the problem
of partitioning skew in [22].

Mammoth uses the task speculative execution, which is inher-
ited from Hadoop, to deal with stragglers. Also, Mammoth can
coordinate the resource usage between tasks, and tries to allocate
more memory to the tasks which demand more memory and
consequently reduce the amount of data that have to be spilled
out. This is helpful in mitigating task straggling.

The trend of the execution time of the Sort application is
different from that of WC. It can be seen from the figure that
the execution time of Sort is stable under both Mammoth and
Hadoop as the number of nodes increases from 17 to 129. This is
because in Sort the data partitioning among tasks is fairly even and
therefore there is no partition skewness seen in WC. The stable
execution time over an increasing number of nodes suggests that
Mammoth has the similar scalability as Hadoop.

It can be seen in Figure 15 that Mammoth outperforms
Hadoop for both WC and Sort. This is because Mammoth can
coordinate the memory usage among tasks. This result verifies
the effectiveness of Mammoth.

6.4 Experiments with Real Applications

CloudBurst [23] is a MapReduce implementation of the RMAP
algorithm for short-read gene alignment, which is a common
task in bioinformatics. We evaluated the performance of running
CloudBurst with the lakewash_combined_v2 data set obtained
from the University of Washington [15]. Pegaus [16] is a
MapReduce library for the graph algorithms written in Java. We
also conducted the experiments with four frequently used graph
computing applications: 1) PageRank, a graph algorithm that is
widely used by the search engines to rank web pages; 2) Concmpt,
an application for connected component detecting, often used as
the basic building block in the complex graph mining applications;
3) Radius, an application for graph radius computing; 4) DegDist,
an application for vertex degree counting.

We ran all these applications except CloudBurst with the same
dataset on 17 nodes, with the 20GB data for each node. Each
node is equipped with 32GB memory. We ran CloudBurst on one
node. The reason for this is because the lakewash_combined_v2
data set of CloudBurst is too small to be run on multiple nodes.
The results are shown in Table 2.

In PageRank and Concmpt, both Map and Reduce Phases are
I/O intensive. Therefore the improvements of Mammoth over
Hadoop are high for these two applications. Radius is also an



TABLE 2
Performance comparison

Application Mmf:ﬁ:;;lng Y;I’Zfl(mp Speedup
PageRank 2760s 13090s 4.74x
Concmpt 2380s 12364s 5.19x
DegDist 438s 737s 1.68x
Radius 3365s 12250s 3.64x

CloudBurst 1395s 2313s 1.66x

[/O-intensive application, but the intensity is not as big as that of
PageRank and Concmpt. Therefore, its speedup is consequently
smaller than that of PageRank and Concmpt. CloudBurst’s inter-
mediate data are big. But it is also a CPU-intensive application.
Therefore, the extent of I/0O bottleneck is not very big. That is
why the improvement for CloudBurst is relatively small. DegDist
has relatively small size of intermediate data and therefore is
not an I/O-intensive application, which explains why its achieved
performance improvement is also relatively small.

6.5 Comparing Mammoth and Spark

We conducted two sets of new experiments to compare the
performance of Mammoth, Spark (Version 0.9.0) and Hadoop. We
understand that Spark can achieve the excellent performance for
iterative and interactive applications (such as Pagerank) when the
memory is sufficient, which has been demonstrated in the litera-
ture [31] and is also discussed in Subsection 7.1. We believe that
Spark is also able to outperform Mammoth in those circumstances.
Therefore, the two sets of new experiments were conducted in the
settings beyond the Sparks “comfort zone”, i.e., i) not for iterative
or interactive applications and ii) when the memory is insufficient.

In the first experiment, Mammoth and Hadoop execute the
WordCount with Combiner (WCC) application, while Spark im-
plements the WordCount application with the reduceByKey oper-
ator. Under these configurations, the intermediate data generated
by Spark, Mammoth and Hadoopare are small (which will be
discussed in more detail in the analysis of the experimental re-
sults). Therefore, the memory in the running platform is sufficient.
However, WC is a batch processing application, not an iterative
and interactive application, since the intermediate data generated
by the Map tasks will be taken directly as input by the Reduce
tasks to produce the final results.

In the second experiment, Mammoth, Spark and Hadoop all
execute the Sort application, which is not an iterative and in-
teractive neither. During the running of the Sort application, a
large amount of intermediate data will be generated by Map tasks,
which effectively cause the situation where there is insufficient
memory in the running platform.

In the two sets of new experiments, the cluster configuration
and the input dataset are exactly the same as those in Section 6.1.
Spark was deployed with the standalone mode. The original input
dataset and the final results were stored in the HDFS. For Word-
Count, the input datas, 20GB for each node, were generated using
the built-in program in Hadoop, RandomTextWriter. For Sort, the
input data, 20GB per node too, were generated using the built-
in program in Hadoop, RandomWeriter. In order to make the fair
comparison, we optimize the software configuration parameters of
Spark according to the official documents [6]. We set the parame-
ter spark.serializer to be org.apache.spark.serializer.KryoSerializer
and set the parameter spark.shuffle.consolidateFiles to be true.

Figure 16(a) demonstrates the performances of the three
systems for running WordCount. It can be seen from the figure
that Mammoth and Spark obtain almost the same performance,
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Fig. 16. Performance comparison among Spark, Hadoop
and Mammoth

which is about a 1.7x performance speedup over Hadoop. The
three systems aggregate the intermediate data in the similar way,
i.e., the <key, value> pairs with the same key will be summed up
to one <key, value> pair. For example, two <word, 1> pairs are
transformed to one <word, 2> pair. In this way, the quantity of the
intermediate data will be reduced significantly. Our experimental
records show that the size of the intermediate data generated by
Mammoth and Hadoop in the experiment is 926M and that by
Spark is 103.4M. Consequently the memory was sufficient. In
Mammoth, most intermediate data are processed in the memory
except when spilling the Map tasks results to the disks for fault
tolerance. Spark processes shuffling based on the disks, and uses
the hash table instead of the sort to implement data aggregation.
Both of them utilize the memory better than Hadoop, which is
the reason for their performance improvements over Hadoop. This
result indicates that for non-iterative and non-interactive job like
WordCount, Mammoth can achieve similar performance as Spark,
even when the memory is sufficient.

Figure 16(b) shows the performance comparison of the three
systems for running Sort. It can be seen that Mammoth obtains
the best performance, while surprisingly Spark achieves the worst
performance, even worse than Hadoop. We have carefully investi-
gated the reason for this phenomenon. For the Sort application, the
intermediate data cannot be aggregated and therefore, their size
cannot be reduced by optimistic algorithms, which is different
from WordCount. In Hadoop and Mammoth, the quantity of the
intermediate data is the same as that of the input dataset, that
is 20GB x 16 = 320GB. Mammoth implements a global memory
manager which can minimize the quantity of disk I/O, and a
global I/O manager which can minimize the overhead of I/O
operations. Through the execution log, we found that most of
the intermediate data were processed in the memory. In Spark,
however, its serializer expands the intermediate data, and the
compression rate of the intermediate data is not high because the
data are randomized. As the result, the quantity of the intermediate
data reaches as high as 663GB. Firstly, the intermediate data were
written and read from the disks in the shuffle phase. Secondly, on
the reduce side, the whole data cannot fit into the memory, and
therefore Spark has to implement the external merge sort. That is
why the performance of Spark is so poor. As for Hadoop, it does
not depend on the memory size as much and therefore its perfor-
mance is relatively stable. This result suggests that Mammoth can
achieve much better performance than Spark for batch processing
applications, such as Sort, when the memory is not sufficient. In
summary, Spark can achieve better performance than Mammoth
and Hadoop for interactive and iterative applications when the
memory is sufficient. For batch processing applications, Mammoth
can adapt better to various memory environments and can obtain
similar performance as Spark when memory is sufficient, and can
outperform Spark when the memory is insufficient.

7 RELATED WORKS

Extensive studies have been carried out in the near past to improve
Hadoop or other MapReduce implementations. This section dis-



cusses the closely related work from the following two aspects,
leaving other broadly related work to the supplementary file.

7.1 In-memory data analytics

PACMan [8] makes the underlying HDFS cache the input data
blocks of the MapReduce jobs in the nodes’ main memory. It uses
a per-job “all-or-nothing” cache replacement strategy to accelerate
small interactive jobs, especially the jobs with only one-wave map
tasks, on the data centers shared by multiple jobs.

Similar to Mammoth, Storm presented in [2] also uses a
thread to run a task and the tasks on a node can share the
same JVM memory. However, STORM leaves the multi-task
memory management completely to the JVM. In fact, Storm
has different design goals from Mammoth. Storm is designed
for real-time streaming processing, and such low-latency stream-
ing applications require the support for the fast task bootstrap
based on JVM reuse. The main challenges and novelty of our
work are to carry out the insightful observations and analyses
for the characteristics of the disk accessing behaviors and the
memory usages in the MapReduce phases as well as the relation
between these characteristics and the potential opportunities for
I/O performance optimization, and exploit these characteristics
to design and implement memory scheduling for buffer spilling
avoidance and disk accessing optimization. As the result, our work
is able to utilize the system resources more intelligently rather than
just opportunistically. These designed optimization measures are
especially important (and therefore the benefits of these measures
are even more prominent) when the resources are restricted.

Several newly proposed systems [10], [31], [25] store all the
job data in memory if possible, which significantly reduces the
response time of many interactive queuing and batched iterative
applications. All of these systems aim at making full use of the
rich memory resources of modern data center servers, but do not
address the associated problems when total memory demand of
the job exceeds the physical memory size and different datasets
compete the limited capacity. Mammoth is designed for the servers
equipped with moderate memory sizes. Our heuristic memory
scheduling algorithm tries to maximize the holistic benefits of
the MapReduce job when scheduling each memory unit. Since
Spark is a new data processing system that is gaining in huge
popularity nowadays [31], we would like to discuss Spark and
compare it with Mammoth in more detail in the following.

Compared with Hadoop, Spark can make better use of memory
and achieve up to 100x performance improvement, especially
for iterative and interactive applications [31]. However, the
improvement of up to 100x is achieved in the condition that
the running applications can make the best use of the Spark
framework and there is the sufficient memory in the system for
the running application. The condition does not always hold.
Spark requires a large amount of memory for running Spark itself
and the applications. It may well be the case that there is not
sufficient memory in the running platform for the applications
to be processed. The aim of Mammoth is to improve the usage
efficiency of the memory in various circumstances, especially
when there is not sufficient memory in the supporting platform.
Although both Mammoth and Spark execute the tasks with threads
and manage the memory in the application level, Mammoth differs
from Spark in the following aspects.

First, the ways of memory management in Mammoth and Spark
are rather different. Mammoth is based on MapReduce. We have
carefully analyzed the characteristics of memory usage in different
phases of the MapReduce framework, and designed a novel rule-
based heuristic to prioritize memory allocations and revocations

among execution units (mapper, shuffler, reducer, etc.). In this
way, we can maximize the holistic benefits of the Map/Reduce
job when scheduling each memory unit. In Spark, the memory can
be used for the Resilient Distributed Datasets (RDD) cache and
running the framework itself. As for the RDD cache, it depends
on the users themselves when and how the data are cached, which
increases the uncertainty of the memory usage. For the iterative
and the interactive applications, caching the frequently used RDDs
will significantly improve the applications performance. However,
for many batch processing applications, the RDD cache cannot
exhibit its advantages, and therefore those applications can only
rely on the memory management in the Spark framework itself.
Spark directly requests and revokes the memory from the JVM,
and does not have a global memory manager in the application
level. Spark uses the hash table to aggregate the data, which is
different from the sort way used by Mammoth and Hadoop. When
the memory is sufficient, hash will certainly be quicker than sort.
However,when the memory is insufficient, it will have to spill
the data to disks, and its performance will decrease significantly.
Thanks to the holistic manner of memory usage, Mammoth can
adapt much better to various memory situations, even when the
memory is insufficient. On the contrary, the performance achieved
by Spark is excellent when there is the sufficient memory, but not
so when the memory is insufficient.

Second, the manners of shuffling in Spark and Mammoth are
different. Spark writes the data to the disk on one side and reads
them from the disk on the other, while Mammoth stores the Map
tasks results in the Send Buffer, and sends them to the Reduce
tasks Receive Buffer directly (Mammoth will write the data in the
Send Buffer to the disks only for the purpose of fault tolerance).

Finally, Mammoth implements several techniques to optimize
the I/O operations, including i) prioritizing different types of 1/O
operations and scheduling them by a global I/O scheduler, ii)
using the interleaved I/O and the sequential I/O to reduce the
disk seeking time, iii) overlapping the disk I/O with the CPU
computing through multi-cache. Spark simply performs the disk
I/Os in an opportunistic and parallel way.

7.2 Global resource management in data centers

Some other newly proposed “data-center schedulers” such as
Apache YARN, Twitter’s Mesos and Google’s Omega [27], [13],
[24] also support the fine-grained resource sharing in the data
center. However, the design objective and the implementation
methods of these data-center schedulers are very different from
Mammoth in terms of the following aspects. First, the target of
these data-center schedulers is to enforce resource allocation strat-
egy based on fairness or priorities when sharing the resources of
large-scale data-centers among multi jobs/users, while Mammoth
is aimed at improving the performance of each job. Second, these
data-center schedulers make the scheduling decisions globally at
the cluster level, but the Mammoth execution engine on each
node schedules memory locally and independently. Finally, The
data-center scheduling frameworks reserve the requested memory
capacity on the corresponding node for each task, and use the
system-level isolation methods such as virtualization and Linux
container to guarantee that the tasks only uses the reserved
memory spaces. The Mammoth tasks dynamically request the
memory without the pre-determined per-task limit.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a MapReduce system called Mammoth
that is suitable for a memory-constrained platform, such as



the HPC clusters. In Mammoth, a global memory management
scheme is designed for all tasks on a node, which is fundamentally
different from the separated memory management in Hadoop. This
new design increases the memory utilization for tasks and balances
the performance between the CPUs and the 1/O system. Mammoth
also leverages a multi cache for sequential and interleaved disk
accesses, which improves the data access rate. This paper have
conducted experiments on the HPC clusters. The experiment
results show that Mammoth achieves a speedup of up to 5.19x
over Hadoop in terms of job execution time.

It is worthy noting that the Mammoth system does not change
the Hadoop processing phases. It is easy to integrate the existing
techniques into Mammoth. Furthermore, the MapReduce applica-
tions can be transparently run on the Mammoth system without
any modifications required.

The following research issues are planned for the future work.

First, the current version of Mammoth processes one job at a
time to achieve the optimized performance using the strategies
developed in this paper. We plan to optimize the performance for
running multiple jobs simultaneously in Mammoth. In order to
realize the multi-job mode, i.e., run multiple jobs simultaneously,
the same methodology as in this paper (i.e., the global memory
and I/O management) can be applied. In order to optimize the
performance in the multi-job mode, the key additional considera-
tion is to take into account each job’s characteristics. We plan to
explore the following two potential approaches to achieving this.

(a) We can integrate Mammoth with Mesos [13] or Yarn [27],
which are job-wise resource management systems. Each job can
first request the essential resources from Mesos or Yarn, and then
the tasks in the job share the allocated resources and follow the
methodology described in this paper. This approach aims to make
use of the existing job management capability in Mesos or Yarn.

(b) We can run the tasks of different jobs in a single task
execution engine JVM and share the global resources (memory,
disk, network and CPU) on each node. This way, some runtime
information of each individual job may need to be obtained
separately. For example, different jobs may have different ratios
between the size of the intermediate data and the size of the input
data. Meanwhile, we may need to consider more job information
to set the priority order for resource usage. The additional job
information could include each job’s priority, each job’s execution
progress and each job’s resource demand, etc..

In summary, in order to support the multi-job mode, the core
methodologies developed in this paper can still be applied, but
the additional work may need to be conducted to either integrate
Mammoth with the job-wise resource management systems if the
first approach is taken, or if taking the second approach, set the
above parameter values so that the performance can be optimized
when the developed framework is run in the multi-job mode. We
plan to tackle these issues in our future work.

Second, Mammoth is essentially a memory-intensive frame-
work, which manages as much memory as possible in the appli-
cation level, following the similar philosophy as Spark [31] and
PACMan [8]. A new research angle along this research direction
is that we still manage the memory in the application level, but
try to manage the memory opportunistically instead of carefully
crafting the memory usage as we did in Mammoth. In the further,
we plan to design and implement the opportunistic approach to
utilize the memory in Mammoth.

Third, Mammoth only focuses on the disk I/O currently. We
plan to integrate the support of the network I/O into Mammoth.

Finally, we plan to investigate hybrid scheduling algorithms,
e.g., scheduling both CPU-intensive and data-intensive applica-

tions, to balance the CPU and I/O processing on the HPC clusters.
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