
An Efficient and Scalable Semiconductor
Architecture for Parallel Automata Processing

Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold Noyes, Member, IEEE

Abstract—We present the design and development of the automata processor, a massively parallel non-von Neumann
semiconductor architecture that is purpose-built for automata processing. This architecture can directly implement non-deterministic
finite automata in hardware and can be used to implement complex regular expressions, as well as other types of automata
which cannot be expressed as regular expressions. We demonstrate that this architecture exceeds the capabilities of
high-performance FPGA-based implementations of regular expression processors. We report on the development of an XML-based
language for describing automata for easy compilation targeted to the hardware. The automata processor can be effectively utilized
in a diverse array of applications driven by pattern matching, such as cyber security and computational biology.

Index Terms—Automata, parallel architectures, high performance computing, hardware, accelerator architectures, reconfigurable
architectures

Ç

1 INTRODUCTION

EFFICIENT implementation of automata-based processing
has been studied for several decades and has been

applied to diverse fields such as network security, com-
putational biology, image processing, and text search [1].
Research has been primarily focused on the use of tra-
ditional CPU architectures as the engine for automata
processing [2]. In the last few years, this work has been
expanded to include multi-core CPUs, network proces-
sors, and GPUs (for example, [3], [4], [5], [6]).

Software-based automata usually employs a DFA-
based approach over NFA, e.g., see Liu et al. [7], trading
speed for relatively plentiful memory, though good re-
sults using simulated NFA have been reported in some
situations [8]. Various techniques to improve the perfor-
mance of automata processing on von Neumann archi-
tectures have been explored. Refinement of DFA [9] or
reduction of acuity in pattern matching capability by re-
stricting constructs such as bounded quantifications, Kleene
stars and logical operations [10] may reduce the problem
of state explosion. Modified NFA, which reduce the prob-
lem of backtracking, and hybrid finite automata, have also
been proposed ([6], [9], [11], [12], [13]). In von Neumann
software-based automata processing systems, DFA and
NFA can be thought of as extremities of a spectrum of
space and time complexity tradeoffs, as illustrated in
Table 1 [14].

Direct implementation of automata in hardware has the
potential to be more efficient than software executing on a
von Neumann architecture. Hardware-based automata can
effect simultaneous, parallel exploration of all possible valid
paths in an NFA, thereby achieving the processing complex-
ity of a DFA without being subject to DFA state explosion.
FPGAs offer, to some extent, the requisite parallelism and a
number of relatively recent efforts have explored this
direction ([15], [16], [17], [18], [19]). However, there remain
significant limitations in FPGA-based implementations.

We have created an architecture purpose-built for direct
implementation of NFA which achieves significantly im-
proved processing efficiency, capacity, expressiveness and
computational power. We also expect dramatic improve-
ments in cost and power consumption compared to other
approaches from the silicon implementation, in fabrication
at the time of writing.

We present the theoretical model of the architecture in
relation to the theory of bit parallelism in Section 2 and its
semiconductor implementation in Section 3. In Section 4, we
evaluate the architecture’s ability to implement complex
regular expressions and other types of automata in a time-
and space-efficient manner. An overview of related work is
presented in Section 5. We conclude in Section 6 with a
discussion on future work on the architecture. Additional
detail on the semiconductor implementation, a more ex-
tensive comparison to related work, and videos of example
automata presented in the paper is included in supple-
mentary material which is available in the Computer So-
ciety Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2014.8.

2 AUTOMATA PROCESSOR EXECUTION MODEL

We make use of the formal definition of non-deterministic
finite automata, extending its execution model to account
for the unique properties of the automata processor. An
NFA is described by the 5-tuple hQ;S; �; q0; F iwhere Q is

. The authors are with Micron Technology, DRAM Solutions Group,
Architecture Development Group, Boise, ID, USA. E-mail: {pddlugosch,
dbrown, pglendenning, mleventhal, hnoyes}@micron.com.

Manuscript received 29 Aug. 2013; revised 29 Oct. 2013; accepted 31 Oct.
2013. Date of publication 21 Jan. 2014; date of current version 14 Nov. 2014.
Recommended for acceptance by S. Aluru.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.8

1045-9219 � 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 20143088



the set of automaton states, S is the alphabet, � is the
transition function, q0 2 Q is the start state, and F � Q is
the set of final states. The transition function �ðq; �Þ defines
the set of states that can be reached from state q when the
symbol � is received at the automaton input.

An automaton can be modeled as a labeled graph,
where the vertices are labeled with the states and the
edges are labeled with the symbols of the transition
function.

The transition function can be extended to multiple
states in any class C � Q, by the following definition:

�ðC; �Þ ¼
[

q2C
�ðq; �Þ:

The closure of the class C is the set of states that are
reached from any member of C, on any input symbol. The
closure is defined as

�ðCÞ ¼
[

�2S

[

q2C
�ðq; �Þ:

A homogeneous automaton is a restriction on the
automaton definition above, such that all transitions en-
tering a state must occur on the same input symbol(s), i.e.
for any two symbols ð�; �Þ 2 S and any two states
ðp; qÞ 2 Q, then �ðp; �Þ \ �ðq; �Þ ¼ �ðq; �Þ\ �ðp; �Þ. This def-
inition has its roots in Gluskov’s position automata [20].
The position automaton obtained from an n� length
regular expression (excluding operators) is an ðnþ 1Þ state
homogeneous automaton. Each unique symbol and posi-
tion pair (or character class), within the regular expression,
maps to a homogeneous state in Q.

We now introduce the concept of symbol acceptance.
A homogeneous automaton state q is said to accept the
symbol �, if � labels a transition entering the state, or is a
subset of any transition label entering the state. Formally,
we define the symbol acceptance function as symbolsð�Þ ¼
[q2Q�ðq; �Þ, i.e., state q accepts symbol � iff q 2 symbolsð�Þ.
We can now define the transition function as:

�ðC;�Þ ¼ �ðCÞ \ symbolsð�Þ:

A sequence of alphabet symbols, on the input of the
homogeneous automaton, will cause the automaton to
transition through a path of states in Q. The automaton
runtime state C � Q is defined as the states that will

potentially transition on the next input symbol. T ¼ C \
symbolsð�Þ are the states that accept the next input sym-
bol. The automaton is said to match the sequence,
presented to its input, when T \ F 6¼ ;. The automaton
execution model for an input string S is shown below.

1: C ¼ �ðq0Þ
2: if q0 2 F then

3: match the empty string

4: end if

5: for each input character � in S do

6: T ¼ C \ symbolsð�Þ
7: if T \ F 6¼ ; then

8: we have a match

9: end if

10: if T is empty then

11: stop processing S

12: end if

13: C ¼ �ðT Þ
14: end for

The runtime complexity of the execution model
depends on how efficiently we can execute lines 6-13. A
DFA is a special case where jT j � 1 and j�ðT Þj � jSj, how-
ever the space cost jQj can be exponential, in the worst
case.

We now describe the theoretical foundation of the
automata processor in relation to bit parallelism. Bit-
parallelism and its application to string matching was
first introduced by Richard L. Baeza-Yates [21]. The gen-
eral concept is to encode states as an m-bit word.
Typically m is chosen to be a multiple of the machine
word size of the CPU executing the bit-parallel algo-
rithm. For this reason bit-parallelism is usually reserved
for small m-values. The bit parallel homogeneous au-
tomaton is defined by the 5-tuple h2Q;S;D; 2I ; 2F i. 2Q is an
m-bit word, where each bit position represents a state in
Q ¼ f0; . . . ; m� 1g. 2Q ¼ jq2Q2q and the j operation, over
all Q, is equivalent to a bitwise OR. 2I ¼ jq2�ð0Þ2q is an
m-bit word, where each bit position represents the set
of initial states reachable from the start state q0 ¼ 0. 2F ¼
jq2F2q is an m-bit word, where each bit position repre-
sents a final state. D is the transition function such that
Dð2q; �Þ is an m-bit word, where each bit represents the
state bits reachable from bit position 2q on symbol �.

The bit parallel closure on a state q is defined as:

Dð2qÞ ¼ j
�2S

Dð2q; �Þ:

For small m, the transition function for a bit parallel
homogeneous automata can be implemented efficiently in
O(1) time by the bitwise AND (designated as operator &) of
two lookups.

Dð2q; �Þ � follow½q� & symbols½��

where follow½q� ¼ Dð2qÞ and symbols½�� ¼ jq2QDð2q; �Þ

TABLE 1
Storage Complexity and per Symbol Processing Complexity of

an n-State NFA and Equivalent DFA

DLUGOSCH ET AL.: AN EFFICIENT AND SCALABLE SEMICONDUCTOR ARCHITECTURE FOR PARALLEL AUTOMATA PROCESSING 3089



One benefit of the lookup method above is that it in-
herently supports character classes. The bit-parallel execu-
tion model for an input string S is shown below.

1: 2C ¼ 2I

2: if 2F & 0� 1 6¼ 0 then

3: match the empty string

4: end if

5: for each input character � in S do

6: 2T ¼ 2C & symbols½��
7: if 2T 2F 6¼ 0 then

8: we have a match

9: end if

10: Set 2C ¼ 0; 8q 2 T; 2C ¼ 2C jfollow½q�
11: if 2C ¼ 0 then

12: stop processing S

13: end if

14: end for

Line 2 tests if the start state 20 is a member of the final
states 2F . We include this to provide a direct comparison
with the traditional NFA; however, we do not do this in
hardware since it has no practical value. Lines 6-9 can be
executed in (m/w) time, where w is the machine word size
implementing the execution model above. Navarro and
Raffinot [22] describe a method, using k tables, to im-
plement line 6 in (mk/w) time. The size of k, in Navarro’s
algorithm, depends on the space complexity of the equiv-
alent DFA, since each table must store Oð2mþ1=kÞ entries, in
the worst case. We have developed, to our knowledge, the
first practical method implementing the bit-parallel execu-

tion model described above for large m ¼ 48 k. The prac-
tical method used to achieve this is described in the next
section on the Architectural Design.

3 ARCHITECTURAL DESIGN

3.1 A Memory-Derived Architecture
The automata processor is based on an adaptation of memory
array architecture, exploiting the inherent bit-parallelism of
traditional SDRAM. Conventional SDRAM, organized into a
two-dimensional array of rows and columns, accesses a
memory cell for any read or write operation using both a row
address and a column address. The ‘‘row address’’, for the
automata processor, is the input symbol. The 8-bit input
symbol is decoded (8-to-256 decode) and then provided to
the memory array. In place of memory’s column address and
decode operation, the automata processor invokes automata
operations through its routing matrix structure. The memory
array portion of the architecture is illustrated in Fig. 1.

The architecture provides the ability to program inde-
pendent automata into a single silicon device. Each au-
tomaton and all automata routing matrix paths run in
parallel, operating on the same input symbol simulta-
neously. Memory arrays are distributed throughout the
silicon, providing O(1) lookup for a m ¼ 48 K bit memory
word. This first implementation, derived from Microns
DDR3 SDRAM memory array technology, has an 8-bit
DDR3 bus interface. It is capable of processing 8-bit input
symbols at 1 Gbps, per chip.

3.2 The Routing Matrix
The routing matrix controls the distribution of signals to
and from the automata elements, as programmed by the

Fig. 1. Memory array.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 20143090



application. The routing matrix is a complex lattice of pro-
grammable switches, buffers, routing lines, and cross-point
connections. While in an ideal theoretical model of automata
every element can potentially be connected to every other
element, the actual physical implementation in silicon
imposes routing capacity limits related to tradeoffs in clock
rate, propagation delay, die size, and power consumption.
From our initial design, deeply informed by our experience in
memory architectures, we progressively refined our mod-
el of connectivity until we were satisfied that the target
automata could be compiled to the fabric and that our
performance objectives would be met.

The routing matrix is a hierarchical structure of groups
of elements, with switches controlling the interconnec-
tion between the levels of the hierarchy. This is illustrated
in Fig. 2.

A number of the various elements are grouped together
into rows, rows are grouped into blocks, and blocks are laid
out in a grid of block rows and block columns. The routing
matrix provides the interconnections at the various levels
of this hierarchy: within rows, within blocks, and within
the grid of blocks. A summary of these routing matrix
signals and their respective functions is given in Table 2.

The transitions between the different signal groups are
controlled through the programming of different switch
buffers. These switch buffers are bi-directional, tri-state-
able, multiplexing buffers. A given signal can be selectively
connected to several different inputs of adjacent levels of
the hierarchy.

The maximum number of transitions, from a single
state, at maximum clock frequency is 2304, corresponding

to 256 states in each of 9 blocks arranged in an 8 point
compass. A larger fan-out is achievable at a slower clock
rate, albeit at the cost of reduced performance. While any
state can have the maximum number of transitions, only
24 states total out of the 256 in a block can have that many
transitions. The potential fan-out from any state is other-
wise 16. Additional information regarding fan-out, fan-in,
and other routing complexities may be found in the pa-
per’s supplementary material available online. The im-
plemented selective and programmable connectivity has
been sized and load-tested to have sufficient connectivity
for representative classes of target automata and in
practice has proven reasonably robust. The design does
not preclude, of course, routing congestion issues and/or
inability to route, especially with highly connected graph-
type automata.

The routing matrix controls signal routing; the ele-
ments implement the various logical functions needed to

Fig. 2. Routing matrix.

TABLE 2
Routing Matrix Signals

DLUGOSCH ET AL.: AN EFFICIENT AND SCALABLE SEMICONDUCTOR ARCHITECTURE FOR PARALLEL AUTOMATA PROCESSING 3091



compute the automata. Programming the routing matrix
and the elements actually implements the desired automata.

3.3 The Automata Processor Elements
The various functional components, called elements, are
woven into the hierarchy of the routing matrix.

All elements share four features:

1. Each receives sixteen inputs from the routing matrix.
2. Each performs a function within an automaton.
3. Each is programmable.
4. Each originates (drives) one signal back into the

routing matrix.

The number of sixteen inputs arises as a consequence of
the design of the routing matrix, described above, includ-
ing consideration of physical feasibility and experimenta-
tion with target automata. The layout of automata may be
modified if the number of inputs exceed 16 during com-
pilation. We transfer the in-degree congestion to out-
degree by state splitting. Any state can be split into two
where the inputs are partitioned between the split pair.

The state transition element is at the heart of the design
and is the element with the highest population density,
having a one-to-one correspondence to the state bits of a
bit-parallel automata model described in the previous sec-
tion. Counters and boolean elements are used with state
transition elements to increase the space efficiency of

automata implementations, as a design convenience, and to
extend computational capabilities beyond NFA.

3.3.1 The State Transition Element
The state transition element consists of the current state
memory and the next state decoder. In terms of classic
hardware state machine design, it can be associated with
the next state transition function. State transition elements
are implemented as a memory array with control and
computational logic. Each column of the memory array
includes logic that contains a single state bit, enable inputs,
and an output decoder/driver. The output is determined
by the logical AND of the state bit and the output of the
associated column of memory. Each state bit is either set (1)
or reset (0), depending on whether that state transition
element is in an active or inactive state. A conceptual model
is shown in Fig. 3.

The height of this memory column is determined by the
number of bits (n) in the input symbol. For example, for a
byte-wide (8-bit) input symbol, each state transition
element must have a column of 28 ¼ 256 bits of memory.

State bits are pre-loaded prior to processing any input
symbols. This makes it possible for the initial state of every
state transition element to be either active or inactive. Any
state transition element and any number of state transition
elements may therefore be a start state. This capability
allows independent automata to each have their own start
state and also permits individual automata to have mul-
tiple start states. This allows additional flexibility in the
design compared to conventional automata, which are
limited to a single start state. For example, �NFAs can be
implemented directly with ease, using the automata pro-
cessor. The �NFA on the left side in Fig. 4 with start state
s� i (indicated by the triangle) and an epsilon transition
from s� i to s� j can be realized directly in the automata
processor by also making s� j a start-enabled state tran-
sition element, as shown on the right side of Fig. 4.

The 256 bits of symbol recognition memory can be
thought of as a single column of 256 rows of memory. The
input symbol is analogous to a memory row address,
which is decoded (an 8-to-256 decode), to select one of the
256 memory cells of the symbol recognition memory. If the
selected bit was programmed to recognize the input sym-
bol, the symbol recognition memory outputs a 1. If it is not
programmed to recognize the input symbol, the symbol
recognition memory outputs a 0. An important conse-
quence of this design is that it allows any subset of the all
possible 8-bit symbols (2256 combinations) to be pro-
grammed to match. This provides the ability to handle full
character classes in every state transition element.

Fig. 3. State transition element memory array.

Fig. 4. Epsilon NFA.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 20143092



A simple example of a state transition element recog-
nizing a character class is shown in Fig. 5. The character
class in the example is any value which is not an ascii upper
or lower case letter or a numeric character. The state
transition element on the left is start-enabled, receiving
every input byte, and reports on a match (the former
indicated by the 1 symbol in the upper left and the latter
by the R in the lower right). This single state transition
element could be a complete machine for reporting when
unexpected values are found in an input stream. The
encoding of the character class is shown on the right side of
Fig. 5. Each of the 256 bits which is not 0-9a-zA-Z is set.
Each input symbol is decoded from 8 to 256 bits and
compared against all set character class bits to determine if
there is a match.

3.3.2 The Counter Element
The counter element is a 12-bit binary counter. Every time
one of the count enable signals are asserted the counter
counts by one. When the counter’s count equals the target
value, an output event is triggered.

The counter has also implemented several features that
provide greater flexibility in designing various automata.
These features are:

1. the ability to cascade up to four counters, to achieve
up to a 48-bit counter;

2. output and reload mode control (pulse, continuous,
or pulse-and-reload);

3. an over-riding synchronous reset function;
4. the ability to choose different row signal inputs, for

both the count and reset functions.

Counters can be an efficient way to count sub-
expressions, such as those that occur routinely in applica-
tions using regular expressions with quantifications. Fig. 6
shows the use of two counters to implement a range
quantification. The automaton implements the regular
expression /#[0-9]{500,999}#/. The state transition element
on the left receives every input symbol (indicated by the1
symbol in the upper left). If it recognizes a # symbol,

recognition of digits is begun by activation of the state
transition element to its left. This self-looping state
transition element remains asserted as long as digits
continue to be recognized. This element also activates the
two counters and the state transition element below it. The
upper of the two counters counts the minimum range
value of 500 and the lower counts the maximum range
value of 999. If a non-digit is seen in the input stream, the
lower state transition element will reset both counters
(indicated by the connection to the R terminal at the lower
left side of the counters) and recognition of the current
input sequence will terminate. Each time a digit is re-
ceived, the count advances in both counters (indicated by
the connection to the C terminal on the upper left side of
the counters). When the upper counter counts 500, it will
continously activate (indicated by the clock edge symbol
on the right side of the counter) the following state tran-
sition element. This element will report recognition of the
sequence (indicated by the R in the lower right corner) if a
terminating # is received. The lower counter enforces the
maximum range value by resetting the upper counter, once
the maximum range value is exceeded, causing activa-
tion of the final state transition element to cease and with
it the ability for the element to report on receiving the
terminating #.

Counters are also a type of restricted memory device,
enabling creation of non-deterministic counter automata.
Counter automata can implement proper subsets of
pushdown automata and, therefore, some context-free
languages [23] and have been theoretically demonstrated
to even be capable of implementing Turing machines [24].
We have been able to construct many practical automata
using counters as a scratchpad within NFA. A simple
example is the use of the counter to prune paths and
prevent looping through cycles as shown in Fig. 7. The
three connected state transition elements in the example
form a cycle. While the example is designed to be self-
contained, the principle can be extended to any graph with
multiple cycles. The left-most state transition element is the
start of the cycle, receiving the first input symbol (indicated
by the 1 symbol in the upper left). The counter prevents the

Fig. 6. Counter element example. Fig. 7. Pruning with counters example.

Fig. 5. Character class.

DLUGOSCH ET AL.: AN EFFICIENT AND SCALABLE SEMICONDUCTOR ARCHITECTURE FOR PARALLEL AUTOMATA PROCESSING 3093



cycle from being traversed more than once. It is configured
as a one-shot, that is, it is set to count to 1. The first time it
counts it activates the next state transition element, and,
without a reset, stays dormant (this is the behavior of pulse
mode, the setting indicated by the clock edge symbol on
right side of the counter). Subsequent activations will not
result in an output activation to the following state
transition element. This behavior allows the cycle to be
traversed only once.

3.3.3 The Boolean Element
The boolean element is a function-programmable combi-
natorial element, with an optional synchronized enable.
The boolean element can be programmed to perform the
following logical functions: OR, AND, NAND, NOR, sum
of products, and products of sums. Booleans have no state
(and do not use memory), unlike the state transition and
counter elements.

Boolean elements are routinely used to simplify designs,
where a combination of the results of sub-expressions is
required.

The synchronized enable is triggered by a special signal
propagated simultaneously to all boolean elements. This
signal is controlled by instructions to the automata
processor and can occur at any desired position(s) in the
symbol input data set, including at the end of the symbol
set. When the synchronized enable is used, booleans
introduce positional dependence to the operation of the
automata, since the boolean only computes its combinato-
rial function when the special signal is asserted. One use of
this feature is to implement a construct commonly used in
regular expressionsVevaluation only on end-of-data
(right-anchored expressions). More general usage with
automata includes gating data into chunks sized for
specific automata and reduction or aggregation of results.
This capability of the boolean element introduces a feature
beyond the formal definition of NFA, adding a dynamic
aspect to automata processing.

An example of the boolean element combining sub-
expressions with use of the synchronized enable is
illustrated in Fig. 8. The automata reports, at assertion of
the synchronized enable, if the input stream up to that
point contained both a lower case ascii letter and an ascii
digit. The state transition elements on the left each receive
all input symbols (indicated by the1 symbol in the upper
left corner), the top one checking for the letter, the bottom
for the digit. Each state transition element is latched
(indicated by the clock edge symbol at the bottom of the

state transition element symbol), meaning that if it matches
it will continue to assert until reset. The two state transition
elements are combined in an AND, effective on assertion of
the synchronization enable (indicated by the E symbol in
the upper right corner). If the AND generates a high value
it will report that at least one letter and one digit were seen
in the input stream (indicated by the R in the lower right
corner).

3.4 Reconfigurability
The automata processor is a programmable and reconfi-
gurable device. The element arrays are fixed but the
operations of individual elements and the connections
between them are programmable. The automata processor
is also partially dynamically reconfigurable, as the opera-
tion of elements can be reprogrammed during runtime. The
connections between elements are optimized for resource
utilization and require placement and routing analysis,
done in a more time-consuming compilation phase.
However, once place-and-route has been done for the
automata, that structure may be incrementally loaded
dynamically, alongside existing automata, to a chip with
unused capacity.

3.5 Intra-Rank Bus: scaling Performance
and Capacity

The automata processor architecture includes an intra-rank
bus. It enables symbols to be distributed to a connected set
(rank) of automata processor chips, allowing expansion of
both the capacity and the performance of automata
processor systems. The intra-rank bus allows a range of
configurations. For example, in a 64-bit system that has
eight automata processor chips in a rank, the intra-rank bus
allows configurations with up to eight times the automata
capacity or eight times the processing throughput of a
single chip.

4 EVALUATION

At the time of this writing, a chip design for the
architecture has been completed in DRAM process tech-
nology and is currently in fabrication. An SDK has been
developed which supports configuration of the chip with
automata designs and runtime control of sets of automata
processors. Evaluation of the architecture is limited to the
results from compilation of automata and simulation.

The automata processor may be configured with
automata using either a list of regular expressions in
PCRE syntax or a direct description of the automata in an
XML-based high-level language that we have created
called the Automata Network Markup Language
(ANML). Evaluation of the architecture is discussed for
each type of input, PCRE and ANML.

4.1 Configuration by PCRE
The automata processor has been designed to have a high
degree of compatibility with PCRE. Features of PCRE
which exceed the computational power of regular lan-
guages, such as lookahead and lookbehind assertions and
backreferences, cannot be implemented using NFA alone

Fig. 8. Boolean element example.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 20143094



(see [14]). While counters raise the computational power of
the automata processor beyond pure NFA, PCRE expres-
sions using the aforementioned constructs must still be
postprocessed in software. The software imposes a small
number of restrictions on these constructs in order to
ensure that effective use is made of the hardware. This
design allows the automata processor to represent PCREs
of any complexity as compact and efficient automata. Fig. 9
provides an example of a complex rule, taken from Snort
[25], and shows how this is converted to an automaton that
runs directly on the automata processor. This particular
rule is designed to capture a buffer overflow attack on an
Apache web server. A video showing operation of the
automaton in a visual simulation tool has been included in
the paper’s supplementary material, available online.

We have run compilation and simulation tests from [26],
in which Becchi and Yu assembled large and complex rule
sets designed to test the capabilities of wide range of
regular expression engines. The tests were extracted from
Snort and modified to increase the number of patterns
including character classes and to increase the percentage
of patterns using unbounded repetitions of wildcards. We
report the number of regular expressions in the dataset, the

number of NFA states needed to implement the datasets
evaluated by Becchi and Yu [26], the number of state
transition elements used after configuration of the chip by
our SDK’s compiler, and the percentage of chip capacity
that represents (Table 3).

The results show that the usage of state transition
elements corresponds nearly 1-to-1 with the number of
NFA states and that resource utilization does not grow
with expression complexity. All rule sets will fit in a single
automata processor chip and will compute results at
exactly 1 Gbps per chip. A rank of 8 chips configured as
8 groups would run at 8 Gbps and further scaling can be
obtained by multiplying ranks.

4.2 Configuration by ANML
Our architecture, when configured through ANML, pro-
vides, as far as we know, the first hardware implementa-
tion to allow direct programming of automata structures.
While an extended discussion of ANML applications is
beyond the scope of this paper, we provide here two
abbreviated examples which show how ANML can be used
for problems that cannot be readily formulated using
regular expressions. Videos showing operation of both
automata in a visual simulation tool has been included in
the paper’s supplementary material available online.

Our first abbreviated example reports when a sequence
contains one or more a symbols, followed by one or more b
symbols, followed by one or more c symbols, and the total
number of symbols in the sequence is equal to 17. A regex
solution requires that every possible combination of
symbols a, b and c be enumerated. This problem can be
solved directly with the following simple ANML machine
(Fig. 10).

The starting element (with the all-input 1 symbol) will
begin counting once an a is received. The upper three state
transition elements recognize one or more of symbol a
followed by one or more of symbol b followed by one more
of symbol c and each time an a, b or c is recognized the
count advances. If something other than an a, b, or c is
received, the state transition elements implementing the

Fig. 9. Snort PCRE Rule as automata.

TABLE 3
PCRE Compilation Results

DLUGOSCH ET AL.: AN EFFICIENT AND SCALABLE SEMICONDUCTOR ARCHITECTURE FOR PARALLEL AUTOMATA PROCESSING 3095



negated character classes ½^ab�, ½^bc� and ½^c� will reset the
counter, restarting the sequence. When 16 of a, b or c have
been counted the state transition element connected to the
counter output is activated. If the seventeenth symbol is a c,
both the lower and upper state transitions elements will
input into the AND element causing the AND to report that
the input sequence conforms to the pattern.

The second example illustrates how graph data struc-
tures can be implemented directly in ANML using the
parallel evaluation and activation of automata processor
elements to naturally perform a breadth-first descent of
the tree. The graphic representation of a small ANML tree
is shown in Fig. 11, where each square represents a tree
node consisting of several state transition elements which
have the task of reporting when a 4-byte search key matches
the 4-byte value stored in the node. The search key is
broadcast n times, where n is the depth of the tree. Each
broadcast takes 4 symbol cycles. In the worst case, all
nodes matching the search key will be identified in 4n
symbol cycles.

The contents of an internal tree node are shown in
Fig. 12. The small pentagonal shapes labeled I and O are
macro ports, i.e., connection points into and out of the

macro structure used to encapsulate a node. The state
transition elements on the right side form a chain which
will report in the last element, if the search key matches
the node’s value. If one or more byte values do not match,
activation will follow the chain in the middle or the chain
on the left and the right-most chain will not report.

5 RELATED WORK

The first effort to create a direct hardware implementation
of automata (NFA) goes back to Floyd and Ullman in 1982
[27], and has been an active area of research since then. All
recent work that we are aware of has involved the use of
regular expressions as the means for expressing automata
and implementation as NFA in high-capacity FPGAs.
Becchi [19] implemented a multi-stride (simultaneous
input bytes) NFA compiled from Snort [25] pattern sets
on Xilinx Virtex-4 and Virtex-5 FPGAs, obtaining between
2 and 7 Gbps of throughput. She estimated that about 1000
complex regular expressions implemented as multi-stride
NFA could be deployed on a Virtex-5 XC5VLX50 device.
Nakahara et al. [18] implemented a modular NFA (MNFA)
on a Virtex-6, reporting system throughput of 3.2 Gbps on a
compiled subset of Snort regular expressions. Yang and
Prasanna [15] reported obtaining up to 11 Gbps on a Virtex-5
using various regex sets taken from Snort, implementing a
compiled RE-NFA structure with multi-stride capability and
enhanced character class processing. They reported being
unable to fit the entire regex portion of Snort, consisting of
2630 expressions, into a single FPGA and broke their test runs
into six rule sets. Kaneta et al. [16] developed a dynamically
reconfigurable NFA on a Virtex-5 running regexes in
different complexity classes at 2.9 and 1.6 Gbps for simple
regexes and 0.5 Gbps for complex regexes. The major
potential advantage of the design is that universal control
logic is compiled into the FPGA and specific regexes are run
by modifying memory, eliminating the cost of regex-specific
compilation. Kaneta’s design, however, is restricted in the
complexity of regexes that can be implemented with this
method. Wang et al. [17] created a counter-based NFA design

Fig. 10. ANML pattern match example.

Fig. 11. ANML graph example.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 20143096



that solves complex processing of character classes and
developed a methodology for recognizing when overlapping
character classes are inherently collision free. The design is
capable of updating regexes through memory writes. A
maximum system throughput of 2.57 Gbps was reported, but
this was dependent on the complexity of the regex and the
capacity of the FPGA only allowed for testing of partial rule
sets derived from Snort.

A detailed comparison of the automata processor to the
related works cited above is presented in the paper’s
supplementary material available online. The primary
relevance of this prior work is that it has established NFA
as the most efficient automata implementation for hard-
ware. Our device is the only direct semiconductor archi-
tecture purpose-built for automata processing, as far as we
know, and targets a different type of domain than high-
capacity FPGAs, relative to cost, footprint, power consump-
tion, and system integration. Much of the existing research
has focused on adaptation of the building blocks of FPGAs,
primarily LUTs and block memory, to regular expression-
specific automata processing. Our architecture, designed
to provide native support for PCRE, has addressed the
challenges described in the prior work (for example, in
character class handling as extensively treated in [17]). It
is not, however, regular expression specific. The architec-
ture allows for the concise implementation of NFA diffi-
cult or impossible to formulate with regular expressions
and also allows creation of pushdown automata and dy-
namic control of automata at runtime. Partial dynamic
modification of automata and incremental addition of auto-
mata at runtime are also supported. Other major differ-
entiators with prior work include the ability to interrupt
and resume input streams, with a mechanism for saving
and restoring machine state, and the ability to distribute
input data within a rank of automata processors to in-
crease system scale.

6 CONCLUSION

The automata processor is, to our knowledge, the first
semiconductor architecture of its kind; a non-von Neumann
architecture designed for efficient and scalable automata
processing. We have shown that the chip matches or
exceeds the performance of high-capacity FPGAs pro-
grammed with comparable functionality, while providing
greater logic capacity and offering superior capabilities in
incremental and dynamic updates, the ability to interrupt
and resume processing input streams, performance scaling
by grouping processors into ranks, and expressiveness and
computational power beyond that of regular expressions.
Routine silicon process shrinks, by moving to a new process
node, brings significant increases in capacity and higher
throughput, even without improvements in the architec-
ture. We expect, however, in addition to process shrinks,
many improvements to the architecture which will improve
speed, routing capacity, output capacity, and increases in
computational power from the automata elements. We
believe that our architecture also implies a new parallel
programming paradigm, which we have begun to see
evolving from ANML, and tools created for automata
processor development.

REFERENCES

[1] A.V. Aho and M.J. Corasick, ‘‘Efficient String Matching: An Aid
to Bibliographic Search,’’ Commun. ACM, vol. 18, no. 6, pp. 333-
340, June 1975.

[2] M. Becchi, C. Wiseman, and P. Crowley, ‘‘Evaluating Regular
Expression Matching Engines on Network and General Purpose
Processors,’’ in Proc. 5th ACM/IEEE Symp. Architectures Netw.
Commun. Syst., 2009, pp. 30-39.

[3] M. Góngora-Blandón and M. Vargas-Lombardo, ‘‘State of the Art
for String Analysis and Pattern Search Using CPU and GPU
Based Programming,’’ J. Inf. Security, vol. 3, no. 4, pp. 314-318,
Oct. 2012.

[4] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong,
‘‘GPU-Based NFA Implementation for Memory Efficient High
Speed Regular Expression Matching,’’ ACM SIGPLAN Notices,
vol. 47, no. 8, pp. 129-140, Aug. 2012.

[5] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, ‘‘Paralleliza-
tion and Characterization of Pattern Matching Using GPUs,’’ in
Proc. IEEE IISWC, 2011, pp. 216-225.

[6] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, ‘‘Infant: NFA
Pattern Matching on GPGPU Devices,’’ ACM SIGCOMM Comput.
Communication Review, vol. 40, no. 5, pp. 20-26, Oct. 2010.

[7] S. Pu, C.-C. Tan, and J.-C. Liu, ‘‘Sa2px: A Tool to Translate
Spamassassin Regular Expression Rules to Posix,’’ in Proceedings
of Sixth Conferences on Email and Anti-Spam, 2009, pp. 1-10.

[8] R. Baeza-Yates and G. Navarro, ‘‘Faster Approximate String
Matching,’’ Algorithmica, vol. 23, no. 2, pp. 127-158, Feb. 1999.

[9] Y.-H. Yang, V.K. Prasanna, and IEEE, ‘‘Space-Time Tradeoff in
Regular Expression Matching with Semi-Deterministic Finite
Automata,’’ in Proc. IEEE INFOCOM, 2011, pp. 1853-1861.

[10] M. Becchi, M. Franklin, and P. Crowley, ‘‘A Workload for
Evaluating Deep Packet Inspection Architectures,’’ in Proc. IEEE
IISWC, 2008, pp. 79-89.

[11] M. Becchi and P. Crowley, ‘‘A Hybrid Finite Automaton for
Practical Deep Packet Inspection,’’ in Proc. ACM CoNEXT Conf.,
New York, NY, USA, 2007, pp. 1:1-1:12. [Online]. Available:
http://doi.acm.org/10.1145/1364654.1364656.

[12] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner,
‘‘Algorithms to Accelerate Multiple Regular Expressions Match-
ing for Deep Packet Inspection,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 36, no. 4, pp. 339-350, Oct. 2006.

[13] M. Becchi and P. Crowley, ‘‘An Improved Algorithm to
Accelerate Regular Expression Evaluation,’’ in Proc. 3rd ACM/
IEEE Symp. Architecture Netw. Commun. Syst., 2007, pp. 145-154.

Fig. 12. ANML graph internal node.

DLUGOSCH ET AL.: AN EFFICIENT AND SCALABLE SEMICONDUCTOR ARCHITECTURE FOR PARALLEL AUTOMATA PROCESSING 3097



[14] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to
Automata Theory, Languages, and Computation, 2nd ed. Reading,
MA, USA: Addison-Wesley, 2001.

[15] Y.-H.E. Yang and V.K. Prasanna, ‘‘High-Performance and Com-
pact Architecture for Regular Expression Matching on FPGA,’’
IEEE Trans. Comput., vol. 61, no. 7, pp. 1013-1025, July 2012.

[16] Y. Kaneta, S. Yoshizawa, S.-I. Minato, and H. Arimura, ‘‘High-
Speed String and Regular Expression Matching on FPGA,’’
presented at the Asia-Pacific Signal Information Processing
Association Annu. Summit Conf., Xi’an, China, 2011.

[17] H. Wang, S. Pu, G. Knezek, and J. Liu, ‘‘Min-Max: A Counter-
Based Algorithm for Regular Expression Matching,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 24, no. 1, Jan. 2013.

[18] H. Nakahara, T. Sasao, and M. Matsuura, ‘‘A Regular Expression
Matching Circuit Based on a Modular Non-Deterministic Finite
Automaton with Multi-Character Transition,’’ in Proc. 16th
Workshop Synthesis Syst. Integr. Mixed Inf. Technol., Ballroom,
2010, pp. 359-364.

[19] M. Becchi, ‘‘Data Structures, Algorithms and Architectures for
Efficient Regular Expression Evaluation,’’ Ph.D. dissertation,
Dept. Comput. Sci. Eng., Washington Univ., St. Louis, MO, USA,
2009.

[20] V.M. Glushkov, ‘‘The Abstract Theory of Automata,’’ Russ. Math.
Surveys, vol. 16, no. 5, pp. 1-53, 1961.

[21] R.A. Baeza-Yates, ‘‘Efficient Text Searching,’’ Ph.D. dissertation,
Univ. Waterloo, Waterloo, ON, Canada, 1989.

[22] G. Navarro and M. Raffinot, ‘‘New Techniques for Regular
Expression Searching,’’ Algorithmica, vol. 41, no. 2, pp. 89-116,
Feb. 2005.

[23] P.C. Fischer, ‘‘Turing Machines with Restricted Memory Ac-
cess,’’ Inf. Control, vol. 9, no. 4, pp. 364-379, Aug. 1966.

[24] M.L. Minsky, ‘‘Recursive Unsolvability of Post’s Problem of ‘tag’
and Other Topics in Theory of Turing Machines,’’ Ann. Math.,
vol. 74, no. 3, pp. 437-455, Nov. 1961.

[25] Snort. [Online]. Available: http://www.snort.org.
[26] X. Yu and M. Becchi, ‘‘GPU Acceleration of Regular Expression

Matching for Large Datasets: Exploring the Implementation
Space,’’ in Proc. ACM Int. Conf. Comput. Frontiers, 2013, p. 18.

[27] R.W. Floyd and J.D. Ullman, ‘‘The Compilation of Regular
Expressions into Integrated Circuits,’’ J. ACM (JACM), vol. 29,
no. 3, pp. 603-622, July 1982.

Paul Dlugosch received a BS degree in electri-
cal and electronics engineering from North
Dakota State University, Fargo, ND, USA in
1989. He currently works at Micron Technology
as Director of Automata Processor Technology
Development. He has held previous positions in
ASIC development and product engineering at
Rosemount Industrial and Hewlett Packard. He
has been awarded several patents in the field of
system and semiconductor architectures. His
current interests include automata-based com-

puting applications, hybrid logic memory architectures and cognitive
processing techniques using artificial neural networks and systolic
array based architectures.

Dave Brown received BS and MS degrees in
Electrical Engineering from Clarkson University,
USA in 1988 and 1990, respectively. He cur-
rently works at Micron Technology in Allen, TX,
USA as the lead chip designer for the automata
processor. He has been lead designer on many
DRAM devices including: SDRAM, mobile DDR,
RDRAM and RLDRAM.

Paul Glendenning received a BE degree in
engineering from James Cook University
(Australia) in 1986. He joined Micron Technology
in 2011 and is currently working in the DRAM
Solutions Group as the Software Development
Manager and Chief Scientist, Automata Proces-
sor Technology Development. He is responsible
for developing the software tool chain to support
the automata processor and for modeling next
generation automata processor architectures.

Michael Leventhal received his BS-EECS de-
gree from U.C. Berkeley, USA in 1994. As a
member of the Automata Processor Technology
Development team at Micron he has been
responsible for the creation of the ANML
language used to program the automata proces-
sor, developer’s tools and investigation of
automata processor applications. Prior to joining
Micron he worked in the area of FPGA-based
accelerators and was deeply involved in the
creation of XML and the development of many

internet-based software applications built around the use of XML. His
current interests include automata theory and automata-based com-
puting applications and bioinformatics.

Harold Noyes received his BS degree in
Electrical Engineering from Utah State Univer-
sity, USA in 1981. He is the Senior Architect
(Hardware), Automata Processor Technology
Development, at Micron Technology, USA. Prior
to joining Micron, he worked in various research
and development roles for Hewlett-Packard
Company, USA and contract engineering for
Freescale Semiconductor, USA. His experience
encompasses engineering and project manage-
ment, including printed circuit assembly design,

electromagnetic and regulatory compliance engineering, modem
design, full-custom silicon SRAM design, ASIC design, and technical
writing, for portable computers and LaserJet printers. He is a member of
the IEEE and Tau Beta Pi.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 12, DECEMBER 20143098



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


