
Research Archive

Citation for published version:
Vu Thien Nga Nguyen, and Raimund Kirner, ‘Throughput-
Driven Partitioning of Stream Programs on Heterogeneous
Distributed Systems’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 27 (3): 913-926, March 2016.

DOI:
https://doi.org/10.1109/TPDS.2015.2416726

Document Version:
This is the Published Version.

Copyright and Reuse:
© 2015 IEEE.
Translations and content mining are permitted for academic
research only. Personal use is also permitted, but
republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rig
hts/index.html for more information.

Enquiries
If you believe this document infringes copyright, please contact Research &
Scholarly Communications at rsc@herts.ac.uk

Cite this:ACS Chem. Neurosci. 5, 10, 1032-1040

•

https://doi.org/10.1109/TPDS.2015.2416726
mailto:rsc@herts.ac.uk

Throughput-Driven Partitioning of Stream
Programs on Heterogeneous

Distributed Systems
Vu Thien Nga Nguyen and Raimund Kirner,Member, IEEE

Abstract—Graph partitioning is an important problem in computer science and is of NP-hard complexity. In practice it is usually solved

using heuristics. In this article we introduce the use of graph partitioning to partition the workload of stream programs to optimise the

throughput on heterogeneous distributed platforms. Existing graph partitioning heuristics are not adequate for this problem domain. In

this article we present two new heuristics to capture the problem space of graph partitioning for stream programs to optimise

throughput. The first algorithm is an adaptation of the well-known Kernighan-Lin algorithm, called KL-Adapted (KLA), which is relatively

slow. As a second algorithm we have developed the Congestion Avoidance (CA) partitioning algorithm, which performs reconfiguration

moves optimised to our problem type. We compare both KLA and CA with the generic meta-heuristic Simulated Annealing (SA). All

three methods achieve similar throughput results for most cases, but with significant differences in calculation time. For small graphs

KLA is faster than SA, but KLA is slower for larger graphs. CA on the other hand is always orders of magnitudes faster than both KLA

and SA, even for large graphs. This makes CA potentially useful for re-partitioning of systems during runtime.

Index Terms—Stream programs, throughput optimisation, graph partitioning, simulated annealing

Ç

1 INTRODUCTION

STREAM programming is a paradigm where a program is
structured by a set of computational nodes connected by

streams. Focusing on data moving between computational
nodes via streams, this programming model fits well for
applications which process long sequences of data. In stream
programming, concurrency is expressed implicitly via com-
munication streams. This helps to reduce the complexity of
parallel programming. For this reason, stream programming
has gained popularity as a programming model for parallel
platforms, and has been the research focus of several projects
such as StreamIt [45], Brook [7], S-Net [19], etc.

To obtain good performance for stream programs on par-
allel platforms with shared memory, above mentioned proj-
ects have deployed numerous scheduling strategies. The
main trend is to maximise the parallelism among all cores
by mapping computational nodes of the stream program
into individual cores. Different graph partitioning techni-
ques have been taken on to provide load balance so far
either regardless the communication cost or consider it only
with a low priority [8], [12], [18].

On distributed platforms where communication cost has
an enormous effect on performance, these techniques are no
longer suitable. There are some approaches proposed to
resolve this problem, as described in Section 2. However, all
of them are limited to either a specific class of stream
program, or a particular type of target platform.

In this paper, we propose a graph partitioning method
particularly suitable to optimise the throughput of general
stream programs on heterogeneous distributed platforms.
As an old NP-hard problem [16], graph partitioning has a
significant volume of existing work. The usual solutions
are heuristic and approximation algorithms trying to
divide a graph into separated partitions to optimise an
objective. The most common and well investigated objec-
tive is to equalise the size of partitions while minimising
the total cuts between them. However, this objective is
not necessarily best suited for all problems. For stream
programs, the throughput is decided not purely by the
workload on each partition, but also by the communica-
tion cost between each pair of partitions. It is even more
complicated when the distributed platform has heteroge-
neous resources and the communication bandwidth is not
uniform among them. In Section 4 we introduce a method
to calculate the throughput of stream programs based on
these factors. In Section 5 we present two graph partition-
ing algorithms which use this formula as their objective
function. The first one, called KL-Adapted (KLA), is a sim-
ple adaptation from the classic Kernighan-Lin (KL) graph
partitioner [24]. It uses greedy heuristics to search for
improved mappings by trying all possible move opera-
tions based on the current mapping. For each possible
move, this method needs to re-calculate the objective
function. For this reason, this method is rather slow
although it achieves results of sufficient quality. Thus, we
have developed a second algorithm, called Congestion
Avoidance (CA), that narrows the search space. Instead of
examining all possibilities, this method concentrates on
moves around congestion points where the throughput is
dimmed. The evaluation of KLA and CA in Section 6
shows that they achieve same or better results than the

� The authors are with the University of Hertfordshire, United Kingdom.

Manuscript received 30 May 2014; revised 9 Feb. 2015; accepted 14 Feb. 2015.
Date of publication 25 Mar. 2015; date of current version 12 Feb. 2016.
Recommended for acceptance by T. Hoefler.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2416726

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016 913

1045-9219 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

genetic meta-heuristic Simulated Annealing (SA). The
evaluation also shows that CA is significantly faster than
KLA and also Simulated Annealing.

2 RELATED WORK

2.1 General Graph Partitioning

Graph partitioning is the problem of dividing a graph’s ver-
tices into subsets that meet some requirements. Graph parti-
tioning is NP-hard [16] and is commonly used in various
applications such as VLSI design [42], image processing
[43], distributing workloads for parallel computations [10],
etc. The classic requirement of graph partitioning consists
of two criteria: balancing vertex weight between subsets
(called balance criterion), and minimising the total edge cut
among these subsets (called total cut criterion).

In graph partitioning, algorithms using iterative im-
provement are the most common. Such an approach favours
the balance criterion, i.e., divides the graph into subsets so
that their weights of vertices are approximately equal and
then applies refinement methods to move vertices between
them to find the optimal total cut criterion. As a local search,
the iterative improvement starts with an initial solution and
repeatedly performs local perturbation of the current solu-
tion. For the local perturbation, iterative improvement can
employ greedy heuristics such as Kernighan-Lin [24] and its
algorithmic improvement Fiduccia-Mattheyses (FM) [15].
It can also use hill-climbing techniques such as simulated
annealing [26].

As KL/FM was shown empirically to be efficient [22],
[38], it is usually used in local refinements in recent multi-
level partitioning schemes. Some examples are METIS [23],
JOSTLE [46], KaFFPa [41], SCOTCH [36]. PaToH [9] is
another example of using KL/FM for refinement in the mul-
tilevel approach for partitioning hyper-graphs. All these
approaches first coarsen vertices according to some match-
ing criterion to create a smaller graph at a new level. The
coarsening stage is repeated until reaching the lowest level.
An initial partitioning phase is used to generate partitions.
The uncoarsening phase walks up each level, and applies
local refinement based on KL/FM method. Employing the
similar basic idea of multilevel partitioning, PARTY [33]
instead uses another heuristic called Helpful-Set which is
derived by theoretical analysis. KaFFPa also employs Max-
Flow Min-Cut as another local refinement technique [41].

Another approach, called spectral partitioning, optimises
the total edge cut by using the eigenvalues and eigenvectors
of the graph. Unlike the iterative improvement, this app-
roach aims to find the global optimal point. Examples of
this approach can be found in [4], [39]. This approach is
known to find reasonably solutions but is very slow to run
compared to iterative improvement. To improve the spec-
tral approach, there are some proposals to combine the bal-
ance and total cut criteria into a sole metric, for example
Ratio Cut [20] and Sparest Cut [6], [25].

While most of the approaches focus on the balance and
total cut criteria, some others claim that they are not efficient
for some specialised domains. For example, Aspect Ratio
[13] and the Partition Shape [14] are shown to be a better
metric while partitioning solvers using the finite element
method (FEM). Most of the partitioning strategies working

on these criteria use iterative improvement. Starting with a
set of seeds, a growing method is used to generate corre-
sponding subsets. The centres of those subsets are used as
seeds for the next iteration. The growing method can be
based on a greedy breadth-first search [14], or based on the
diffusive process [32].

2.2 Graph Partitioning in Stream Programming

In stream programming, graph partitioning is typically
used to map a stream program onto a target platform. A
stream program can be described as a graph GSP ¼ hT; Si
whose vertices (T) are computation nodes and edges are
communication channels (S). The vertex weight is the load
on each computational node, and the edge weight is the
amount of transferred data on each communication channel.
The target platform is a graph GPF ¼ hPE; Liwith the nodes
being the processing elements (PEs) and the edges being the
communication links (L) that connect the PEs. Typically, the
graph to model the target platform is undirected. Graph
partitioning techniques are used to divide the stream pro-
gram graph into subsets, each of which is mapped onto a
PE. The stream program partitioning problem is thus to
map GSP onto GPF, that is p : GSP ! GPF such that a speci-
fied cost function is optimised. The mesh-based application
partitioning problem [47] is equivalent to the stream pro-
gram partitioning problem as they have the same type of
graph mapping model. For the mapping objective, regard-
less of stream programs or mesh-based applications, the
abstraction level between the real program and the graph
model is relevant.

The most common optimisation goal in partitioning
streamprograms is to optimise the throughput. The through-
put is determined by both the load/weight of vertex subsets,
and the individual communications/cuts between each pair
of vertex subsets. Throughput optimisation can be expressed
into two criteria: balanced criterion and individual cut crite-
rion. The balanced criterion is defined similarly to traditional
graph partitioning problems; it is the balance of load among
all subsets. The individual cut criterion, in contrast, involves
not the total cut, but individual cuts between each pair of
subsets. The cut between two subsets in fact represents the
required communications between them. Moreover, unlike
in traditional graph partitioning problems, the balance crite-
rion and individual cut criterion should not be considered
separately but always jointly, because the throughput is
defined by the combination of both. For these above reasons,
algorithms used for traditional graph partitions are not
applicable to partition streamprograms.

Compared to other stream programming models, syn-
chronous data flow (SDF) [27] has attracted most of research
for its synchronity property as the name suggests. SDF pro-
grams differ from conventional stream programs in that
their nodes have static input and output rates. That means
the amount of messages that each node consumes and pro-
duces during each invocation is constant and predefined
statically. Generally, in an SDF program streams are uni-
directional; node computation is deterministic; node com-
munications are synchronous; and the program structure is
static. These properties are used to generate periodic sched-
ules at compile time [28]. The execution of an SDF program
is simply an iteration of this schedule in the sense that data

914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016

required for the next iteration is generated in the previous
iterations. In addition, nodes in SDF are stateless, i.e., their
outputs do not change for the same input data. This prop-
erty enables fusion operations, which combine multiple
nodes into one; and fission operations, which are the revers-
ing processes of fusion operations.

Taking advantage of the periodic schedule, there have
been numerous approaches for mapping SDF programs
onto parallel platforms, including shared-memory and dis-
tributed platforms. As the communication cost on shared-
memory platforms is small and thus ignored by several
approaches, we include here only those approaches that
take account of communication cost and therefore are
potentially extendible for distributed platforms. One exam-
ple is described in [18] where the author attempts to divide
the program’s periodic schedule. Without considering the
communication cost, the proposed technique aims for a bal-
anced load by greedily applying fission and fusion opera-
tions based on the number of nodes and the number of PEs.
The later approach from the same authors first obtains the
load balance by using a simple greedy heuristic and then
minimises the total communication by applying fusion
operations [17]. In [12], although the role of individual com-
munication cost is recognised, still the total communication
cost is used to remove potential bottlenecks.

One of the first attempts to map SDF programs onto
homogeneous multiprocessor architectures is the work of
Sih and Lee [44]. The goal of this approach is to minimise
the make-span, which is the execution time of a single peri-
odic schedule and also is inversely proportional to the
throughput. Based on graph analysis techniques, the
authors propose a new clustering algorithm to form clusters
of nodes. The algorithm takes into account the trade-off
between benefits from parallelism and inter-PE communica-
tion costs. By considering the inter-cluster communication
and the parallelism relationships, the approach hierar-
chically combines these clusters into a binary tree. It then
traverses the binary tree from the top level to the bottom
level, and decomposes the binary tree to a group of clusters
that fits the target platform.

The approach in [8] is designed to map a class of stream
programs, which are Kahn process networks with some
SDF properties, onto heterogeneous multiprocessor sys-
tems. The approach uses a cost function which is inversely
proportional to the throughput. The cost function is defined
as the maximum of the computational cost of each PE; and
the communication cost between each pair of PEs. The
authors propose a two-phase partitioning algorithm to min-
imise the cost function. The first phase is to recursively bi-
partition both the stream program and the set of PEs on the
platform. Partitioning the stream program aims to minimise
the cost function. Partitioning the set of PEs aims to maxi-
mise a function that harmonises the balance and the com-
munication links. The second phase, refinement, tries to get
rid of bottlenecks lying on the computation of PEs. This
phase also considers some other constraints of convexity.
The authors claim that the convexity is a guideline to avoid
long pipelines and therefore to reduce the memory require-
ment as well as the latency. However, no proof has
been provided and the experiments focus only on the total
execution time instead of throughput and latency.

As the first approach using ILP to partition the periodic
schedule of SDF programs onto heterogeneous architec-
tures, the work in [29] aims to optimise the throughput.
This work provides an ILP formulation based on the
resource constraints, scheduling constraints and depen-
dency constraints; whilst at the same time taking advantage
of stateless nodes in granularity optimisation. The main
goal of this work is to partition the periodic schedule not at
the node level but at the node invocation level, i.e., a node
can be executed by multiple different PEs within a periodic
schedule. The optimisation goal is the make-span which is
inversely proportional to the throughput. One drawback of
this approach is that the ILP formulation does not model
well simultaneous multi-thread execution. This leads to the
limitation that node execution on each PE is sequential. This
drawback does not occur in the later work from the same
authors [30]. In this work, the authors use the Uppaal model
checker [5] instead of ILP.

The work in [11] focuses on mapping router applications
onto multi-core packet processing systems. These applica-
tions are structurally similar to streamprogramswith the con-
straint that their tasks do not hold a persistent state. Therefore
their tasks can be duplicated to increase parallelism. The
main target of the mapping problem is to obtain load balance
and minimise the total communication cost. This work intro-
duces two new algorithms and compares them with the well
known Kernighan-Lin and Simulated Annealing algorithms.
The first new algorithm is UDFS that duplicates tasks until
the amount of tasks is equal to the amount of cores in the
system, and uses a greedy mapping scheme to assign each
task to each core while minimising the total communication
cost among machines. The second is an extension of the Ker-
nighan Lin algorithm where both the total communication
cost and the load balance are incorporated into the gain func-
tion. The comparison in this work focuses on the quality of
output mapping configuration rather than the execution time
of the algorithms. This work also shows that applying task
duplication andmerging beforemapping can help to find bet-
termapping configurations for all algorithms.

To summarise, most of the above approaches are limited
to a specific class of stream programs. Those are stream pro-
grams with static scheduling properties similar to StreamIt.
Our work in this article, on the other hand, aims to partition
general stream programs for heterogeneous distributed
platforms. Also most of these approaches do no use the
throughput as the direct optimisation target of the partition-
ing algorithm. They instead use similar optimisation targets
as general partitioning algorithms, i.e., they obtain the load
balance first while minimising the total communication
cost. The approach in [8] is the only one that uses a cost
function that is the reverse of our throughput formula.
However, during the refinement phase of the partitioning
algorithm, their approach considers only bottlenecks at the
computational load of partitions while ignoring those at
the communication costs between partitions.

3 BACKGROUND

3.1 Stream Programming

In stream programming, a program is structured by a set of
computation nodes and a set of communication channels

NGUYEN AND KIRNER: THROUGHPUT-DRIVEN PARTITIONING OF STREAM PROGRAMS ON HETEROGENEOUS DISTRIBUTED SYSTEMS 915

called streams. In this paper we refer to computation nodes
simply as nodes. Streams are used to connect nodes in dif-
ferent patterns such as pipeline, parallel, etc. Some exam-
ples of stream programming can be found in [7], [19], [45].
The structure of stream programs can be illustrated as a
graph whose vertices are nodes and edges are streams. In
this work, we assume that one stream connects only two
nodes. Data of stream programs is usually presented as an
infinite sequence of input messages.

Fig. 1 shows an example of a stream program. This is the
Image Filter application which includes node Splitter that
reads in images and splits each of them into sub-images.
The number of sub-images is varied depending on the size
of the original image. All sub-images are scattered in differ-
ent branches where nodes Filter_i j i 2 f1::ng carry out fil-
tering on each sub-image. Then filtered sub-images are sent
to node Merger. This node unifies them into a complete
image and sends it out.

3.2 Nodes and Data in Stream Programs

In stream programs, data arrives from the environment as
a virtually infinite sequence of messages. Nodes that
receive messages from the environment are entry nodes.
Nodes sending messages out to the environment are exit
nodes. In the example of Fig. 1, Splitter is an entry node
and Merger is an exit node. A stream program can have
multiple entry nodes and multiple exit nodes. Input mes-
sages of entry nodes come from the external environment
and therefore are called external input messages. Similarly
output messages of exit nodes are called external output
messages. Other messages inside the stream program are
referred to as intermediate messages. An intermediate mes-
sage can be input of a node and output of another one.
An external input message can be an input of an entry
node and can not be any node’s output. Similarly, an
external output message can only be output of an exit
node, but not input of any other node.

Inside a stream program, messages are transferred from
nodes to nodes via streams. A node gathers messages from
a set of streams, called input streams. After processing these
messages, the node produces new messages and scatters
them to a set of streams, called output streams. Execution of
a node consumes n input messages and produces m output
messages, and n-to-m is the multiplexity of the node. This
execution can occur only when n required input messages
are available. As the node’s behaviour can be context-
dependent, the two values n and m can vary at runtime.
Also m produced messages can be dynamically distributed
to the output streams. In the Image Filter example, node
Splitter can split one image into a number of sub-images
depending on the image size. Depending on the implemen-
tation, this node can have a policy how to scatter these sub-
images into different branches. For example, one can choose
to scatter with a round-robin manner.

3.3 Execution Model

Conceptually the execution model of stream programs
includes three layers: a compiler, a runtime system (RTS)
and a scheduler. A stream program’s source code first is
passed through the compiler to generate object code. The
RTS uses the object code to produce runtime objects includ-
ing streams and tasks. Each task represents an instance of a
node. The node’s input streams now become the task’s
input streams and similarly its output streams become the
task’s output streams.

A task is an iteration of the node invocations, each of
which includes reading messages from its input streams,
processing them, and writing output messages to its output
streams. Streams are implemented as FIFO buffers for the
transfer of messages from tasks to tasks. We define the
stream transfer of a message M as the activity of moving M
across a stream from one task to another. The activity of a
stream S therefore consists of stream transfer of all mes-
sages passing over S. Usually, on shared memory plat-
forms, message transfer is implemented simply by memory
access, while on distributed platforms it is implemented
by using message passing techniques, for example MPI.

The graph of nodes now becomes the graph of tasks.
Tasks associated with entry nodes are called entry tasks.
Tasks associated with exit nodes are called exit tasks. Other
tasks are called middle tasks.

The RTS also controls the state of tasks, i.e., when a task
is ready to be scheduled. A task is ready to be executed if all
required messages are available on their input streams. In
this case, the task state is ready. Otherwise the task state is
blocked.

Lying under the RTS, the scheduler employs a policy to
execute ready tasks on a target platform consisting of proc-
essing elements. The scheduler’s policy decides:

� which ready task will be executed
� which PE will perform the ready task
� the length of scheduling cycle, i.e., the period for

which the PE will perform the ready task

3.4 Message Derivation

When a node invocation consumes an input message Mx

(and possibly other messages) to produce an output mes-
sage My (and possibly other messages), it is said that Mx

derives My, or My is derived from Mx, formally written as
DrvðMx;MyÞ. In this case, Mx is a predecessor of My and My

is a successor of Mx. The message derivation relation is tran-
sitive, i.e., DrvðMx;MyÞ ^DrvðMy;MzÞ) DrvðMx;MzÞ.

Fig. 2 shows an example of message derivation from
external input messages to external output messages. In this
example, we have from external input I2 towards external
output O3 the derivations DrvðI2;M1Þ, DrvðM1;M4Þ and

Fig. 1. Program structure of image filter application.

Fig. 2. An example of message derivation.

916 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016

DrvðM4; O3Þ. We also have DrvðM1;M5Þ, DrvðI3;M5Þ, and
DrvðM5; O4Þ, etc.

Given an external input message I, its derived external
output message derived outputsðIÞ is defined as the set of
external output messages that are successors of I.

3.5 Message Completion

When processed by a stream program, an external input
message Ii may derive multiple intermediate messages Mj

before deriving any external output messages Ok, written as
DrvðIi;MjÞ, DrvðMj;OkÞ for each such Mj. An external
input message Ii is said to be completed, i.e., completely
processed, when none of its successor exists inside the
stream program, i.e., all messages in derived outputsðIiÞ
have been sent out. In the example of Fig. 2, the external
input message I2 is completed when the messages O1, O2,
O3, O4 are all sent out.

The completion of an external message is defined as a set of
node invocations that produce all its successor messages
and the stream transfers of these messages. Put another
way, the completion of an external message Ii is the process
of performing node invocations to generate its successors,
and stream transfers passing them to other tasks until all
messages in derived outputðIiÞ are sent out. In the example
of Fig. 2, the completion of I1 composes of three node invo-
cations that produce M0, M2, O1 and O2; and two stream
transfers that shiftM0 andM2 to the corresponding tasks.

As mentioned above, a task executes a sequence of node
invocations. The contribution of a task T to an external input
message Ii is defined as the group of T ’s node invocations
that belong to the completion of Ii. Similarly, contribution
of a stream S to an external input message Ii is the group of
S’s stream transfers that belong to the completion of Ii.

Feedback loops. It is common that a stream program con-
tains feedback loops, for example, to continuously maintain
a program state. For each external input message, some of
its successors will remain inside the stream program to
form the program state that influences the processing of the
next external input message.

For the extreme case where such successors remain
with unbounded time in the system, the message deriva-
tion mechanism as presented above would lead to infinite
completion time of external input messages. As irreduc-
ible loops occur rarely, we can assume that all feedback
loops in a stream program are reducible [2]. In case of
reducible loops, the back edge of a loop can be identified
as a sequence of streams that connects a node n1 to a
node n2 dominating n1. A node ndom is said to dominate a
node ni if all data flow has to go through ndom in order to
reach ni. To avoid infinite completion times, all messages
which are sent over back edges will be ignored by the
message derivation relation used to calculate a message’s
completion time. This is a pragmatic approach that makes
sense, since such unbounded feedback loops effectively
model persistent state rather then the processing of any
individual input message.

However, feedback loops where all successor messages
remain only a finite time in the system are not a problem, as
there the message completion times can be calculated by
virtually unrolling the feedback loop.

4 THROUGHPUT OF STREAM PROGRAMS

Stream programs are similar to communication networks
in the sense that they transfer messages from one end to
another via interconnected nodes. Therefore, the through-
put is one of the main metrics to evaluate stream pro-
grams. In similarity with communication networks, the
throughput of stream programs is measured as the number
of external input messages that are completed per time
unit. In contrast to communication networks where each
node has its own physical resource, tasks in a stream pro-
gram perform their computations on a shared platform.
Thus the throughput of stream programs depends highly
on the scheduling policy.

4.1 Uniform Shared Memory Platforms

In our previous work [34], we have derived the throughput
of stream programs on uniform shared memory platforms
as follows:

TP ¼ ðN � eW � eOÞ
C

: (1)

Where N is the number of homogeneous CPU cores on

the shared memory platform, eW is the relative idling of the

system, eO is the relative overhead of the system, and C is
the average computational time required to complete one
external input message.

4.2 Distributed Platforms

On shared memory platforms, the communication cost
between nodes is negligible. The centralised scheduling
approach is therefore quite efficient. When deploying
stream programs on distributed platforms, the communica-
tion cost becomes significant and the central approach is no
longer efficient.

In this section, we focus on deploying stream programs
on distribute platforms where each PE is a uniform shared
memory machine. An intuitive approach would be to divide
the set of tasks of the stream program into multiple subsets,
and assign them to separate PEs. Each PE has its own local
scheduler for their assigned tasks. This approach only
works for static stream programs with fixed structures
during runtime. For dynamic stream programs, statistical
observation of the structure changes can be used to stabilise
the stream program before applying this approach. In this
section, we present the quantitative evaluation of the
throughput for distributed platforms.

A distributed platform is represented as an undirected
graph H ¼ ðR;LÞ where R is the set of vertices, each of
which represents for a PE; and L is the set of edges, each
of which is the communication link between PEs. Each PE,
r, has weight wðrÞ, which equals to its number of cores.
A communication link between PE ri and rj is denoted as
lrirj and has weight wðlrirjÞ which is equal to its bandwidth

in Byte/s.
As presented in Section 3, each task represents an

instance of a node and tasks communicate with each other
via uni-directional streams. The stream program therefore
can be represented as a directed graph G ¼ ðT; SÞ where T
is the set of tasks, and S is the set of directed streams.

NGUYEN AND KIRNER: THROUGHPUT-DRIVEN PARTITIONING OF STREAM PROGRAMS ON HETEROGENEOUS DISTRIBUTED SYSTEMS 917

Though a stream program G is directed, for the sake of
throughput optimisation later described in this article, we
will model as undirected graphs, based on the realistic
assumption that communication cost is the same regardless
of the direction of the stream.

The weight of each task t in T is defined as the average
time that t requires to perform its processing contribution to
an external input message. This amount of time depends on
the PE that the task is mapped to. The weight of task t on PE
r is notated as wrðtÞ representing the execution time in
seconds. A stream connecting tasks ti and tj is denoted as
stitj . Each stream has weight wðstitjÞ, which is equal to the

average amount of data to be transferred over stitj for the

completion of an external input message. This weight
wðstitjÞ is the average size of all messages emerged in the

contribution of stitj for the completion of an external input

message. The unit of wðstitjÞ is Byte/message. The values of

wrðtÞ and wðstitjÞ can be easily obtained using an appropri-

ate monitoring framework, for example the one we have
developed for that purpose [35].

A mapping configuration of a stream program G ¼ ðT; SÞ
over a distributed platform H ¼ ðR;LÞ is defined as group
of partitions MpC ¼ fPr j i ¼ 1::jRjg. A partition Pr is the
set of tasks that are mapped to the PE r.

For shared memory platforms we can ignore cost of mes-
sage transfer, consequently the completion of an external
input message is formed by a set of node invocations spread
over the contributions of all tasks. On distributed platforms,
the cost to transfer messages over a stream within a partition
can still be considered to beminor. In contrast, message trans-
fer over a stream across two partitions is costly. The comple-
tion of an external input message spreads over both tasks on
partitions and the stream communication among them.

A partition Pr is considered to have completed its contri-
bution to an external message Ix when its tasks have com-
pleted their contributions to Ix. The communication weight
between two partitions Pri and Prj is defined as the total

weight of all streams across them. This represents the aver-
age amount of data to be transferred between two partitions
Pri and Prj within the completion of an external message,

CommðPri ; PrjÞ ¼
X

ti2Pri ;tj2Prj
wðstitjÞ: (2)

Since completion of external input messages is stretched
over all partitions Pr 2 MpC and the communications
among them, the throughput of a stream program is deter-
mined based on two kinds of throughput: the computation
and communication throughputs.

The computation throughput of a partition Pr is the aver-
age number of external input messages that Pr completes
within a time unit. Since each PE r is a shared memory plat-
form, Equation (1) can be used to derive the throughput of
partition Pr as follows:

TPcompðPrÞ ¼ wðrÞ � fWr � fOr

Cr

¼ wðrÞ � fWr � fOrP
t2Pr w

rðtÞ ; (3)

where Cr is the average time that all tasks in the partition
contribute to completely processing an external message.

This equals the total weight of all tasks in the partition. fWr

and fOr are the relative idling time and the relative overhead
of the local scheduler of PE r, respectively.

The communication throughput between the two parti-
tions Pri and Prj is amount of their communication weight
that can be transferred via the physical link between PEs ri
and rj within a time unit.

The physical link connecting two PEs is undirected, i.e.,
the bandwidth consumption of any data transfer is indepen-
dent of its direction. Thus, when modelling the communica-
tion cost for throughput optimisation, we can abstract away
from the directiveness of G.

The communication throughput is determined by divid-
ing the bandwidth between PEs ri and rj by the communi-
cation weight between two partitions:

TPcommðPri ; PrjÞ ¼
wðlrirjÞ

CommðPri ; PrjÞ
: (4)

The communication weight CommðPri ; PrjÞ is the amount
of data that needs to be transferred between the two parti-
tions Pri and Prj for the completion of an external input

message. The communication throughput therefore can be
considered as the number of external messages that can be
completed by the communication link.

Since the computation of partitions and communication
among them can occur in parallel, the throughput of the
stream programwith a mapping configurationMpC is intui-
tively the minimum of all computation throughputs and
communication throughputs:

TPðMpCÞ ¼ min
ri;rj;rk2R

ðTPcompðPriÞ;TPcommðPrj ; PrkÞÞ: (5)

5 PARTITIONING ALGORITHMS TO OPTIMISE

THROUGHPUT

The previous section presented a method to calculate the
throughput of stream programs when deployed on a distrib-
uted platform with a mapping configuration. In this section,
we focus on maximising the throughput. We assume that
the local scheduler of each PE has predictable relative idling
and overhead times. We also assume that these parameters
are not affected by the partitioning method.

We introduce two algorithms to generate a mapping con-
figuration so that its throughput is maximised. The first
algorithm, called KL-Adapted, is a trivial adaptation from
the well-known graph partitioning algorithm, Kernighan-
Lin [24]. The second one, called Congestion Avoidance,
operates in a similar way but instead of considering all
possible move operations, the method detects the conges-
tion point and examines only move operations that can help
to improve the congestion point.

For convenience, we notate by parðMpC; tÞ the partition
inMpC that task t belongs to.

5.1 KL-Adapted Algorithm

The original Kernighan-Lin algorithm [24] aims to divide a
graph into two partitions such that they are balanced in
terms of the number of vertices with minimum number of

918 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016

edges across them. The algorithm introduces the gain of a
vertex as the total of edge cut which will be decreased if
the vertex is moved to the complimentary partition. The
gain of each vertex is calculated based on internal edges
connecting the vertex with vertices on the same partition,
and external edges connecting the vertex with vertices on
the different partition.

Starting with a randomly generated partition, the algo-
rithm uses a greedy heuristic to find a sequence of locally
optimal operations between two partitions which maxi-
mise the improvements. Each operation includes choosing
a vertex from the first partition with the maximum gain to
move to the second partition, and similarly choosing a
vertex from the second partition with the maximum gain
to move to the first partition. After each move, the gain of
all vertices are updated locally by examined the moved
vertex and its neighbours.

Fiduccia and Mattheyses algorithm [15] is an improve-
ment of Kernighan-Lin by using an appropriate data struc-
ture. When gain values are integer and fall in a bounded
range, a set of buckets can be used to store vertices. Each
bucket is labelled with a value in the gaining range. Each
vertex is stored in one bucket with the label matching
with the vertex’s gain value. This helps to choose the best
vertex to move, that is one of the vertices in the bucket with
the largest label. When the gain of a vertex changes, the
vertex is moved to the new bucket according to its new gain.

We adapted the conception of the Kernighan-Lin algo-
rithm in [24] to the multiple-way partitioning approach
where each operation is to move one task to a new partition.
Our new algorithm is called the KL-Adapted Partitioning
Algorithm. In similarity to the original Kernighan-Lin algo-
rithm, KLA starts with a randomly generated initial map-
ping configuration and applies greedy heuristic passes
iteratively until the throughput stops increasing. We denote
these passes as KLA passes to distinguish them from passes
in the CA algorithm presented later. Each KLA pass
searches for the best move operation which relocates a task
to a new partition so that the throughput after the move
operation is maximised. After being relocated, a task is
locked so that it is moved only once during a KLA pass.
This process is carried on until all tasks have been moved.
At the end of the KLA pass, the sequence of move opera-
tions that creates the new mapping configuration with the
highest throughput are chosen to be applied.

The original KL/FM algorithm keeps track of the gain of
each vertex so that it is easy and quick to choose the best
vertex to move. This is feasible since after moving a vertex,
only the gain of its neighbours needs to be updated by sim-
ple arithmetic operations. In our problem, moving a vertex
may cause changes of the gain values of all vertices and
therefore tracking the gain value of each vertex is not benefi-
cial. We instead keep track of the computation throughput
of each partition and the communication throughput
between each pair of partitions. We use a 1D-array to store
computation throughputs and a 2D-array to store communi-
cation throughputs. The KLA pass in our algorithm needs to
examine all possible move operations to find the best move
operation. When trying a move operation, the computation
and communication throughputs of involved partitions
will be updated. The throughput of the new mapping

configuration then is calculate as the minimum value of all
computation and communication throughputs.

The details KLA are shown in Fig. 3, labelled as steps
A to J . The input to the KLA algorithm includes the stream
program G ¼ ðT; SÞ, and the distributed platform H ¼ ðR;
LÞ (step A). At the beginning, a randomly generated map-
ping configuration is generated and its throughput is evalu-
ated as in step B. The KLA algorithm uses three lists
moved task, moved par and moved tp to store the history of
move operations. Starting with the empty history, each
KLA pass operates on a temporary mapping configuration
tmp map which is a copy of the current mapping configura-
tion cur map (step C). The KLA pass then finds the task t
not in moved task and the partition P so that moving t to P
carries out the highest throughput compared to all other
possible move operations. If the move operation exists
(step E with ’yes’), it is applied to generate a new mapping
configuration. The move operation is also added to the his-
tory, i.e., t is appended to moved task, P is appended to
moved par, and the new throughput value is added to
moved tp (step F). Note that some move operations in the
history can reduce the throughput, i.e., an element in
moved tp can have smaller value than others before it. To
avoid the case where a task is repeatedly exchanged
between two partitions, one task is moved at most once
within a pass. That means tasks in moved task are not con-
sidered to move again within the current KLA pass. When
all tasks have been moved once, i.e., no move operation can
be found (step E with ’no’), the list moved tp is examined to
find the maximum throughput value max tp and its index k
(step G). The current KLA pass terminates and a new pass
will be proceeded if max tp is higher than the throughput
of the current mapping configuration (step H with ’yes’).
Before starting a new KLA pass, the current mapping
configuration cur map needs to be updated by applying all
move operations in the history up to index k (step I). In the
case where max tp is not higher than the throughput of
the cur map (step H with ’no’), that means the heuristic
KLA pass can not find any better mapping configuration.
The KLA algorithm therefore returns cur map as the final
mapping configuration (step J) and terminates.

5.2 Congestion Avoidance Partitioning Algorithm

In similarity to KLA, the Congestion Avoidance partitioning
algorithm begins with an initial mapping configuration and
repeats a heuristic pass until the throughput reaches a
locally optimal value. We denote the heuristic pass here as
CA pass. Unlike a KLA pass, a CA pass does not examine all
possible move operations, but focuses on only those around
the congestion point identified by inspecting the through-
put formula of Equation (5). Within each pass, the CA
identifies the congestion point of the current mapping
configuration and tries move operations that potentially
improve the throughput.

From Equation (5), the throughput of a stream program
with a mapping configuration MpC is the minimum value
of a set of computation and communication throughputs.
A congestion point is where the throughput is settled, i.e.,
where the minimum value occurs. If the minimum value is
TPcompðPrÞ, the congestion is said to lie on the computation

NGUYEN AND KIRNER: THROUGHPUT-DRIVEN PARTITIONING OF STREAM PROGRAMS ON HETEROGENEOUS DISTRIBUTED SYSTEMS 919

of Pr. In this case, only tasks from Pr are considered to be
moved to other partitions. This helps to reduce

P
t2Pr w

t
r

and therefore increase TPcompðPrÞ. Thus the throughput
TPðMpCÞ then improves.

Similarly if TPcommðPri ; PrjÞ is the minimum value, the
congestion lies on the communication between partitions
Pri and Prj . In this case, only move operations that reduce

the communication weight between Pri to Prj are consid-

ered. Those are move operations involving tasks which
have a stream connection across Pri and Prj . Relocating

these tasks potentially reduces the communication weight
between Pri and Prj and therefore potentially improves

TPcommðPri ; PrjÞ.
The details of the CA algorithm are shown in Fig. 4,

labelled as steps A to N . Taking a stream program
G ¼ ðT; SÞ and a distributed platform H ¼ ðR; LÞ as
inputs (step A), CA starts by generating a randomly gen-
erated mapping configuration cur map (step B) before it
gets into heuristic passes. In similarity to KLA, CA stores
the history of move operations in three lists moved task,
moved par and moved tp. Each CA pass also starts
with an empty history and a temporary mapping config-
uration tmp map which is copied from the current
mapping configuration cur map (step C). By evaluating

the throughput formula (Equation (5)) on tmp map, the
CA pass identifies the congestion point. The type of con-
gestion point is used to determine the set of tasks Ttry so

that reallocating them can potentially improve the con-
gestion point (steps E, F and G). If the congestion point
lies on the computation of Pr, Ttry consists of tasks in Pr.

If the congestion point lies on the communication of Pri

and Prj , Ttry includes pairs of tasks, one in Pri and one

in Prj , which are connected by a stream. In step H, the

algorithm examines move operations of re-allocating
tasks in Ttry which have not been moved during the cur-

rent pass, i.e., not in the list moved task. The result of
this step is the move operation of a task t to a another
partition P that brings the highest throughput compared
to other examined move operations. The remaining steps
of the CA pass are similar as in a KLA pass. The move
operation is applied and added to the history if it exists
(step J). Otherwise, the algorithm scans the history of
move operations to find the highest throughput value
max tp and its index k (step K). The algorithm decides
to update cur map and continues a new CA pass if
max tp is better than the throughput of cur map
(step M). If not, the algorithm terminates with cur map
as the output.

Fig. 3. Flowchart of KL-adapted partitioning algorithm.

920 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016

5.3 Local Optima in Heuristic Search

Since the proposed algorithms KLA and CA are local search
heuristics, they can be trapped in local optima. There are a
number of approaches to overcome this problem. One sim-
ple way is to run the partitioning algorithm multiple times
with different initial mapping configurations. Another more
complicated way is to integrate the local search heuristic
into multilevel schemes. This way has been shown have
been shown to be successful in overcoming the localized
nature of KL/FM [23], [21]. In this work, we focus on the
effectiveness of our new local search heuristic. We therefore
choose to perform our algorithms multiple times with dif-
ferent initial mapping configurations. Integrating our
approach into multilevel schemes will be considered in the
future work.

6 EVALUATION OF THE PARTITIONING

ALGORITHMS

In this section we evaluate the performance and efficiency of
the two heuristic algorithms KLA and CA presented in
Section 5. The implementation of these algorithms can be
found in [1]. As discussed in Section 2, most of existing
graph partitioning tools first obtained the load balance crite-
rion and then use the total cut criterion as the optimised tar-
get. To show that these two criteria are not efficient in the
domain of stream programs, we compare the CA algorithm
with the existing tool METIS partitioner [31].

To the best of our knowledge, we are the first to use the
throughput formula (Equation (5)) as the optimised target
in graph partitioning. Despite using another version of this

Fig. 4. Flowchart of congestion avoidance partitioning algorithm.

NGUYEN AND KIRNER: THROUGHPUT-DRIVEN PARTITIONING OF STREAM PROGRAMS ON HETEROGENEOUS DISTRIBUTED SYSTEMS 921

formula, the approach in [8] does not consider congestion
points lying on the communications but attempts to elimi-
nate only those lying on the computations. Furthermore,
this approach integrates this formula with other refinement
methods for optimising other metrics in embedded systems.
We therefore compare our proposed heuristics with Simu-
lated Annealing as it is a generic technique of finding the
global optima of a specific function.

As discussed in Section 5.3, CA and KLA will be run
multiple times to overcome local optimum. When compar-
ing with SA and METIS partitioner, we use 50 runs of CA
and KLA.

6.1 Experimental Setup

We perform our experiments with S-Net stream programs
[19] with its LPEL execution layer [40]. One convenience
of using this execution model is that it provides an essen-
tial monitoring framework to obtain the required infor-
mation for the stream program graph [35]. Another
reason is that LPEL provides a local scheduler for each
PE where the time overhead is predictable, and the wait-
ing time is negligible when the system is fully working
(i.e., the arrival rate of external input messages is high
enough to keep the resources busy) [34]. The relative
overhead eW is one CPU core which is used as the
conductor to manage the central task queue.

We use five different applications:

� DES: performs DES encryption
� OBD: detects four different types of objects from

images
� HIST: calculates histogram of images
� MTI: detects moving objects on the ground from an

aircraft [37]
� S500: synthetic stream graph with approximately

500 vertices
� S1;000: synthetic stream graph with approximately

1,000 vertices
Implemented in S-Net, each of the first four applications

contains a primary stream structure that performs the
application’s main function. To increase the level of concur-
rency, S-Net provides a replication operation, called parallel
replication, to create multiple instances of the primary
stream structure. The number of instances is decided by the
number of machines of the deployed targets. Therefore,
each application when deployed on different targets
will have a different number of nodes and streams. To
diversify the experiment, we use the stream graph generator
described in [3] to create two synthetic stream graphs
with approximately 500 and 1,000 vertices. They are called
S500 and S1;000, respectively. The generator makes sure
these two synthetic graphs have key properties shared by
most of stream applications. To partition graphs with 5,000
or more vertices, SA and KLA take too long to run. We
therefore do not include such large benchmarks here.

The experimental targets are clusters of 4, 8 and 16
machines. Each machine has two sockets with Xeons E5520
CPUs. Each machine also has 24 GB of shared memory. The
machines are connected via a 4xDDR Infiniband where the
traffic between pairs of machines are guaranteed for a
full bandwidth of 16 Gbits/s. For convenience, TARGETi

is used to denote the target with i machines. Note that
although each machine has eight cores, only seven cores are
used for the computation as one core is used as the conductor.
Also, for each target, one of its machines needs to reserve two
cores to simulate the source and sink for stream programs.
The source is a process that continuously sends external input
messages to the stream program while the sink continuously
consumes its external output messages. We also include one
synthetic targetwith 16machines. The number of cores on each
machine is chosen randomly from 1 to 7. The bandwidth of
their connections is assigned arbitrarily from 0 to 16 Gbits/s.
This synthetic target is denoted asTARGETS16.

We use Ai j A 2 fDES;HIS;OBD;MTI; S500; S1;000g to
denote for the benchmark of application A deployed on
target TARGETi.

Table 1 shows the number of vertices and edges for all
benchmarks.

6.2 METIS Partitioner for Stream Programs

We perform an experiment to show the efficiency of the
METIS partitioner [31], an existing partitioning tool that
use the balance criterion and total cut criterion as the objec-
tive function. In this experiment, we use the METIS parti-
tioner version 5.1.0 with the default parameters. With these
parameters, the METIS partitioner applies direct k-way par-
titioning to minimise the total edge cut, and uses the sorted
heavy-edge matching scheme during the coarsening phase.

Fig. 5 shows the comparison in quality of outcome map-
ping configurations between our CA algorithm and the
METIS partitioner. In all benchmarks except for DESS16

and S10;000S16, CA produces mapping configurations with
throughput at least 10 percent better than the METIS parti-
tioner. For these two case, CA’s output is around 2 percent
better than the METIS partitioner’s. The mapping configura-
tions produced by CA are superior for OBDS16, HISTS16,
and MTIS16. In particular their throughputs are 755, 1,172,
and 158 percent higher than the throughputs of mapping
configurations produced by the METIS partitioner.

We do not focus on the comparison of the execution time
here as the METIS partitioner uses a different objective func-
tion which aims to minimise the total cut. This objective
function is simpler to compute compared to the throughput
function in our partitioning algorithms. In addition, METIS

TABLE 1
Properties of Evaluation Benchmarks

Benchmark # Vertices/Nodes # Edges/Streams

DES4 74 76
OBD4 98 144
HIST4 122 180
MTI4 126 140
DES8 146 152
OBD8 194 288
HIST8 242 360
MTI8 250 280
DES16;DESS16 290 304
OBD16;OBDS16 386 576
HIST16;HISTS16 482 720
MTI16;MTIS16 498 560
S50016; S500S16 504 541
S100016; S1000S16 992 1,067

922 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016

uses the multilevel partitioning scheme which is consider-
ably faster than the direct partitioning scheme used in our
algorithms. For these above reasons, the METIS partitioner
takes significantly less time than the CA algorithm in all the
benchmarks. For future work, we will consider integrating
the CA algorithm into a multilevel partitioning scheme.

6.3 Convergence Speed of KLA and CA

In this section we evaluate the convergence in terms of the
number of passes and the execution time of two proposed
algorithms, KLA and CA. Fig. 6 shows the average number
of passes of these two algorithms. The average value is cal-
culated based on 100 runs. For all the evaluation bench-
marks, both of the algorithms require a small number of
passes with the highest value being 5. Comparing between

KLA and CA, it is not clear which one is better in terms of
number of passes. However, the difference is not significant,
it is less than 1 for most of benchmarks.

As presented in Section 5, each CA pass considers only
move operations around the congestion point while KLA
examines all possible move operations. The execution time of
CA is therefore significantly less thanKLA although they take
similar numbers of passes. Table 2 shows the execution time
of SA and Fig. 7 shows the execution time ratio of KLA to
CA compared to SA. In general, KLA is significant slower
than CA and it seems to be the trend that this ratio
increases for benchmarks with larger numbers of vertices
and edges. For example, KLA is 3 to 6 times slower for
small benchmarks like DES4, OBD4, HIST4 and MTI4.
KLA is 14 to 22 times slower for DES8, OBD8, HIST8 and
MTI8. For very large benchmarks such as DES16, OBD16,
HIST16, MTI16, S50016, and S100016, KLA takes 62 to
335 times longer to execute than CA.

6.4 Comparison with SA

In this section, we compare our heuristic algorithms with
the generic global search algorithm, Simulated Annealing
[26].

Fig. 5. Outcome quality of 50-run CA compared to METIS partitioner.

Fig. 6. Average number of passes in KLA and CA.

TABLE 2
Execution Time (in Seconds) of SA

Benchmark Execution time Benchmark Execution time

DES4 1,452.40 OBD4 159.43
HIST4 1,870.27 MTI4 3,902.52
DES8 2,538.36 OBD8 2,845.84
HIST8 703.64 MTI8 756.67
DES16 594.17 OBD16 1,087.71
HIST16 1,644.43 MTI16 1,788.80
DESS16 349.24 OBDS16 844.49
HISS16 1,555.94 MTIS16 1,742.06
S50016 1,823.34 S100016 13,945.55
S500S16 1,825.83 S1000S16 13,912.19

Fig. 7. Execution time ratio: etKLA=etCA.

NGUYEN AND KIRNER: THROUGHPUT-DRIVEN PARTITIONING OF STREAM PROGRAMS ON HETEROGENEOUS DISTRIBUTED SYSTEMS 923

The parameters SA are chosen so that good enough
results can be reached within feasible time. By trying multi-
ple combinations of the parameters, we found the following
parameters where SA behaves well for all non-synthetic
benchmarks: initial temperature Tinit ¼ 109:00, minimum/
cooling temperature Tmin ¼ 0:02, cooling ratio rt ¼ 0:985,
temperature length L ¼ 0:1� neighbour size. Note that the
temperature length is the number of iterations at each tem-
perature. neighbour size is the number of neighbours of
each state and it is also the number of new mapping config-
urations that can be generated by relocating one task to a

new partition: neighbour size ¼ jT jjRj�1.

Figs. 8 and 9 show the comparison in terms of execu-
tion time and quality of the outcome mapping configura-
tion. For benchmarks small number of edges and
vertices, 50 runs of KLA is always faster than SA. For
example, to partition DES4 the 50 runs of KLA take
around 0.06 percent of SA’s execution time. The ratio is
1.4, 0.2 and 0.11 percent for HIS4, OBD4 and MTI4
respectively. When partitioning benchmarks with large
number of edges and vertices, 50 runs of KLA can take
more time than SA. For example, it takes 242, 158 and
217 of the execution time of SA to partition MTI16,
HISS16and S1000S16.

Fig. 8. Percentage ratio in execution time ratio of 50-run CA and KLA to
SA (et50�CA � 100%=etSA; et50�KLA � 100%=etSA). Fig. 9. Outcome Quality of 50-run CA and KLA Compared to SA.

Fig. 10. Convergence of SA, CA and KLA onMTI16 over time.

924 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016

In contrast, the 50 runs of CA are always significantly
faster than SA. It takes less than 5 percent execution time of
SA for all benchmarks.

For graphs with 5,000 or more vertices, it takes both CA
and KLA more than 100 hours to run. For the reference pur-
pose, we include here the execution time of 50 runs of CA
on larger graphs. It takes 559.539996 and 4371.744931 sec-
onds for 50 runs of CA on a 5,000-vertex graph and 10,000-
vertex graph, respectively.

For the quality of outcome mapping configurations, all
three partitioning algorithms provide similar results for the
non-synthetic benchmarks. The difference in throughput of
these mapping configurations is less than 1 percent, except
for DES16 where CA’s result is 1.19 percent better than SA.
For synthetic benchmarks S50016 and S500S16, CA and KLA
provide mapping configurations with throughput 11.72 and
10.98 percent higher than SA’s outcome. For S100016 and
S1000S16, CA and KLA provide mapping configurations
with throughput 225.37 and 248.57 percent higher than SA’s
outcome. Although one can search for a new set of parame-
ters so that SA can provide comparable result to CA and
KLA, this may cause worse behaviour or longer execution
times for other benchmarks.

We also examine the convergence speed of all three
partition algorithms. For all cases, CA is the fastest: it takes
only a few milliseconds for small benchmarks like DES4;
and a few seconds for large ones like MTI16 and S100016.
Though being a lot slower than CA, KLA still outperforms
SA. For large benchmarks, KLA converges in a few hun-
dreds seconds while SA takes thousands of seconds.
Fig. 10a shows the convergence of these three algorithms on
MTI16. To better see the fast converge of CA, Fig. 10b shows
the a zoomed version of Fig. 10a.

7 CONCLUSION

In this paper, we proposed two novel heuristic graph parti-
tioning methods to partition the workload of stream pro-
grams to optimise throughput on heterogeneous distributed
platforms. As explained in the article, traditional graph-par-
titioning problems with the optimisation criterion being
formed by the total cuts, are not applicable to the through-
put optimisation of stream programs.

The first graph-partitioning algorithm we developed is
KLA, an adaptation of Kernighan-Lin. The second algo-
rithm, called CA, narrows the search space compared to
KLA, in particular by focusing on search points around
the congestion, i.e., where the throughput is dimmed.
Since KLA and CA are both local search heuristics, they
have to be re-run multiple times in order to overcome
local optima.

We experimentally evaluated KLA and CA with five
applications on four different platform configurations. We
compared both methods with the generic meta-heuristics
simulated annealing as a reference method. Both KLA and
CA achieve at least as good throughput results as SA, some-
times even better. For small benchmarks KLA with its mul-
tiple re-runs is up to more than 1,000 times faster than SA,
but up to 2.5 times slower than SA for larger benchmarks.
CA with its multiple re-runs on the other hand is always
orders of magnitudes faster than both KLA and SA, even

for large graphs. Depending on benchmark and platform,
CA has been up to 335 times faster than KLA. The outstand-
ing speed of CA makes it also potentially attractive for re-
partitioning of systems during runtime.

Multilevel graph partitioning schemes have the advan-
tage of being fast and being able to overcome the local min-
ima. We therefore also consider for the future work to
integrate CA as the local search in the refinement phase in
these schemes.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the IST FP7 research project “Asynchronous and
Dynamic Virtualization through performance ANalysis to
support Concurrency Engineering” (ADVANCE) under
contract no IST-2010-248828 and the FP7 ARTEMIS-JU
research project “ConstRaint and Application driven
Framework for Tailoring Embedded Real-time Systems”
(CRAFTERS) under contract no 295371. V. T. N. Nguyen is
the corresponding author.

REFERENCES

[1] The implementation of KLA and CA algorithms. [Online]. Avail-
able: https://github.com/nguyenvuthiennga/graph_partition,
2015.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools. Boston, MA, USA: Addison-Wesley,
1986.

[3] D. Ajwani, S. Ali, K. Katrinis, C. Li, A. J. Park, J. P. Morrison, and
E. Schenfeld, “Generating synthetic task graphs for simulating
stream computing systems,” J. Parallel Distrib. Comput., vol. 73,
no. 10, pp. 1362–1374, 2013.

[4] C. J. Alpert, A. B. Kahng, and S.-Z. Yao, “Spectral partitioning
with multiple eigenvectors,” Discrete Appl. Math., vol. 90, no. 13,
pp. 3–26, 1999.

[5] T. Amnell, G. Behrmann, J. Bengtsson, P. DArgenio, A. David, A.
Fehnker, T. Hune, B. Jeannet, K. Larsen, M. Mller, P. Pettersson,
C. Weise, and W. Yi, “Uppaal-now, next, and future,” in Proc. 4th
Summer School Model. Verification Parallel Proc., 2001, vol. 2067,
pp. 99–124.

[6] S. Arora, S. Rao, and U. Vazirani, “Expander flows, geometric
embeddings and graph partitioning,” J. ACM, vol. 56, no. 2,
pp. 5:1–5:37, Apr. 2009.

[7] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream computing on
graphics hardware,” ACM Trans. Graph., vol. 23, no. 3,
pp. 777–786, Aug. 2004.

[8] P. M. Carpenter, A. Ramirez, and E. Ayguade, “Mapping stream
programs onto heterogeneous multiprocessor systems,” in Proc. Int.
Conf. Compilers, Archit. Synthesis Embedded Syst., 2009, pp. 57–66.

[9] €U. V. Çataly€urek and C. Aykanat, “Hypergraph-partitioning-
based decomposition for parallel sparse-matrix vector
multiplication,” IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 7,
pp. 673–693, Jul. 1999.

[10] B. L. Chamberlain, “Graph partitioning algorithms for distributing
workloads of parallel computations,” Univ. of Washington, Seattle,
WA, USATech. Rep. TR-98-10-03, 1998.

[11] W. Chen, “Task partitioning and mapping algorithms for multi-core
packet processing systems,” Master’s Thesis, Dept. Electrical
Comput. Eng., Univ. of Massachusettes-Amherst, Massachusettes,
MA, USA, 2009.

[12] P. de Oliveira Castro, S. Louise, and D. Barthou, “Automatic map-
ping of stream programs on multicore architectures,” in Proc. Int.
Workshop Compilers Parallel Comput., 2010, https://hal.archives-
ouvertes.fr/hal-00551680/document

[13] R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw, “Aspect
radio for mesh partitioning,” in Euro-Par, 1998, pp. 347–351.

[14] R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw, “Shape-
optimized mesh partitioning and load balancing for parallel adap-
tive fem,”Parallel Comput., vol. 26, no. 12, pp. 1555–1581, Nov. 2000.

NGUYEN AND KIRNER: THROUGHPUT-DRIVEN PARTITIONING OF STREAM PROGRAMS ON HETEROGENEOUS DISTRIBUTED SYSTEMS 925

[15] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. 19th Des. Autom. Conf.,
1982, pp. 175–181.

[16] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified np-
complete graph problems,” Theor. Comput. Sci., vol. 1, no. 3,
pp. 237–267, 1976.

[17] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs,”
SIGARCHComput. Archit. News, vol. 34, no. 5, pp. 151–162, Oct. 2006.

[18] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A.
Lamb, C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amara-
singhe, “A stream compiler for communication-exposed
architectures,” SIGARCH Comput. Archit. News, vol. 30, no. 5,
pp. 291–303, Oct. 2002.

[19] C. Grelck, S.-B. Scholz, and A. Shafarenko, “A Gentle Introduction
to S-Net: Typed stream processing and declarative coordination
of asynchronous components,” Parallel Process. Lett., vol. 18, no. 2,
pp. 221–237, 2008.

[20] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut
partitioning and clustering,” Trans. Comput.-Aided Des. Integrated
Circuits Syst., vol. 11, no. 9, pp. 1074–1085, Nov. 2006.

[21] B. Hendrickson and R. Leland, “A multilevel algorithm for parti-
tioning graphs,” in Proc. ACM/IEEE Conf. Supercomput., article 28,
1995, Doi: 10.1145/224170.224228.

[22] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon,
“Optimization by simulated annealing: An experimental evalua-
tion; part ii, graph coloring and number partitioning,” Oper. Res.,
vol. 39, no. 3, pp. 378–406, May 1991.

[23] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme
for irregular graphs,” J. Parallel Distrib. Comput., vol. 48, no. 1,
pp. 96–129, Jan. 1998.

[24] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell Syst. Tech. J., vol. 49, no. 2, pp. 291–307,
1970.

[25] R. Khandekar, S. Rao, and U. Vazirani, “Graph partitioning using
single commodity flows,” in Proc. 38th Annu. ACM Symp. Theory
Comput., 2006, pp. 385–390.

[26] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[27] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proc.
IEEE, vol. 75, pp. 1235–1245, Sep. 1987.

[28] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchro-
nous data flow programs for digital signal processing,” IEEE
Trans. Comput., vol. 36, no. 1, pp. 24–35, Jan. 1987.

[29] A. Malik and D. Gregg. (2012, Feb.). Executing synchronous data
flow graphs on heterogeneous execution architectures using inte-
ger linear programming. School of Computer Science and Statis-
tics, Trinity College Dublin, Ireland, Tech. Rep.. [Online].
Available: https://www.scss.tcd.ie/publications/tech-reports/
tr-index.12.php

[30] A. Malik and D. Gregg, “Orchestrating stream graphs using
model checking,” ACM Trans. Archit. Code Optimization, vol. 10,
no. 3, p. 19, 2013.

[31] Metis Partitioner Library. METIS-serial graph partitioning and
fill-reducing matrix ordering. [Online]. Available: http://glaros.
dtc.umn.edu/gkhome/metis/metis/overview, 2014.

[32] H. Meyerhenke, B. Monien, and S. Schamberger, “Graph
partitioning and disturbed diffusion,” Parallel Comput., vol. 35,
no. 10-11, pp. 544–569, Oct. 2009.

[33] B. Monien and S. Schamberger, “Graph partitioning with the
party library: Helpful-sets in practice,” in Proc. 16th Symp. Comput.
Archit High Perform. Comput., 2004, pp. 198–205.

[34] V. Nguyen and R. Kirner, “Demand-based scheduling priorities
for performance optimisation of stream programs on parallel
platforms,” in Proc. 13th Int. Conf. Algorithms Archit. Parallel
Process., 2013, vol. 8285, pp. 357–369.

[35] V. Nguyen, R. Kirner, and F. Penczek, “A multi-level monitoring
framework for stream-based coordination programs,” in Proc.
12th Int. Conf. Algorithms Archit. Parallel Process., 2012, vol. 7439,
pp. 83–98.

[36] F. Pellegrini and J. Roman, “Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architec-
ture graphs,” in Proc. Int. Conf. Exhib. High-Perform. Comput.
Netw., 1996, vol. 1067, pp. 493–498.

[37] F. Penczek, S. Herhut, C. Grelck, S.-B. Scholz, A. V. Shafarenko, R.
Barrre, and E. Lenormand, “Parallel signal processing with s-net,”
in Proc. Int. Conf. Comput. Sci., 2010, vol. 1, pp. 2085–2094.

[38] A. Pothen, “Graph partitioning algorithms with applications to
scientific computing,” in Parallel Numerical Algorithms. Norwell,
MA, USA: Kluwer, 1997, pp. 323–368.

[39] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning sparse
matrices with eigenvectors of graphs,” SIAM J. Matrix Anal. Appl.,
vol. 11, no. 3, pp. 430–452, May 1990.

[40] D. Prokesch, “A light-weight parallel execution layer for shared-
memory stream processing,” Master’s thesis, Faculty of Informatics,
TechnischeUniversit€atWien, Vienna, Austria, Feb. 2010.

[41] P. Sanders and C. Schulz, “High quality graph partitioning,” in
Proc. 10th Int. Conf. Graph Partitioning Graph Clustering, 2012,
pp. 1–18.

[42] D. G. Schweikert and B. W. Kernighan, “A proper model for the
partitioning of electrical circuits,” in Proc. 9th Des. Autom. Work-
shop, 1972, pp. 57–62.

[43] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[44] G. C. Sih and E. A. Lee, “Declustering: A new multiprocessor
scheduling technique,” IEEE Trans. Parallel Distrib. Syst., vol. 4,
no. 6, pp. 625–637, Jun. 1993.

[45] W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamit: A
language for streaming applications,” in Proc. 11th Int. Conf.
Compiler Construction, 2002, pp. 179–196.

[46] C. Walshaw and M. Cross, “Mesh partitioning: A multilevel bal-
ancing and refinement algorithm,” SIAM J. Sci. Comput., vol. 22,
no. 1, pp. 63–80, Jan. 2000.

[47] R. Wanschoor and E. Aubanel, “Partitioning and mapping of
mesh-based applications onto computational grids,” in Proc. 5th
IEEE/ACM Int. Workshop Grid Comput., Nov. 2004, pp. 156–162.

Vu Thien Nga Nguyen received the BcS degree
in computer science from the HCM City Univer-
sity of Technology, Vietnam in 2007 and the MsC
degree in grid computing from the University of
Amsterdam, The Netherlands in 2010. She is cur-
rently working towards the PhD degree in com-
puter science at the University of Hertfordshire,
United Kingdom. Her current work focuses on
efficient execution models for stream programs
on parallel platforms. Her research interests
include stream programming, parallel computing,

scheduling methodologies, and runtime optimisation.

Raimund Kirner received the PhD degree in
2003 from the TU Vienna and his Habilitation in
2010. He is a reader in Cyberphysical Systems at
the University of Hertfordshire. He has published
more than 90 refereed journal and conference
papers and received two patents. His research
focus is on embedded computing, parallel com-
puting, and system reliability. He currently works
on adequate hardware and software architec-
tures to bridge the gap between the many-core
computing and embedded computing. He also

published excessively on worst-case execution time analysis and served
as a PC chair of WDES’06, WCET’08, and SEUS’13. He acted as
the principal investigator of numerous national and European projects.
He is a member of the IEEE, the ACM, and the IFIP Working Group 10.4
(Embedded Systems).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

926 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 3, MARCH 2016

	UHRA full text deposit cover sheet pub version TEMPLATE.pdf
	07069261.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

