
ar
X

iv
:1

60
4.

08
00

4v
1 

 [c
s.

P
F

]  
27

 A
pr

 2
01

6

An Analytical Solution for Probabilistic Guarantees
of Reservation Based Soft Real–Time Systems

Luigi Palopoli1, Daniele Fontanelli2, Luca Abeni1 Bernardo Villalba Frı́as1
1Dipartimento di Scienza e Ingegneria dell’Informazione

2Dipartimento di Ingegneria Industriale
University of Trento, Trento, Italy

{luigi.palopoli,daniele.fontanelli,luca.abeni,br.villalbafrias}@unitn.it

Abstract—We show a methodology for the computation of
the probability of deadline miss for a periodic real–time task
scheduled by a resource reservation algorithm. We propose a
modelling technique for the system that reduces the computation
of such a probability to that of the steady state probabilityof an
infinite state Discrete Time Markov Chain with a periodic struc-
ture. This structure is exploited to develop an efficient numeric
solution where different accuracy/computation time trade–offs
can be obtained by operating on the granularity of the model.
More importantly we offer a closed form conservative bound
for the probability of a deadline miss. Our experiments reveal
that the bound remains reasonably close to the experimental
probability in one real–time application of practical interest.
When this bound is used for the optimisation of the overall
Quality of Service for a set of tasks sharing the CPU, it produces
a good sub–optimal solution in a small amount of time.

Index Terms—Real–time systems, Scheduling, Probabilistic
Guarantees

I. I NTRODUCTION

The termsoft real–timeis used for a class of real–time ap-
plications that are resilient to occasional and controlledtiming
faults. Significant examples include multimedia streaming[1],
computer vision and real–time control [2], [3].

An effective method to express the timing requirements for a
soft real–time application is by associating each deadlinewith
a probability that it will be met: the notion ofprobabilistic
deadlines[4]. Probabilistic deadlines can be related to the
Quality of Service (QoS) delivered by the application [5], [2]
and, more generally, enable the expression of a wide range
of performance requirements, where classic hard real–time
systems can be regarded as a special case.

In traditional hard real–time applications, the use of fixed
or dynamic scheduling priorities has gained an undisputed
prominence. Part of the reasons of this success is in the
presence of efficient numeric techniques that make for the
provision of tight conditions for temporal guarantees [6].At
least as important is a group of approximate analytical results.
The most famous is the utilisation bound [7], which offers
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clear guidelines on how to tweak periods and computation
times in order to meet the deadlines of all tasks in the system.

The use of scheduling priorities allows the designer to define
a partial order between all the tasks in a set and inevitably cou-
ples their timing behaviour. This is acceptable if the purpose
is to offer guarantees for the set as a whole. On the contrary,
if the designer requires specific QoS levels for each task,
scheduling priorities can be too coarse a tool. For this reason
an intense research work has produced alternative scheduling
solutions for soft real–time systems. One of the most popular
is theResource Reservationsscheduling (RR) [8], [1], which
enables a fine grained control on the fraction of computing
power (bandwidth) that each task receives. A key property
of RR scheduling istemporal isolation: the ability for a
task to meet its deadlines solely depends on its computation
requirement and on its scheduling parameters. This property
enables the provision of specific temporal guarantees to each
task and simplifies system design. RR scheduling is now
available in the mainstream Linux Kernel1.

When the probability distribution of inter–arrival time and
of computation time are known independent identically dis-
tributed (i.i.d.) stochastic processes, temporal isolation allows
modelling the evolution of a task scheduled through a RR
as a Discrete–Time Markov Chain (DTMC) with an infinite
number of states [4], [9]. In this paper, we restrict the focus
to the analysis of periodic tasks. For this case, we can see that
the DTMC describing the system takes the form of a Quasi–
Birth–Death Process (QBDP) [10]. We introduce a granularity
parameter that allows us to reduce the complexity of the
model at the expense of a conservative approximation in the
computation of the probability. We show a novel analysis that
exploits the specific structure of the transition matrix of this
QBDP. The outcome is an expression for the steady state
probability of meeting the deadline, which can be used in dif-
ferent ways. The first one is for the construction of a numeric
algorithm for probabilistic guarantees, with a performance
comparable to the best state of the art techniques for numeric
solutions of QBDP. The second one, the most important, is for
the computation of an analytical conservative bound for the
probability of meeting the deadline. This bound proves itself

1https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
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reasonably accurate for a large set of synthetic test cases.We
have also performed a large collection of experimental datafor
a real–life application, in which the presence of several non–
idealities (OS overhead, correlation in the computation times,
etc.) challenges the assumptions the method relies on. The
small approximation error that we observed in the experiments
suggests the practical applicability of the method at least
in the considered scenario. The application of the bound is
very convenient when solving QoS optimisation problems that
require to efficiently identify the minimum bandwith required
for a desired probability of deadline miss. We show a realistic
example of this kind where the application of the analytic
bound produces a good sub–optimal solution in a tiny fraction
of the time required by a numeric approach.

The paper is organised as follows. In Section II, we offer
a brief survey of the related work. In Section III we formally
describe the problem addressed in the paper. In Section IV,we
show how a resource reservation can be conservatively mod-
elled as a QBDP. The computation of our analytical bound is
reported in Section V. In Section VI, we prove the validity
of the bound in a large set of experiments. In Section VII,
we show the concrete application of the method to a QoS
optimisation problem. Finally, in Section VIII we offer our
conclusions and announce the future work directions.

II. RELATED WORK

The stochastic analysis of performance of soft real–time
tasks started two decades ago. The same task model pre-
sented in this paper (a triple of period, probability distribution
of the task computation time and requested probability of
deadline miss in the long run) has been also adopted in
the statistical rate monotonic approach [11]. More recently,
an important number of research papers has concentrated on
the computation of the response time of systems with fixed
or dynamic priority when tasks have stochastic variability
in computation times [12], [13], [14], in the inter–arrival
time [15] or in both [16]. Similar techniques have recently
been applied to multiprocessor systems [17]. An obvious
point of differentiation between our technique and the ones
describes so far is that while these papers propose numeric
techniques, we offer an analytic bound that is satisfactorily
tight in many cases of interest. A very interesting connection
can be established with the work of Diaz et al. [12], where
the authors propose the exact solution for a specific numeric
example. Our computation, on the contrary, applies to general
cases. What is more, all the approaches mentioned above
analyse the task set as a whole, since real–time schedulers
do not enjoy temporal isolation. This makes QoS optimisation
much more difficult than in our case.

Other authors have analysed scheduling approaches other
than “traditional” fixed or dynamic priorities. Dong-In et
al. [18] have analysed Time Division Multiple Access
(TDMA) approaches, Haman et al. [19] have focused on a
model where tasks are split in mandatory and optional parts.
This paper is based on reservation–based scheduling [1], [8],
which allows us to exploit temporal isolation and analyse each

task separately. Abeni and Buttazzo proposed a model for RR
scheduling based on queueing theory [4], [9]. The computation
of the deadline miss probability requires to numerically solve
an eigenvector problem for an infinitely large matrix. Recently,
approximated solution techniques have been proposed for
efficient numeric computation of a bound for the probability
of meeting the deadline [20].

In this paper, we show how the adoption of the reservation
scheduler and the restriction to periodic tasks produces a
model that is a particular instance of a QBDP. Efficient
numeric solutions for QBDP and for M/G/1 queue can be
found in the work of Latouche and Ramaswami [21] and of
Neuts [22], who pioneered the application of matrix geomet-
ric methods for the solution of infinite M/G/1 queues. The
literature in the field is rich of optimised methods derived
using specific properties of the transition matrix. The most
remarkable achievements are summarised in a comprehensive
book [10]. In this paper, we consider numeric methods as a
basis for comparison but our main focus is on analytical closed
form solutions.

Mills and Anderson [23] have recently considered the
problem of stochastic analysis for resource reservations on
multiprocessor systems. The authors main focus is on the
computation of tardiness and response time bounds for the
average case. The authors also offer a very conservative result
on the probabilistic deadlines, which is applicable only if
deadlines much larger than the period are considered.

A customary assumption made in the literature on queueing
networks is that inter–arrival times and service times are i.i.d.
processes. In this paper, we stick to the same assumption. Dif-
ferent authors have recently questioned on the applicability of
the i.i.d. assumption in the area of real–time applications[24].
Remarkable is the so called notion of probabilistic worst
case execution time [25], which essentially corresponds to
associating a worst case to several execution scenarios that
take place within a given probability. A possible evolutionof
this concept could lead to finding an i.i.d. overapproximation
for a computation process that is not i.i.d. A similar idea
underpins a recent work by Liu et al. [26], where the authors
tackle the correlation problem decomposing the process into a
deterministic and an i.i.d. component. In a similar contextour
results could be used to study the evolution of the system
under the action of the i.i.d. component or of the i.i.d.
overapproximation of the process.

A complementary issue to our work is how to derive
statistically sound estimates for the probability distribution of
the computation time. A useful inspiration could come from
the application of the Extreme Value Theory [27], but the
matter is reserved for future investigations.

The results shown in this paper take to its natural completion
a line of work started a few years ago that has produced a
number of intermediate results. The relation with our prior
achievements is detailed in Section VI-C.



III. PROBLEM DESCRIPTION

A. Task Model

We consider a set of real–time tasks{τi} sharing aprocess-
ing unit (CPU). A real–time taskτi consists of a stream of jobs
Ji,k. Each jobJi,k arrives (becomes eligible for execution)
at time ri,k, and finishes at timefi,k after executing for a
time ci,k. We restrict to periodic tasks, meaning that two
adjacent arrivals are spaced out by a fixed amount of time
Ti: ri, k+1 = ri k + Ti.

The computation time of each jobci,k is assumed to be an
i.i.d. stochastic processUi. For eachk the computation time is
a random variable described by the Probability Mass Function
(PMF) Ui(c) = Pr {ci,k = c}.

Job Ji, k is associated with a deadlinedi,k = ri, k + Di

(where Di is said relative deadline), that is respected if
fi, k ≤ di, k, and is missed iffi, k > di, k. In this work,
probabilistic deadlines[4] are used instead of traditional hard
deadlinesdi,k. A probabilistic deadline(Di, pi) is respected
if Pr {fi, k > ri, k +Di} ≤ pi. If pi = 0 the deadline is hard.

B. The scheduling algorithm

As multiple real–time tasks may be concurrently active,
we use a RR scheduler. Each taskτi is associated with a
reservation(Qs

i , T
s
i ), meaning thatτi is allowed to execute

for Qs
i (budget) time units in every interval of lengthT s

i

(reservation period). The fraction of CPU allocated to the
task is said bandwidthBi and is defined asBi = Qs

i/T
s
i . The

particular implementation of the RR approach that we consider
is the Constant Bandwidth Server (CBS) [1]. In the CBS,
reservations are implemented by means of an Earliest Deadline
First (EDF) scheduler. The EDF schedules tasks{τi} based
on their scheduling deadlinesdsi,k, which are dynamically
managed by theCBS algorithm. When a new jobJi,k arrives,
the server checks whether it can be scheduled using the last
assigned scheduling deadlinedsi,k−1. In the affirmative case,
the scheduling deadline of the job is initially set to current
deadlinedsi,k = dsi,k−1. Otherwise, the initial deadlinedsi,k is
set equal tori,k + T s

i . Every time the job executes forQs
i

time units (i.e., its budget is depleted), its scheduling deadline
is postponed byT s

i : dsi,k = dsi,k + T s
i . This way, the task is

prevented from executing for more thanQs
i units with the same

deadline. As a consequence, each task is reserved an amount
of computation timeQs

i in each server periodT s
i regardless

of the behaviour of the other tasks. This property is called
temporal isolationand it holds as long as the system satisfies
the following schedulability condition:

∑

i

Bi =
∑

i

Qs
i

T s
i

≤ 1. (1)

The scheduling deadlinedsi, k has, in general, nothing to do
with the deadlinedi, k of the job: it is simply instrumental to
the implementation of theCBS (see [1] for more details).

C. Problem Statement

In view of the temporal isolation property, each task is
guaranteed a minimum share of the processorQs

i/T
s
i indepen-

dently of the behaviour of the other tasks. As a consequence,
it is possible to carry out a conservative analysis leading to the
computation of a lower bound of the probability of respecting a
deadline assuming that the task always receives this minimum
(as long as Condition (1) is respected). The advantage is
that the behaviour of each task can be studied in isolation.
Therefore, we can remove the subscripti meaning that the
analysis refers to one specific task.

In this setting, our problem is formulated as follows.
Problem 1: Given a periodic real–time task with a stochas-

tic computation time characterised by a PMFU(c), find
conditions on the reservation parameters(Qs, T s) such that
the task respects the probabilistic deadline(D, p).
A few remarks are in order. First of all, we look for analytical
conditions, which can be inverted and offer easy solution
for the problem of system design. Second, in order to be
safely utilisable, such conditions have to besufficient(although
necessity is certainly a desirable additional requirement).

IV. STOCHASTIC MODEL

In this section, we first recall some basic definitions on
Markov chains and in particular on QBDP. Then, we show
how a task scheduled by a resource reservation is conveniently
modelled as a QBDP (Theorem 1). Finally, we show how to
derive a conservative approximation of this model, which has
a parametric accuracy and which retains the structure of a
QBDP.

A. Background on Markov Chains

A Discrete–Time Markov Process(DTMP) {Xn}
is a discrete–time stochastic process such that its
future development only depends on the current
state and not on the past history. This can be
stated in formal terms on the conditional PMF:
Pr {Xn = xn|X1 = x1, X2 = x2, . . . , Xn−1 = xn−1} =
Pr {Xn = xn|Xn−1 = xn−1}. A DTMP defined over
a discrete state space is said Discrete–Time Markov
chain (DTMC). Given a DTMC, letπ(j)

n represent the
probability π(j)(n) = Pr {Xn = j}, πn be the vector
πn = [π

(0)
n , π

(1)
n , . . .], P = [pi,j ] be a matrix whose

generic elementpi,j is given by the conditional probability
pi,j = Pr {Xn = j|Xn−1 = i}. Starting from an initial
probability distribution π0, the application of the Bayes
theorem and of the properties of the Markov Processes allow
us to express the evolution of the distribution by the matrix
equationπn+1 = πnP . The matrix P is said probability
transition matrix. An equilibrium point for this dynamic
equation is a vector̃π such that̃π = π̃P .

Consider a statei of a DTMC. Let the random variable
Ti = min{n > 1 s.t.Xn = i|X0 = i} denote the first return
time to statei. The statei is transient ifPr {Ti < ∞} <
1, i.e., if there is some probability that starting fromi the
state will never return toi. The statei is transientif it is not



recurrent. Theperiod di of a recurrent statei is defined as
the greatest common divider of the set of all numbers,n, for
which Pr {Xm = i ∧Xm+n = i} > 0, ∀m. A state is said
aperiodic if its period di = 1. A DTMC is said aperiodic, if
all of its states are aperiodic.

The mean recurrence time of a statei is the expected value
of Ti: Mi = E {Ti}. The statei is positive recurrent ifMi is
finite, and the DTMC is positive recurrent if all its states are
positive recurrent.

A DTMC is said irreducible, if every state can be reached
from any other state in a finite number of steps. It can be
shown that in an irreducible DTMC all states are of the same
type. So, if one state is aperiodic, so is the DTMC.

A very important property of irreducible and positive recur-
rent DTMC is the existence of a single equilibrium̃π = π̃P
where the limiting distributionslimn→∞ πn converge starting
from any initial probability distributionπ0. This equilibrium
is calledsteady state distribution.

A DTMC is called a Quasi–Birth–Death Process (QBDP)
if its probability transition matrixP has the following block
structure:

P =











C A0 0 0 0 · · ·
A2 A1 A0 0 0 · · ·
0 A2 A1 A0 0 · · ·
0 0 A2 A1 A0 · · ·
· · · · · · · · · · · · · · ·











(2)

When the matrices are scalars, this structure reduces to the
standard Birth–Death Process (BDP).

B. A resource reservation as a Markov Chain

We will denote byFU (c) =
∑c

h=cmin
U(h) the Cumulative

Distribution Function (CDF) of the execution time. For sim-
plicity, we will assume that the server periodT s is chosen as
an integer sub–multiple of the activation periodT : T = NT s.
Other choices are possible but make little practical sense.

Let dsk denote the latest scheduling deadline used for jobJk
and introduce the symbolδk = dsk − rk. The latest scheduling
deadlinedsk is an upper bound for the finishing time of the
job (if Equation (1) is respected, thenfk ≤ dsk). Hence,δk is
an upper bound for the job response time.

Example 1:Consider the schedule in Figure 1. The sched-
ule in the figure considers two adjacent jobs starting atrk and
rk+1 and the reservation period is chosen as one third of the
task period. JobJk, in this case finishes beyond the deadline
(which in our periodic model isrk+1). More precisely, the last
reservation period that it uses (in which its finishing time lies)
is upper–limited by the scheduling deadlinedsk.

The quantityδk takes on values in a discrete set: the integer
multiples ofT s and the probabilityp of meeting the deadline
is lower bounded byPr {δk ≤ D}.

The evolution ofδk is described as follows [9]:

v0 = c0

vk+1 = max{0, vk −NQs}+ ck+1

δk =

⌈

vk
Qs

⌉

T s (3)

r
k

r
k+1

kd
s

s
6T

s
T

s

k+1d
s

2T 5T
s s

4T

kδ

Figure 1. Example schedule of a task by aCBS. The two colours denote
different jobs.

The variablevk cannot be measured directly and it represents
the amount of backlogged execution time that has to be served
by theCBS scheduler when a new job arrives.

Since the processU modelling the sequenceck of the com-
putation time is assumed a discrete valued and i.i.d. random
process, the model in Equation (3) represents a Discrete–Time
Markov Chain (DTMC) that we defineM0, where the states
are determined by the possible values ofvk and the transition
probabilities by the PMF of the computation timeU(c).

This model permits a fine–grained modelling of the be-
haviour of the reservation, which can be difficult to treat. One
possible simplification is to collapse into a single state all the
states for whichδk ≤ D = NT s, which correspond to the
values ofvk such thatvk ≤ NQs. In the modified DTMC
M, the stateS is defined as

S =

{

0 if vk ≤ NQs

i if vk = NQs + i
.

By using Equation (3), the transition probabilities for this
DTMC can be written as follows:

pi,j =











Pr {vk+1 ≤ NQs|vk = i+NQs} , if j = 0

Pr {vk+1 = j +NQs|vk ≤ NQs} , if i = 0, j 6= 0

Pr {vk+1 = NQs + j|vk = i+NQs} , if i 6= 0, j 6= 0

=











Pr {ck ≤ NQs − i} = FU (NQs − i), if j = 0

Pr {ck = j +NQs} = U(j +NQs), if i = 0, j 6= 0

Pr {ck = NQs + j − i} = U(j − i+NQs), if i 6= 0, j 6= 0.

.

Let π̃k be the (infinite) vector where theith element represent
the probability associated with theith state of the DTMCM
after k step of evolution starting from an initial probability
vector π̃0. The recursive equation for the evolution ofπ̃k is
π̃k+1 = π̃kP . The objective of our analysis can now be stated
as the computation of a lower bound for the first element of
the steady state probability vector̃π = limk→∞ πk. As long
as we are not interested in the distribution ofδk inside the
regionδk ≤ NQs, collapsing into one state all the values ofvk
smaller thanNQs does not introduce any error because such
states do not have influence on the next state (max{0, vk −
NQs} = 0 in Equation (3)).

The probability matrixP resulting from the computation
above has the structure shown in Figure 2, where

aH+h = pi, i+h = U(h+NQs)
bH−i = pi, 0 = FU (NQs − i),



























bH aH+1 . . . an 0 . . .
bH−1 aH aH+1 . . . an . . .
bH−2 aH−1 aH aH+1 . . . an . . .
. . . . . . . . . . . . . . . . . .
b1 a2 . . . aH aH+1 . . . an . . .
a0 a1 a2 . . . aH aH+1 . . . . . .
0 a0 a1 ah+H−4 . . . aH aH+1 . . .
0 0 a0 a1 a2 . . . aH . . .
...

...
...

...
. . .

. . .
. . .

























,

Figure 2. Structure of the transition matrixP

andH is the minimum integer such thatU(NQs+h) = 0 for
all h < H . This structure is recursive: from rowH onward,
each row is obtained by shifting the previous one to the right
and inserting a0 in the first position. Furthermore, the first
element greater than zero of such recursive rows is dubbed
a0, while the last withan: n = max{i|ai > 0}. We now
introduce a useful notation for sub–matrices.

Definition 1: Let P = (pi, j) be a matrix whose elements
are pi,j . Let α = {ii, i2, . . . , in} β = {ji, j2, . . . , jm} two
ordered set of indexes. The sub–matrixP[α, β] is a matrix
whose elements arepih,jt for all h ∈ [1, n] t ∈ [1, m].
Likewise, ifπ is a vector, we denoteπ[α] the sub–vector whose
elements areπih for all h ∈ [1, n].

From the properties of our transition matrix we can prove
the following result [28].

Theorem 1:Let H be the minimum integer such that
U(NQs + h) = 0 for all h < H . Let F be defined as
max {n−H,H}. Defineα (i, F ) the set{i, . . . , i + F − 1}
andβ (j, F ) the set{j, . . . , j+F − 1}. The transition matrix
P is block–tri–diagonal with the structure in Equation 2,
whereA0 = P[α(F, F ),β(0, H)], A2 = P[α(0, F ),β(F, F )], A1 =
P[α(F, F ),β(F, F )], C = P[α(0, F ),β(0, F )], are square matrices of
orderH. This qualifies the process as a QBDP.
The structure of the QBDP exposed in Theorem 1 enables the
application of efficient numeric solutions for the steady state
probability [10], as discussed in Section VI.

C. A conservative approximation

In order to make the model tractable from the numeric point
of view, it is useful to introduce a conservative approximation.
The notion of conservative approximation that we shall adopt
here relies on the concept offirst order stochastic dominance
(defining an order relation between probability distributions):

Definition 2: Given two random variablesX andY , with
CDFsFx(x) andFy(y), X has a first order stochastic domi-
nance overY (X � Y ) iff ∀x Fx(x) ≤ Fy(x).
Based on this definition, a stochastic real–time task can be
seen as a conservative approximation of another one if its
probabilistic deadlines are stochastically dominated by the
probabilistic deadlines of the original task: consideringδk in
Equation (3), this plainly means that in the modified system
the low values of theδk will have a greater probability and so
will be the probability of the first element of the probability
vector (associated with the deadline satisfaction).

As shown by Diaz et al. [13], ifU ′ stochastically dominates
U , then a system having the execution times distributed
according toU ′ is a conservative approximation of the original
system (with the execution times distributed according toU).

A simple way to buildU ′ to obtain such a conservative
approximation is to replaceck with a new variablec′k whose
distribution is given by:

U∆(c
′) =

{

0 if c′ mod ∆ 6= 0
∑k∆

c=(k−1)∆+1 U(c′) otherwise,
(4)

where∆ is a scaling factor chosen as an integer sub–multiple
of Qs. The transition matrix of the new DTMC has again
the structure in Fig. 2, where the different elements of the
matrix are functions of the parameter∆. Large values of
∆ correspond to a smaller size for matricesA2, A1, A0 in
Equation 2. This reduces the time required for the computation
of the steady state probability paying the price of a coarser
approximation for the computed probability.

V. A N ANALYTICAL BOUND

This section presents an analytic solution for a QBDP
described by the transition matrix reported in Fig. 2. In the
discussion, we assume that the conservative approximation
discussed in Section IV-C for some∆.

The first key result of the Section is Theorem 2, which
shows a general expression for the steady state probability
of respecting the deadline. After introducing an additional
simplification in the model, this leads to the analytical bound
in Theorem 6 and in Corollary 7, which represent the core
theoretical results of the paper.

A. A solution for generic QBDP processes

Before going into the theoretic details, let us define the
following functionγ : N×R → R as

γk,l =

k
∑

j=0

αj l
k−j ,

whereαj = aj/a0. Using this function and the structure of the
QBDP, it is possible to write the equation expressing the steady
state equilibrium̃πk = π̃kP , (whereπ̃k =

[

π̃
(0)
k , π̃

(1)
k , . . .

]

) by

expressing the probabilities̃π(i)
k , i > H , at timek as a function

of π̃(j)
k , 0 ≤ j ≤ H , in the following way:

π̃
(H)
k

=

n
∑

j=H+1

αj π̃
(0)
k

−

H−1
∑

j=1

γj,1π̃
(H−j)
k

,

π̃
(H+l)
k

=



γH−1,1 +

n
∑

j=H+1

αj



 π̃
(l)
k

−

min(n,l+H)
∑

j=1
j 6=H

αj π̃
(l+H−j)
k

,

(5)

holding for∀l > 1.
The steady state solution for genericn > H > 0 is given

by the following theorem:
Theorem 2:Consider a QBDP described by the transition

probability matrixP given in Fig. 2, in which botha0 andan
differ from zero.



Assume that the matrix

W =





























0 1 0 . . . 0 0 . . . 0

0 0 1 . . . 0 0 . . . 0

0 0 0

.
.
. 0 0 . . . 0

.

.

.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.
0 0 0 . . . 0 0 . . . 1

−αn −αn−1 −αn−2 . . . w −αH−1 . . . −α0





























(6)

wherew = γH−1,1 +
∑n

j=H+1 αj , has distinct eigenvalues.

Let π(j) = limk→+∞ π̃
(j)
k be the steady state distribution of

the state. One of the two following cases apply:
I) if

∑H−1
j=0 γj,1 ≤

∑n

j=H+1(j − H)αj then the limiting
distribution is given by:

π̃(j) = lim
k→+∞

π̃
(j)
k = 0, ∀j, (7)

II) if
∑H−1

j=0 γj,1 >
∑n

j=H+1(j −H)αj then:

π̃(0) =
∏

β∈Bs

(1− β). (8)

In the second case,Bs is the set of stable eigenvalues ofW
(in this context an eigenvalueβ is said stable if|β| < 1), and
the termsπ̃(j) with 0 < j < H are known linear functions of
π̃(0), while the terms̃π(j) with j ≥ H are given by (5).
Before showing the proof, we make two important remarks.

Remark 1:The assumption on the eigenvalues of the matrix
W is merely technical (it simplifies the proof of the result)
and it is not restrictive. In all our examples (both syntheti-
cally generated and using data from real applications), it is
respected. Artificial examples that violate it could probably
be constructed but they are not relevant in practice.

Remark 2:As well as paving the way for Theorem 6,
Theorem 2 contains an implicit numeric algorithm for the com-
putation ofπ̃(0), based on the computation of the eigenvalues
of the matrixW . Since the latter is in companion form, in the
following we refer to this algorithm ascompanion.

B. Proof of Theorem 2

This section is devoted to the proof of the fundamental
Theorem 2, which will require several definitions and auxiliary
results. The section can be skipped over if the reader is only
interested in the applications of the Theorem.

The rationale behind the proof is the following. First, the
equilibrium point of the QBDP is expressed as an iterative
system. The evolution in the iteration step represents the
connection between the probabilities of the different states.
Using this representation and some property of convergence
of the Markov chain, we can express all the steady–state
probabilities as a function of̃π(0), which can eventually be
found as a solution of a linear system of equations.

We start noticing that havinga0 andan different from zero
implies that the Markov chain of the QBDP is irreducible and
aperiodic. Therefore, it is guaranteed that the probability of
the different states converge to a value [29]. Notice, however,
that this does not necessarily imply the existence of a steady–
state distribution (the distribution could shift toward increasing
values of the state without ever reaching the equilibrium, with
the probability of each state going to0).

a) The case of Positive Recurrent QBDP:If the QBDP
is positive recurrent, it admits indeed a unique steady state
distribution. The first step of the proof is then to introduce
the following vector:Πj = [π̃(j), . . . , π̃(j+n−1)]T , whose
dimension is equal ton. It is possible to exploit (5) and (6) to
derive the equilibrium of the QBDP by the following iterative
equation for the vectorΠj :

Π1 =











π̃(1)

π̃(2)

...
π̃(n)











= WΠ0 ⇒ Πj =











π̃(j)

π̃(j+1)

...
π̃(n−1+j)











= W
jΠ0.

Using this notation the normalisation constraint
∑∞

h=0 π̃
(h) =

1 can be expressed as

∞
∑

h=0

π̃
(h) =

[

1 0 0 . . . 0
]

+∞
∑

i=0

Πi = 1. (9)

The characteristic polynomial of the lower–leftcompanion
form matrix W reported in (6) is simply given by

P (λ) = λn −



γH−1,1 +

n
∑

j=H+1

αj



λn−H +

n
∑

j=1
j 6=H

αjλ
n−j ,

(10)
from which it is trivially derived that the matrixW has one
simple eigenvalue inβ1 = 1 and additionaln− 1 eigenvalues
βi. Therefore

P (λ) = (λ − 1)

n
∏

i=2

(λ− βi). (11)

Since eachβi verifiesP (βi) = 0, the following relation holds

β
n
i −

(

γH−1,1 +

n
∑

j=H+1

αj

)

β
n−H
i +

n
∑

j=1
j 6=H

αjβ
n−j
i = 0 ⇒

γH−1,1 +
n
∑

j=H+1

αj = βiγH−1,βi
+

∑n

j=H+1 αjβ
n−j
i

βn−H
i

.

(12)

Since all the eigenvalues are assumed simple, we can
use of thespectral decompositionof the matrix W : W =
∑n−1

i=0 βiGi, where thespectral projectorsGi are given by
Gi =

ViLi

LiVi
= NiViLi, andLi andVi are respectively the left

and right eigenvectors associated with thei–th eigenvalueβi.
Ni is the normalisation constant needed to satisfy the spectral
projectors basic properties, i.e.,GiGj = 0 for i 6= j and
GiGi = Gi. As a consequence,Π1 = WΠ0 =

∑n

i=1 βiGiΠ0,
and, in general,

Πj = W
jΠ0 =

n
∑

i=1

β
j
iGiΠ0 =

n
∑

i=1

β
j
iNiViLiΠ0. (13)

Therefore, by combining (13) and (9), one gets:

n
∑

i=1

+∞
∑

k=0

β
k
i v

(0)
i NiLiΠ0 = 1, (14)

wherev(0)i is the first element of the right eigenvector. Given
the expression of the matrixW , the leftLi and rightVi can



be easily found as a function ofβi. From the expression of
the eigenvectors, it follows immediately that

Ni =
1

LiVi

=
β
n
i

H−1
∑

j=0

γj,βi
β
n−j
i −

n
∑

j=H+1

(j −H)αjβ
n−j
i

.
(15)

We now state some auxiliary propositions on vectorΠ0.
Proposition 1: The product between the left eigenvectorLi

and the initial vector of the iterationΠ0 is given by

LiΠ0 = β
n−H−1
i (βi − 1)





H−1
∑

k=0

H−1
∑

j=k

γH−1−j,βi
π̃
(k)



 .

Proof: The proof of the proposition follows by first
computing the explicit computation of the productLiΠ0, in
which each term is substituted with the recursive Equations(5)
and the constraint given in (12), and then noticing that

β
n
i − 1 = (βi − 1)

n−1
∑

j=0

β
j
i .

See [30] for more details.

Proposition 2: The initial vectorΠ0 is orthogonal to the
left eigenvector associated toβ1 = 1.

Proof: The proof follows from Proposition 1.
Proposition 3: For any unstable eigenvalueβi (i.e., such

that |βi| > 1) of W it holds thatLiΠ0 = 0.
Proof: If the QBDP has an equilibrium then (14) holds

true. The unitary eigenvalueβ1 = 1 does not play any role in
the summation of (14) in view of Proposition 2. Next, suppose
that there exists one or more|βi| > 1. From Equation (14) it
follows that it may beLiΠ0 = 0, Ni = 0 or Π0 = 0. Since
the normalisation factor cannot be null, let us first consider
Π0 = 0. Using (13) it follows thatΠ0 = 0 ⇒ Πj = 0, ∀j.
Therefore,

π̃
(j) = lim

k→+∞
π̃
(j)(k) = 0, ∀j,

and, since the Markov chain is irreducible and aperiodic, the
QBDP does not have a unique stationary distribution [29],
which contradicts the hypothesis.

It then follows that for any unstable eigenvalueLiΠ0 = 0.

From Rouche’s theorem [31] we have that the number of
eigenvaluesβi such that|βi| ≥ 1 of the matrixW is exactly
equal toH , whereH − 1 have |βi| > 1. The consequences
of Proposition 3 are twofold. First, it states that Proposition 1
definesH − 1 linear equations

H−1
∑

k=0

H−1−k
∑

q1=0

γq1,βi
π̃
(k) = 0,∀βi ∈ B⋆

s , (16)

whereB⋆
s is the set ofH − 1 unstable eigenvalues except

β1 = 1 (the unstable eigenvalueβ1 does not play any role by
Proposition 2). TheH unknown probabilities̃π(0) to π̃(H−1)

of (16) are also the unknowns of the recursion formulae (5).
The second consequence is that

∑

βi∈Bs

v
(0)
i Ni

1− βi

LiΠ0 = 1, (17)

whereBs is the set of stable eigenvalues. By substituting
in (17) the result given in Proposition 1 and the expression of
the right eigenvectorLi, we get

−
∑

βi∈Bs

Ni

βH
i

H−1
∑

k=0

H−1−k
∑

q1=0

γq1,βi
π̃
(k) = 1. (18)

By means of Proposition 3, the summation can be extended to
the unstable eigenvalues, except for the first eigenvalueβ1 =
1, which instead induces indefiniteness of (18). The solution
to (18) is derived exploiting the spectral projectors property
∑n

i=1 Gi = In. Indeed, summing the elements in position
(n−H,n− j), for 1 ≤ j ≤ H − 1, we have for eachj

−
n
∑

i=1

Niv
(n−H)
i l

(n−j)
i = −

n
∑

i=1

Ni

βH
i

γj,βi
= 0,

and hence

−

n
∑

i=2

Ni

βH
i

γj,βi
= N1γj,1,

whereN1 is easily obtained by (15) forβ1 = 1, i.e.,

N1 =
1

H−1
∑

j=0

γj,1 −

n
∑

j=H+1

(j −H)αj

=
1

D1
.

Moreover, for the elements in position(n−H+1, 1), we get

−
n
∑

i=1

Niv
(n−H+1)
i l

(1)
i =

n
∑

i=1

Ni

βH−1
i

αn

βi

= 0 ⇒ −
n
∑

i=2

Ni

βH
i

= N1.

Substituting these relations in (18) produces the equation
H−1
∑

k=0

H−1−k
∑

q1=0

γq1,1π̃
(k) = D1, (19)

which, used in conjunction with theH− 1 equations of (16),
determines the set of unknown probabilities.

In order to have an analytic solution of this linear system
of H equations inH unknowns, we start by collecting the
probability with the highest index, i.e.,

π̃
(H−1) +

H−2
∑

k=0

H−1−k
∑

q1=0

γq1,1π̃
(k) = D1

π̃
(H−1) +

H−2
∑

k=0

H−1−k
∑

q1=0

γq1,βi
π̃
(k) = 0, βi ∈ B⋆

s ,

from which it is possible to immediately have the solution

π̃
(H−1) = −

H−2
∑

k=0

H−1−k
∑

q1=0

γq1,βH
π̃
(k)

and theH − 1 new linear equations inH − 1 unknowns
H−2
∑

k=0

H−1−k
∑

q1=0

(γq1,1 − γq1,βi
) π̃(k) = D1, βi ∈ B⋆

s ,

that, by simple algebraic manipulations, leads to
H−2
∑

k=0

H−1−k
∑

q1=0

q1−1
∑

q2=0

γq2,βi
π̃
(k) =

D1

1− βi

, βi ∈ B⋆
s .

From the new set ofH − 1 equations the element̃π(H−2)

can be collected, thus leading to a recursive solution formula.



The recursion can be executed forH steps until the following
final equation is obtained

π̃
(0) =

D1
∏

βi∈B⋆
s

(1− βi)
=

H−1
∑

j=0

γj,1 −
n
∑

j=H+1

(j −H)αj

∏

βi∈B⋆
s

(1− βi)
. (20)

The result in (20) can be suitably rewritten in a more
useful way. To this end, we first rewrite the characteristic
polynomial (11) as follows

P (λ) = (λ− 1)
n−1
∏

i=2

(λ− βi) = λ
n−1 +

n−1
∑

j=1

Sj(β)λ
j−1

, (21)

where

Sj(β) = (−1)n−j+1

(

∑

J∈C1

∏

βJ +
∑

J∈C2

∏

βJ

)

, (22)

and whereC1 and C2 are proper sets of indices coming
from the explicit computation of the characteristic polynomial.
Since the product of all the eigenvalues, except for the first
one, is given by

n
∏

i=2

(1− βi) = 1 +
n−1
∑

j=1

(−1)n−j
∑

J∈Cn−j

∏

βJ = 1 +
n−1
∑

j=1

Wj(β),

where, by means of (22),Wk(β) = −
∑k

j=1 Sj(β), one gets

n
∏

i=2

(1− βi) = 1−

n−H
∑

j=1

j
∑

k=1

Sk(β)−

n−1
∑

j=n−H+1

j
∑

k=1

Sk(β). (23)

From (21) and (10),Sk(β) = αn−k+1, for 1 ≤ k ≤ n,
and Sk(β) = γH−1,1 +

∑n
j=H+1 αj , for k = n − H + 1.

Substituting these relations in the last two terms of (23), one
gets

−
n−H
∑

j=1

j
∑

k=1

Sk(β) = −
n
∑

j=H+1

(j −H)αj ,

−

n−1
∑

j=n−H+1

j
∑

k=1

Sk(β) = (H − 1)γH−1,1 −

H−1
∑

j=1

(j − 1)αj .

Since

1 + (H − 1)γH−1,1 −

H−1
∑

j=1

(j − 1)αj =

H−1
∑

j=0

γj,1,

Equation (23) is rewritten as

n
∏

i=2

(1− βi) =

H−1
∑

j=0

γj,1 −
n
∑

j=H+1

(j −H)αj = D1, (24)

that substituted in (20) finally yields Equation (8).
At this point we have proved thatif the QBDP has an

equilibrium, this is given by (8), by the recursive solution
of the linear system of equations (19) and (16), and by the
recursion formula (5).

b) The case of non–positive recurrent QBDP:If the
QBDP is not positive recurrent we can re–write matrixP using
its block–tridiagonal representation in (2). We can immediately
apply the following theorems.

Theorem 3:[29] An irreducible Markov chain has a sta-
tionary distribution if and only if all its states are positive
recurrent.

Definition 3: AssumeA = A0 + A1 + A2 is irreducible.
Then, by the Perron–Frobenius Theorem, there exists a unique
vector µ > 0 with 1

Tµ = 1 and Aµ = µ. The vectorµ
is called the stationary probability vector ofA, while 1 is a
column vector whose elements are all equal to one.

Theorem 4:[21] The QBDP is transient if1TA0µ <
1
TA2µ, null recurrent if 1TA0µ = 1

TA2µ and positive
recurrent if1TA0µ > 1

TA2µ.
By Theorem 3, the QBDP does not have an equilibrium if

and only if it has at least one state that is transient or null
recurrent. Without loss of generality, assume thatn ≤ 2H
(the casen > 2H can be equivalently derived), which implies
A ∈ R

H+1×H+1. SinceA is irreducible, one immediately
has thatµ = 1

H+11, from which it is possible to explicitly
compute

1
T
A0µ =

1

H + 1

H−1
∑

j=0

(H − j)aj

1
T
A2µ =

1

H + 1

n
∑

j=H+1

(j −H)aj.

From Theorem 4, the QBDP does not have an equilibrium if
and only if 1TA0µ ≤ 1

TA2µ or, equivalently,

H−1
∑

j=0

(H − j)aj ≤

n
∑

j=H+1

(j −H)aj,

that, dividing both terms bya0 leads to

H−1
∑

j=0

γj,1 ≤
n
∑

j=H+1

(j −H)αj . (25)

This condition is exactly the one that we formulated in
the case I of the Theorem, and has just been shown to be
equivalent to the process being transient on null recurrent.
However, since the QBDP is still irreducible and aperiodic,a
limiting probability exists, which is given,as in Equation(7),
by:

π̃
(j) = lim

k→+∞
π̃
(j)(k) = 0, ∀j,

And this ends the proof of Theorem 2.
Remark 3:When condition (25) strictly applies, the numer-

ator of Equation (20) is negative. Since Equation (8) still holds
true, the denominator of (20) will be negative too. It follows
that in the case of absence of an equilibrium for the QDBP,
both (8) and (20) return a coincident valueπ̃(0) > 1, clearly
unfeasible.

C. Computation of the bound

As discussed earlier, the steady state probability of meeting
the deadline can be found by computing the first elementπ̃(0)

of the π̃ that solves the equatioñπ = π̃P , whereP is the
infinite transition matrix in Fig. 2 associated with the DTMC



M. Let us consider a new DTMC whose transition matrix is
given by:

P
′

=



















bH aH+1 aH+2 . . . an−1 an 0 . . .
bH−1 aH aH+1 . . . an−2 an−1 an . . .

0 a
′

H−1 aH . . . an−3 an−2

. . . . . .

0 0 a
′

H−1 aH . . . an−3

. . . . . .
...

...
...

...
. . .

. . .
. . .



















,

(26)
anda

′

H−1 = bH−1 = aH−1 + aH−2 + . . .+ a0.
Remark 4:The underlying idea is very simple. Consider

the DTMC associated with matrixP . The terms on the left
of the diagonal are transition probabilities toward stateswith
a smaller delay than the current one. By usingP

′

we lump
together all these transitions to the state immediately on the left
of the current one. For instance, if the current state corresponds
to 4 server periods of delay, its only enabled transition to the
left will be to the state associated with delay3. The effect
of deleting the transition toward states associated with smaller
delays is to slow down the convergence toward small delays,
thus decreasing the steady state probability of these states.
Let π represent the steady state probability of this system. We
can easily show the following:

Lemma 5:Let Γ be a random variable representing the
state of the DTMC evolving with transition matrixP and
Γ

′

be a random variable describing the state of the DTMC
associated with the transition matrixP

′

. If both DTMC are
irreducible and aperiodic, then at the steady stateΓ

′

has a
first order stochastic dominance overΓ: Γ

′

� Γ, according
to Definition 2. Therefore, for the first element of the steady
state probability, we havẽπ(0) ≥ π(0).

Proof: The proof is omitted for the sake of brevity
(see [30]).

In view of this Lemma, we can concentrate on the system
associated to the transition matrixP ′. In such a case, we
immediately derive that the equilibrium conditionπ = πP ′

produces the following recursion:

π
(1) =

n
∑

j=2

αjπ
0
,

π
(l) =

(

1 +

n
∑

j=2

αj

)

π
(l−1) −

min(n,H+l−1)
∑

j=2

αjπ
(l−j)

,

(27)

where the equalities hold for∀l > 1. This equations, as well as
P ′, have been respectively derived from (5) andP by imposing
H = 1. In such a situation, the following theorem holds.

Theorem 6:Consider a QBDP described by the transition
probability matrix (26), in which bothan anda′H−1 differ from
zero. Assume that the matrixW in (6) has distinct eigenvalues
after imposingH = 1. Then, there exists a limiting probability
distribution given by

π
(0) = lim

k→+∞
π
(0)(k) = max{1−

n
∑

j=2

(j − 1)αj , 0} =

= max{1−

n
∑

j=2

(j − 1)
aj

a0
, 0},

(28)

while the generic termsπ(j), with j > 0, are given by (27).
Proof: The proof follows immediately from the fact that

H = 1 implies thatβ1 = 1 is the only unstable eigenvalue if
the QBDP has an equilibrium, i.e.,Bs of Theorem 2 comprises
all the eigenvalues exceptβ1 = 1. Hence, by considering (24)
for H = 1, the proof follows immediately.

We complete the section with a remark. The first one is on
the intuitive meaning of the result just proposed. Consider
a DTMC with transition matrix as in Fig. 2 and assume
for simplicity n = 4 and H = 1. The analytical bound in
Theorem 6 is given by:

π(0) = 1− 3α4 − 2α3 − α2 = 1− 3a4

a0
− 2a3

a0
− a2

a0

In the computation of the steady state probabilityπ(0) we
have to consider every possible transition to the right (i.e.,
increasing the delay) that the system can make. For each of
them, we compute the ratio between the probability of taking
the transition and the aggregate probability of moving to the
left (decreasing the delay). In the final computation each of
this ratio has a state proportional to the delay introduced.In
our example,a4 corresponds to three steps to the right and is
weighted by the factor3.

The application of this result to our context can be for-
malised in the following:

Corollary 7: Consider a resource reservation used to sched-
ule a periodic task and suppose that the QBDP produced
respects the assumption in Theorem 2. Then the probability
of respecting the deadline is greater than or equal to:

π
(0) = 1−

n
∑

j=2

(j − 1)
U ′

∆(N + j − 1)Qs)
∑N−1

h=0 U ′
∆(hQs)

(29)

This corollary descends from the following facts: 1) the DTMC
described by the matrixP in Fig. 2 is a conservative approx-
imation of the system, 2) Lemma 5 provides an analytically
tractable approximation of the DTMC with transition matrix
P ′, 3) Theorem 2 and Theorem 6 contain the analytical
bounds.

VI. EXPERIMENTAL VALIDATION

We have validated the presented approach in two different
ways. First, we have computed the probabilistic deadline using
synthetic distributions, to compare accuracy and efficiency of
the analytic bound against several other methods and to assess
the impact of the scaling factor∆ (Eq. (4)) and of the band-
width. This set of experiment reveals a very good performance
of the bound for appropriate choices of the scaling factor∆. Its
very low computation time allows one to select the best choice
of ∆ by testing a number of alternative choices. The tightness
of the bound improves when the bandwidth is sufficient to
achieve an acceptable real–time behaviour for the application.

In a second set of experiments, we have evaluated the
method on a real robotic application, for which the mathemat-
ical assumptions underlying the model do not apply strictly.
The results produced are obviously approximate. Still, the
good quality of the approximation makes an interesting case
for the practical applicability of the methodology.



A. Synthetic Distributions

We report the results of the comparison between the nu-
meric solution resulting from Theorem 2 and discussed in
Remark 2 (companion), the analytic approximated bound in
Corollary 7 (analytic) the Cyclic Reduction algorithm [10]
(CR) and the bound developed by Abeni et al. [32] (gamma).
We have chosenCR after a selection process in which several
algorithms for the solution of general QBDP problems and
implemented in the SMCSolver tool–suite [33] were tested
on a set of example QBDPs derived from our application.
The gamma algorithm is an approximate bound specifically
tailored to the analysis of probabilistic guarantees for resource
reservations, so it was considered as as a perfect match for
our analytic bound. The different algorithms have been
implemented in C++ in the PROSIT [34] tool. PROSIT can
be used for analysis and for synthesis purposes (as shown
in Section VII). When the tool is used for analysis, the user
specificies activation period and deadline, parameters of the
RR (Qs andT s), distribution of computation and inter–arrival
times and solution algorithm. When the tool is queried in this
way, it computes the distribution of the task response times
and hence the probability of meeting the deadline.

As a representative sample of our findings, we report below
the results obtained for a periodic task with periodT =
100ms and random execution time. The computation time
was distributed according to a beta distribution:P {C = c} =
fU (c) = J(α, β)cα−1 (1− c)

β−1, with support (i.e., the
validity range for the random variable)c ∈ [0, 99500] µs, with
α = 2 andβ = 7 (J(α, β) is a normalisation constant). The
beta distribution is interesting because it is unimodal andhas
a finite support, which make it a good fit to approximate the
behaviour of a large number of real–time applications.
Effect of ∆. A first set of experiments was to evaluate the
impact of the∆ scaling factor. We considered two possi-
ble values for the reservation period:T s = 1

4P = 25ms
and T s = 1

2P = 50ms. The budget was chosen equal
to Qs = 0.45T s with a bandwidthB = 45%. Figure 3
shows the results for the probabilityπ(0) of respecting the
deadline achieved for different values of∆ (chosen as a
sub–multiple ofQs). In accordance with our expectations,
CR and companion produce almost the same result in
term of probability (differences are from the6th digit) and
the probability changes monotonically with∆. For example,
for T s = 50ms the value of the probability is0.89 for
∆ = Qs (the coarsest possible granularity), while it is0.93
for ∆ = Qs/45. The reason for this decrease is obvious since
re–sampling introduces a conservative approximation and the
error is larger for increasing granularity. For bothCR and
companion, the computation time changes with∆ in a
substantial way. For example, forCR and for T s = 50ms,
it is 182ms at ∆ = Qs and56.179ms at ∆ = Qs/45. In this
run of experiments, the computation time of thecompanion
algorithm is slightly smaller than the one reported usingCR,
but the results are too close to claim a clear dominance.

For theanalytic bound the computed probability is not
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Figure 3. Impact of the scaling factor∆ on the accuracy of the computed
probability and on the computation time

always monotonic with∆. In our example, forT s = 50ms the
probability grows moving from0.892 atQs to 0.906 atQs/2,
and then decreases, finally becoming0.012 atQs/45. Sharper
changes can be observed for other distributions. The reason
is that in theanalytic bound we have two distinct effects
(which play in opposite directions). On the one hand, if we
reduceQs we have the same conservative approximation effect
as forCR or for any other numeric method. On the other, as ex-
plained in Remark 4, lumping together all backward transitions
reduce the recovery of the error when the computation demand
is smaller than the allocated bandwidth. In this example, the
first effect determines the growth of the probability when
going from ∆ = Qs to ∆ = Qs/2; the second effect
determines the decrease of the probability formQs/2 onward.
The probability computed byanalytic is very close to the
one of the numeric algorithm it derives from (companion)
for ∆ = Qs/2, while the computation time is several orders of
magnitude below. In our experience with different distributions
(both synthetic and experimental) the choice of∆ = Qs/2 has
consistently produced an acceptable performance. Thegamma

bound shows an intermediate performance between numeric
methods and the analytic bound both for the accuracy and for
the computation time.
Behaviour with changing bandwidth. In order to compare
the accuracy of theanalytic method against the numeric
solutions (CR) for different bandwidths, we considered a
task with the activation and scheduling parameters as in the
experiments reported above. The budgetQs was changed
so that the resulting bandwidth ranged in[35%, 60%]. The
granularity∆ was fixed forCR to a small value (50µs) to
achieve a good approximation and to∆ = Qs/2 for the
analytic solution.

The results reported in Table I show an important gap
betweenanalytic and CR for small values of the band-



Table I
PROBABILITY FOR DIFFERENT BANDWIDTH AND ∆ = 50us

Bandwith 35% 40% 45% 50% 60%
Analytic Bound 0.602 0.809 0.906 0.956 0.991

Cyclic Reduction 0.773 0.878 0.929 0.965 0.992

width. The gap is significantly reduced for bandwidth greater
than 45%/50%. Smaller values of the bandwidth produce a
probability level below0.8, which is not acceptable for most
real–time applications. The reason for the improvement of
the analytic bound when the bandwidth increases is probably
due to the fact that the system recovers more easily from
large delays and this alleviates the impact of the conservative
simplifications that underlie the analytic model.

B. Real application

As a real test case, we have considered a robotic vision
programme that identifies the boundaries of the lane and
estimates the position of a mobile robot a using a web–cam
mounted on the chassis of the robot [35]. The computation
was carried out using a Beagle Board (www.beagleboard.org)
running Ubuntu. The version of the Kernel used (3.16) sup-
ports RR scheduling (under the name of SCHEDDEADLINE
policy) alongside the standard POSIX real–time fixed priority
policies (SCHEDFIFO and SCHEDRR).

The robot executed30 different paths across an area delim-
ited by a black line. For each run, we have captured a video
stream containing the line. The data sets roughly consistedof
2500 frames each and were later used for multiple off–line ex-
ecution of the vision algorithm. A first group of ten executions
for each data set was with the algorithm executed in a task
running alone and scheduled with the the maximum real–time
priority (99 for SCHED FIFO). This allowed us to collect
statistics of the computation time associated with the dataset.
In a second group of executions, we have replicated a real–life
condition. The vision algorithm was in this case executed in
a periodic task processing a frame everyT = 40ms. The task
was scheduled using SCHEDDEADLINE, with server period
T s = 20ms and with different choices of the bandwidth in
the range[35%, 60%]. For each data set and for each choice
of the bandwidth, we repeated ten executions recording the
probability of deadline miss. The probability averaged through
the10 execution was compared with the one that found using
the PROSIT tool, executed with different solution methods and
with the distribution estimated from the data set as input. In
Figure 4, we report the CDF distributions of the difference
between the two probabilities for three representative choices
of the bandwidth. The symbol∆Analytic denotes the difference
obtained using the analytic method (with different choices
of the scaling factor∆), while ∆CR denotes the difference
obtained using the cyclic reduction QBDP solver, with∆
set to 50µs. The three levels of bandwidth shown in the
three sub–plots produced different probability of meetingthe
deadline. For bandwidth equal to40%, this probability ranged
in [75%, 97%]. The range was[90.5%, 99%] for bandwidth
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Figure 4. Distribution of the difference between the experimental probability
and the one found with PROSIT tool.

equal to50% and it was[95.2%, 100%] for bandwidth equal
to 60%.

As we observe in the plot, the numeric algorithm (CR)
produces an error between−3% and 1% for all the three
values of the bandwidth. For the analytic bound, in this specific
case, the most convenient choice was to set the scaling factor
∆ to Qs (in other cases we found a better performance for
smaller values). The bound is evidently less accurate, but:1.
it remains below5% at least85% of the times even in the
most challenging scenario (small bandwidth), 2. is reducedto
below 2% for higher values of the bandwidth.

We observe that the vision algorithm iteratively builds upon
previous results to produce the estimate. This introduces a
strong correlation structure in the process that disrupts the
assumptions required for an exact application of the method.
In addition, the execution on a “real” operating system comes
along with an inevitable amount of un–modelled overhead.
Still, the level of approximation that we have reported could be
acceptable in most cases. Similar software applications (video–
encoding and decoding) were analysed in a previous work [36]
with similar conclusions. Clearly, we are not claiming any
generality for this fact. We are aware that for other applications
dropping the time dependency and the correlation structureof
the computation time process could produce very large errors
in the estimation of the probability. As reported in the related
work, this is a very active research area that is likely to attract
the attention of different researchers in the forthcoming years.

C. Discussion

In our first conference paper [28], we derived a model for
the evolution of a RR scheduled real–time task. The model was
shown to be a QBDP and was solved using the simple numeric
algorithm proposed by Latouche and Ramaswami [21]. An
important limitation of the model was its pessimism due to

www.beagleboard.org


the fact that it neglected the budget shared between adjacent
jobs. For instance, in the example in Figure 1, the model
would ignore the budget used by the second job in the fourth
reservation period. In a later work [36], the same model was
instantiated to the sub–case of periodic tasks, it was further
simplified in a conservative direction and then used for the
computation of an analytic bound.

In the present paper, we start from the more accurate model
introduced by Abeni and Buttazzo back in 1998 [4], and we
instantiate it to the case of periodic tasks (Section IV-B).
We introduce the scaling factor∆ (Section IV-C) obtaining,
once again, a QBDP. When the model is used for numeric
computations, the∆ parameter allows us to decide the degree
of pessimism introduced in the analysis. If we set∆ = 1, we
obtain a close approximation of the actual behaviour of the
task. If we set∆ = Qs, we recover the conservative model
used in our previous work [28]. As shown in Figure 3, very
different trade–offs between computation time and accuracy
of the probability result from different choices of∆.

The key contribution of this paper is found by applying the
same type of analytic reasoning as in [36], but with a few
substantial differences in the final result. Indeed, Theorem 2
contains an exact formula for the computation of the steady
state probability of meeting the deadline, which is used as a
basis for a novel numeric algorithm with competitive perfor-
mance with respect to the state of the art. On the contrary, the
key result of [36] is an analytic bound which can sometimes
be very conservative. The same bound is rediscovered in this
paper specialising Theorem 2 to a conservative approximation
of the model (see Theorem 6). Once again, we can take
advantage of the configuration options offered by∆ to refine
the precision of the result. As shown in Figure 4, the choice
∆ = Qs (which applies the model proposed in [36]) is not
guaranteed to be the best one in all cases. Therefore, the
generalisation shown in this paper is relevant both from the
theoretical and from the practical point of view.

VII. PROBABILISTIC QUALITY OPTIMISATION

In order to show a practical application of our ap-
proach, we have considered a situation where a single com-
puting board (e.g., a video server, or a set–top box) is
used to process (in real–time) multiple videos at the same
time. This example is based on two different videos (en-
coded with a bit–rate of600Kb/s): the first one, “Bridge-
Close”, displays a bridge with occasional people coming
through (so, it is characterised by a single, almost static
scene with slow movements) and comes from a public
data base (http://trace.eas.asu.edu/yuv/index.html); the second
video (“ufo”), instead, is a movie trailer (freely available at
http://www.theufo.net - trailer 1) characterised by frequent
scene changes and rapid movements.

One of the best known ways to evaluate the quality of a
video is the Peak Signal to Noise Ratio (PSNR), which is
computed comparing pairwise the frames of the original raw
video and of the one obtained after encoding and decoding
it [37], [5]. This metric can be evaluated considering a video
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player implemented as a periodic real–time task. If a job
misses its deadline, the video frame is not played back but
it is decoded (to allow the incremental decoding of the frames
that follow). In this case, the behaviour of most players is to
fill–in the “hole” by simply repeating the last decoded frame.
This is perceived by the user as a reduction in quality, which
is well reflected in a degradation of the PSNR. This is visible
in Fig. 5, where we show the quality as a function of the
probability of deadline miss for the first video. This plot has
been created using the PSNR–TOOL software [5].

The PSNR was interpolated by a line with slope8.9
for “BridgeClose” and42.051 for “ufo”. This difference is
explained by the different nature of the movies (static the
former, and dynamic the latter). Both movies were decoded
using a player executed by a periodic task and scheduled
by the SCHEDDEADLINE policy. The distributions of the
execution times were recorded on a notebook powered by an
Intel Atom Processor, and the resulting CDFs are shown in
Fig. 6.

The problem considered here was to find an optimal al-
location of bandwidth between the different tasks. To this
end, we have used the synthesis abilities of PROSIT. When
PROSIT is used for synthesis, the user specifies for each task:
1) activation period and deadline, 2) reservation period, 3)
distribution of the computation time 4) solution algorithmfor
the probabilistic guarantees, 5) quality as a function of the
probability of meeting the deadline and 6) constraints on the
minimal value of the quality. The quality of the different
tasks can be combined into global quality metrics. In this

http://trace.eas.asu.edu/yuv/index.html
http://www.theufo.net


Table II
RESULTS OFPROBABILISTIC OPTIMISATION

Cyclic Reduction – Computation time:753801758µs
Task Opt. Budget Estim. Prob. Exact Prob. Quality

BridgeClose 3000us 0.7427 0.743592. 39.65
Ufo 6449us 0.9995 0.9995 41.58

Analytic Bound – Computation time:114524µs
Task Opt. Budget Estim. Prob. Exact Prob. Quality

BridgeClose 3462us 0.7392 0.8292 40.50
Ufo 3997us 0.8732 0.9138 37.98

particular example, we have used the infinity norm metric:
assumingfi as the quality of theith task, the cost function
to maximise over the budgetQs

1 andQs
2 is maxi min fi. For

each candidate choice ofQs
i the tool evaluates the steady state

probability using different solvers for probabilistic guarantees.
The optimal solution is found by a bisection algorithm, which
uses repeated calls to the algorithm for the computation of
the probability. As a solver for the probability computation
we have implementedanalytic (with ∆ = Qs/2) andCR
(with ∆ = 50 µs).

Choosing30 ms for the activation period (corresponding
to 33 fps), setting the server period to10 ms, and restricting
the total bandwidth available to95% (to leave some room for
other applications), the tool produces the results in TableII. We
identified empirically the minimum acceptable PSNR as39 for
“Ufo” and 31 for “BridgeClose”. These values were codified
as constraints in the optimisation problem. In both cases,
the algorithm identified a sub–optimal solution, because the
probability evaluated by the solvers is only a lower bound. We
re–evaluated the exact probability for each of the sub–optimal
assignment of budgets using theCR solver with∆ = 1 (which
produces the exact computation of the probability, within the
limits of numeric errors). This allowed us to compare the
actual quality attained by the optimisation algorithm in the
two different configurations. Because the optimiser maximises
the worst performance of the two tasks, the algorithm tends
to equalise the QoS achieved by the tasks for the optimal
budget. For both solvers, the optimal solution assigns a larger
bandwidth (almost64% for the CR and almost40% for the
analytic) to the “Ufo” stream; this is because its quality
degrades more quickly with the probability of meeting the
deadline for “Ufo” than for “BridgeClose”. In this example,
the use of the analytic bound produces an optimal value37.98
which is only 4% away from the value obtained with cyclic
reduction, but the computation time (evaluated on an Intel Core
i7 with 16GB of RAM) is four orders of magnitude below.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have considered the problem of proba-
bilistic guarantees for RR scheduled soft real–time periodic
tasks. We have shown that the evolution of the system can be
modelled as a QBDP. The probability of meeting the deadline
amounts to the computation of the steady state probability of
this process. We have shown how this is possible by numeric
means with different performance/accuracy tradeoffs. We have

also shown an analytical bound and offered a comprehensive
validation of these results by experiments and simulations.

The gap between the analytic bound and precise numeric
solution narrows down when the task is required to meet the
deadline with a high probability (e.g., more than80%). For
this reason, the analytic bound appears as a very promising
option to solve QoS optimisation problems involving multiple
tasks, when the QoS is a function of the probability for the task
to meet its deadline and an acceptable level of performance
is required to all tasks. In these cases, the frequent calls
to the solver to identify the optimal allocation of resources,
such as are required by branch and bound or dichotomic
search optimisation, can lead to substantial reduction of the
computation time when the analytic bound is used in the face
of an acceptable distance from the optimal solution.
Future work In our future work, we will investigate further
on the connection between QoS and probabilistic deadlines
in several application domains, we will extend our analysis
and the application of our methods to the case of applications
based on multiple tasks and to the case of computation time
that is not i.i.d.

REFERENCES

[1] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” inProceedings of the IEEE Real-Time Systems
Symposium, Madrid, Spain, December 1998.

[2] D. Fontanelli, L. Greco, and L. Palopoli, “Soft RealTimeScheduling for
Embedded Control Systems,”Automatica, vol. 49, pp. 2330–2338, July
2013.

[3] A. Cervin, B. Lincoln, J. Eker, K. Arzen, and G. Buttazzo,“The jitter
margin and its application in the design of real-time control systems,”
in Proceedings of the IEEE International Conference on Real-Time and
Embedded Computing Systems and Applications. Gothenburg, Sweden,
2004.

[4] L. Abeni and G. Buttazzo, “Qos guarantee using probabilistic dealines,”
in Proceedings of the Euromicro Conference on Real-Time Systems,
York, England, June 1999.

[5] C. Kiraly, L. Abeni, and R. L. Cigno, “Effects of p2p streaming on
video quality,” inProceedings of the IEEE International Conference on
Communications. IEEE, 2010.

[6] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, p. 390, 1986.

[7] C. L. Liu and J. Layland, “Scheduling alghorithms for multiprogram-
ming in a hard real-time environment,”Journal of the ACM, vol. 20,
no. 1, 1973.

[8] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels:
A resource-centric approach to real-time and multimedia systems,” in
Proceedings of the SPIE/ACM Conference on Multimedia Computing
and Networking, January 1998.

[9] L. Abeni and G. Buttazzo, “Stochastic analysis of a reservation-based
system,” in Proceedings of the IEEE International Parallel and Dis-
tributed Processing Symposium., San Francisco, California, April 2001.

[10] D. Bini, G. Latouche, and B. Meini,Numerical methods for structured
Markov chains. Oxford University Press, 2005.

[11] A. K. Atlas and A. Bestavros, “Statistical rate monotonic scheduling,” in
Proceedings of the IEEE Real-Time Systems Symposium, Madrid, Spain,
December 1998.

[12] J. L. Diaz, D. F. Garcia, K. Kim, C. G. Lee, L. Lo Bello, J. M. López,
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[13] J. L. Diaz, J. M. López, M. Garcia, A. M. Campos, K. Kim, and
L. Lo Bello, “Pessimism in the stochastic analysis of real-time systems:
Concept and applications,” inProceedings of the IEEE Real-Time
Systems Symposium. IEEE, 2004.



[14] D. Maxim and L. Cucu-Grosjean, “Response time analysisfor fixed-
priority tasks with multiple probabilistic parameters,” in Proceedings of
the IEEE Real-Time Systems Symposium, Vancouver, British Columbia,
Canada, December 2013.

[15] L. Cucu and E. Tovar, “A framework for the response time analysis of
fixed-priority tasks with stochastic inter-arrival times,” ACM SIGBED
Review - Special issue: The work-in-progress (WIP) sessionof the RTSS
2005, vol. 3, no. 1, pp. 7–12, January 2006.

[16] G. A. Kaczynski, L. Lo Bello, and T. Nolte, “Deriving exact stochastic
response times of periodic tasks in hybrid priority-drivensoft real-
time systems,” inProceedings of the IEEE Conference on Emerging
Technologies and Factory Automation, Patras, Greece, September 2007.

[17] A. Mills and J. Anderson, “A stochastic framework for multiprocessor
soft real-time scheduling,” inProceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium. Stockholm,
Sweden: IEEE, April 2010.

[18] D.-I. Kang, R. Gerber, and M. Sakena, “Performance-based design of
distributed real-time systems,” inProceedings of the IEEE Real-Time
Technology and Applications Symposium, Montreal, Quebec, Canada,
June 1997.

[19] C.-J. Hamann, L. Reuther, J. Wolter, H. Haertig, J. Loser, and S. Schon-
berg, “Quality-assuring scheduling-using stochastic behavior to improve
resource utilization,” inProceedings of the IEEE Real-Time Systems
Symposium, London, December 2001.

[20] K. S. Refaat and P.-E. Hladik, “Efficient stochastic analysis of real-
time systems via random sampling,” inProceedings of the Euromicro
Conference on Real-Time Systems, Brussels, Belgium, July 2010.

[21] G. Latouche and V. Ramaswami,Introduction to matrix analytic methods
in stochastic modeling. Society for Industrial Mathematics, 1987, vol. 5.

[22] M. F. Neuts,Matrix-geometric solutions in stochastic models: an algo-
rithmic approach. Dover publications, 1995.

[23] A. F. Mills and J. H. Anderson, “A multiprocessor server-based scheduler
for soft real-time tasks with stochastic execution demand,” in Proceed-
ings of the IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, Toyama, Japan, August 2011.

[24] M. Santos, B. Lisper, G. Lima, and V. Lima, “Sequential composition
of execution time distributions by convolution,” inProceedings
of the Workshop on Compositional Theory and Technology for
Real-Time Embedded Systems, R. Davis and L. T. X. Phan,
Eds., November 2011, best paper award. [Online]. Available:
http://www.es.mdh.se/publications/2215-

[25] G. Bernat, A. Burns, and M. Newby, “Probabilistic timing analysis: An
approach using copulas,”Journal of Embedded Computing, vol. 1, no. 2,
pp. 179–194, 2005.

[26] R. Liu, A. Mills, and J. Anderson, “Independence thresholds: Balancing
tractability and practicality in soft real-time stochastic analysis,” in
Proceedings of the IEEE Real-Time Systems Symposium, Rome, Italy,
December 2014.

[27] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quinones, and F. Cazorla,
“Measurement-based probabilistic timing analysis for multi-path pro-
grams,” in Proceedings of the Euromicro Conference on Real-Time
Systems, Pisa, Italy, July 2012.

[28] N. Manica, L. Palopoli, and L. Abeni, “Numerically efficient prob-
abilistic guarantees for resource reservations,” inProceedings of the
IEEE International Conference of Emerging Technologies and Factory
Automation, Krakow, Poland, September 2012.

[29] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

[30] L. Abeni, D. Fontanelli, and L. Palopoli, “Applicationof the Quasi-Birth-
Death Processes techniques to probablistic guarantees of soft realtime
systems scheduled by resource reservations,” DISI - Universitá di Trento,
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