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Abstract—We show a methodology for the computation of clear guidelines on how to tweak periods and computation
the probability of deadline miss for a periodic real-time task times in order to meet the deadlines of all tasks in the system

scheduled by a resource reservation algorithm. We propose a  yhg se of scheduling priorities allows the designer to @efin
modelling technique for the system that reduces the computen

of such a probability to that of the steady state probabilityof an & Partial order between all the tasks in a set and inevitaily ¢
infinite state Discrete Time Markov Chain with a periodic struc-  Ples their timing behaviour. This is acceptable if the psgo
ture. This structure is exploited to develop an efficient nuneric  is to offer guarantees for the set as a whole. On the contrary,
solution where different accuracy/computation time trade-offs if the designer requires specific QoS levels for each task,
can be obtained by operating on the granularity of the model. - g-paqyjing priorities can be too coarse a tool. For thisaeas
More importantly we offer a closed form conservative bound . . .
for the probability of a deadline miss. Our experiments reval & intense research work has produced alternative schgduli
that the bound remains reasonably close to the experimental Solutions for soft real-time systems. One of the most papula
probability in one real-time application of practical interest. is the Resource Reservatiosgheduling (RR)[[8],[[1], which
When this bound is used for the optimisation of the overall enables a fine grained control on the fraction of computing
Quality of Service for a set of tasks sharing the CPU, it prodees o\ yer (handwidth) that each task receives. A key property
a good sub-optimal solution in a small amount of time. . . . . -

Index Terms—Real-time systems, Scheduling, Probabilistic of RR Sched_ullng ISt_emporaI isolation the a*?"'ty for a )
Guarantees task to meet its deadlines solely depends on its computation
requirement and on its scheduling parameters. This prppert
enables the provision of specific temporal guarantees th eac
task and simplifies system design. RR scheduling is now

The termsoft real-timeis used for a class of real-time ap-available in the mainstream Linux Kerfel
plications that are resilient to occasional and contratiering When the probability distribution of inter—arrival time cn
faults. Significant examples include multimedia streanfitly of computation time are known independent identically dis-
computer vision and real-time contrél [2[] [3]. tributed (i.i.d.) stochastic processes, temporal isofatllows

An effective method to express the timing requirements formaodelling the evolution of a task scheduled through a RR
soft real-time application is by associating each deadiitle as a Discrete—Time Markov Chain (DTMC) with an infinite
a probability that it will be met: the notion gfrobabilistic number of states [4][]9]. In this paper, we restrict the focu
deadlines[4]. Probabilistic deadlines can be related to tht the analysis of periodic tasks. For this case, we can sge th
Quality of Service (QoS) delivered by the applicatioh [&]] [ the DTMC describing the system takes the form of a Quasi—
and, more generally, enable the expression of a wide rargjeth—Death Process (QBDF) [10]. We introduce a granularit
of performance requirements, where classic hard real-tipparameter that allows us to reduce the complexity of the
systems can be regarded as a special case. model at the expense of a conservative approximation in the

In traditional hard real-time applications, the use of fixedomputation of the probability. We show a novel analysig tha
or dynamic scheduling priorities has gained an undisputedploits the specific structure of the transition matrix loist
prominence. Part of the reasons of this success is in RBDP. The outcome is an expression for the steady state
presence of efficient numeric techniques that make for theobability of meeting the deadline, which can be used in dif
provision of tight conditions for temporal guarantegs [&]. ferent ways. The first one is for the construction of a numeric
least as important is a group of approximate analyticalltsu algorithm for probabilistic guarantees, with a performanc
The most famous is the utilisation bourid [7], which offersomparable to the best state of the art techniques for nameri

solutions of QBDP. The second one, the most important, is for
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reasonably accurate for a large set of synthetic test céées. task separately. Abeni and Buttazzo proposed a model for RR
have also performed a large collection of experimental fitata scheduling based on queueing theary [4], [9]. The compurtati

a real-life application, in which the presence of several-no of the deadline miss probability requires to numericalliveo
idealities (OS overhead, correlation in the computatiore, an eigenvector problem for an infinitely large matrix. Reen
etc.) challenges the assumptions the method relies on. ®Epproximated solution techniques have been proposed for
small approximation error that we observed in the experimerefficient numeric computation of a bound for the probability
suggests the practical applicability of the method at least meeting the deadliné [20].

in the considered scenario. The application of the bound is . . .
very convenient when solving QoS optimisation problems tha In this paper, we ShOW. hQW the ado_ptlc_)n of the reservation
require to efficiently identify the minimum bandwith recedt scheduler and the restriction to periodic tasks produces a

for a desired probability of deadline miss. We showare’alistrm)del_that is_ a particular instance of a QBDP. Efficient
fumerlc solutions for QBDP and for M/G/1 queue can be

example of this kind where the application of the analyti ;
bound produces a good sub—optimal solution in a tiny fracti ound in the work.of Latouche and .Ramaswalﬁﬂ [.21] and of
Neuts [22], who pioneered the application of matrix geomet-

of the time required by a numeric approach. . ) T
The paper is organised as follows. In Sectidn II, we oﬁj}c methods for the solution of infinite M/G/1 queues. The

a brief survey of the related work. In Section Il we formall lterature in _the field IS rich of optlm!s_ed methods derived
describe the problem addressed in the paper. In Sdctiorelv, "9 specific propemes of the tran5|_t|on T”at”x- The mOSJF
show how a resource reservation can be conservatively m (ar_narkable achievements are summarised in a comprehensive

elled as a QBDP. The computation of our analytical bound o.k [10]. In th'? paper, we con3|der numeric methods as a
reported in SectioflV. In Sectidi VI, we prove the validit)PaS'S for comparison but our main focus is on analyticaledos
of the bound in a large set of experiments. In Secfion VIY?rm solutions.

we show the concrete application of the method to a QoSpjlls and Anderson [[23] have recently considered the
optimisation problem. Finally, in Sectidn VIl we offer ourproplem of stochastic analysis for resource reservations o
conclusions and announce the future work directions. multiprocessor systems. The authors main focus is on the
computation of tardiness and response time bounds for the
average case. The authors also offer a very conservativk res
The stochastic analysis of performance of soft real—timg the probabilistic deadlines, which is applicable only if

tasks started two decades ago. The same task model Rf€adlines much larger than the period are considered.
sented in this paper (a triple of period, probability distition

of the task computation time and requested probability of A customary assumption made in the literature on queueing
deadline miss in the long run) has been also adopted ngtworks is that inter—arrival times and service times are. i

the statistical rate monotonic approa¢hl[11]. More regentlProcesses. In this paper, we stick to the same assumptién. Di
an important number of research papers has concentrated@gnt authors have recently questioned on the applicyloi

the computation of the response time of systems with fixd@e i.i.d. assumption in the area of real-time applicatjiad3.

or dynamic priority when tasks have stochastic variabilitRemarkable is the so called notion of probabilistic worst
in computation times[[12],[T13],[T14], in the inter—arrivalcase execution time_[25], which essentially corresponds to
time [15] or in both [16]. Similar techniques have recem@ssociating a worst case to several execution scenarits tha
been applied to multiprocessor systerfis] [17]. An obviodigke place within a given probability. A possible evolutioh
point of differentiation between our technique and the ondis concept could lead to finding an i.i.d. overapproxirti
describes so far is that while these papers propose numé@ic & computation process that is not i.i.d. A similar idea
techniques, we offer an analytic bound that is satisfagtoriunderpins a recent work by Liu et al. [26], where the authors
tight in many cases of interest. A very interesting conmecti tackle the correlation problem decomposing the processant
can be established with the work of Diaz et al.][12], wher@eterministic and an i.i.d. component. In a similar contaxt

the authors propose the exact solution for a specific numei@sults could be used to study the evolution of the system
examp|e. Our Computation, on the Contrary’ app"es to gﬂneﬂnder the action of the i.i.d. component or of the i.i.d.
cases. What is more, all the approaches mentioned ab&Y&rapproximation of the process.

analyse the task set as a whole, since real-time schedule
do not enjoy temporal isolation. This makes QoS optimisatiost
much more difficult than in our case.

II. RELATED WORK

"R complementary issue to our work is how to derive
atistically sound estimates for the probability disitibn of

he computation time. A useful inspiration could come from

hOth,(?r Zthorsln hfz_:\ve danal;(/jsed S(.:hedl.“'r.‘g applgroachles Ohe" application of the Extreme Value Theofy [27], but the
than “traditional” fixed or dynamic priorities. Dong-In €ty yq s reserved for future investigations.

al. [18] have analysed Time Division Multiple Access
(TDMA) approaches, Haman et al. [19] have focused on aThe results shown in this paper take to its natural compietio
model where tasks are split in mandatory and optional parésline of work started a few years ago that has produced a
This paper is based on reservation—-based schedlllind 1], [umber of intermediate results. The relation with our prior
which allows us to exploit temporal isolation and analyseheaachievements is detailed in Section VI-C.



Ill. PROBLEM DESCRIPTION C. Problem Statement

In view of the temporal isolation property, each task is
A. Task Model guaranteed a minimum share of the proces3oT’* indepen-

We consider a set of real-time tasks} sharing aprocess- dently of the behaviour of the other tasks. As a consequence,
ing unit(CPU). A real—time task; consists of a stream of jobs!t iS Possible to carry out a conservative analysis leadinifé
Jir. Each jobJ; . arrives (becomes eligible for executionfOmputation of a lower bound of the probability of respegn
at time r; ;, and finishes at timef, , after executing for a deadline assuming that the task always receives this mimimu
time ci7k.7We restrict to periodic tasks, meaning that tw§aS long as Condition[{1) is respected). The advantage is

adjacent arrivals are spaced out by a fixed amount of tirffedt the behaviour of each task can pe studied in isolation.
T vi o1 = i + T Therefore, we can remove the subscriptneaning that the

The computation time of each jak ;. is assumed to be an analyil_s refe_rs to one spbelmflc_tafsk. lated oll
i.i.d. stochastic procegs;. For eachk the computation time is In this setting, our problem is formulated as follows.

a random variable described by the Probability Mass Functig Proplem 1: Given a per:iodic re_al—éirrg)e taSkPWith a s';(_)c(;\as-
(PMF) Us(c) = Pr {cix — c}. fic computation time characterised by a PMFc), fin

1#1 1 S
Job J; , is associated with a deadling , — iy + D, conditions on the reservation parametéf¥’, 7'°) such that

(where D; is said relative deadline), that is respected | . . .
. . . : few remarks are in order. First of all, we look for analytica
fi,k < dik, and is missed iff; , > d; . In this work,

probabilistic deadline$4] are used instead of traditional hard?ondlt'ons’ which can be inverted and offer easy solution

deadlinesd; . A probabilistic deadlingD;, p;) is respected S‘;rfetl*;eutﬁif:l'j;“SﬁihsngﬂiOdnesshg;v-ef;i‘;;gi'e:;(a‘?{ﬁg;g‘r‘l’ be
if Pr{fir>ri r+D;} <p; If p, =0the deadline is hard. ’

necessity is certainly a desirable additional requirement

e task respects the probabilistic deadliig p).

IV. STOCHASTIC MODEL

In this section, we first recall some basic definitions on

As multiple real-time tasks may be concurrently activearkov chains and in particular on QBDP. Then, we show
we use a RR scheduler. Each taskis associated with a how a task scheduled by a resource reservation is convinient
reservation(Q;, 77’), meaning thatr; is allowed to execute modelled as a QBDP (Theordm 1). Finally, we show how to
for @7 (budge} time units in every interval of lengt?  derive a conservative approximation of this model, which ha
(reservation periodl The fraction of CPU allocated to theg parametric accuracy and which retains the structure of a
task is said bandwidt#; and is defined a®; = Q; /7. The QBDP.
particular implementation of the RR approach that we cansid )
is the Constant Bandwidth Serve€BS) []. In the CBS, A- Background on Markov Chains
reservations are implemented by means of an Earliest Deadli A Discrete-Time Markov Process(DTMP) {X,}
First (EDF) scheduler. The EDF schedules ta$ks based is a discrete—-time stochastic process such that its
on their scheduling deadlineg?,, which are dynamically future development only depends on the current
managed by th€BS algorithm. When a new jod; , arrives, state and not on the past history. This can be
the server checks whether it can be scheduled using the Btstted in formal terms on the conditional PMF:
assigned scheduling deadlildgk_l. In the affirmative case, Pr{X,, = z,|X; =21, Xo =29,..., X1 =2p_1} =
the scheduling deadline of the job is initially set to cutrePr {X,, = 2,,|X,—1 = 2,-1}. A DTMP defined over
deadlined;, = d:, ,. Otherwise, the initial deadling; , is a discrete state space is said Discrete-Time Markov
set equal tor; , + T7. Every time the job executes f@)? chain (DTMC). Given a DTMC, letr represent the
time units (i.e., its budget is depleted), its schedulingdii@e probability w(ﬂ')gn) = Pr{X, =j}, m be the vector
is postponed byl: d, = dj, + T;. This way, the task is r, = [x\” z{",..], P = [p;;] be a matrix whose
prevented from executing for more th@j units with the same generic elemenp; ; is given by the conditional probability
deadline. As a consequence, each task is reserved an ameunt = Pr{X, = j|X,_; =4}. Starting from an initial
of computation timeQ? in each server period; regardless probability distribution 7y, the application of the Bayes
of the behaviour of the other tasks. This property is callafleorem and of the properties of the Markov Processes allow
temporal isolationand it holds as long as the system satisfiags to express the evolution of the distribution by the matrix

B. The scheduling algorithm

the following schedulability condition equationm,,; = m,P. The matrix P is said probability
. transition matrix. An equilibrium point for this dynamic

Z B; = Z Q_; <1. (1) equation is a vectoft such thatt = 7 P.
Z P Consider a staté of a DTMC. Let the random variable

T; = min{n > 1 s.t. X,, = i|X, = i} denote the first return
The scheduling deadlin€ , has, in general, nothing to dotime to statei. The statei is transient if Pr {7; < oo} <
with the deadlinel; ;, of the job: it is simply instrumental to 1, i.e., if there is some probability that starting frointhe
the implementation of th€BS (see [1] for more details).  state will never return teé. The statei is transientif it is not



recurrent. Theperiod d; of a recurrent staté is defined as
the greatest common divider of the set of all numbersor Sy
which Pr{X,, =i A X;1n =1} > 0,Ym. A state is said

aperiodicif its periodd; = 1. A DTMC is said aperiodic, if |
T

all of its states are aperiodic. ! ! ! l ! l
The mean recurrence time of a statis the expected value . il 'l [l y [0 [,

of 7;: M; = E{T;}. The statei is positive recurrent if\/; is : | } } }

finite, and the DTMC is positive recurrent if all its statee ar Ty T o1’ S R T

positive recurrent. '
A DTMC is saidirreducible, if every state can be reachedg_lgure 1._ bExample schedule of a task byCBS. The two colours denote

. .. ifferent jobs.
from any other state in a finite number of steps. It can be )

shown that in an irreducible DTMC all states are of the same

type. So, if one state is aperiodic, so is the DTMC. The variablev;, cannot be measured directly and it represents
A very important property of irreducible and positive recufihe amount of backlogged execution time that has to be served
rent DTMC isthe existence of a single equilibrium= 7P  py the CBS scheduler when a new job arrives.
where the limiting distributionsim,, .. m, converge starting  gince the process modelling the sequence of the com-
from any initial probability distribution,. This equilibrium ptation time is assumed a discrete valued and i.i.d. random
is Xagﬁfj'atgé}gycgﬁg glsglljgustilogirth Death Process (QBDR}OCESS: the model in Equatidd (3) represents a Discretes-Ti
if its probability transition matrixP has the following block arkov Chf’;un (DTMC) that_we defindo, where the st_e}tes
structure: are determined by the possible valuepfand the transition
c A o o0 0 probf_zlbilities by the EMF of the co.mputation tirﬁk(c).
A A(l) A 0 0 .- This model permits a fine—grained modelling of the be-
P=|0 Ay A, Ay 0 --- (2) haviour of the reservation, which can be difficult to treaneO
0 0 Ay A A possible simplification is to collapse into a single statelad
states for whichv, < D = NT*, which correspond to the

When the matrices are scalars, this structure reduces to YAES Ofvr such thaty, < NQ*. In the modified DTMC
standard Birth—Death Process (BDP). M, the states is defined as

S_{o if vy < NQ*

B. A resource reservation as a Markov Chain o .
) ) 1 ifuy=NQ°+1

We will denote byFy;(c) = >, _.  U(h) the Cumulative _ _ N N _

Distribution Function (CDF) of the execution time. For simBY_using Equation[{3), the transition probabilities for sthi

plicity, we will assume that the server peri@d is chosen as DTMC can be written as follows:

an integer sub—multiple of the activation periddT = NT*. Pr{vit1 < NQ°lvpy =i+ NQ°},if j=0
Other choices are possible but make little practical sense. pi; = { Pr{viy1 =5+ NQ*lvpy < NQ°*},if ¢ =0, #0
Let d; denote the latest scheduling deadline used forjjpb Pr{vii1 = NQ° + jlvk =i+ NQ°},if i #0,5 #0
and introduce the symbo}, = dj — r. The latest scheduling Pr{cy < NQ° —i} = Fy(NQ® —i),if j=0
deadlined;, is an upper bound for the finishing time of the = { Pr{c, = j + NQ*} = U(j + NQ®),if i=0,j #0
job (if Equation [1) is respected, thefa < d;). Hence,dy, is Pri{ck =NQ*+j—i}=U(j—i+NQ®*),if i £0,j #0.

an upper bound for the job response time. o

Example 1:Consider the schedule in Figufk 1. The sched-€t 7 be t_h_e (|nf|n|te_) vecto_r where th&" element represent
ule in the figure considers two adjacent jobs starting,zand the probability associated with thé" state of the DTMCM
re+1 and the reservation period is chosen as one third of tRBEr & step of evolution starting from an initial probability
task period. JobJy, in this case finishes beyond the deadlin¥€Ctor o. The recursive equation for the evolution of is
(which in our periodic model isy..1). More precisely, the last 7++1 = 7»”. The objective of our analysis can now be stated
reservation period that it uses (in which its finishing tires) @S the computation of a lower bound }‘or the first element of
is upper—limited by the scheduling deadlidg the steady state probability vectar = limy_, . 7. As long

The quantitys, takes on values in a discrete set: the integ@® W€ are not interested in the distributiondef inside the

multiples of 7 and the probability of meeting the deadline "€9i0Ndx < NQ°, collapsing into one state all the valuespf
is lower bounded byPr {5}, < D}. smaller thanNQ*® does not introduce any error because such

states do not have influence on the next statax{0, vy —
NQ*} = 0 in Equation [(B)).

v = ¢ The probability matrixP resulting from the computation
vbp1 = max{0,v5 — NQ°} + oy above has the structure shown in Figllre 2, where

L - ag+h = Pi,ith = U(h+ NQ?)
o = |—| T 3 ’ -
k ’VQS-‘ ®) ba—i = pi,o = Fu(NQ* — i),

The evolution ofd,, is described as follows [9]:



[ by amer ... an 0 7 As shown by Diaz et al[[13], i’ stochastically dominates
bu-1  am a1 an U, then a system having the execution times distributed
bu—2 an-1  anm aH+1 - an e according td{’ is a conservative approximation of the original

- system (with the execution times distributed according/}o
by az am AH+1 an . imol buildz(’ t btai h fi
a0 ay 0 an i BE A simple way to bui 0 obtain such a conservative
0 ao ar QniH-4 ... ag  age1 ... approximation is to replace, with a new variablez, whose

0 0 ap ax as ag ... distribution is given by:

R : : : . e - i UA(C/)—{O if ¢ modA=#£0 @

kA / :
Figure 2. Structure of the transition matrix Za:(kfl)AJrl U(c')  otherwise

whereA is a scaling factor chosen as an integer sub—multiple
) . ) of @°. The transition matrix of the new DTMC has again
and  is the minimum integer such th&(NQ” +h) = 0 for o strycture in Figll2, where the different elements of the
all h < H. This structure is recursive: from roil onward, iy are functions of the parametex. Large values of
each row is obtained by shifting the previous one to the nch correspond to a smaller size for matricds, A, Ay in

and inserting & in the first position. Furthermore, the firste uatiorL2. This reduces the time required for the commnati

elemeqt greater than zer.o of such rgcurswe rows is dub he steady state probability paying the price of a coarser
ag, while the last witha,,: n = max{ila; > 0}. We nowW 5 50vimation for the computed probability.
introduce a useful notation for sub—matrices.

Definition 1: Let P = (p;, ;) be a matrix whose elements V. AN ANALYTICAL BOUND

arep; ;. Leta = {ii, iz, ..., in} 0 = {ji, ja, -, jm} tWO This section presents an analytic solution for a QBDP

ordered set of indexes. The sub-matf, 5 is @ matrix gegcribed by the transition matrix reported in Fiy. 2. In the

whose elements arg;, ;, for all 4 € [1,n] ¢ € [I,m]. giscussion, we assume that the conservative approximation

Likewise, if 7 is a vector, we denote,, the sub—vector whose yiscussed in Sectidi TVAC for soms.

elements arer;, forall 7 € [1, n]. _ The first key result of the Section is Theorém 2, which
From the properties of our transition matrix we can provghows a general expression for the steady state probability

the following result [23]. of respecting the deadline. After introducing an additiona

Theorem 1:Let H be the minimum integer such thalgimpiification in the model, this leads to the analytical bou
UNQ®* +h) = 0 for all h < H. Let F be defined as

: in Theorem6 and in Corollarl] 7, which represent the core
max {n — H, H}. Define« (i, F) the set{i,..., i+ F — 1}

- ~ theoretical results of the paper.
andg (j, F) the set{j,..., j+ F —1}. The transition matrix
P is block-tri-diagonal with the structure in Equatibh 2A. A solution for generic QBDP processes

where Ay = Plo(r, )50, 1)) A2 = Plao, F).p(F, F))s A1 = Before going into the theoretic details, let us define the

Pla(r, F).p(F, F))s C = Pla(o, F),p(0, F)], @ré square matrices Offollowing function : N x R — R as
order H. This qualifies the process as a QBDP.

The structure of the QBDP exposed in Theofdm 1 enables the B & P
application of efficient numeric solutions for the steadstest Tkl = Z &) ’
probability [10], as discussed in Sectipnl VI. J=0

_ o wherea; = a;/ag. Using this function and the structure of the
C. A conservative approximation QBDP, it is possible to write the equation expressing thadste

In order to make the model tractable from the numeric poistate equilibriumr, = 7, P, (Wherer;, = {ﬁ,ﬁo),frfj), ...]) by
of view, it is useful to introduce a conservative approxiioat
The notion of conservative approximation that we shall ado
here relies on the concept bifst order stochastic dominance

expressing the probabilitiééf), i > H, attimek as a function
f 77, 0<j < H, in the following way:

(defining an order relation between probability distribug): n H-1 .
. . . . ~(H) _ . ~(0) = (H=3)
Definition 2: Given two random variableX” andY’, with e = }_Z AT T Z ViR
CDFs F,(z) and F,(y), X has a first order stochastic domi- g =t S 5)
nance ovel” (X = Y) iff Vo F,(x) < Fy(x). FEAD [y i a; | 70 - Z a7 TH=D),
Based on this definition, a stochastic real-time task can be F B i i = i
seen as a conservative approximation of another one if its i7H

probabilistic deadlines are stochastically dominated thy t holding forVvi > 1.

probabilistic deadlines of the original task: consideringin The steady state solution for generic> H > 0 is given
Equation [(B), this plainly means that in the modified systeby the following theorem:

the low values of thé;, will have a greater probability and so Theorem 2:Consider a QBDP described by the transition
will be the probability of the first element of the probalilit probability matrix P given in Fig.[2, in which both, anda,,
vector (associated with the deadline satisfaction). differ from zero.



Assume that the matrix a) The case of Positive Recurrent QBDHR:the QBDP
_ is positive recurrent, it admits indeed a unique steadye stat
distribution. The first step of the proof is then to introduce
) ) ) R ) o, the following vector:11; = [7#(),... 70+~ DT whose
V=1 . . - | © dimension is equal ta. It is possible to exploit{5) andi(6) to
derive the equilibrium of the QBDP by the following iterativ

oo
oo
oo

0 0 0 0 0 1
w

Con a1 —om_o g1 . —ag equation for the vectoll;:
wherew = yg_11 + Z;‘:HH «;, has distinct eigenvalues. 7 ()
Let 79 = lim 7 pe the steady state distribution of 72 7O+ )
k—+oo Ty y o, = ] =Wlly = II; = . = W'Il.

the state. One of the two following cases apply: :
) if zf: —01_%,1_ < Y0 (G — H)oy then the limiting ~(n) ~(n-145)
distribution is given by:

Using this notation the normalisation constrainf° , 7% =

70 = kggloo 7)) =0, v, (7) 1 can be expressed as
) H— n i . [e's} +oco
Iy if 37 v > 3y (G — H)ay then: A= 0 0 ... 0] m=1 9)
N h=0 i=0
#0 = T[a-5) ®)
BEB, The characteristic polynomial of the lower—lefbmpanion

In the second casés, is the set of stable eigenvalues 3f form matrix T reported in[(B) is simply given by
(in this context an eigenvalug is said stable if 3| < 1), and . .
the termsi/) with 0 < j < H are known linear functions of P = A" — n Z s | an—H o Z e NP
7, while the termst() with j > H are given by[(p). B TH-1,1 T — ’
Before showing the proof, we make two important remarks. i j];ZH

Remark 1:The assumption on the eigenvalues of the matrix (10)
W is merely technical (it simplifies the proof of the resultfrom which it is trivially derived that the matrix/" has one
and it is not restrictive. In all our examples (both synthetSimple eigenvalue i, = 1 and additionah — 1 eigenvalues
cally generated and using data from real applications)s it #i- 1herefore

respected. Artificial examples that violate it could pradlgab n
be constructed but they are not relevant in practice. PA)=(\-1) H(/\ — Bi)- (11)
Remark 2:As well as paving the way for Theoreid 6, i=2

Theoreni P contains an implicit numeric algorithm for the eonsjnce eachs; verifies P(j3;) = 0, the following relation holds
putation of7(9), based on the computation of the eigenvalues

of the matrix\. Since the latter is in companion form, in the ;» - neH | n—j
. . . ’ P — -1,1+ a; | B, + a;f; T =0=
following we refer to this algorithm asompanion. A (VH et 2 J) & 2 b

j=H+1 J;}{
J
B. Proof of Theorerhl2 " s o, B (12)
. . . _ j=H+1 %P5
This section is devoted to the proof of the fundamental’z-1.1+ Y @i =PBiva-is + Jﬂ——H

Theoreni 2, which will require several definitions and aaxifi J=H

results. The section can be skipped over if the reader is onlysjnce all the eigenvalues are assumed simple, we can
interested in the applications of the Theorem. use of thespectral decompositioof the matrix W: W =

The rationale behind the proof is the following. First, thg;:ol B:G;, where thespectral projectorsG; are given by
equilibrium point of the QBDP is expressed as an iterativg; = % = N,;V;L;, and L; andV; are respectively the left
system. The evolution in the iteration step represents thad right eigenvectors associated with théh eigenvalues,;.
connection between the probabilities of the differentestat /V; is the normalisation constant needed to satisfy the sgectra
Using this representation and some property of convergeriQI€ctors basic properties, i.&3,G; = 0 for i # j and

of the Markov chain, we can express all the steady—st ﬁgl = Gi. As a consequencll; = Wllo = >, 8;Gillo,

- . . in general,
probabilities as a function of(?), which can eventually be g
found as a solution of a linear system of equations. j N L
. . . I1; = Wl = HERINES Y N V; Lillp. 13
We start noticing that having, anda,, different from zero ’ 0 ;B’L 0 ;@ 0 (13)

implies that the Markov chain of the QBDP is irreducible an

aperiodic. Therefore, it is guaranteed that the probgbdit dTherefore, by combining (13) anfll(9), one gets:

the different states converge to a vallel [29]. Notice, harev 2o
that this does not necessarily imply the existence of a gtead Z Zﬁi v; "NiLillo = 1, (14)
i=1 k=0

state distribution (the distribution could shift towardieasing
values of the state without ever reaching the equilibriuithw wherev”) is the first element of the right eigenvector. Given

%

the probability of each state going €. the expression of the matri¥/, the left L, and rightV; can



be easily found as a function @f;. From the expression of where 53, is the set of stable eigenvalues. By substituting

the eigenvectors, it follows immediately that in (I37) the result given in Propositidh 1 and the expression o
. g the right eigenvectorl.;, we get
N; = = d . H—1H—-1—k
L;V; H-1 v n v N; ~(k) _
ST D DU I =2 G 2 medU=1 (9
= Py BieBs 1 k=0 a1=0

Wi tat i i By means of Propositidd 3, the summation can be extended to
g now sta el_sc_?_rrr:e au>(<j| |ar)éprop05| 'ﬁ”sl ?tn vedior the unstable eigenvalues, except for the first eigenvalue
roposition 1: The product between the left eigenvector | '\yhich instead induces indefiniteness [ofl(18). The solution

and the initial vector of the iteratiof, is given by to (I8) is derived exploiting the spectral projectors prope
P >, G; = I,. Indeed, summing the elements in position
Lillo = B~ H-1 (8, — 1) ( 1,7 -)> (n—H,n—j),forl1<j<H-—1, we have for each
k=0 j=k

- n— n—j _ NZ‘
N _ =S NI = % G Vb = 0,
Proof: The proof of the proposition follows by first i=1 i=1 1
computing the explicit computation of the produttlly, in 514 hence

which each term is substituted with the recursive Equat{Bhs "N,
and the constraint given if_(12), and then noticing that —Z Bﬁ%‘,m = N1vj1,
=2 "t
B —1=(8i—1) ni:lﬁj' where N; is easily obtained by (15) fof; =1, i.e.,
= N =5 }L - DL
. 1
See [30] for more details. > via— Y. (G- H)ay
u j=0 j=H+1

Proposition 2: The initial vectorIl, is orthogonal to the
left eigenvector associated 1§ = 1.
Proof: The proof follows from Propositiof 1. [ | . (—H+1);(1) o~ Ni an “~ N;
Proposition 3: For any unstable eigenvalyg (i.e., such ; v ! Z BE-1 B ; BsHa !

that |3;] > 1) of W it holds thatL;II, = 0. - . . .
Proof: if the QBDP has an equilibrium thefi{14) holds Substituting these relations ih_{18) produces the equation

Moreover, for the elements in positidn — H +1, 1), we get

i=1

true. The unitary eigenvalug, = 1 does not play any role in H-1H-1-Fk
the summation of(14) in view of Propositibh 2. Next, suppose Z Z Yo 7™ = Dy, (19)
that there exists one or motg;| > 1. From Equation[{14) it k=0 q1=0

follows that it may beL;Ilo = 0, N; = 0 or I, = 0. Since . . . : . .
the normalisation factor cannot be null, let us first consideVhich, used in conjunction with th& —1 equations of((T6),

I, = 0. Using [I3) it follows thatll, = 0 = II; = 0, vj. determines the set of unknown probabilities.

Therefore, In order to have an analytic solution of this linear system
D = dim 7D (k) =0, Vj of H equations inH unknowns, we start by collecting the
koo B probability with the highest index, i.e.,
i inis i i iodi H-2H-1-k
and, since the Markov chaln is |rredu_0|ble angl aper|0d|e, th R Z Z o #9 — D
QBDP does not have a unique stationary distribution [29], S 1
which contradicts the hypothesis. I’;j Hq:fk
It then follows that for any unstable eigenvaliliglly = 0. D LN ST 670 = 0,8 € B,

u k=0 q1=0
From Rouche’s theoreni [81] we have that the number off S .ql . . .
eigenvalues3; such that3;| > 1 of the matrix V" is exactly ~rom which it is possible to immediately have the solution

equal toH, where H — 1 have|g;| > 1. The consequences H—2H-1-k
of Propositior B are twofold. First, it states that Progosill AET =N N g g7
definesH — 1 linear equations k=0 @120
H-1H-1-k . and theH — 1 new linear equations if/ — 1 unknowns
Z Z 7611,51'7}( )= 0,vB: € B, (16) H-2H-1—k
=0 @=0 Z Z (Yar1 — ’thﬁi)fr(k) = D1, i € B,
where B} is the set ofH — 1 unstable eigenvalues except k=0 a1=0

p1 =1 (the unstable eigenvalyg does not play any role by tnat, by simple algebraic manipulations, leads to
Propositio 2). Thed unknown probabilitiesr(?) to 7(H—1)

of (I8) are also the unknowns of the recursion formulde (5). ApH kol () D, )

The second consequence is that DOEDDED DL mﬂ € Bs.

k=0 q1=0 g¢2=0
(0)
Vi Nipry =1, (17)  From the new set off — 1 equations the element(//—2)
5B, 1= B can be collected, thus leading to a recursive solution féamu




The recursion can be executed fdrsteps until the following b) The case of non-—positive recurrent QBDH: the

final equation is obtained QBDP is not positive recurrent we can re—write maffixising
Hol N its block—tridiagonal representation [d (2). We can imraésly
Z Yi1— Z (G — H)ay apply the following theorems.
~(0) _ D _ =0 j=H+1 20) .. Theore_m 3[@] An irreducibl_e Mar_kov chain has a sta-
H (1-B) H (1-B:) ' tionary distribution if and only if all its states are poedi
B;€B% B EB* recurrent.

Definition 3: AssumeA = Ay + A; + A, is irreducible.
The result in [2D) can be suitably rewritten in a mor&hen, by the Perron—Frobenius Theorem, there exists a @niqu
useful way. To this end, we first rewrite the characteristigector , > 0 with 17y, = 1 and A = p. The vectory
polynomial [11) as follows is called the stationary probability vector df while 1 is a
n—1 n—1 column vector whose elements are all equal to one.
PO =M= J[O=8)=2""+>"S,BN,  (21) Theorem 4:[21] The QBDP is transient ifl1”Aopu <
i=2 j=1 17 Aoy, null recurrent if 17 Ao = 17 Ayp and positive
recurrent if 17 Agp > 17 Ay pu.

where By Theoren{ B, the QBDP does not have an equilibrium if
_ and only if it has at least one state that is transient or null
S;(B) = (=1)" It (Z I8+ > Hﬁ;) , (22) recurrent. Without loss of generality, assume thak 2H
Jecy JECs (the casen > 2H can be equivalently derived), which implies

A € RHFIXH+1 Since A is irreducible, one immediately

and whereC; and C, are proper sets of indices cOminthas thaty = 511, from which it is possible to explicitly
from the explicit computation of the characteristic polymal. compute

Since the product of all the eigenvalues, except for the first

H-—1
one, is given b T 1 _
g y 1" Aop T Z(H Ja;
n n—1 n—1 7=0
gy _qyn—i _ _ n
[[2(1 g =1+ 30" 3T [IAr =1+ 3 W), Paoi— S (G- ma,
1= Jj=1 Jecn,j Jj=1 H —+ 1 iy}

where, by means of (22, (8) = — Z’?Zl S;(B), one gets From Theoreni}4, the QBDP does not have an equilibrium if
! and only if 17 Agp < 17 Ayp or, equivalently,

n n—H j n—1 J
g(l S Jz::l ;Sk(ﬂ) _j:nZ;IH;Sk(ﬂ)‘ = Z(H —ja; < Z (4 — H)ay,

j=0 Jj=H+1

From [21) and @O)Sk(ﬁ2 = ap_j41, for 1 < k < n,
1.

and () = Y11 + >y g, for k = n— H + that, dividing both terms by, leads to

Substituting these relations in the last two terms[ol (28g o H-1 n
gets D < > (G- Hay. (25)
n—H j n =0 j=H+1
=N SB == > (- H)ay, This condition is exactly the one that we formulated in
J=1 k=1 J=H+1 the case | of the Theorem, and has just been shown to be
ne1  j Ho1 equivalent to the process being transient on null recurrent
_ S — (H — Dy 1 — i Das. However, since the QBDP is still irreducible and aperiodic,
j:anJfl; KB)=( - jz:;(j ) limiting probability exists, which is given,as in Equatin),
by:
Since 7 = 1im 7#9(k) =0, vj,
k—+o0o
H-1 —1
L (H= D11 — 3 G- Day = 3 7a And this ends the proof of Theoreh 2.
S = Remark 3:When condition[(25) strictly applies, the numer-

ator of Equation[(20) is negative. Since Equatidn (8) stlds

Equation [ZB) is rewritten as true, the denominator of {R0) will be negative too. It folew

n H-1 n that in the case of absence of an equilibrium for the QDBP,
[Ta-8)=> 71— > (—Ha,; =D, (24) both [8) and[(20) return a coincident vala& > 1, clearly
i=2 3=0 j=H+1 unfeasible.

that substituted in(20) finally yields Equatidd (8).

. ) ] C. Computation of the bound
AF.th.'s pom_t we have proved that the QBD_P has an  as discussed earlier, the steady state probability of mgeti
equilibrium this is given by [(B), by the recursive solutiony,e geadline can be found by computing the first elemiéhit
of the linear system of equations {19) afdl(16), and by tiag the # that solves the equation = 7P, where P is the

recursion formulal({5). infinite transition matrix in Figll2 associated with the DTMC



M. Let us consider a new DTMC whose transition matrix iswhile the generic terms ), with j > 0, are given by[(27).

given by: Proof: The proof follows immediately from the fact that
by ams1 a4z o Gne1 Gn O ... H =1 implies that8; = 1 is the only unstable eigenvalue if
by-1 GH  QH41 ... Gn-2 Gn-1 Gn ... the QBDP has an equilibrium, i.e53, of Theoreni P comprises
, 0 4 " e a all the eigenvalues excep = 1. Her_lce, by considering (P4)
P = H-t O nos ez ., for H = 1, the proof follows immediately. n
0 0 Qg1 QH .. Gney e ... We complete the section with a remark. The first one is on

the intuitive meaning of the result just proposed. Consider
r a DTMC with transition matrix as in Figl]2 and assume
) (26) for simplicity n = 4 and H = 1. The analytical bound in
anday | =by_1 =ap_1+ag—2+ ...+ ao. Theoren{b is given by:
Remark 4:The underlying idea is very simple. Consider
the DTMC associated with matri®. The terms on the left

of the diagonal are transition probabilities toward staté® |, the computation of the steady state probabifit) we

a smaller delay than the current one. By usiigwe Iump naye to consider every possible transition to the right,(i.e
together all these trans.monsto tr_le state immediateheneft increasing the delay) that the system can make. For each of
of the current one. For instance, if the current state cpoeSs hem we compute the ratio between the probability of taking
to 4 server periods of delay, its only enabled transition to thfe transition and the aggregate probability of moving ® th
left will be to the state associated with deldy The effect |eft (decreasing the delay). In the final computation each of
of deleting the transition toward states associated withllem ihis ratio has a state proportional to the delay introduted.
delays is to slow down the convergence toward small delayg,r examplea, corresponds to three steps to the right and is
thus decreasing the steady state probability of thesesstate weighted by the factos.

Let 7 represent the steady state probability of this system. Wetp,q application of this result to our context can be for-
can easily show the following: malised in the following:

Lemma 5:Let I' be a random variable representing the Corollary 7: Consider a resource reservation used to sched-
state of the DTMC evolving with transition matri¥ and ule a periodic task and suppose that the QBDP produced
I’ be a random variable describing the state of the DTM(ESPects the assumption in Theorem 2. Then the probability
associated with the transition matri . If both DTMC are ©f respecting the deadline is greater than or equal to:
irreducible and aperiodic, then at the steady sfatehas a © n UL(N +j - 1)Q%)
first order stochastic dominance ovier I' = T', according =1 Z(J ) ey U (hQ?)
to Definition[2. Therefore, for the first element of the steady i=2 h=0 "4
state probability, we havg(©®) > 7(0),

7@ =1-3as—2a3 - =1-3%4 28 _ &

(29)

Proof The broof is omitted for the sake of brevit This corollary descends from the following facts: 1) the DCM
' P Ydescribed by the matri® in Fig.[2 is a conservative approx-
imation of the system, 2) Lemmad 5 provides an analytically

(see [30]).
In view of this Lemma. we can concentrate on the Systeph';mtable approximation of the DTMC with transition matrix

associated to the transition matri’. In such a case, we ', 3) Theorem[R2 and Theorefd 6 contain the analytical
immediately derive that the equilibrium conditien= 7P’ bounds.
produces the following recursion:

VI. EXPERIMENTAL VALIDATION

®) _ Ny 0 . : .
= Zaﬂ ’ We have validated the presented approach in two different
= min(n A1 1) (27) ways. First, we have computed the probabilistic deadlinregus
a _ S N\ a1 ’ (-3 synthetic distributions, to compare accuracy and effigiesfc
=11+ Z o | T — Z ;T , ) .
= = the analytic bound against several other methods and tesasse

the impact of the scaling factak (Eq. (4)) and of the band-

where the equalities hold fofl > 1. This equations, as well aS\yidth. This set of experiment reveals a very good performanc

p . . i . .
P', have been respgctlv_ely derived fr . (5) andy imposing of the bound for appropriate choices of the scaling fattolts
H = 1. In such a situation, the following theorem holds.

Theorem 6:Consider a QBDP described by the transitionc'Y low computanon time allows one to sel_ect the bes_t @hoic
probability matrix [26), in which both,, anda/, | differ from of A by testing a number of alternative choices. The tightness
zero. Assume that the matrix” in (6) has distinct eigenvaluesof the bound improves when the bandwidth is sufficient to
after imposingd = 1. Then, there exists a limiting probability achieve an acceptable real-time behaviour for the apjgitat

distribution given by In a second set of experiments, we have evaluated the
© ‘ © n method on a real robotic application, for which the mathemat
o= RETOOW (k) = max{1 — Z(J —ay, 0} = ical assumptions underlying the model do not apply strictly
. =2 (28) The results produced are obviously approximate. Still, the
= max{1 — Z(j ~1% oy, good quality of the approximation makes an interesting case
0

a for the practical applicability of the methodology.

Jj=2



A. Synthetic Distributions Probabilty vs A

We report the results of the comparison between the nu
meric solution resulting from Theorefd 2 and discussed ir
Remar2 €ompanion), the analytic approximated bound in

o o o o o

PP 0
SITIHOT~ICI0OKOGT
T T T T T

Corollary(? @nalytic) the Cyclic Reduction algorithm [10] 02 4 6 6 10 12 14 16 18 20 22 24 26 25 30 32 3 3 3 40 &2 44
(cr) and the bound developed by Abeni et al.l[38kfma). QA

Computation time vs A
We have chosenr after a selection process in which several s -

algorithms for the solution of general QBDP problems an e | —

implemented in the SMCSolver tool-suite [33] were testegho 3

on a set of example QBDPs derived from our appllcatmné10 W .
The gamma algorithm is an approximate bound specificallys’ 1”-‘?7‘ -
tailored to the analysis of probabilistic guarantees feptece 0 2 4 6 8 10 12 14 16 16 20 22 24 26 28 30 32 34 36 38 40 42 44

reservations, so it was considered as as a perfect match for GiA

our analytic bound. The different algorithms have been

implemented in C++ in the PROSIT [34] tool. PROSIT can

be used for analysis and for synthesis purposes (as shown  Anaytc,T:=50is —— CRTo=26us ——  Gamma,T:=50us —o—
. . . . Analytic, Ts 25us —<—  Companion, T =50us —— Gamma, T° = 25us —¢—
in Section[VI]). When the tool is used for analysis, the user CR,T°=50us —8—  Companion, T°= 255 —+—

specificies activation period and deadline, parameteref t .

RR (QS ande) distribution of computatlon and Inter_am\/a'ngre 3. Impact of the scaling factak on the accuracy of the computed
probability and on the computation time

times and solution algorithm. When the tool is queried i1 thi

way, it computes the distribution of the task response times

and hence the probability of meeting the deadline. always monotonic with\. In our example, fof™® = 50ms the

As a representative sample of our findings, we report be'quobability grows moving fron.892 at Q* to 0.906 at Q* /2,
the results obtained for a periodic task with peridd = and then decreases, finally becoming12 at Q*/45. Sharper
100ms and random execution time. The computation timghanges can be observed for other distributions. The reason
was distributed according to a beta distributién{C = c} = s that in theanalytic bound we have two distinct effects
fule) = J(a,B)c* 1 (1—¢)’", with support (i.e., the (which play in opposite directions). On the one hand, if we
validity range for the random variable)e [0, 99500] us, with  reduce* we have the same conservative approximation effect
a=2andj =7 (J(a,p) is a normalisation constant). Theas forcr or for any other numeric method. On the other, as ex-
beta distribution is interesting because it is unimodal basl plained in Remarkl4, lumping together all backward traosi
a finite support, which make it a good fit to approximate theduce the recovery of the error when the computation demand
behaviour of a large number of real-time applications. js smaller than the allocated bandwidth. In this example, th
Effect of A. A first set of experiments was to evaluate théirst effect determines the growth of the probability when
impact of the A scaling factor. We considered two possigoing from A = Q° to A = Q%/2; the second effect
ble values for the reservation perio@?® = %P = 25ms determines the decrease of the probability f@pfy2 onward.
and 7¢ = 1P = 50ms. The budget was chosen equalrhe probability computed bgnalytic is very close to the
to Q° = 0.457°% with a bandwidthB = 45%. Figure[3 one of the numeric algorithm it derives fromdmpanion)
shows the results for the probability® of respecting the for A = Q*/2, while the computation time is several orders of
deadline achieved for different values @& (chosen as a magnitude below. In our experience with different disttibos
sub—multiple of @*). In accordance with our expectations(both synthetic and experimental) the choicedf= Q*/2 has
CR and companion produce almost the same result irconsistently produced an acceptable performance gEena
term of probability (differences are from th&" digit) and bound shows an intermediate performance between numeric
the probability changes monotonically with. For example, methods and the analytic bound both for the accuracy and for
for T¢ = 50ms the value of the probability i€.89 for the computation time.
A = Q7 (the coarsest possible granularity), while itG93 Behaviour with changing bandwidth. In order to compare
for A = Q*/45. The reason for this decrease is obvious singhe accuracy of thenalytic method against the numeric
re—sampling introduces a conservative approximation &ad fsolutions €R) for different bandwidths, we considered a
error is larger for increasing granularity. For botiR and task with the activation and scheduling parameters as in the
companion, the computation time changes with in a experiments reported above. The budggt was changed
substantial way. For example, far and for7° = 50ms, so that the resulting bandwidth ranged [B85%, 60%)]. The
itis 182ms at A = Q° and56.179ms at A = Q*/45. In this  granularity A was fixed forcR to a small value F0us) to
run of experiments, the computation time of thempanion achieve a good approximation and t» = Q*/2 for the
algorithm is slightly smaller than the one reported usi®y analytic solution.
but the results are too close to claim a clear dominance. The results reported in Tab[@ | show an important gap

For theanalytic bound the computed probability is notbetweenanalytic and crR for small values of the band-



Table |

PROBABILITY FOR DIFFERENT BANDWIDTH AND A = 50us . Bandwidth: 60%
Bandwith 35% 40% 45% 50%  60% s
Analytic Bound _ 0.602 0.809 0006 0956 0.991

Cyclic Reduction  0.773 0.878 0.929 0.965 0.992 nur

Error %]
Bandwidth: 50%

width. The gap is significantly reduced for bandwidth greate el
than 45%/50%. Smaller values of the bandwidth produce a I
probability level below0.8, which is not acceptable for most wf 1
real-time applications. The reason for the improvement o 0, : : p
the analytic bound when the bandwidth increases is probabl Bt
due to the fact that the system recovers more easily fron sl
large delays and this alleviates the impact of the consgevat

simplifications that underlie the analytic model.

B. Real application

As a real test case, we have considered a robotic visio.,
programme that identifies the boundaries of the lane angure 4. Distribution of the difference between the experital probability
estimates the position of a mobile robot a using a web—céam! the one found with PROSIT tool.
mounted on the chassis of the robpt![35]. The computation
was carried out using a Beagle Board (www.beagleboard.org) ) )
running Ubuntu. The version of the Kernel used (3.16) su qual t050% and it was[95.2%, 100%)] for bandwidth equal
ports RR scheduling (under the name of SCHBEBADLINE 0 60%. . . )
policy) alongside the standard POSIX real—time fixed ptyori AS We observe in the plot, the numeric algorithm (CR)
policies (SCHEDFIFO and SCHEDRR). produces an error .between3% and 1% for aII_the_thfee
The robot executedo different paths across an area delimY@lues of the bandwidth. For the analytic bound, in this gjec

ited by a black line. For each run, we have captured a vig&gse. the most convenient choice was to set the scaling facto
stream containing the line. The data sets roughly consisted™ 0 @° (in other cases we found a better performance for

9500 frames each and were later used for multiple off—line exMaller values). The bound is evidently less accurate, but:
go |t remains below5% at least85% of the times even in the

ecution of the vision algorithm. A first group of ten execua , - . ’
for each data set was with the algorithm executed in a ta&loSt challenging scenario (small bandwidth), 2. is reduoed

running alone and scheduled with the the maximum real—tirHSlOW 2% for higher vaIu_e; of the Pa”d_"‘”dth_- )

priority (99 for SCHED FIFO). This allowed us to collect W_e observe that the vision algorlth_m |terat|ve_ly l_aunds apo
statistics of the computation time associated with the data Prévious results to produce the estimate. This introduces a
In a second group of executions, we have replicated a réml—ftrONg correlation structure in the process that disrupés t
condition. The vision algorithm was in this case executed fFSUMPtions required for an exact application of the method
a periodic task processing a frame evéty= 40ms. The task In addmc_m, the_exe(_:ut|on on a “real” operating system ceme
was scheduled using SCHEDEADLINE, with server period aIQng with an |neV|tab_Ie amount of un—modelled overhead.
T5 — 90ms and with different choices of the bandwidth inStll: the level of approximation that we have reported cdog

the range{35%, 60%]. For each data set and for each choicBCCePtable in most cases. Similar software applicatiane ¢+

of the bandwidth, we repeated ten executions recording tRacoding and decoding) were analysed in a previous Woik [36]
probability of deadline miss. The probability averageatigh with sm_nlar conclusmns. Clearly, we are not cla|m|_n_g any
the 10 execution was compared with the one that found usir?ner?“ty for this fact. We are aware that for other apjpiores

the PROSIT tool, executed with different solution methoais a 470PPIng the time dependency and the correlation strucitire
with the distribution estimated from the data set as input. fh® computation time process could produce very large ®rror
Figure[3, we report the CDF distributions of the differencl® the estimation of the probability. As reported in the teth
between the two probabilities for three representativéaeiso WOk, this is a very active research area that is likely toaatt

of the bandwidth. The symb@\ ya1y.:. denotes the difference the attention of different researchers in the forthcomiagrg.
obtained using the analytic method (with different choice
of the scaling factorA), while Acz denotes the difference
obtained using the cyclic reduction QBDP solver, with In our first conference paper [28], we derived a model for
set to 50us. The three levels of bandwidth shown in thehe evolution of a RR scheduled real-time task. The model was
three sub—plots produced different probability of meeting shown to be a QBDP and was solved using the simple numeric
deadline. For bandwidth equal 40%, this probability ranged algorithm proposed by Latouche and Ramaswédml [21]. An
in [75%,97%)]. The range wag90.5%,99%] for bandwidth important limitation of the model was its pessimism due to

. Discussion
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the fact that it neglected the budget shared between adjacen
jobs. For instance, in the example in Figlide 1, the model 05 T
would ignore the budget used by the second job in the fourth Ak

Tuf?

reservation period. In a later work [36], the same model was & -is e e 7
instantiated to the sub—case of periodic tasks, it was duarth % 2 = - = y £
2

simplified in a conservative direction and then used for the 25 |
computation of an analytic bound.

In the present paper, we start from the more accurate model ‘ ‘ ‘ ‘ ‘ ‘
introduced by Abeni and Buttazzo back in 1998 [4], and we To o005 o1 o1 o oo o
instantiate it to the case of periodic tasks (Secfion_]V-B).

We introduce the scaling factak (SectionEIE) obtaining, FigHre_S. PSN!’? Qegradation as a function of the deadline prissability

. . for “BridgeClose” video.

once again, a QBDP. When the model is used for numeric
computations, thé\ parameter allows us to decide the degree
of pessimism introduced in the analysis. If we fet= 1, we

obtain a close approximation of the actual behaviour of the os |
task. If we setA = Q°, we recover the conservative model
used in our previous worK [28]. As shown in Figlre 3, very
different trade—offs between computation time and acgurac
of the probability result from different choices af. I

The key contribution of this paper is found by applying the o1l
same type of analytic reasoning as in][36], but with a few o5 P o555
substantial differences in the final result. Indeed, ThedBe o 2@
contains an exact formula for the computation of the steady
state probability of meeting the deadline, which is used asFgure 6. Cumulative Distribution Functions for the exémmitof the decode
basis for a novel numeric algorithm with competitive perforf" the wo streams.
mance with respect to the state of the art. On the contrasy, th
key result of [36] is an analytic bound which can sometimes ) o ) _
be very conservative. The same bound is rediscovered in tR[@Yer implemented as a periodic real-time task. If a job
paper specialising Theord 2 to a conservative approximatinisses its deadline, the v_|deo frame is not_played back but
of the model (see Theorefdl 6). Once again, we can talkds decoded (to gllow the mcremen@al decoding of the frs_\me
advantage of the configuration options offered/byto refine that follow). In this case, the behaviour of most playersois t
the precision of the result. As shown in Figilile 4, the choidd—in the “hole” by simply repeating the last decoded frame
A = Q° (which applies the model proposed [ [36]) is nth'S is percelvec_i by the user as a reduction in qu_all_ty, \_/vr_uch
guaranteed to be the best one in all cases. Therefore, i;wvell reflected in a degradation of the PSNR. This is visible

generalisation shown in this paper is relevant both from tfé Fig- B, where we show the quality as a function of the
theoretical and from the practical point of view. probability of deadline miss for the first video. This plotsha

been created using the PSNR-TOOL softwaie [5].
VII. PROBABILISTIC QUALITY OPTIMISATION The PSNR was interpolated by a line with sloged
In order to show a practical application of our apfor “BridgeClose” and42.051 for “ufo”. This difference is
proach, we have considered a situation where a single cogxplained by the different nature of the movies (static the
puting board (e.g., a video server, or a set-top box) figrmer, and dynamic the latter). Both movies were decoded
used to process (in real-time) multiple videos at the sarfiging a player executed by a periodic task and scheduled
time. This example is based on two different videos (efy the SCHEDDEADLINE policy. The distributions of the
coded with a bit-rate o00Kb/s): the first one, “Bridge- €xecution times were recorded on a notebook powered by an
Close”, displays a bridge with occasional people comirigte| Atom Processor, and the resulting CDFs are shown in
through (so, it is characterised by a single, almost stafidg.[@.
scene with slow movements) and comes from a public The problem considered here was to find an optimal al-
data base (http://trace.eas.asu.edu/yuv/index.htnd)sécond location of bandwidth between the different tasks. To this
video (“ufo”), instead, is a movie trailer (freely availabht end, we have used the synthesis abilities of PROSIT. When
http://www.theufo.nét - trailer 1) characterised by freqgu PROSIT is used for synthesis, the user specifies for each task
scene changes and rapid movements. 1) activation period and deadline, 2) reservation period, 3
One of the best known ways to evaluate the quality of distribution of the computation time 4) solution algorittiar
video is the Peak Signal to Noise Ratio (PSNR), which the probabilistic guarantees, 5) quality as a function & th
computed comparing pairwise the frames of the original raprobability of meeting the deadline and 6) constraints an th
video and of the one obtained after encoding and decodimgnimal value of the quality. The quality of the different
it [B7], [5]. This metric can be evaluated considering a wvidetasks can be combined into global quality metrics. In this

Pexecution time <=¢

15000 20000 25000

BridgeClose


http://trace.eas.asu.edu/yuv/index.html
http://www.theufo.net

Table Il

RESULTS OFPROBABILISTIC OPTIMISATION

Cyclic Reduction — Computation time: 753801758

also shown an analytical bound and offered a comprehensive
validation of these results by experiments and simulations
The gap between the analytic bound and precise numeric

_Task Opt. Budget| Estim. Prob.| Exact Prob.| Quality | oo vion narrows down when the task is required to meet the
BridgeClose 3000us 0.7427 0.743592. | 39.65 . . . -
Ufo 6449Us 0.9995 0.9995 41.58 de_adllne with a high p_robablllty (e.g., more th&a%). For N
Analytic Bound — Computation time: 114524 this reason, the analytic bound appears as a very promising
Task Opt. Budget| Estim. Prob.| Exact Prob.] Quality | option to solve QoS optimisation problems involving mukip
BridgeClose|  3462us 0.7392 0.8292 40.50 | tasks, when the QoS is a function of the probability for thekta
Ufo 3997us 0.8732 0.9138 | 37.98 | o meet its deadline and an acceptable level of performance

is required to all tasks. In these cases, the frequent calls

to the solver to identify the optimal allocation of resowsce
particular example, we have used the infinity norm metrigych as are required by branch and bound or dichotomic
assumingf; as the quality of the'" task, the cost function search optimisation, can lead to substantial reductiorhef t
to maximise over the budgé€}; and @3 is max; min f;. For — computation time when the analytic bound is used in the face
each candidate choice of; the tool evaluates the steady statgf an acceptable distance from the optimal solution.
probability using different solvers for probabilistic gaatees. ryiyre work In our future work, we will investigate further
The optimal solution is found by a bisection algorithm, whic oy the connection between QoS and probabilistic deadlines
uses repeated calls to the algorithm for the computation igf several application domains, we will extend our analysis
the probability. As a solver for the probability computaio 4, the application of our methods to the case of application
we have implementednalytic (with A = @%/2) andCR  pased on multiple tasks and to the case of computation time
(with A = 50 pis). o _ _ that is not i.i.d.

Choosing30 ms for the activation period (corresponding
to 33 fps), setting the server period i@ ms, and restricting
the total bandwidth available @5% (to leave some room for
other applications), the tool produces the results in THb&e
identified empirically the minimum acceptable PSNR3asor
“Ufo” and 31 for “BridgeClose”. These values were codified ,
as constraints in the optimisation problem. In both cases,
the algorithm identified a sub—optimal solution, because th
probability evaluated by the solvers is only a lower bound. W
re—evaluated the exact probability for each of the sub+ogti
assignment of budgets using tha solver withA = 1 (which
produces the exact computation of the probability, wittia t
limits of numeric errors). This allowed us to compare the
actual quality attained by the optimisation algorithm ire th
two different configurations. Because the optimiser mag@si
the worst performance of the two tasks, the algorithm tends
to equalise the QoS achieved by the tasks for the optimé]
budget. For both solvers, the optimal solution assignsgetar o]
bandwidth (almost4% for the cR and almost40% for the
analytic) to the “Ufo” stream; this is because its quality
degrades more quickly with the probability of meeting the®
deadline for “Ufo” than for “BridgeClose”. In this example,
the use of the analytic bound produces an optimal vaiugs
which is only 4% away from the value obtained with cyclic [
reduction, but the computation time (evaluated on an InteeC
i7 with 16GB of RAM) is four orders of magnitude below. [10]
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