

Hybrid Job-Driven Scheduling for Virtual
MapReduce Clusters

Ming-Chang Lee
Department of Communication Systems, Simula Research Laboratory

Martin Linges vei 25, Fornebu, 1364, Norway
mclee@simula.no

Jia-Chun Lin
Department of Informatics, University of Oslo

Gaustadallèen 23 B, Oslo, N-0373, Norway
kellylin@ifi.uio.no

Ramin Yahyapour
GWDG—Gesellschaft für wissenschaftliche

Datenverarbeitung mbH Göttingen, Göttingen, Lower Saxony, Germany
ramin.yahyapour@gwdg.de

September 10, 2018

Note: This is a draft preprint of a paper to be published in TPDS. The final paper may be
slightly different from this version. Please use the following citation for this paper:

Ming-Chang Lee, Jia-Chun Lin, and Ramin Yahyapour, “Hybrid Job-driven Scheduling for
Virtual MapReduce Clusters,” IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 27, no. 6, 2016, pp. 1687–1699.

Hybrid Job-Driven Scheduling for Virtual
MapReduce Clusters

Ming-Chang Lee, Jia-Chun Lin, and Ramin Yahyapour

Abstract—It is cost-efficient for a tenant with a limited budget to establish a virtual MapReduce cluster by renting multiple virtual

private servers (VPSs) from a VPS provider. To provide an appropriate scheduling scheme for this type of computing environment, we

propose in this paper a hybrid job-driven scheduling scheme (JoSS for short) from a tenant’s perspective. JoSS provides not only job-

level scheduling, but also map-task level scheduling and reduce-task level scheduling. JoSS classifies MapReduce jobs based on job

scale and job type and designs an appropriate scheduling policy to schedule each class of jobs. The goal is to improve data locality for

both map tasks and reduce tasks, avoid job starvation, and improve job execution performance. Two variations of JoSS are further

introduced to separately achieve a better map-data locality and a faster task assignment. We conduct extensive experiments to

evaluate and compare the two variations with current scheduling algorithms supported by Hadoop. The results show that the two

variations outperform the other tested algorithms in terms of map-data locality, reduce-data locality, and network overhead without

incurring significant overhead. In addition, the two variations are separately suitable for different MapReduce-workload scenarios

and provide the best job performance among all tested algorithms.

Index Terms—MapReduce, Hadoop, virtual MapReduce cluster, map-task scheduling, reduce-task scheduling

Ç

1 INTRODUCTION

MAPREDUCE [1] is a distributed programming model
proposed by Google to process vast amount of data in

a parallel manner. Due to programming-model simplicity,
built-in data distribution, scalability, and fault tolerance,
MapReduce and its open-source implementation called
Hadoop [2] have been widely employed by many compa-
nies, including Facebook, Amazon, IBM, Twitter, and
Yahoo!, to process their business data. MapReduce has also
been used to solve diverse applications, such as machine
learning [3], data mining [4], bioinformatics [5], social net-
work [6], and astronomy [7]. Other MapReduce-like imple-
mentations can be found in [8], [9], [10].

MapReduce enables a programmer to define a MapRe-
duce job as a map function and a reduce function, and pro-
vides a runtime system to divide the job into multiple map
tasks and reduce tasks and perform these tasks on a MapRe-
duce cluster in parallel. Typically, a MapReduce cluster con-
sists of a set of commodity machines/nodes located on
several racks and interconnected with each other in a local
area network (LAN). In this paper, we call this a conven-
tional MapReduce cluster. Due to the fact that building and
maintaining a conventional MapReduce cluster is costly for
a person/organization with a limited budget, an alternative

way is to establish a virtual MapReduce cluster by either
renting a MapReduce framework from aMapReduce service
provider (e.g., Amazon [11]) or renting multiple virtual pri-
vate servers (VPSs) from a VPS provider (e.g., Linode [12] or
Future Hosting [13]). Each VPS is a virtual machine with its
own operating system and disk space. Due to some reasons,
such as availability issue of a datacenter or resource shortage
on a popular datacenter, a tenant might rent VPSs from dif-
ferent datacenters operated by a same VPS provider to estab-
lish his/her virtual MapReduce cluster. In this paper, we
concentrate on a virtual MapReduce cluster of this type.

For a person/organization that establishes a conven-
tional MapReduce cluster, map-data locality (which is
defined as how close a map task and its input data are [14])
in the cluster is classified into node locality, rack locality,
and off-rack [15] since the person/organization is aware of
the physical interconnection and placement among all
nodes and all racks. However, for a tenant who establishes
a virtual MapReduce cluster, the tenant only knows each
VPS’s IP address and each VPS’s datacenter location (e.g.,
city name). Other information such as physical machine
and rack that each VPS belongs to is unreleased by the pro-
vider. Hence, from the tenant’s viewpoint, the map-data
locality in his/her virtual MapReduce cluster can only be
classified into the following three levels:

1) VPS-locality, which means that a map task and its
input data are co-located at the same VPS.

2) Cen-locality, which means that a map task and its
input are within the same datacenter, but not at the
same VPS.

3) off-Cen, which means that a map task and its input
are located at different datacenters.

Furthermore, reduce-data locality is rarely addressed in a
conventional MapReduce cluster since reducing the dis-
tance between a reduce task and its input data coming from

� M.-C. Lee is with the Department of Computer Science, National Chiao
Tung University, Taiwan. E-mail: mingchang1109@gmail.com.

� J.-C. Lin is with the Department of Informatics, University of Oslo,
Norway. E-mail: kellylin1219@gmail.com.

� R. Yahyapour is with GWDG—Gesellschaft f€ur wissenschaftliche
Datenverarbeitung mbH G€ottingen, G€ottingen, Lower Saxony, Germany.
E-mail: ramin.yahyapour@gwdg.de.

Manuscript received 3 Aug. 2014; revised 21 July 2015; accepted 24 July 2015.
Date of publication 2 Aug. 2015; date of current version 18 May 2016.
Recommended for acceptance by T. Trystram.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2463817

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016 1687

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

all the related map tasks in a LAN is difficult. But this is
achievable in a virtual MapReduce cluster comprising mul-
tiple datacenters.

Many task scheduling algorithms have been proposed
[14], [15], [16], [17], [18] to improve data locality and to
shorten job turnaround time, but most of them only focus
on scheduling map tasks, rather than scheduling reduce
tasks. Hence, employing them in a virtual MapReduce clus-
ter might cause a low reduce-data locality. Besides, most of
current scheduling algorithms are designed to achieve the
node locality and rack locality for conventional MapReduce
clusters, rather than achieving the VPS-locality and Cen-
locality for virtual MapReduce clusters. Consequently,
adopting them in a virtual MapReduce cluster might be
unable to provide a high map-data locality.

In order to provide an appropriate scheduling scheme for

a tenant to achieve a high map-and-reduce data locality and
improve job performance in his/her virtual MapReduce
cluster, in this paper we propose a hybrid job-driven sched-
uling scheme (JoSS for short) by providing scheduling in
three levels: job, map task, and reduce task. JoSS classifies
MapReduce jobs into either large or small jobs based on
each job’s input size to the average datacenter scale of the
virtual MapReduce cluster, and further classifies small
MapReduce jobs into either map-heavy or reduce-heavy
based on the ratio between each job’s reduce-input size and
the job’s map-input size. Then JoSS uses a particular sched-
uling policy to schedule each class of jobs such that the cor-
responding network traffic generated during job execution
(especially for inter-datacenter traffic) can be reduced, and
the corresponding job performance can be improved. In
addition, we propose two variations of JoSS, named JoSS-T
and JoSS-J, to guarantee a fast task assignment and to fur-
ther increase the VPS-locality, respectively.

We implement JoSS-T and JoSS-J in Hadoop-0.20.2 and
conduct extensive experiments to compare them with sev-
eral known scheduling algorithms supported by Hadoop,
including the FIFO algorithm [1], Fair scheduling algo-
rithm [19], and Capacity scheduling algorithm [20]. The
experimental results demonstrate that both JoSS-T and
JoSS-J outperform the other tested algorithms in terms of
map-data locality, reduce-data locality, and network over-
head without causing too much overhead, regardless of
job type and scale.

The contributions of this paper are as follows.

1) We introduce JoSS to appropriately schedule Map-
Reduce jobs in a virtual MapReduce cluster by
addressing both map-data locality and reduce-data
locality from the perspective of a tenant.

2) By classifying jobs into map-heavy and reduce-
heavy jobs and designing the corresponding policies
to schedule each class of jobs, JoSS increases data
locality and improves job performance. Furthermore,
by classifying jobs into large and small jobs and
scheduling them in a round-robin fashion, JoSS
avoids job starvation and improves job performance.

3) A formal proof is also provided to determine the best
threshold for classifying MapReduce jobs.

4) Two variations of JoSS (i.e., JoSS-T and JoSS-J) are
proposed to respectively achieve two conflicting

goals: speeding up task assignment and further
increasing the VPS-locality.

5) We refer to a set of MapReduce benchmarks to create
two different MapReduce workloads for evaluating
and comparing JoSS-T and JoSS-J with three known
scheduling algorithms supported by Hadoop. More-
over, a set of metrics showing data-locality, network
overhead, job performance, and load balance are
used to achieve a comprehensive comparison. The
results confirm that JoSS-T and JoSS-J perform well
for most of the metrics.

The rest of this paper is organized as follows. Sections 2
and 3 survey MapReduce and related work, respectively.
Section 4 presents the details of JoSS and the two variations.
Section 5 derives the best threshold to classify map-heavy
jobs and reduce-heavy jobs. In Section 6, extensive experi-
ments are conducted and experimental results are discussed.
Section 7 concludes this paper and outlines our futurework.

2 MAPREDUCE

A MapReduce job comprises a map function and a reduce
function. The map function is applied on application-spe-
cific input data structured as a series of key-value pairs to
generate intermediate key-value pairs. The reduce function
merges all intermediate key-value pairs related to the same
key to generate final result. In Hadoop, a MapReduce clus-
ter consists of two masters called JobTracker [2] and Name-
Node [2] and a set of slaves. JobTracker coordinates and
schedules the execution of MapReduce jobs, whereas Name-
Node manages the distributed filesystem namespace of the
cluster. Each slave provides its computation resource to exe-
cute tasks and its storage capacity to hold data. Each slave
has a limited number of map slots and reduce slots to exe-
cute map tasks and reduce tasks, respectively.

Before submitting a MapReduce job J to process a data
fileD, a user needs to uploadD to the distributed filesystem
of aMapReduce cluster. The fileDwill be divided into fixed-
size blocks (e.g., 64 MB in Hadoop [16]), and each block will
be replicated and randomly stored in several slaves based on
available storage space. The execution of J comprises three
phases: map, shuffle, and reduce. During the map phase,
each map task of J is assigned to a slave (we call it mapper)
to process a block of D. If the mapper can retrieve the block
from its local disk, it immediately executes the map task.
Otherwise, it needs to retrieve the block from another slave,
implying that the network traffic might increase and the exe-
cution of J may prolong. When a mapper completes its map
task, the shuffle phase starts in which the intermediate data
generated by the mapper is partitioned and transmitted to
each slave that is assigned to run the reduce task of J (we call
it reducer). After the shuffle phase ends, the reduce phase
starts in which each reducer executes the user-defined
reduce function to generate the final result.

3 RELATED WORK

The FIFO algorithm [1] is a default scheduling algorithm
provided by Hadoop MRv1. It follows a strict job submis-
sion order to schedule each map task of a job and mean-
while attempts to schedule a map task to an idle node that
is close to the corresponding map-input block. However,

1688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016

the FIFO algorithm only focuses on map-task scheduling,
rather than reduce-task scheduling. Hence, when FIFO is
adopted in a virtual MapReduce cluster, its low reduce-data
locality might cause a long job turnaround time. Besides,
FIFO is designed to achieve node locality and rack locality
in conventional MapReduce clusters, rather than achieving
the VPS-locality and Cen-locality in a virtual MapReduce
cluster. Consequently, the map-data locality of FIFO might
be low in a virtual MapReduce cluster.

In addition to the FIFO algorithm, Hadoop also provides
the fair scheduling algorithm [19] and the capacity schedul-
ing algorithm [20]. The former is proposed by Facebook to
fairly assign computation resources to jobs such that all jobs
obtain an equal share of resources over time. The latter, intro-
duced by Yahoo!, also allows multiple users to share a Map-
Reduce cluster. It supports multiple queues and allocates a
fraction of a cluster’s computation resources to each queue,
i.e., all jobs submitted to a queue can only access to the
resource allocated to the queue. Similar to these two algo-
rithms, JoSS allowsmultiple jobs to simultaneously share the
computation resource of a virtual MapReduce cluster. But
different from the two algorithms, JoSS further provides
reduce-task scheduling to improve job performance.

There have been many studies [14], [15], [17], [18], [21],
[35] on MapReduce task scheduling. Zaharia et al. [17] pre-
sented the delay scheduling algorithm to improve data
locality by following the FIFO algorithm but relaxing the
strict FIFO job order. If the scheduling heuristic cannot
schedule a local map task, it postpones the execution of the
corresponding job and searches for another local map task
from pending jobs. A similar but improved approach is fur-
ther introduced in [15]. However, similar to FIFO, this
approach did not provide reduce-task scheduling. Jin et al.
[18] proposed the BAlance-Reduce (BAR) algorithm, which
produces an initial task allocation for all map tasks of a job
and then takes network state and cluster workload into con-
sideration to interactively adjust the task allocation to
reduce job turnaround time. In order to simplify BAR, the
authors assumed that all local map tasks spend identical
execution time. But this assumption is not realistic since the
map-task execution time fluctuates even though when the
processed input size is the same. Besides, reduce-task
scheduling was not addressed by BAR.

Tian et al. [35] proposed a MapReduce workload predic-
tion mechanism to classify MapReduce workloads into three
categories based on their CPU and I/O utilizations and then
proposed a Triple-Queue Scheduler to improve the usage of
both CPU and disk I/O resources under heterogeneous
workloads. Guo [14] presented an optimal map-task sched-
uling algorithm, which converts a task assignment problem
into a Linear SumAssignment Problem so as to find the opti-
mal assignment. Nevertheless, applying this algorithm to
real-worldMapReduce clusters needs to carefully determine
an appropriate time point to conduct the algorithm since
slaves might become idle at different time points. Ehsan and
Sion [21] introduced a co-scheduler called LiPS, which uti-
lizes linear programming to simultaneously co-schedule
map-input data and map tasks to nodes such that dollar cost
can be minimized. But their assumption, i.e., MapReduce
jobs and their input data are submitted together, might
increase job turnaround time since replicating the data to the

distributed filesystem of the cluster needs to take a while.
Polo et al. [36] introduced a task scheduler to dynamically
predict the performance of concurrent MapReduce jobs and
adjust the resource allocation for the jobs. The goal is to allow
MapReduce jobs to meet their performance objectives with-
out over-provisioning of physical resources.

Some other studies aim to enhance the performance of
MapReduce in a cloud environment. Palanisamy et al. [22]
presented a MapReduce resource allocation system called
Purlieus, which enables a cloud provider to placeMapReduce
input data to appropriate physical machines and then place
VMs to the physicalmachines so as to provide bothmap local-
ity and reduce locality. Different from Purlieus, JoSS pre-
sented in this paper is designed from the perspective of a
tenant who rents VPSs from a VPS provider to build a virtual
MapReduce cluster, rather than from the perspective of a
cloud provider. Park et al. [23] introduced a locality-aware
dynamic VM reconfiguration technique for virtual clusters
running the Hadoop platform by dynamically changing the
computing resource of a VM to maximize the data locality of
map tasks. Bu et al. [24] proposed a task scheduling strategy
called ILA to mitigate interference between virtual machines
and meanwhile preserve MapReduce task data locality. Simi-
lar to [22], the schemes proposed in [23] and [24] were
designed from the viewpoint of a cloud provider since the
data locality in all layers including node locality, rack locality,
and off-rack are clear to the provider. However, in a virtual
MapReduce cluster considered in this study, a tenant does
not know all of the abovementioned data-locality levels.

4 THE PROPOSED SCHEME

In this section, we describe how JoSS schedules MapReduce
jobs in a virtual MapReduce cluster consisting of k datacen-
ters, k > 1. Let cenc be the cth datacenter supporting the
composition of the virtual MapReduce cluster, c ¼ 1;
2; . . . ; k. Let NVPS;c be the number of VPSs provided by cenc,
NVPS;c > 1. Let VPSc;‘ be the ‘th VPS provided by cenc,
‘ ¼ 1; 2; . . . ; NVPS;c. Assume that each VPS has only one map
slot and one reduce slot, i.e., at most one map task and one
reduce task can be performed by a VPS simultaneously. For
each datacenter cenc, JoSS maintains two permanent
queues, denoted byMQc;0 and RQc;0, to respectively put the
map tasks and the reduce tasks that are scheduled to be exe-
cuted by VPSs at cenc.

Let J be a MapReduce job submitted by a user, and D is
the input data processed by J . Based on the predefined
block size S, D will be divided into m blocks B1; B2; . . . ; Bm

where m ¼ djDj
S e. Let Bi is the i-th block of D, i ¼ 1; 2; . . . ;m.

According to the total number of the blocks, J is divided
into the same number of map tasks. Let Mi be the ith map
task that processes Bi, i ¼ 1; 2; . . . ;m. Let r be the number of
reduce tasks of J , and let Rj be the jth reduce task of J

where j ¼ 1; 2; . . . ; r and r � 1.
In the following, a VPS performing a map task is called a

mapper, whereas a VPS running a reduce task is called a
reducer.

4.1 Job Classification

Before introducing the algorithm of JoSS, we first describe
how JoSS classifies jobs and schedules each class of jobs.

LEE ETAL.: HYBRID JOB-DRIVEN SCHEDULING FOR VIRTUAL MAPREDUCE CLUSTERS 1689

Let Sreduce and Smap be the total reduce-input size and the
total map-input size of J , respectively. Based on the ratio of
Sreduce over Smap, J can be classified into either a reduce-
heavy job or a map-heavy job. If J satisfies Eq. (1), implying
that the network overhead is dominated by J’s reduce-input
data, then J is classified as a reduce-heavy job (RH job for
short). Otherwise, J is classified as a map-heavy job (MH
job for short). Note that td is a threshold to determine the
classification, td � 0: The best value of td will be derived in
Section 5.

Sreduce

Smap
> td (1)

In fact, Smap ¼
Pm

i¼1 Bij j where Bij j is the size of Bi, and
Sreduce ¼

Pm
i¼1 Bij j � FPið Þ where FPi is the filtering percent-

age of Bi showing the ratio of Mi’s map-output size over
Mi’s map-input size, FPi � 0 [25] [26].

In order to reduce Eq. (1) and the above classification, we
chose six MapReduce benchmarks: Word-Count, Grep,
Inverted-Index, Sequence-Count, Self-Join, and Term-
Vector from PUMA [33] to conduct two experiments. The
purpose is to study the difference among the filtering-per-
centage values of all map tasks of a MapReduce job. In the
first experiment, we randomly selected 17 web documents
from the Wikipedia dataset [30] to be the input of each
benchmark. However, in the second experiment, we ran-
domly chose ten different TXT files from [34] to be the input
of each benchmark. The motivation behind these two
experiments is to see whether different types of input data
influence the filtering-percentage values of map tasks of a
MapReduce job or not. Hence, we did not modify the six
MapReduce benchmarks to suit different types of input
data in our experiments.

In the first experiment, the sizes of these 17 web docu-
ments are 3.5, 5.8, 11, 35, 52, 63.5, 88.5, 172, 242, 311, 413,
546, 595, 827, 1074, 1286, and 1442 MB. Tables 1 and 2 list
the occurrence frequencies of top 10 words and the analysis
of word length in one of these documents, respectively.
Note that the analyses of all the 17 documents are similar to
Tables 1 and 2, thus we do not show them here to save
space. In the first experiment, each web document was par-
titioned based on the block size of 128 MB. Hence, each
benchmark processed 56 blocks in total, i.e., 56 map tasks
were correspondingly generated and executed for each

benchmark. It also implies that we could obtain 56 filtering-
percentage values after each benchmark completes.

Note that we performed the Grep benchmark three times
to individually search for two common patterns (e.g., a and
the) and one uncommon pattern (e.g., mapreduce) in these
17 files. The purpose is to see how different input patterns/
keywords impact the filtering-percentage value of the Grep
benchmark.

Fig. 1 shows the average filtering-percentage values of all
tested benchmarks on these 17 files. We can see that each
benchmark has its own average filtering-percentage value,
and all benchmarks (except for Grep) had a standard
deviation of less than 0.037. Therefore, for most tested
benchmarks, it is acceptable to use their average filtering-
percentage values to represent the filtering-percentage
values of all their map tasks.

Although Grep has a higher standard deviation because
of the inputted patterns, its filtering-percentage value is at
most one since its intermediate data is at most as large as its
input data. Hence, any Grep or Grep-like job will always be
classified as a MH job based on Eq. (3) and the best value of
td that will be both described later.

In addition to the above experiment, we also executed all
the benchmarks on the same 17 files by setting block size
into 64 MB. The corresponding filtering-percentage results
are very close to Fig. 1, so they are not presented in this
paper in order to save paper space. Based on our experi-
ment results, we conclude that block size is not a key factor
in determining the filtering-percentage value of a map task.

In the second experiment, the sizes of the ten TXT files
are 163, 262, 292, 394, 462, 675, 702, 916, 1005, and 1057 KB.
Tables 3 and 4 list the occurrence frequencies of top
10 words and the word-length analysis in one of these files,
respectively. Note that the analyses of the rest files are simi-
lar to Tables 3 and 4, so again we do not show them here to
save space. The block size remains the same (i.e., 128 MB).

TABLE 1
The Occurrence Frequencies of Top 10 Words

in One Web Document

Word Occurrence Percent Rank

/> 7,796 3.99% 1
<contributor> 6,294 3.22% 2
</contributor> 6,294 3.22% 2
</page> 6,294 3.22% 2
</revision> 6,294 3.22% 2
<format>text/x-wiki</format> 6,294 3.22% 2
<text 6,294 3.22% 2
<revision> 6,294 3.22% 2
<model>wikitext</model> 6,294 3.22% 2
<page> 6,294 3.22% 2

TABLE 2
The Analysis of Word Length in One Web Document

Average Word length 22.04

Std. 12.73

Max word length 114

Min word length 1

Mode 2

Fig. 1. The average filtering-percentage values of various mapreduce
benchmarks on the 17 web documents.

1690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016

Similar to the first experiment, we also executed the Grep
benchmark for three times to individually search for pat-
terns ‘a’, ‘the’, and ‘book’. Fig. 2 illustrates the average filter-
ing-percentage values of all tested benchmarks on the ten
files. It is clear that the average filtering-percentage value of
each benchmark in Fig. 2 is different from that in Fig. 1,
implying that the type of input-data processed by a MapRe-
duce job has a significant impact on the corresponding fil-
tering-percentage value. The key reason is that the numbers
of whitespace characters in a web document is different
from that of a non-web document. A web document usually
contains a lot of whitespace characters to form all markups,
but a non-web document usually does not have so many
whitespace characters.

Nevertheless, Fig. 2 shows that all benchmarks (except
for Grep) had a standard deviation of less than 0.15. Based
on the results shown in Figs. 1 and 2, we can conclude that
as long as a MapReduce job processes a same type of input
data, the filtering-percentage values of all the map tasks
will be similar and the standard deviation will be negligible
as compared with the corresponding average filtering-
percentage value. Hence, using the average filtering-
percentage value to represent the filtering-percentage val-
ues of all the map tasks is acceptable. This phenomenon
holds for most tested MapReduce benchmarks. Hence, in
this paper, we use the average filtering-percentage value of
a job on a particular input-data type to replace the filtering-
percentage value of each map task of the job. In other
words, we use FPJ to substitute FPi where FPJ is the aver-
age filtering-percentage value of J and i ¼ 1; 2; . . . ;m. By
doing so, Eq. (1) can be reduced as

Sreduce

Smap
¼

Pm
i¼1 Bij j � FPið ÞPm

i¼1 Bij j ¼
Pm

i¼1 Bij j� � � FPJPm
i¼1 Bij j ¼ FPJ > td;

(2)

and the condition used to classify J can be reduced as

J ¼ a RH job; if FPJ > td
a MH job; else:

�
(3)

In addition, JoSS also adopts another classification to
classify J . It is based on the input scale of J to Navg VPS ,
which is the average datacenter scale of a virtual MapRe-

duce cluster, i.e., Navg VPS ¼
Pk

c¼1
NVPS;c

k . If m � Navg VPS

(implying that all map tasks of J are possible to be per-
formed by a single datacenter of the virtual MapReduce
cluster simultaneously), J is classified as a small job to the
cluster. Otherwise, J is classified as a large job to the cluster.
In short, the classification rule is below.

J ¼ a small job; ifm � Navg VPS

a large job; else

�
(4)

The purpose behind this classification is to prevent the
VPSs at one datacenter of a small virtual MapReduce cluster
from executing all map tasks of a large job by themselves
since this will prolong job execution.

4.2 Scheduling Policies

Based on the job classifications mentioned in Section 4.1,
JoSS utilizes the following three scheduling policies.

4.2.1 Policy A

This policy is designed for a small RH job. If J is a small RH
job, it would be better that each reducer of J is close to all
mappers of J since the reducer can more quickly retrieve its
input data from all the mappers. But this also implies that
all mappers of J should be close to each other.

Hence, policy A works as follows. It first chooses cenw,
which is a datacenter having the least amount of unpro-
cessed tasks among all the k datacenters, cenw 2 cen1;f
cen2; . . . ; cenkg. Then it schedules all tasks of J to cenw by
putting J’s map tasks and J’s reduce tasks at the end of
MQw;0 and RQw;0, respectively. In this way, all these tasks
can be executed only by the VPSs at cenw, and each reducer
of J can retrieve its input data from its local datacenter (i.e.,
reduce-data locality can be improved).

4.2.2 Policy B

This policy is designed for a small MH job. If J is a small
MH job, it would be better that each mapper of J is close

TABLE 3
The Top 10 Word Frequencies in One TXT File

Word Occurrence Percent Rank

the 9,937 9% 1
to 3,709 3% 2
and 3,689 3% 3
of 3,504 3% 4
a 3,434 3% 5
in 2,619 2% 6
I 2,214 2% 7
you 2,048 2% 8
it 1,370 2% 9
on 1,050 1% 10

TABLE 4
The Word-Length Analysis of One TXT File

Average Word length 7.767

Std. 2.7

Max word length 29

Min word length 1

Mode 3

Fig. 2. The average filtering-percentage values of various MapReduce
benchmarks on the 10 TXT files.

LEE ETAL.: HYBRID JOB-DRIVEN SCHEDULING FOR VIRTUAL MAPREDUCE CLUSTERS 1691

to its input block, and each reducer of J is close to most
mappers of J . Hence, policy B works as follows: It sched-
ules J’s map tasks based on the number of unique input
blocks of J held by each datacenter. If a datacenter holds
more unique blocks of J , more map tasks of J will be
scheduled to the VPSs at this datacenter. The purpose is
allowing each mapper of J to retrieve its input block
from its local datacenter. In addition, to make J’s reduc-
ers close to most J’s mappers, policy B schedules all
reduce tasks of J to the datacenter that holds the maxi-
mum number of J’s unique blocks.

For example, Fig. 3 illustrates the locations of all
blocks of a job Y over three datacenters (Note that the
input file of Y is fragmented into six blocks, and each
block has two replicas.). Since cen2 holds the largest num-
ber of Y’s unique blocks (i.e., four), policy B will schedule
four map tasks of Y to cen2 to process B1, B2, B3, and B5

by appending the four map tasks to the end of MQ2;0

(Recall that MQc;0 is the permanent map-task queue of
cenc, c ¼ 1; 2; . . . ; k). After that, cen1 still holds one
unscheduled block of Y (i.e., B4), and cen3 still holds two
unscheduled blocks of Y (i.e., B4 and B6). Hence, policy
B will schedule the remaining two map tasks of Y to cen3

to process B4 and B6 by inserting the two map tasks to
the end of MQ3;0. Finally, due to the fact that cen2 holds
the maximum number of unique blocks of Y, policy B
schedules all reduce tasks of Y to cen2 by appending
them to the end of RQ2;0 (Recall that RQc;0 is the perma-
nent reduce-task queue of cenc, c ¼ 1; 2; . . . ; k).

4.2.3 Policy C

This policy is designed for a large job. If J is a large job to a
virtual MapReduce cluster, using one datacenter of the clus-
ter to run all map tasks of J might need several rounds to
finish these map tasks, implying that job turnaround time
will prolong. To prevent this from happening, it is better
not to use a single datacenter to run all these map tasks.

Hence, as long as J is a large job, JoSS utilizes policy C,
which in fact uses the same strategy of policy B to schedule
all tasks of J . However, in policy C, all the map tasks sched-
uled to cenc will not be put into MQc;0 since MQc;0 is
reserved for only small jobs. Instead, these map tasks will
be put into a new map-task queue created for cenc.

Similarly, the reduce tasks of the large job scheduled to
cenc will be put into a new reduce-task queue created for
cenc, rather than RQc;0. The purpose is to separate large jobs
and small jobs into different queues and allow JoSS to avoid
job starvation (which will be described later).

4.3 JoSS and its Two Variations

JoSS consists of three components: input-data classifier, task
scheduler, and task assigner. The input-data classifier is
designed to classify input data uploaded by a user into one of
the two types: web document and non-web document. Aweb
document refers to a file consisting of a lot of tags enclosed in
angle brackets. By simply inspecting the first several senten-
ces of a document, the input-data classifer can easily know if
it is a web document or not. After the classification, the input-
data classifier records the type of the input data in JoSS.

Whenever receiving a MapReduce job from a user, the
task scheduler determines the type of the job and then
schedules the job based on one of policies A, B, and C. The
task assigner then determines how to assign a task to a VPS
whenever the VPS has an idle slot.

Fig. 4 illustrates the algorithm of the task scheduler.
Upon receiving J , the task scheduler retrieves J’s input-
data type classified by the input-data classifier and checks
whether JoSS has executed J on such input-data type or not
by calculating the corresponding hash value and comparing
the value withH, whereH is a set of hash values previously
generated and recorded by JoSS.

If the hash value is not inH (see line 4), it means that JoSS
does not know J’s average filtering-percentage value and

Fig. 3. An example showing the block locations of job Y in a virtual
MapReduce cluster comprising three datacenters.

Fig. 4. The algorithm of the task scheduler.

1692 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016

J’s job classification. To obtain the above information, the
task scheduler simply appends J’s all map tasks and J’s all
reduce tasks to two queues, denoted by MQFIFO and
RQFIFO, respectively. This allows the task assigner to use
the Hadoop FIFO algorithm [1] to assign these tasks to idle
VPSs. Once J is completed, JoSS records the corresponding
hash value and average filtering-percentage value.

However, if the hash value is in H (see line 7), it means
that JoSS knows the average filtering-percentage value of J .
Then the task scheduler schedules J as follows: If J is a small
RH job, the abovementioned policy A is used to schedule the
tasks of J (please see lines 9 to 12). Otherwise, it means that J
is either a small MH job or a large job, and the task scheduler
uses lines 14 to 37 to schedule J . Recall that policies B and C
are used to schedule a small MH job and a large job, respec-
tively. If J is a small MH job, the task scheduler directly
inserts J’s map tasks to the permanent map-task queue of
the determined datacenter (see line 22), and also inserts J’s
reduce tasks to the permanent reduce-task queue of the
determined datacenter (see line 33). In other words, no addi-
tional queue will be created for any small jobs. The purpose
is not to increase the queuemanagement overhead of JoSS.

In another case, if J is a large job, the task scheduler addi-
tionally generates a new map-task queue and a new reduce-
task queue to respectively put J’s map tasks and J’s reduce
tasks (see lines 24 to 26 and lines 35 to 37). This will allow
the task assigner to properly assign small jobs and large
jobs to VPSs.

Recall that two variations of JoSS (i.e., JoSS-T and JoSS-J)
are proposed in this study. The former combines the above-
mentioned task scheduler and a Task-driven Task Assigner
(TTA) to provide a fast task assignment. The latter combines
the task scheduler and a Job-driven Task Assigner (JTA) to
further improve the VPS-locality.

Fig. 5 illustrates how TTA works. Whenever VPSc;‘ has
an idle map slot, TTA preferentially assigns a map task

fromMQFIFO to VPSc;‘ based on the Hadoop FIFO algorithm
(see lines 7 to 8). The goal is to preferentially execute all
newly submitted jobs one by one and obtain their filtering-
percentage values to determine their job classifications.
However, if MQFIFO is empty, TTA assigns one of the first
map tasks from all the other map-task queues of cenc in a
round-robin fashion (see lines 10 to 13) such that tasks can
be assigned quickly and job starvation can be avoided.

Similarly, whenever VPSc;‘ has an idle reduce slot, TTA
preferentially assigns a reduce task from RQFIFO to VPSc;‘

(see lines 16 to 17). Only when RQFIFO is empty, TTA
assigns one of the first reduce tasks from other reduce-task
queues of cenc to VPSc;‘ (see lines 19 to 22).

Fig. 6 shows the algorithm of JTA, which in fact is very
similar to that of TTA. The only difference is that JTA
always uses the Hadoop FIFO algorithm to assign a map
task from each map-task queue (please compare line 11 in
both Figs. 5 and 6) so as to further improve the VPS-locality.

5 SELECTING THE BEST THRESHOLD

Recall that JoSS uses td as a threshold to characterize jobs
into RH or MH (see Eq. (3)). In this section, we show how to
derive the best value of td. To do this, we consider the
worst-case inter-datacenter traffic for transmitting the map-
input data and reduce-input data of a job when this job, say
J , is separately judged as a RH job and a MH job.

If J is classified as a RH job, policy A will be used to
schedule J . The worst case for J’s mappers is that all of
them need to retrieve their input blocks from other datacen-
ters. However, because of policy A, J’s reducers can
completely retrieve their input from their local datacenters.
Hence, the worst-case inter-datacenter traffic for this classi-
fication, denoted by TR1, is

TR1 ¼
Xm
i¼1

Bij j: (5)

Fig. 5. The algorithm of task-driven task assigner (TTA). Fig. 6. The algorithm of job-driven task assigner (JTA).

LEE ETAL.: HYBRID JOB-DRIVEN SCHEDULING FOR VIRTUAL MAPREDUCE CLUSTERS 1693

On the other hand, if J is classified as a MH job, policy B
will be used, which guarantees that all mappers of J can
always retrieve their input blocks from their local datacen-
ters. But in the worst case (i.e., all map tasks of J are evenly
scheduled to each datacenter because of the even distribu-
tion of J’s input blocks over all datacenters), J’s reducers

have to retrieve the k�1
k of their input from other datacenters

where k is the total number of the datacenters comprising
the virtual MapReduce cluster. Hence, the worst-case inter-
datacenter traffic for this classification, denoted by TR2, is

TR2 ¼ k� 1

k
�
Xm
i¼1

Bij j � FPJ: (6)

If TR2 > TR1, J should be determined as a RH job
(rather than a MH job) since the related worst-case inter-
datacenter traffic is less. Otherwise, J should be determined
as a MH job, rather than a RH job. In fact, TR2 > TR1 can

be expressed as k�1
k �Pm

i¼1 Bij j � FPJ >
Pm

i¼1 Bij j, which also

implies that k�1
k � FPJ > 1. Hence, we can obtain Eq. (7).

FPJ >
k

k� 1
(7)

With Eq. (7) and the condition to determine a RH job (i.e.,
FPJ > td shown in Eq. (3)), we can derive the best value of
td, i.e.,

td ¼ k

k� 1
: (8)

6 PERFORMANCE EVALUATION AND COMPARISON

In this section, we evaluate and compare JoSS-T and JoSS-J
with three scheduling algorithms provided by Hadoop,
including the FIFO algorithm (FIFO for short), the fair
scheduling algorithm (Fair for short), and the capacity algo-
rithm (Capa for short).

We established a virtual MapReduce cluster by renting
31 VPSs from Linode [12], which is a privately owned VPS
provider based in New Jersey. One VPS acts as the Hadoop
master server and is located at a datacenter in Dallas. The
remaining 30 VPSs act as slaves. Among them, 15 VPSs are
located at a datacenter in Dallas and the other 15 VPSs are
located at a datacenter in Atlanta. Each VPS runs Ubuntu
10.04 with two CPU cores, 2 GB RAM, and 48 GB SSD stor-
age space. Each VPS has a map slot and a reduce slot. We
use Hadoop MRv1, which is widely adopted in production
settings [28], as the implementation of MapReduce, and
modify the source code of Hadoop-0.20.2 to realize JoSS-T
and JoSS-J.

To study how different MapReduce jobs with different
filtering-percentage values influence the performances of

the five tested algorithms, we chose the following five Map-
Reduce benchmarks to conduct our experiments. The first
four jobs are from the MapReduce benchmark suite called
PUMA [29], and the corresponding input data are web
documents chosen from [30]. The last one job is created by
ourselves, and its input data is a set of TXT files chosen
from [31]. Based on our analyses shown in Section 4.1,
Table 5 lists the average filtering-percentage values of these
benchmarks.

1) Word-Count (WC for short), which counts the occur-
rence of each word in data files.

2) Sequence-Count (SC for short), which generates a
count of all unique sets of three consecutive words
in data files.

3) Inverted-Index (II for short), which takes a list of data
files as input and generates word-to-file indexing.

4) Grep, which searches for a pattern in data files.
5) Permu, which generates the permutation for three

consecutive DNA sequences in DNA data files.
Based on Eq. (8) and our virtual MapReduce cluster,

td ¼ 2 (¼ k
k�1 ¼ 2

1). Consequently, not all tested MapReduce

benchmarks will be classified as the same job type by JoSS-T
and JoSS-J. Some of them will be classified as MH jobs, and
the others will be classified as RH jobs.

We used the above five benchmarks to create a small
workload and a mixed workload, and used the two work-
loads to evaluate the performances of the five algorithms.
The details are listed in Tables 6 and 7. The small workload
consists of 300 jobs. The size of the input data processed by
each job is approximately 1 GB. The mixed workload com-
prises 100 jobs to process input-data ranging from 1 to 12 GB.

TABLE 5
The Average Filtering Percentages of Five Benchmarks

Benchmark Average filtering percentage

WC 1.039
SC 0.569
II 1.166
Grep 0.10
Permu 3

TABLE 6
The Details of the Small Workload

Total number of jobs 300

of WC jobs 60

of SC jobs 59

of II jobs 59

of Grep jobs 61

of Permu jobs 61

Average job arrival interval/
Standard deviation

27.70 sec/ 36.52 sec

TABLE 7
The Details of the Mixed Workload

Total number of jobs 100

of 1 GB jobs 64 26 WC jobs
20 II jobs
10 SC jobs
5 Grep jobs
3 Permu jobs

of 5 GB jobs 19 19 Permu jobs

of 12 GB jobs 17 6 WC jobs
11 II jobs

Average job arrival interval/
Standard deviation

42.26 sec/
50.13 sec

1694 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016

The submission orders of all jobs in two workloads were
randomly determined, and they are fixed for all tested algo-
rithms to achieve a fair comparison. Hence, there is only
one permutation for each workload, and each tested algo-
rithm separately performed the small workload and the
mixed workload once. In the small workload, the inter-
arrival intervals of all jobs were generated by a workload
synthesis tool called SWIM [27]. By doing so, all jobs of the
small workload will be submitted to each tested algorithm
one by one based on their submission orders and the gener-
ated inter-arrival time. Due to the fact that employing the
inter-arrival intervals generated by SWIM for the mixed
workload will make Hadoop too busy and unstable, we
generated all the inter-arrival time of the mixed workload
based on a Poisson distribution [32]. This is the reason why
the average job arrival interval of the mixed workload is
lager than that of the small workload.

In both workloads, each job has only one reduce task, and
all data files were partitioned into blocks of 128 MB. Based
on the block size, each job in the small workload has eight
(¼ 1,024/128) map tasks. Hence, all jobs in this workload
must be classified as small jobs by JoSS-T and JoSS-J based
on Eq. (4). However, not all jobs in the mixed workload will
be classified as small jobs by JoSS-T and JoSS-J. The reason
why the two workloads mostly focus on small jobs is
because that the survey results in [17] showed that most jobs
in Facebook workload traces are small. Hence, we followed
the similar idea to design the two workloads and determine
the distribution of jobs. In fact, the two workloads have dif-
ferent design goals. The small workload is to evaluate each
algorithm when all submitted jobs are either small MH jobs
or small RH jobs. However, the mixed workload is to evalu-
ate each algorithm when all submitted jobs are not only
small MH jobs and small RH jobs, but also large jobs.

Recall that JoSS-T and JoSS-J are designed for a tenant
with a limited budget to improve job performance in his/
her virtual MapReduce cluster. In other words, the storage
space of the cluster might be very limited. To see how each
tested algorithm performs in such resource-limited comput-
ing environment, in our experiments, each data block has
only one replica.

6.1 The Small Workload

The following metrics are used to evaluate the performance
of the five algorithms under the small workload.

1. Map-data locality, which can be divided into VPS-
locality rate, Cen-locality rate, and off-Cen rate as
shown in Eqs. (9), (10), and (11), respectively.

VPS-locality rate ¼ #VPS

M ; (9)

Cen-locality rate ¼ #Cen

M ; (10)

off-Cen rate ¼ 1� #VPS

M þ#Cen

M
� �

; (11)

where #VPS and #Cen are respectively the total num-
bers of the map tasks that can achieve the VPS-
locality and the Cen-locality, and M is the total

number of the map tasks in the workload. Note that
the values of the above three rates range from 0 to 1.
A value of one is desirable for both the VPS-locality
rate and the Cen-locality rate, but a value of zero is
desirable for the off-Cen rate.

2. Reduce-data locality rate, which is defined as the
percentage of input data that a reducer can obtain
from its local datacenter. The value ranges from 0 to
1. A value of one is desirable.

3. Inter-datacenter network traffic (INT for short),
which is the total inter-datacenter network traffic
generated during the execution of the workload. A
small value of INT is desirable.

4. Job turnaround time (JTT for short), which starts
when a job is submitted to the cluster and finishes
when the job is completed. A short JTT is desirable.

5. VPS load, which shows the average number of map
tasks executed by each VPS and the corresponding
standard deviation. With this metric, we can know
the load balance among VPSs. A small standard
deviation is desirable.

Fig. 7 illustrates the map-data locality results of all algo-
rithms under the small workload. When JoSS-T and JoSS-J
were used to run small MH jobs (i.e., those WC, SC, II, and
Grep jobs), the corresponding off-Cen rates are not only far
lower than those of the other algorithms, but also close to
zero, implying that all the mappers can almost retrieve their
input blocks from their local datacenters. This is because
policy B (which favors map-data locality) is always used by
JoSS-T and JoSS-J to schedule small MH jobs.

However, the above phenomenon did not appear when
JoSS-T and JoSS-J performed Permu jobs (which are RH
jobs) since policy A (which favors reduce-data locality,
rather than map-data locality) is always used to schedule
small RH jobs.

Even though JoSS-T and JoSS-J had similar off-Cen result,
the latter provided a higher VPS-locality rate since it
employs the JTA (see Fig. 6) to further increase the VPS-
locality. This property also makes the VPS-locality rate of
JoSS-J higher than those of the other algorithms when the
executed jobs are small MH jobs.

Fig. 8 illustrates the reduce-data locality results of all
algorithms. Since JoSS-T and JoSS-J employ the same
reduce-task scheduling approach, they have a very similar

Fig. 7. The map-data locality results of the five tested algorithms under
the small workload.

LEE ETAL.: HYBRID JOB-DRIVEN SCHEDULING FOR VIRTUAL MAPREDUCE CLUSTERS 1695

reduce-data locality rate in every benchmark. In addition, it
is clear that JoSS-T and JoSS-J provided a higher reduce-
data locality rate than the other three algorithms, especially
when RH jobs were executed. The reason is the same, i.e.,
JoSS-T and JoSS-J always use policy A (which favors
reduce-data locality) to schedule small RH jobs.

Fig. 9 shows that JoSS-T and JoSS-J consumed similar and
low inter-datacenter network traffic because they had close
off-Cen rates and reduce-data locality rates, no matter
which benchmark was performed. Furthermore, we can see
that both JoSS-T and JoSS-J have a much lower INT com-
pared with the other three algorithms since the two algo-
rithms have superior performances in terms of data locality.

Fig. 10 illustrates the average JTT results of all the algo-
rithms under the small workload. No matter which bench-
mark was executed, JoSS-T led to the shortest average JTT

among all algorithms. Table 8 further shows the normalized
JTT of all algorithms compared with JoSS-T. We can see that
JoSS-J caused the longest JTT among all tested algorithms.
Recall that the only difference between JoSS-T and JoSS-J is
that the former uses TTA (see Fig. 5) to assign tasks,
whereas the latter uses JTA (see Fig. 6) to assign tasks. Since
JTA uses the Hadoop FIFO algorithm (which follows the
strict FIFO order and prefers to schedule map-local tasks
first) to further improve VPS-locality, the execution of some
map tasks might be delayed, which therefore prolonged the
corresponding JTT for JoSS-J.

The results confirm that using JoSS-T to schedule the small
workload not only reduces off-Cen rate and improves
reduce-data locality, but also shortens the corresponding JTT.

Table 9 lists the average number of map tasks executed
by each VPS when the five algorithms individually per-
formed the small workload. Regardless of the tested algo-
rithm, the average number of map tasks performed by each
VPS is 80 ð¼ 2;400=30Þ, but it is inevitable that JoSS-T and
JoSS-J have a higher standard deviation than the other algo-
rithms because of policies A and B. Among all tested algo-
rithms, FIFO achieved the best load balance since its
standard deviation was the smallest, but this advantage did
not improve FIFO’s performance in terms of JTT.

6.2 The Mixed Workload

In this subsection, we evaluated how the five algorithms
perform when they execute the mixed workload. Similar to
the metrics used earlier, the map-data locality, reduce-data
locality, INT, and VPS load were also used to evaluate the
five algorithms. However, JTT was not considered in this
experiment since the input sizes processed by the jobs in the
mixed workload were different, which makes this metric
meaningless. Hence, we further used the following metrics
to better measure these algorithms:

� Workload turnaround time (WTT for short), which is
the total time required by the cluster to complete the
entire mixed workload.

Fig. 8. The average reduce-data locality rates of the five algorithms
under the small workload.

Fig. 9. The INTof the five algorithms on the small workload.

Fig. 10. The average JTTof the five algorithms on the small workload.

TABLE 8
The Normalized JTT Values of the Five Algorithms

Algorithm WC SC II Grep Permu

JoSS-T 1 1 1 1 1
JoSS-J 1.25 1.28 1.46 1.55 1.47
FIFO 1.05 1.09 1.16 1.40 1.21
Fair 1.17 1.14 1.21 1.45 1.23
Capa 1.11 1.08 1.15 1.37 1.22

TABLE 9
The Average VPS Loads when the Five Algorithms

Perform the Small Workload

Algorithm Average number of tasks
executed by each VPS

Standard deviation

JoSS-T 80 13.58
JoSS-J 80 13.59
FIFO 80 6.32
Fair 80 9.64
Capa 80 9.81

1696 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016

� Cumulative job completion rate during the execution
of the mixed workload.

Fig. 11 illustrates the map-data locality results of all algo-
rithms under the mixed workload. Among all algorithms,
JoSS-T caused the lowest VPS-locality rate, regardless of job
type. The reason is obvious, i.e., JoSS-T uses TTA to quickly
assign a task to an idle VPS, rather than increasing the VPS-
locality.

On the other hand, by comparing Figs. 11 and 7, we can
see that the VPS-locality rates of the other four algorithms
on the mixed workload increased. This is because each VPS
held more input blocks of large jobs and therefore improved
the VPS-locality rate. This property also causes that JoSS-J
was not always better than those of the other three algo-
rithms in terms of VPS-locality. Nevertheless, for all tested
MH jobs (i.e., WC, SC, II, and Grep jobs), JoSS-T and JoSS-J
had similar off-Cen rates, which were still much lower than
those of the other three algorithms.

Fig. 11 also shows that when the executed jobs were clas-
sified as RH jobs (i.e., Permu), the off-Cen rates of JoSS-T
and JoSS-J were no longer as large as they were in Fig. 7.
This is because those large RH jobs in the mixed workload
were always scheduled by policy C, which favors map-data
locality, especially for the Cen-locality.

Fig. 12 shows the reduce-data locality results of all algo-
rithms under the mixed workload. It is clear that the two
variations of JoSS outperform the other algorithms in every
benchmark and job type. But we can see that when JoSS-T
and JoSS-J executed the RH jobs (i.e., Permu) in the mixed
workload, the corresponding reduce-data locality rates

were no longer as high as they were in Fig. 8. The reason is
the same, i.e., all the large RH jobs were scheduled by
policy C.

Since JoSS-T and JoSS-J had good data-locality perform-
ances (see Figs. 11 and 12), they dramatically reduced the
inter-datacenter network traffic for retrieving map-input
data and reduce-input data during the execution of the
mixed workload. The results depicted in Fig. 13 shows that
the INTs of JoSS-T and JoSS-J are only 33.44, 32.16, 35.43 per-
cent of those of FIFO, Fair, and Capa, respectively.

Fig. 14 illustrates theWTT results of the five algorithms on
the mixed workload. Among all algorithms, FIFO consumed
the longest time to complete the entire mixed workload. This
is because some larger jobs arrived to the cluster first, smaller
jobs afterwards. Thus, smaller jobs were delayed and long
JTT occurred, which therefore prolongedWTT.

On the contrary, JoSS-J led to the shortest WTT among all
tested algorithms since it not only used policies A, B, C to
respectively schedule small MH jobs, small RH jobs, and
large jobs, but also employed JTA to schedule all jobs in a
round-robin fashion and meanwhile achieve VPS-locality.
Although JoSS-T also followed the three policies to schedule
tasks, its WTT performance was not as good as JoSS-J’s,
implying that employing TTA to assign tasks cannot

Fig. 11. The map-data locality results of the five tested algorithms on the
mixed workload.

Fig. 12. The average reduce-data locality rates of the five algorithms
under the mixed workload.

Fig. 13. The INTof the five algorithms on the mixed workload.

Fig. 14. The WTTs of the five algorithms under the mixed workload.

Fig. 15. The cumulative job completion rates of the five algorithms under
the mixed workload.

LEE ETAL.: HYBRID JOB-DRIVEN SCHEDULING FOR VIRTUAL MAPREDUCE CLUSTERS 1697

effectively shorten WTT when a MapReduce workload
includes large jobs.

Fig. 15 shows the corresponding cumulative job comple-
tion rates of all algorithms. We can see that the Fair algo-
rithm performed best before the mixed workload was
executed for 4,140 seconds. However, after that, JoSS-J com-
pleted the entire mixed workload first.

Table 10 lists the average VPS load when the five algo-
rithms were individually used to execute the mixed work-
load. Among all tested algorithms, JoSS-T led to the
smallest standard deviation (i.e., the best load balance
between VPSs), which is much lower than its standard devi-
ation shown in Table 9. The main reason is that JoSS-T uses
policy C to schedule all large jobs of the mixed workload
and uses TTA to quickly assign each head-of-queue task to
an idle VPS. Similarly, employing policy C to schedule large
jobs also improves the load balance of JoSS-J (Please com-
pare Table 10 with Table 9), even though the load balance of
JoSS-J shown in Table 10 is still no better than that of Fair.

6.3 Scheduling Overhead

In this subsection, we evaluate the overhead caused by each
tested algorithm. Figs. 16 and 17 respectively show the CPU
idle rate and memory load of the Hadoop master server
when the five algorithms separately executed the mixed
workload. It is clear that both JoSS-T and JoSS-J did not sig-
nificantly increase the CPU and memory load of the master
server compared with the other algorithms.

In addition, we further evaluated the extra storage space
consumed by JoSS-T and JoSS-J to store all necessary infor-
mation about every newly executed job, including the corre-
sponding hash value and average filtering-percentage
value. In our experiments, each such a record is about
20 bytes. Hence, the total storage consumption is propor-
tional to the number of the newly executed jobs.

Based on the above analyses, it is clear that JoSS-T and
JoSS-J do not incur significant computation overhead,

memory overhead, and storage overhead to the Hadoop
master server.

7 CONCLUSION AND FUTURE WORK

In this paper, we have introduced JoSS for scheduling Map-
Reduce jobs in a virtualMapReduce cluster consisting of a set
of VPSs rented from a VPS provider. Different from current
MapReduce scheduling algorithms, JoSS takes both the map-
data locality and reduce-data locality of a virtual MapReduce
cluster into consideration. JoSS classifies jobs into three job
types, i.e., small map-heavy job, small reduce-heavy job, and
large job, and introduced appropriate policies to schedule
each type of job. In addition, the two variations of JoSS (i.e.,
JoSS-T and JoSS-J) are further introduced to respectively
achieve a fast task assignment and improve the VPS-locality.

The extensive experimental results demonstrate that both
JoSS-T and JoSS-J provide a better map-data locality,
achieve a higher reduce-data locality, and cause much less
inter-datacenter network traffic as compared with current
scheduling algorithms employed by Hadoop. The experi-
mental results also show that when the jobs of a MapReduce
workload are all small to the underlying virtual MapReduce
cluster, employing JoSS-T is more suitable than the other
algorithms since JoSS-T provides the shortest job turn-
around time. On the other hand, when the jobs of a MapRe-
duce workload are not all small to the virtual MapReduce
cluster, adopting JoSS-J is more appropriate because it leads
to the shortest workload turnaround time. In addition, the
two variations of JoSS have a comparable load balance and
do not impose a significant overhead on the Hadoop master
server compared with the other algorithms.

In the future, we would like to extend JoSS by taking het-
erogeneous virtual MapReduce clusters into consideration
so as to increase the flexibility of JoSS.

ACKNOWLEDGMENTS

The authors thank the scholarship of the Sandwich Pro-
gramme supported by Ministry of Science and Technology,
Taiwan and Deutscher Akademischer Austausch Dienst
(DAAD) under Grants NSC 102-2911-I-100-524 and NSC
101-2911-I-009-020-2. J.-C. Lin is the corresponding author.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] Hadoop. (2014, Dec. 3) [Online]. Available: http://hadoop.
apache.org

TABLE 10
The Average VPS Loads when the Five Algorithms Were

Individually Used to Perform the Mixed Workload

Algorithm Average number of tasks
run by each VPS

Standard deviation

JoSS-T 98.23 7.78
JoSS-J 98.23 11.06
FIFO 98.23 18.30
Fair 98.23 9.46
Capa 98.23 14.74

Fig. 16. The CPU idle rate of the Hadoop master server when the five
algorithms are individually used to execute the mixed workload.

Fig. 17. The Memory load of the Hadoop master server when the five
algorithms are individually used to execute the mixed workload.

1698 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 6, JUNE 2016

[3] S. Chen and S. Schlosser, “Map-Reduce meets wider varieties of
applications,” Intel Res., Santa Clara, CA, USA, Tech. Rep. IRP-
TR-08-05, 2008.

[4] B. White, T. Yeh, J. Lin, and L. Davis, “Web-scale computer vision
using mapreduce for multimedia data mining,” in Proc. 10th Int.
Workshop Multimedia Data Mining, Jul. 2010, pp. 1–10.

[5] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: Combin-
ing mapreduce and virtualization on distributed resources for bio-
informatics applications,” in Proc. IEEE 4th Int. Conf. eScience, Dec.
2008, pp. 222–229.

[6] X-RIME. (2014, Dec. 3) [Online]. Available: http://xrime.
sourceforge.net/

[7] K. Wiley, A. Connolly, J. Gardner, S. Krughoff, M. Balazinska, B.
Howe, Y. Kwon, and Y. Bu, “Astronomy in the cloud: using map-
reduce for image co-addition,” Astronomy, vol. 123, no. 901,
pp. 366–380, 2011.

[8] Disco. (2014, Dec. 3) [Online]. Available: http://discoproject.org
[9] Gridgain. (2014, Dec. 3) [Online]. Available: http://www.

gridgain.com
[10] MapSharp. (2014, Dec. 3) [Online]. Available: http://mapsharp.

codeplex.com
[11] Amazon Web Services. (2014, Dec. 3) [Online]. Available: https://

aws.amazon.com/elasticmapreduce/
[12] Linode. (2014, Dec. 3) [Online]. Available: https://www.linode.

com/
[13] Future Hosting. (2014, Dec. 3) [Online]. Available: http://www.

futurehosting.com/
[14] Z. Guo, G. Fox, and M. Zhou, “Investigation of data locality in

mapreduce,” in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid
Comput., May 2012, pp. 419–426.

[15] C. He, Y. Lu, and D. Swanson, “Matchmaking: A new mapreduce
scheduling technique,” in Proc. IEEE 3rd Int. Conf. Cloud Comput.
Technol. Sci., Nov. 2011, pp. 40–47.

[16] T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA:
O’Reilly Media, Jun. 5, 2009.

[17] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., Apr. 2010, pp. 265–278.

[18] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, “BAR: An efficient
data locality driven task scheduling algorithm for cloud
computing,” in Proc. 11th IEEE/ACM Int. Symp. Cluster, Cloud Grid
Comput., May 2011, pp. 295–304.

[19] Fair Scheduler Guide. (2014, Dec. 3) [Online]. Available: http://
archive.cloudera.com/cdh/3/hadoop-0.20.2+737/fair_scheduler.
html

[20] Capacity Scheduler Guide (2014, Dec. 3) [Online]. Available: http://
archive.cloudera.com/cdh/3/hadoop-0.20.2+737/capacity_sched-
uler.html

[21] M. Ehsan, and R. Sion, “LiPS: A cost-efficient data and task
co-scheduler for MapReduce,” in Proc. IEEE 27th Int. Symp.
Parallel Distrib. Process. Workshops PhD Forum, May 2013,
pp. 2230–2233.

[22] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: Locality-
aware resource allocation for MapReduce in a cloud,” in Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2011, pp. 58.

[23] J. Park, D. Lee, B. Kim, J. Huh, and S. Maeng, “Locality-aware
dynamic VM reconfiguration on MapReduce clouds,” in Proc. 21st
Int. Symp. High-Perform. Parallel Distrib. Comput., Jun. 2012,
pp. 27–36.

[24] X. Bu, J. Rao, and C.-Z. Xu, “Interference and locality-aware task
scheduling for Mapreduce applications in virtual clusters,” in
Proc. 22nd Int. Symp. High-Perform. Parallel Distrib. Comput., Jun.
2013, pp. 227–238.

[25] S.-Y. Ko, I. Hoque, B. Cho, and I. Gupta, “Making cloud interme-
diate data fault-tolerant,” in Proc. ACM Symp. Cloud Comput.,
2010, pp. 181–192.

[26] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A simulation
approach to evaluating design decisions in mapreduce setups,” in
Proc. IEEE Int. Symp. Model., Anal. Simul. Comput. Telecommun.
Syst., 2009, pp. 1–11.

[27] Statistical workload injector for mapreduce. (2014, Dec. 3)
[Online]. Available: https://github.com/SWIMProjectUCB/
SWIM/wiki

[28] Apache. (2014, Dec. 3). Hadoop wiki, powered by [Online].
Available: http://wiki.apache.org/hadoop/PoweredBy

[29] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar. (2012).
PUMA: Purdue MapReduce benchmarks suite. ECE Tech. Rep.,
Purdue Univ. [Online]. Available: http://docs.lib.purdue.edu/
ecetr/437

[30] enwiki. (2014, Dec. 3) [Online]. Available: http://dumps.wikime-
dia.org/enwiki/

[31] Pseudomonas Genome Database. (2014, Dec. 3) [Online].
Available: http://www.pseudomonas.com/strain/list

[32] L. Kleinrock, “Queueing systems,” in Theory, vol. 1. New York,
NY, USA: Wiley, 1975.

[33] MapReduce Benchmarks. (2014, Dec. 3) [Online]. Available:
https://878262af-a-62cb3a1a-s-sites.googlegroups.com/site/fara-
zahmad/home/puma.pdf

[34] Free txt mobile ebooks downloads. (2014) [Online]. Available:
http://www.umnet.com/mobile-ebooks/0-0-0-txt-0

[35] C. Tian, H. Zhou, Y. He, and L. Zha, “A dynamic mapreduce
scheduler for heterogeneous workloads,” in Proc. IEEE 8th Int.
Conf. Grid Cooperative Comput., 2009, pp. 218–224.

[36] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguad�e, M. Steinder,
and I. Whalley, “Performance-driven task co-scheduling for map-
reduce environments,” in Proc. IEEE Netw. Oper. Manage. Symp.,
2010, pp. 373–380.

Ming-Chang Lee received his MS degree in
Computer Science Department from TungHai
University, Taiwan, in 2006. In March 2015, he
received his PhD degree from Department of
Computer Science, National Chiao Tung Univer-
sity, Taiwan. During his PhD program, he received
a scholarship of NSC-DAADSandwich Program in
2012 and did researchwith Prof. Ramin Yahyapour
at University of G€ottingen, Germany. His research
interests are in the field of evaluating and improv-
ing job turnaround time, reliability, data availability,

and energy consumption of distributed and parallel systems, including
cloud computing, grid computing, data grid, MapReduce, and YouTube.
He is also interested in the field of sentiment analysis on BigData.

Jia-Chun Lin received her MS degree in com-
puter science from TungHai University, Taiwan, in
2005. She received a scholarship of NSC-DAAD
Sandwich Program in 2013 and conducted a
research with Prof. Ramin Yahyapour at the
University of G€ottingen, Germany, from March
2014 to February 2015. In March 2015, she
received her PhD degree in computer science and
engineering from National Chiao Tung University,
Taiwan. She is currently a postdoctoral research
fellow at University of Oslo, Norway. Her research

interests include distributed and parallel computing, cloud computing, job
scheduling, reliability analysis, energy consumption, and scalability
issues in MapReduce framework. She is also interested in software prod-
uct line, software verification and validation, and formal methods.

Ramin Yahyapour is a full professor at the
Georg-August University of G€ottingen since Octo-
ber 2011. He is also the managing director in the
GWDG, a joint compute and IT competence cen-
ter of the university and the Max Planck Society.
He is also the CIO of the University and the Uni-
versity Medical Center G€ottingen (UMG). Before
his appointment in G€ottingen, he was a professor
at TU Dortmund University, the director of the IT
& Media Center and CIO of the University. His
research interest lies in the area of efficient

resource management in its application to service-oriented infrastruc-
tures, clouds, and data management. He is especially interested in data
and computing services for eScience.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LEE ETAL.: HYBRID JOB-DRIVEN SCHEDULING FOR VIRTUAL MAPREDUCE CLUSTERS 1699

	cover letter for JoSS
	1 Hybrid Job-driven Scheduling for Virtual MapReduce Clusters

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

