
12 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

A Constraint Programming Scheduler for Heterogeneous High-Performance Computing Machines / Bridi,
Thomas; Bartolini, Andrea; Lombardi, Michele; Milano, Michela; Benini, Luca. - In: IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS. - ISSN 1045-9219. - ELETTRONICO. - 27:10(2016), pp.
7378987.2781-7378987.2794. [10.1109/TPDS.2016.2516997]

Published Version:

A Constraint Programming Scheduler for Heterogeneous High-Performance Computing Machines

This version is available at: https://hdl.handle.net/11585/571271 since: 2016-11-28

Published:
DOI: http://doi.org/10.1109/TPDS.2016.2516997

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/571271
http://doi.org/10.1109/TPDS.2016.2516997

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

T. Bridi, A. Bartolini, M. Lombardi, M. Milano and L. Benini, "A Constraint
Programming Scheduler for Heterogeneous High-Performance Computing
Machines," in IEEE Transactions on Parallel and Distributed Systems, vol. 27, no.
10, pp. 2781-2794, 1 Oct. 2016.

The final published version is available online at:
http://dx.doi.org/10.1109/TPDS.2016.2516997

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
http://dx.doi.org/10.1109/TPDS.2016.2516997

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

A Constraint Programming Scheduler for
Heterogeneous High-Performance Computing

Machines
Thomas Bridi, Andrea Bartolini, Michele Lombardi, Michela Milano, Luca Benini

Abstract—Scheduling and dispatching tools for High-Performance Computing (HPC) machines have the key role of mapping jobs to the
available resources, trying to maximize performance and Quality-of-Service (QoS). Allocation and Scheduling in the general case are
well-known NP-hard problems, forcing commercial schedulers to adopt greedy approaches to improve performance and QoS. Search-
based approaches featuring the exploration of the solution space have seldom been employed in this setting, but mostly applied in
off-line scenarios. In this paper, we present the first search-based approach to job allocation and scheduling for HPC machines, working
in a production environment.

The scheduler is based on Constraint Programming, an effective programming technique for optimization problems. The resulting
scheduler is flexible, as it can be easily customized for dealing with heterogeneous resources, user-defined constraints and different
metrics.

We evaluate our solution both on virtual machines using synthetic workloads, and on the Eurora HPC with production workloads.
Tests on a wide range of operating conditions show significant improvements in waitings and QoS in mid-tier HPC machines w.r.t
state-of-the-art commercial rule-based dispatchers.

Furthermore, we analyze the conditions under which our approach outperforms commercial approaches, to create a portfolio of
scheduling algorithms that ensures robustness, flexibility and scalability.

Index Terms—Constraint Programming, Optimization, HPC, Scheduling, Resource allocation, Supercomputer.

F

1 INTRODUCTION

H IGH-PERFORMANCE computing centers are
investment-intensive facilities with short depreciation

cycles. An average supercomputer reaches full depreciation
in three to five years [1]. Hence their utilization has to
be aggressively managed to produce an acceptable return
on investment. Even relatively small improvements in
utilization, throughput, and quality of service translate in
significant financial gains.

A key role in this challenge is played by scheduling
software that decides where and when a job has to execute.
Users submit jobs to supercomputing machines specifying
the amount of required resources (CPUs, GPUs, memory)
and the maximum expected execution time (wall-time).
In general, different “job queues” are available in HPC
machines managing, for example, jobs featuring different
priorities, execution time and user-requirements.

Commercial scheduling software (like PBS Professional
[2], Torque [3], and Slurm [4]) can be configured via a
set of rules managing the priorities of waiting jobs. These

• T. Bridi, M. Lombardi and M. Milano are with DISI, University of
Bologna. Viale Risorgimento 2, 40123, Bologna, Italy.
E-mail: {thomas.bridi, michele.lombardi2, michela.milano}@unibo.it.

• A. Bartolini and L. Benini are with DEI, University of Bologna. Viale
Risorgimento 2, 40123, Bologna, Italy.
E-mail: {a.bartolini, luca.benini}@unibo.it.

• A. Bartolini and L. Benini are with the Integrated Systems Laboratory at
ETH Zurich, Switzerland.
E-mail: {barandre, luca.benini}@iis.ee.ethz.ch.

priority-rule-based algorithms are simple and reasonably
fast, but the resource allocation and schedules found can
be considerably improved in terms of job waiting time and
QoS.

On the other hand, search-based approaches are much
slower then priority based algorithms, but can obtain sig-
nificantly better solutions. Constraint Programming (CP)
and Integer Linear Programming (ILP) are two well known
paradigms to solve NP-hard problems by efficiently explor-
ing the solution space for optimizing one or more objective
functions. These techniques, however, have seldom been
used in HPC facilities as they are computational expensive
and thus incompatible with the intrinsic on-line nature of
HPC job schedulers.

In this paper, we contradict this claim as we notice that
HPC jobs exhibit a longer duration and lower arrival rate
than that of e.g. enterprise servers and data-centers work-
loads. This opens significant opportunities for optimization-
based scheduling.

We propose a complete and efficient CP approach for
HPC machines that computes optimal schedules that mini-
mize the job time-in-queue, keeping in mind the concept of
fairness. Fairness is accounted by considering the expected
average waiting time in queues declared by the supercom-
puting center. For this reason we designed an objective
function that minimizes the job time-in-queue weighted on
the expected average waiting time.

In parallel, we evaluate the impact of this optimization
goal on other performance metrics such as late jobs, user

https://www.researchgate.net/publication/2882420_SLURM_Simple_linux_utility_for_resource_management?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

QoS and scheduling overhead. The model extends the one in
the work of Bartolini et al. [5], to account for multiple classes
of jobs and their temporal dependencies. In addition, the so-
lution space exploration strategies have been optimized for
on-line use, taking into account the impact of the schedule
computation time on machine utilization.

The CP solver has been embedded, as a plug-in, in the
software framework of PBS Professional [2], a well-known
commercial HPC scheduler, by replacing its rule-based sche-
duling engine. By linking our solver with a state-of-the-
art HPC scheduling tool, we have been able to validate
our approach on a real-life HPC machine, Eurora, from
“Consorzio INtEruniversitario per il Calcolo Automatico”
(CINECA). Eurora is a fully operational prototype of direct-
liquid cooled HPC machine for future Tier 0 and energy
aware HPC. It achieved the top GREEN500 ranking in June
2013 and has been used for production runs since 2013.

Experiments on Eurora over several weeks of operation
under production workloads show that the new scheduler
achieves significant improvements in job waiting time with
respect to PBS Professional, while at the same time maintain-
ing high machine utilization. In addition, an experimental
evaluation on a wide range of synthetic workloads shows
that the approach is flexible, robust and well-suited for
integration in a portfolio of scheduling strategies to cover
different levels of machine utilizations.

Simulated tests on Eurora-sized instances obtain average
improvements of 21% on the waiting time of jobs and
22% on late jobs, although we introduce an overhead for
computing higher quality solutions with respect to PBS that
is 20 times higher. However, the overhead has a negligible
impact on the job execution time: in our tests the worst case
maximum-overhead over average-walltime ratio registered
is only 5,26%. Experiments in a real production environment
achieved an average improvement on job waiting times of
29% while maintaining the same average machine utiliza-
tion.

While being suitable for real workloads, the CP-based
approach suffers from scalability issues limiting its use in
substantially larger workloads. For this reason, we have
identified alternative approaches for an algorithm portfolio
and conditions for their automatic selection.

The paper is organized as follows: we start discussing
related work in section 2 then we formally define the HPC
scheduling problem considered in this paper in section
3. Section 4 provides some insights on Constraint Pro-
gramming, the declarative programming paradigm used
to model and solve the problem. Section 5 describes the
optimization model and all the features implemented to
make it usable on a real HPC center. Section 6 gives an
overview of PBS Professional and the embedding of our
scheduler in its framework. Overhead reduction techniques
are also discussed here. In section 7 we show results on
synthetic and real settings and we make statistics on the
computational overhead.

2 RELATED WORK

The problem of batch scheduling is well-known and widely
investigated. The interested reader can refer to the work of
Salot [6] for a good survey on scheduling algorithms used

in HPC and computing clusters. Most of the algorithms de-
scribed in this work can be implemented within commercial
scheduling software by defining appropriate “scheduling
rules” (e.g., the min-min algorithm can be implemented
sorting jobs by increasing amount of required resources). In
the works presented by Feitelson [7] and Alem and Feitelson
[8], a study on performances of two different backfilling
algorithms can be found: the study evaluates conservative
backfilling versus EASY backfilling providing guidelines on
their potential selection.

In general, the large majority of existing approaches
have a greedy component: the proposed heuristic does not
explore the solutions space and generates a “good” solu-
tion. Neither local nor global optimality can be achieved.
Focusing on search-based schedulers, it is hard to find in
the literature examples of optimization algorithms applied
to a real in-production HPC scheduler. Sarood et al. [9]
show an ILP model to constrain the power usage within
the resource manager. This work is based on assumptions
that do not hold in general for HPC workloads. For exam-
ple, it proposes to improve the overall execution time by
increasing/decreasing the number of nodes used by a job
even during its execution. This is not possible in many HPC
production environments where resources are locked to the
job for its entire duration. In addition, the experiments in the
work are made only by simulation on trace-log on a system
that is smaller than current HPC standards.

In a wider context, there is a large body of literature
on scheduling and allocation for data-center workloads [10]
[11] [12] [13] relying on the key assumption that partial or
complete migration of parallel jobs is possible during their
execution. Even though supercomputers will reasonably
move toward more agile execution models [14] [15], the
common practice today is that job migration is not allowed,
to maximize performance and predictability [16].

In the work by Soner et al. [17] we find another exam-
ple of optimization in scheduling. The proposed solution
always schedules jobs in arrival order and models job dis-
patching as an assignment problem. Differently from the
approach described in the following sections, Soner et al. do
not consider the very significant optimization opportunities
that emerge when jobs can be extracted from queues in non-
FIFO order.

An interesting approach can be found in the work of
Kessaci et al. [18]. This is a meta-scheduler that uses multi-
objective genetic algorithms to decide in which data center
of a grid to send jobs, in order to optimize CO2 emissions,
energy consumption and profits providing a set of Pareto
solutions. This work differs from the present one for the
assumption behind the model: the authors consider the
presence of hard-deadline for the jobs and one job can be
dispatched to only one node using a FIFO policy. In our
case study hard-deadlines are not considered and each job
can request more than one node.

In the works presented by Wang and Raicu [19] and in
the work presented by Jones and Nitzberg [20] some inter-
esting studies on schedulers performance and scalability are
described: different infrastructure setups and greedy algo-
rithms are compared to scale to larger scale HPC machines.

To the best of our knowledge, the only examples that
apply optimization techniques to a scheduler in a pro-

https://www.researchgate.net/publication/270891241_Proactive_Workload_Dispatching_on_the_EURORA_Supercomputer?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/276320649_A_survey_of_various_scheduling_algorithm_in_cloud_computing_environment?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3300562_Utilization_predictability_workloads_and_user_runtime_estimates_in_scheduling_the_IBM_SP2_with_backfilling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/275953691_Maximizing_Throughput_of_Overprovisioned_HPC_Data_Centers_Under_a_Strict_Power_Budget?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/225436904_Evaluation_of_gang_scheduling_performance_and_cost_in_a_cloud_computing_system?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228862665_Job_scheduling_for_multi-user_MapReduce_clusters?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228761200_New_issues_and_new_capabilities_in_HPC_scheduling_with_the_Maui_scheduler?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220727900_The_Impact_of_Noise_on_the_Scaling_of_Collectives_A_Theoretical_Approach?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/285756203_Cache-related_preemption_and_migration_delays_Empirical_approximation_and_impact_on_schedulability?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/221201926_Designing_OS_for_HPC_applications_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/224255427_A_Pareto-based_GA_for_Scheduling_HPC_Applications_on_Distributed_Cloud_Infrastructures?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/282761627_Towards_Next_Generation_Resource_Management_at_Extreme-Scales?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/225227429_Scheduling_for_Parallel_Supercomputing_A_Historical_Perspective_of_Achievable_Utilization?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/233812776_Integer_programming_based_heterogeneous_CPU-GPU_cluster_schedulers_for_SLURM_resource_manager?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

duction context are presented by Klusáček et al. [21] and
Chlumsky et al. [22]. In these papers, the authors present an
optimization technique applied to a scheduler. The second
is developed as an extension of the open-source TORQUE
scheduler. This extension replaces the scheduling core of
the framework with a backfilling-like algorithm that inserts
one job at a time into the schedule starting from a previous
solution and then applies a Tabu Search to optimize the
solution. Both these works use Tabu search to explore a
number of local optimal solutions and consider a job as a
set of resources. This assumption drastically decreases the
flexibility of the scheduler by avoiding the possibility for a
job to request more than one node. In our work we consider
jobs requiring a set of resources. In this way we maintain
the flexibility of commercial schedulers (like TORQUE and
PBS Professional) but we deal with a more complex problem
w.r.t. the work of Chlumsky.

The work presented by Yuan et al. [23] show a new ver-
sion of the EASY backfilling algorithm to take into account
fairness. As for the main scheduling algorithm for HPC,
this is a greedy algorithm and does not explore solutions to
get a local optimum. However, they propose an interesting
concept of fairness that is achieved when a job start time is
not delayed by a lower-priority job. This concept could lead
to starvation. In our work, we propose a different concept of
fairness where the job waiting times have to be distributed
on the basis of the ratio between job priorities.

Another example of user-aware scheduling can be found
in the work of Shmueli and Feitelson [24]. This work prior-
itizes jobs by the estimated response time and the seniority
factor (minutes of waiting of the job). Then it applies the
EASY backfilling algorithm. However, this greedy algorithm
does not guarantee optimality of the solution obtained as it
does not consider the resource required from jobs and their
wall-times.

The work presented by Shmueli and Feitelson [25] show
an interesting approach for the optimization of the back-
filling algorithm. This approach exploits dynamic program-
ming to improve results obtained by the classical backfilling
algorithm to maximize the system utilization. However, the
author considers only the case of one type resource, neither
different kind of resources nor heterogeneous resources are
considered, and a comparison with this work cannot be
done.

The work presented by Tsafrir et al. [26] focus on the
execution-time prediction. The suggested technique uses
the last two jobs execution from the same user to predict
the job execution-time. A key point of the approach is that
this prediction is used only for the scheduling and it does
not substitute the job’s walltime. This approach is shown
to be lightweight and efficient, and differently from other
approach does not expose users to the risk of premature job
killing. The authors state that this approach can be added to
every classical backfilling scheduler, but this approach can
profitably be added even to more complex scheduler like
ours. However, the focus of our work is on the scheduling
algorithm. For this reason, we will investigate the behavior
of this techniques applied to our CP scheduler in future
works.

Our contribution is a complete optimization model
which can be applied to a real HPC system. Differently from

other optimization approaches, we evaluate both the dis-
patching and the scheduling performance. In addition, our
approach enables a controlled trade-off between schedule
computation time and optimality.

3 THE HPC SCHEDULING PROBLEM

Allocating and scheduling jobs on HPC machines can be
defined as follows.

We consider a set of jobs J = {j1, . . . , jn}. Each job is
characterized by its maximal expected duration di (referred
to as wall-time) and the number of jobs units ui which is
equivalent the number of virtual nodes required. Each job
unit starts and ends with the job, and requires a certain
amount of resources.

Every job ji ∈ J is submitted to a specific queue
qh ∈ Q where Q = {q1, . . . , qm}, to obtain the queue qh
in which the job ji is submitted we can use the fucntion
queue(ji). The job i enters in queue at time stqi. Each queue
is characterized by its expected waiting time ewth, which
provides a rough indication of the queue priority. Waiting
times larger than the ewth do not result in penalties for the
computing center manager, but they may be an indication
of poor QoS.

HPC machines are organized in a set of nodes Nodes =
{node1, . . . , nodeNn} and a set of resources Res =
{res1, . . . , resNr}, like for example cores, memory, GPUs
and MICs. Each node nodej ∈ Nodes of the system has a
capacity capjr for each resource r ∈ Res. Note that in case
a resource is not present on a node its capacity is zero.

Each job unit k of job i requires an amount of resource
reqikr for each r ∈ Res.

The HPC allocation and scheduling problem accounts
for finding for each job i a start time si, and for each job
unit k of job i the node nj where it has to be executed.
Resources on all nodes cannot be exceeded at any point in
time.

There are a number of other features required for an in-
production HPC machine that the scheduler has to support

• Arrays of jobs: a user can submit a set of independent
jobs with the same characteristics (resources, wall-
time, queue of submission, etc. . .).

• Heterogeneous jobs: these jobs are synchronized (i.e.,
they start at the same time) but can ask multiple
heterogeneous nodes (for example a job can ask one
node with GPUs and another node without).

• Reservations: a reservation locks a set of resources
for a given time window. Each reservation has an
associated queue where jobs are submitted. Note that
these jobs implicitly have a deadline. Jobs that do not
fit the reservation are simply not scheduled.

• Standing reservations: standing reservations are pe-
riodic repetition of the same reservation.

• Stopped queues: a queue can be stopped at a certain
point in time, meaning that every job in that queue
cannot start until the queue is restarted.

• Prime-time and non-prime-time jobs: a job is a prime-
time (resp. non-prime-time) job (and is submitted
to a prime-time, resp. non-prime-time queue) if it
should execute in a specific interval of time. If a

https://www.researchgate.net/publication/226461161_Comparison_Of_Multi-Criteria_Scheduling_Techniques?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269783383_The_Extension_Of_Torque_Scheduler_Allowing_The_Use_Of_Planning_And_Optimization_In_Grids?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/260525694_Guarantee_Strict_Fairness_and_UtilizePrediction_Better_in_Parallel_Job_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/222665105_Backfilling_with_lookahead_to_optimize_the_packing_of_parallel_jobs?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3301207_Backfilling_Using_System-Generated_Predictions_Rather_than_User_Runtime_Estimates?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

job is neither prime-time nor non-prime-time it is an
“anytime” job.

4 CONSTRAINT PROGRAMMING

Constraint Programming is a declarative programming
paradigm [27] particularly suitable for solving constraint
satisfaction and optimization problems. A constraint pro-
gram is defined on a set of decision variables, each ranging
on a discrete domain of values that the variable can assume,
and a set of constraints limiting the combination of variable-
value assignments. For example, decision variable x ranging
on the domain [1..10], written as x :: [1..10], means that
variable x can be assigned to one (integer) value between 1
and 10.

After the creation of the model, the solver interleaves
two main steps:

1) Constraint propagation: constraints are propagated
by removing provably inconsistent values from
variables domains. The constraint x > y where both
x and y range on [1..10] removes value 1 for x and
10 for y.

2) Search: the search strategy explores alternative as-
signments of variable-values until either a solution
is found or a failure is detected.

In case of optimization problems, when a solution is
found its optimality is not guaranteed. Therefore the solver
searches for better solutions if they exist, otherwise it proves
optimality.

Constraint Programming is particularly suited for solv-
ing scheduling problems providing decision variables that
correspond to activities. Each activity variable a is charac-
terized by three features: s(a) representing its start time,
d(a) its duration and x(a) representing its execution state: if
x(a) = 0 the activity is not considered in the model.

For scheduling problems, a number of global con-
straints have been developed the most important being
the cumulative constraints for managing resource usage.
cumulative([a], [r], L) : the constraint holds if and only if
all the activities in [a] whose resource requirement is in [r]
never exceed the resource capacity L at any point in time.
A number of propagation algorithms are embedded in the
cumulative constraints for removing provably inconsistent
assignments of activity start time variables.

The algorithm adopted by the solver used in this work is
the “Self-Adapting Large Neighborhood Search”. The com-
plexity of this algorithm is exponential within the number
of decisional variables. In our case the number of decisional
variables is n + Nn ∗

∑n
i=1 ui. Note that this algorithm

can be considered as an anytime algorithm providing the
best solution obtained in a given amount of time. Clearly
if the time is enough then the solver can find the optimal
solution and prove the optimality. Much information on
CP and how to translate a model into a program can be
found in literature [28] [29]. Also information on the “Large
Neighborhood Search” algorithm can be found in literature
[30] [31] [32].

5 CP MODEL

The problem considered is an on-line allocation and sche-
duling problem which is triggered by specific events: job
submission, termination, modification of wall-time and job
queue change. At any activation at time t, we have to
consider two sets of jobs: (1) A is the set of jobs waiting
on a queue and (2) B is the set of running jobs at current
time t. The starting time of running job ji can be obtained
through the function getStart(ji). Running jobs cannot be
migrated and therefore they should be considered as fixed.
The resources they use are allocated and reserved for them.
The decisions we have to take are on the waiting jobs in
queues.

5.1 General model
We now present the CP model built at each activation of the
scheduler at time t.

We model every job ji as an activity variable ai with start
time s(ai) duration d(ai) = di and x(ai) = 1.

The start time of each job s(ai) is a decision variable
whose domain is [t, Eoh] where t is the current time and
Eoh is the end of the time horizon of the scheduler. Eoh
can be computed in a conservative way as min

i
(s(ai)) +∑

i d(ai) ∀i ∈ A
⋃
B (we consider both the set of waiting

jobs A and the set of running jobs B).
To model the allocation of job units to nodes, we create

an activity variable aikj for each unit k of job i and for
each possible assignment of node j. The start time and the
duration of these activities are constrained to be equal to
the start time and duration of the job i: s(aikj) = s(ai) and
d(aikj) = d(ai). On activation variables x(aikj) we impose
a constraint that forces only one allocation to be feasible,
namely∑Nn

j=1 x(aikj) = 1 ∀i, k
On top of these decision variables we built a model

described in equations 1. The first set of unary constraints
limit the possible starts of waiting jobs to be greater than t.
The second set of constraints assign the start time of running
jobs to the real (already decided) start time. The third set
of unary constraints limits allocation variables to be 1 if
the job unit is assigned to node j, 0 otherwise. The fourth
set of constraints limits a job unit to be assigned to only
one node. Finally we have a cumulative constraint for each
resource type for each node and limit the resource usage to
stay below resource capacity at any point in time.

s(ai) :: [t..Eoh] ∀i ∈ A
s(ai) = getStart(ji) ∀i ∈ B
x(aikj) :: [0, 1] ∀i ∈ A
Nn∑
j=1

x(aikj) = 1 ∀k, ∀i ∈ A

cumulative(aikj , reqikr, capjr) ∀j ∈ Nn∀r ∈ R

(1)

Note that the quantifiers on the right-hand side define
how many replicas of the constraints appear in the model.
For the indexes of the constraint variables not appearing
among the quantifiers, we assume that they take all the
available values. This is just a compact notation to identify

https://www.researchgate.net/publication/226535969_Practical_applications_of_constraint_programming?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/226905030_Large_Neighborhood_Search?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220936139_Randomized_Large_Neighborhood_Search_for_Cumulative_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228346359_Self-adapting_large_neighborhood_search_Application_to_single-mode_scheduling_problems?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

sub-vectors (or sub-matrices) within data structures having
a lot of indexes.

As far as the objective function is concerned, we consider
the minimization of job waiting-times weighted by the ex-
pected waiting time of the queue where the job is submitted
ewth. As often queues represent job priorities, the waiting
coefficients are proportional to these priorities.

min z =

n∑
i=1

s(ai)− stqi
ewtqueue(ji)

(2)

This basic model should be enriched with a number of
features needed to run the scheduler on a real HPC machine,
as explained in section 3.

Array of jobs and heterogeneous jobs As far as array
of jobs and heterogeneous jobs are concerned, they are very
easily handled by the CP model: in the first case jobs simply
share the same resource requirements, while in the second
case they share the same starting time.

Reservations and Standing Reservations When a reser-
vation is submitted, it is associated to a set of resources and
at a specific time window. Therefore, at modeling level, we
consider reservations as specific jobs, called reservation jobs,
using reservation resources for the time window associated
to the reservation. Standing reservations can be modeled as
arrays of reservation jobs.

Stopped Queue When a queue h is stopped, all jobs
waiting on it cannot be scheduled. Therefore their execution
state variable should be zero.

x(ai) = 0 ∀i ∈ qh (3)

Prime-time and non prime-time jobs Another impor-
tant feature is the prime-time and non-prime-time jobs
handling. This feature is easily handled by constraint pro-
gramming models as we simply remove from the domain
of start time variables of prime-time jobs forbidden (non-
prime-time) intervals. Conversely we act for non-prime-
time jobs.

5.2 Allocation of jobs within a reservation
In the above model, we have considered reservations as
jobs using resources required by the reservation for the
time span of the reservation itself. However, on real ma-
chines reservations can be seen as private queues where
only eligible users can submit jobs. The scheduling and
dispatching of jobs in the reservation queue have to be
treated as a separate problem handled by a separate model
(Equations 4). The motivation is that the execution time for
a job submitted to a reservation queue is the time span
of the reservation and the resources available for the job
are limited to the reservation resources. In addition, jobs
submitted to the reservation queue have a deadline. Each
reservation has a fixed start time, a fixed duration and
for each node a set of reserved resources. These data can
be extracted by proper functions, namely getStart(resv),
getEnd(resv) and getResource(resv, j, r) where j is the
node and r the resource type.

The resulting model considers only jobs in the reserva-
tion queue JR that, as before, are divided into waiting jobs
AJR and running jobs BJR.

s(ai) :: [max(t, getStart(resv))..getEnd(resv)− d(ai)]
∀i ∈ AJR

s(ai) = getStart(ji) ∀i ∈ BJR

x(ai) :: [0, 1] ∀i ∈ AJR

x(aikj) :: [0, 1] ∀i ∈ AJR

Nn∑
j=1

x(aikj) = x(ai) ∀k, ∀i ∈ AJR

cumulative(aikj , reqikr, getResource(resv, j, r))

∀j ∈ Nn∀r ∈ R
(4)

The first set of unary constraints defines the domain of
the start time of activity variables that are waiting on the
reservation queue. This domain is lower bounded by the
maximum between the current time and the start of the
reservation, and it is upper bounded by the end of the reser-
vation minus the job duration. The second sets of constraints
simply fixes already started activities. Differently from the
previous model, jobs waiting on the reservation queue, and
consequently all their units, can be either executed or not.
The cumulative constraint in this case is limited to jobs
belonging to the reservation queues and to resources of the
reservation.

5.3 Feasibility check
One of the most important component of real HPC sched-
ulers is the feasibility check. Intuitively the scheduling
problem instance cannot be infeasible. Otherwise, the whole
machine would stop. The infeasibility could be due to errors
both in job and reservation submissions. A small example
of wrong job submission occurs when (1) we have two
resources: one node with 2 GPUs and another node with
2 MICs, and (2) we have a job submission with one unit
requiring one GPU and one MIC. In this case the instance
is simply infeasible as such a resource (i.e., one node with
both a GPU and a MIC) is not available on the machine.

An example of wrong reservation submission instead is
due to lack of needed resources. We recall that a reservation
is submitted with a fixed starting time, a fixed duration
and a number of required resources. If these resources are
not available for the time required the reservation is simply
infeasible.

For both these problems we have a phase of the feasi-
bility check. The first is the reservation feasibility check that
checks if there is enough room for executing the reservation.
Then we have a feasibility check for each job separately,
ensuring that the job requires resources that are available in
the machine.

6 FRAMEWORK ARCHITECTURE

Our scheduler has been embedded in the framework of PBS
Professional. PBS Professional is composed by the following
macro-components and services:

• PBS server is a server that handles all the events
and stores all the jobs, queues and settings, logs and
information.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

• PBS mom(s) is a process running on each node of the
HPC machine managing its resources.

• PBS scheduler implements the scheduling algorithm
of PBS Professional.

• PBS binaries (i.e. qsub, qmove, qstat, PBS rsub, etc. . .)
provide the interface between the users and the PBS
internal components (i.e. PBS server, PBS mom).

• Hooks, PBS gives the possibility to handle events
with hooks. Hooks are scripts triggered by events.
They can be used to get notifications of a new job
submission, of a reservation submission, etc...

The original scheduler PBS sched can be disabled and
replaced with an ad-hoc scheduling algorithm. We take
advantage of this functionality to embed our scheduler in
PBS in a plug-and-play fashion (Figure 1). In this way, we
leverage all the functionality of the PBS infrastructure such
as tracking the system status and implementing scheduling
decisions.

User

Server

P

B

S

b

i

n

a

r

i

e

s

PBS_server

PBS_sched

Op miza on Model

PBS_mom

Vnode 0-1

Vnode 0-N

…

Host 1

PBS_mom

Vnode 1-1

Vnode 1-N

…

Host M

PBS_mom

Vnode M-1

Vnode M-N

…

…

Fig. 1: Framework macro architecture

The framework receives events from the PBS server us-
ing Hooks. The framework interacts with the PBS mom
component by asking the node state through PBS binaries.
Then our scheduler is run and its decisions are sent to the
PBS mom component.

Figure 2 shows the workflow of our framework. The
hooks “Job update”, and “New reservation” trigger a sche-
duling cycle. Instead hooks “New job” and “Job terminated”
trigger a scheduling cycle only if the state of the system has
changed (i.e. awaken nodes, job deleted or new job submit-
ted) since the last scheduling cycle. This avoids unnecessary
overheads. Each scheduling cycle starts by (1) checking if a
running job exceeds its wall-time request (Overrun check)
in which case it is killed by the PBS server component.

After this step, (2) the scheduling cycle updates an
internal image of the node status which is used as input for
the algorithm. In this phase the algorithm checks the node
status (crashed/switched-off/activated). This information is
used for the feasibility check that decides which reservations
and jobs can be executed (in figure as “Check reservations
feasibility” and “Check jobs feasibility”). Unfeasible jobs
and reservations are rejected and excluded from the sche-
duling cycle.

If all the necessary conditions are satisfied the algorithm
solves the model and decides the allocation of job units and
their starting time.

Hooks

New job

Self generated

events

Reserva!on star!ng

Reserva!on ending

Change interval

Delete job

Delete job

Read job
New

scheduling

cycle is

needed?

Update jobs

Update jobs Overrun check

yes

Update nodes

Check reserva!ons feasibility

Check jobs feasibility

Job and reserva!ons selec!on

Model crea!on

Execu!on

Reserva!on

Model execu!on

Results commit

A

reserva!on

is star!ng?

Finish

yes

no

no

Job updated

New reserva!on

Job terminated

Fig. 2: Workflow

Those job whose starting time is equal to the current time
are then executed.

One of the key goals of our scheduler is reactivity. The
framework has to explore a large set of solutions of an NP-
hard problem and to give a good solution in a reasonable
amount of time. For this purpose we introduce several new
overhead-reducing techniques. These techniques limit the
execution time of the optimization model and, in case of too
large instances (bigger than 1600 jobs and 65 nodes), the size
of the instance too.

The first technique imposes and adjusts a timeout (re-
ferred to as δ) to the CP solver. δ is computed as follows:

• Initially δ is set to a predefined time K1.
• The CP model is then executed for δ time.
• If the CP model does not generate any solution, the

model is re-started a given number of times (say M),
with increasing values of δ = K2 ∗ δ. We choose an
exponential increment due to the NP-hardness of the
problem. If after M iterations a solution has not been
found, the scheduler simply waits for the next event.

• If instead the CP model returns one or more solutions
the algorithm sets δ equal to the time taken to find
the first solution plus K1. This ensures to adapt the
timeout δ to the instance hardness.

In addition, to limit the maximum solution time we

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

used several thresholds. (1) The maximum δ can be 300
seconds; (2) If the first solution takes more than 60s the
search is stopped. (3) If the search of an improved solution
takes more than 10s, again the search is stopped. All these
thresholds have been empirically defined and guarantee an
average overhead of ∼ 6 seconds for solution process for
hard instances (65 nodes and 1600 jobs).

Another limitation to the solution time can be obtained
by reducing the size of the instance: after the second it-
eration with increased timeout, if no solution is found,
the number of queued job considered in the scheduling
is halved keeping the first queued jobs and excluding the
other.

7 EXPERIMENTAL RESULTS

We have evaluated the performance of our scheduler in
two distinct experimental setups, namely (1) in a simulated
environment; and (2) on the actual Eurora HPC machine.

The simulation-based tests are designed to compare the
behavior of our scheduling system (referred to as CP) and
PBS Professional in a controlled environment, where we
can submit the same sequence of jobs to each scheduler
and compare their performance in a fair fashion. Testing
our system on Eurora instead enables the assessment of its
effectiveness in a fully operational production environment.
Therefore, our experimentation consists of:

• A direct comparison of the CP scheduler and two
different PBS setups. These experiments are executed
on a set of Virtual Machines (VM). Every VM runs
a script that generates in a predictable fashion a
sequence of jobs (each composed of a single sleep
command).

• A statistical evaluation on the Eurora HPC with true
jobs submitted by real users over five weeks1.

The PBS software can be configured in different modes to
suit the purpose of the system administrator. The following
experiments consider two different PBS setups:

1) The CINECA PBS configuration (referred to as PB-
SFifo): this setup uses a FIFO job ordering, no pre-
emption, and backfilling limited to the first 10 jobs
in the queue.

2) A PBS configuration (referred to as PBSWalltime)
designed to get the best trade-off between wait-
ing time and computational overhead: this setup
employs a strict job ordering (by increasing wall-
time), no preemption and backfilling limited to the
first 400 jobs. Ordering jobs by wall-time and using
a high backfilling depth allows to reduce the job
waiting times but incurs a larger overhead: this is
mitigated by introducing the strict job ordering.

The quality of the schedules was measured according to
a number of metrics. Specifically, we have defined:
Metrics on job waiting times:

• Average time in queue (AQ): total waiting time divided
by the number of jobs.

1. The time needed for the scheduling team in this computing center
to evaluate a scheduling policy is of 1 week.

• Weighted queue time (WQT): sum of job waiting-times,
each divided (for fairness) by the maximum wait-
time of the job queue.

Metrics on tardiness:

• Number of late jobs (NL): the number of jobs exceeding
the maximum wait-time of their queue.

• Tardiness (TR): sum of job delays, where the delay of
a job is the amount of time by which the maximum
wait-time of its queue is exceeded.

• Weighted tardiness (WT): sum of job delays, each di-
vided (for fairness) by the maximum wait-time of the
job queue.

Metrics on computational overhead:

• Average overhead (AO): average computation time of
the scheduler.

• Maximum overhead (MO): maximum computation
time of the scheduler.

• Overhead percentage on test time (%O): percentage of
time spent in computation during the entire test.

7.1 Evaluation setup
7.1.1 Simulation-based tests
We have designed the simulation so as to evaluate the
performance of our CP scheduler w.r.t. PBS. The experi-
ments differ under a wide range of conditions with respect
to number of jobs, job units, resources heterogeneity and
platform nodes. The goal is to assess the scalability of both
approaches and their ability to deal with workloads having
different resource requirements and processing times.

Overall, the evaluation tends to be biased toward pes-
simistic configurations, in part because of the limited com-
putational power of the Virtual Machines. The typical
workload for the Eurora supercomputer turned up to be
somewhere in the mid-range of hardness considered in the
simulated tests, and definitely manageable by our approach.
Clearly all the real Eurora traces have been considered in
the simulated tests, but we have also scaled them down
and up to cover a wide range of working conditions for the
scheduler.

In these experiments, different HPC environments were
built on top of virtual machines. We used a single VM for
each environment and exploited virtual nodes (supported
by the PBS framework) to simulate the supercomputer units.

We have performed tests on small environments with 4
nodes as well as on a Eurora-scale environments with 65
nodes. In each experiment, the same sequence of jobs is
generated and submitted to each scheduling system.

Each VM was allowed to employ up to two cores and
5GB of RAM, on a physical machine with two CPUs with
six-cores and hyper-threading, and 96GB of RAM. The two-
cores limit was due to the chosen virtualization environment
(Oracle VirtualBox). PBS logs are the source of all informa-
tion about the performance of the compared approaches.

7.1.2 Evaluation on the HPC
The second set of experiments is run on the Eurora HPC
system. Eurora [33] is a heterogeneous HPC machine of
CINECA. It is a fully operational prototype for future green

https://www.researchgate.net/publication/269311225_Unveiling_Eurora_-_Thermal_and_power_characterization_of_the_most_energy-efficient_supercomputer_in_the_world?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Sta s cs

System setup

Offline

Test Generator
Job N

Job N
Job N

Runner

2x Intel Xeon E5-2620, 6x 16 GB DDR3

Online

VM PBSFifo
Job N

Job N
Job NRunner

Virtualized Resources

VM PBSWall me
Job N

Job N
Job NRunner

Virtualized Resources

File genera on

File copy

Temporized submission

Execu on

Legend VM CPModel
Job N

Job N
Job NRunner

Virtualized Resources

Fig. 3: Test Generation

HPC. Eurora is composed by 65 nodes, one login node with
12 cores, 32 nodes with 16 cores at 3.1GHz and 2 GPU Kepler
K20 each and 32 nodes with 16 cores at 2.1GHz and 2 Intel
Xeon phi (MIC) each.

Users of this HPC machine submit jobs specifying the
amount of resources, nodes and wall-time to a queue. Each
queue has a name, a priority and a list of nodes where its
jobs can be executed, after the submission. The scheduling
and dispatching software currently used in Eurora is PBS
Professional 12 from Altair. Eurora users can choose among
three main queues

• debug: for small jobs with low wall-time. CINECA
declares the maximum waiting time of this queue of
1 hour.

• parallel: for large jobs with medium wall-time.
CINECA declares the maximum waiting time of this
queue of 5 hours.

• np longpar: for large jobs with high wall-time. This
is a non-prime-time queue. This means that jobs from
this queue can execute only in a non-prime-time
interval (from 18:00 to 08:00). CINECA declares the
maximum waiting time of this queue of 24 hours.

7.2 Test generation

We have designed a software component (see Figure 3) to
generate and submit a repeatable sequence of dummy jobs
(i.e. sleep commands). The generation process has been cali-
brated based on real data (12,000 jobs submitted to Eurora in
December 2014). For calibrating the arrival rates, we relied
instead on statistics collected over the whole year 2013 from
the Fermi HPC machine [34] at CINECA; the Fermi was
chosen in this case due to its longer history of utilization.

In detail, for each test we generate n jobs (where n
is an input parameter) to be submitted over a 24 hours
period of real-world time. A certain percentage of jobs is
submitted during daytime (8 AM to 6 PM), and the rest
is submitted during the night (6 PM to 8 AM). Job arrival
times are uniformly spread within each interval. In all
our experiments, 89% of the jobs arrive at daytime and
11% at nighttime. All numbers mentioned above have been
extracted from the CINECA statistics on the Fermi HPC

Queue AV U
debug 6465
parallel 147145
np longpar 111372

TABLE 1: Eurora jobs utilization

machine. The following statistics are extrapolated from the
Eurora execution traces. A fixed ratio of the generated jobs
is then assigned to each system queue. In particular, 27% of
the jobs are submitted to the debug queue, 72% to parallel,
and 1% to np longpar. The number of required nodes, cores,
and the wall-time values are randomly generated for each
job so as to match the Average Volume of Utilization (AVU)
of its queue. In detail, we start by generating for each job
i the number of requested nodes RNi and the number of
requested cores per node RCi. In particular, let nminq and
nmaxq be the minimum and maximum number of nodes for
the queue q. Then, the node and core requests are obtained
as:

RNi = UD[1 . . .mmaxq] and RNi = UD[1 . . . 16]

where UD means a uniform distribution over the interval
and nmaxq = 2 for the debug queue and nmaxq = 32 for
parallel and np longpar. Then for each job we compute a
wall-time value Wi as:

Wi =
AV Uq

RNi ∗RCi
(5)

whereAV Uq is the Average Volume of Utilization for q. This
value is obtained using the formula:

AV Uq = NRi(q) ∗ CRi(q) ∗Walli(q) (6)

where NRi(q) is the average number of nodes requested by
jobs in q, CRi(q) is the average number of requested cores
(per node) and Walli(q) is the average wall-time of the jobs
in the q. These statistics are obtained from Eurora data. Our
AV Uq values are reported in Table 1.

The GPU, MIC, and memory requirements are generated
so as to match the average requirements observed on Eu-
rora. In particular, jobs are partitioned into groups that are
then assigned to a specific requirement value. The require-
ment values and the size of the partitions are reported in
Table 2 for GPUs and MICs and in Table 3 for the memory.

Finally, the execution time of each job is generated via a
two-step process. First, the jobs are partitioned in two sets
according to a fixed proportion: the sizes are respectively
20% and 80% in our experiments, based on statistics from
Fermi. Then, for the jobs in the first set the execution time is
identical to the wall-time, while for the jobs in the second set
the execution time is chosen uniformly at random between
0.20 ∗Wi and Wi (excluded).

7.2.1 Test 0: Behavior at different heterogeneity levels
This test is designed to give an overview on how this
scheduler would behave within different numbers of het-
erogeneous resources. More heterogeneity would increase
the number of problem constraints, reduce the number of
feasible job assignments, and as a consequence it would
generally make the platform more complex to manage.
Heuristic scheduling methods such as those employed by

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Queue Amount of resource % for GPUs % for MICs

debug
0 96% 99%
1 3% 0%
2 1% 1%

parallel
0 31% 99%
1 4% 1%
2 65% 0%

np longpar
0 19% 100%
1 0% 0%
2 81% 0%

TABLE 2: GPUs & MICs per node request distribution on
Eurora

Queue Mem in GB % of jobs

debug

1GB 5%
4GB 77%
8GB 3%
14GB 15%

parallel

1GB 22%
4GB 17%
8GB 55%
14GB 6%

np longpar

1GB 88%
4GB 0%
8GB 4%
14GB 8%

TABLE 3: Memory per node request distribution on Eurora

PBS would primarily be affected by this increase in com-
plexity. In CP, however, adding more constraints leads to an
interesting trade-off. On the one hand, the scheduling prob-
lem may indeed become more complex. On the other hand,
however, CP has the ability to actively exploit the problem
constraints to reduce the size of the search space. Hence,
more constraints may actually improve the performance of
a CP based approach.

In figure 4 we have reported an experiment that show
how the results change, changing the number of resources
(adding more heterogeneity). The test consider 4 nodes
and 100 jobs, we can show the computational overhead for
instance with 1,2,3,4 and 6 different kind of heterogeneous
resources. The test differs only by the resources requested
by the jobs. However, being different jobs is not possible
compare directly the result of metrics like ”time in queue“,
etc... The only comparable metric is the overhead.

In summary: increasing the heterogeneity is likely to

1 Res. 2 Res. 3 Res. 4Res. 6 Res.

Mean+CI(95%) 2,798 2,882 2,760 2,766 2,639

Mean-CI(95%) 2,711 2,794 2,669 2,677 2,515

Mean 2,755 2,838 2,714 2,721 2,577

2,300

2,400

2,500

2,600

2,700

2,800

2,900

3,000

S
e

co
n

d
s

Mean Overhead at different Heterogeneity levels

Fig. 4: Mean overhead at different heterogeneity levels

PBSFifo PBSWalltime CPModel
WQT 347,583 170,686 168,032
AQ 31011,7 35637,6 30025,7
NL 55 52 45
TR 1954690 2349450 1832660
WT 283,219 110,034 105,985
AO 0,22 1,21 3,27
MO 1 4 5
%O 0,1 0,3 0,4

TABLE 4: Simulated test with 4 nodes and 99 jobs

PBSFifo PBSWalltime CPModel
WQT 152,94 137,74 119,77
AQ 10216,7 9465,42 8053,09
NL 65 60 46
TR 1298810 1223690 1003970
WT 60,03 55,97 46,40
AO 0,47 3,14 11,45
MO 3 10 19
%O 0,33 1,61 6,78

TABLE 5: Simulated test with 65 nodes and 330 jobs

decrease the performance of PBS, but may have a beneficial
effect on the performance of our approach as the reviewers
can see looking at the trend of the overhead into the image.

7.2.2 Test 1: 4 nodes 99 jobs
First we tested a system with a low workload. The test
simulates 4 Eurora nodes (2 with MICs and 2 with GPUs):
the results are reported in Table 4. PBSFifo has an advantage
w.r.t. PBSWalltime and our model thanks to its lower over-
head. However, both PBSWalltime and CP behave much
better than PBSFifo w.r.t. all the performance metrics, in
particular, those that take into account the priority of each
queue (i.e. WQT and WT). The performance of our model is
particularly good in this setting. In fact, we obtain substan-
tial improvements w.r.t both PBSFifo and PBSWalltime on
all the metrics on waitings and tardiness. This improvement
is achieved at the cost of a larger overhead that, however,
represents only the 0,4% of the makespan of the application.

7.2.3 Test 2: 65 nodes 330 jobs
Secondly we tested a system with a medium workload.
In this test we simulate all the 65 Eurora nodes (32 with
GPUs, 32 with MICs, and one log-in node): the results are
in Table 5. Our model manages to considerably outperform
PBSFifo and PBSWalltime in terms of all the metrics related
to waiting time and delay. Also in this case, all the metrics
on waitings and tardiness improve w.r.t. both PBSFifo and
PBSWalltime even if the cost in terms of overhead grows
to 6,78% which still justifies the gain obtained in all other
metrics.

7.2.4 Test 3: 65 nodes 700 jobs
Finally we simulate a system with a high workload. We
tested a 65 node configuration with a larger number of jobs
(namely 700): the results are reported in Table 6.

Due to the large number of jobs and (more importantly)
job units, in this case, our framework was forced to employ
the overhead reduction techniques from Section 6. Such
techniques are indeed effective in limiting the overhead,
but they also have an adverse effect on the quality of the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

PBSFifo PBSWalltime CPModel
WQT 1034,2 853,681 2441,3
AQ 32066,1 27046,2 34816,3
NL 234 200 376
TR 16798300 13693000 16774800
WT 776,405 623,287 2013,18
AO 1,02 15,47 34,82
MO 11 57 120
%O 0,69 8,8 18,95

TABLE 6: Simulated test with 65 nodes and 700 jobs

Test 1 Test 2 Test 3

CPModel 51,66 21,69 -136,06

PBSWall!me 50,89 9,94 17,45

-150,00

-100,00

-50,00

0,00

50,00

100,00

%

WQT gain w.r.t PBSFifo

Fig. 5: Weighted queue time gain w.r.t. PBSFifo

model solutions. As it can be seen in the table, our model
yields a little improvement in tardiness w.r.t. PBSFifo, a
small increase in the total time in queue, and a considerable
increase of the number of late jobs, the WQT, and the
weighted tardiness.

Introducing more effective overhead reduction tech-
niques seems to be critical to improve the performance of
our CP system. This is subject of current research activity.

7.2.5 Results comparison
We now provide a thorough comparison of the results
obtained on the three tests. We will analyze each perfor-
mance metric separately and investigate how the number of
jobs and nodes affects the results. In each comparison, the
performance of PBSFifo is used as a baseline and positive
values denote improvements.

Figure 5 reports the relative improvement of CP and
PBSWalltime over PBSFifo in terms of WQT. The two ap-
proaches behave similarly on Test 1 (i.e. the easiest one),
both obtaining a ∼ 50% improvement over PBSFifo. As the
test becomes more complex, the performance of our model
gets better, beating PBSFifo by a factor 22%, against the
∼ 10% obtained by PBSWalltime. In Test 3 (the largest), the
overhead reduction techniques are active and this leads to
a degradation of our results while PBSWalltime improves
over PBFifo by a factor ∼ 17%.

In terms of average queue time (see Figure 7), PBSWall-
time tends to improve over PBSFifo as the test size increases.
Our approach (due to the overhead reduction techniques)
follows the opposite trend. This is behavior is similar to the
one observed for the WQT metric.

The results of the last three metrics (number of late
jobs, tardiness and weighted tardiness (see Figures 8, 9,

Test 1 Test 2 Test 3

CPModel -1386,36 -2353,37 -3313,73

PBSWall!me -450,00 -571,69 -1416,67

-3500,00

-3000,00

-2500,00

-2000,00

-1500,00

-1000,00

-500,00

0,00

%

Average overhead gain w.r.t PBSFifo

Fig. 6: Average overhead gain w.r.t. PBSFifo

Test 1 Test 2 Test 3

CPModel 3,18 21,18 -8,58

PBSWall!me -14,92 7,35 15,65

-20,00

-15,00

-10,00

-5,00

0,00

5,00

10,00

15,00

20,00

25,00

%

Average queue !me gain w.r.t PBSFifo

Fig. 7: Average queue time gain w.r.t. PBSFifo

and10) follow the same trend as the WQT metric: CP works
better than PBSFifo and PBSWalltime until the overhead
reduction techniques are triggered (i.e. Test 3). In terms of
total tardiness, the performance of our approach remains on
par with that of PBSFifo even on Test 3, despite the large
number of jobs.

Finally, Figure 12 compares the overhead to test-

Test 1 Test 2 Test 3

CPModel 18,18 29,23 -60,68

PBSWall!me 5,45 7,69 14,53

-70,00

-60,00

-50,00

-40,00

-30,00

-20,00

-10,00

0,00

10,00

20,00

30,00

40,00

%

Late jobs gain w.r.t PBSFifo

Fig. 8: Number of jobs in late gain w.r.t. PBSFifo

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Test 1 Test 2 Test 3

CPModel 6,24 22,70 0,14

PBSWall!me -20,20 5,78 18,49

-25,00

-20,00

-15,00

-10,00

-5,00

0,00

5,00

10,00

15,00

20,00

25,00

%
Tardiness gain w.r.t PBSFifo

Fig. 9: Tardiness gain w.r.t. PBSFifo

Test 1 Test 2 Test 3

CPModel 62,58 22,70 -159,30

PBSWall!me 61,15 6,76 19,72

-200,00

-150,00

-100,00

-50,00

0,00

50,00

100,00

%

Weighted tardiness gain w.r.t PBSFifo

Fig. 10: Weighted tardiness gain w.r.t. PBSFifo

Test 1 Test 2 Test 3

CPModel 5 19 120

PBSWall!me 4 10 57

PBSFifo 1 3 11

0

20

40

60

80

100

120

140

S
e

c
o

n
d

s

Maximum overhead

Fig. 11: Maximum overhead gain w.r.t. PBSFifo

execution-time ratio for the three approaches. PBSFifo has
the lowest overhead, followed by PBSWalltime, and then by
our approach. The overhead of PBSWalltime is, however,
the fastest growing one from Test 2 to Test 3, i.e. when the
system scalability is more stressed. The overhead of our CP
model grows more slowly thanks to the overhead reduction
techniques.

Test 1 Test 2 Test 3

CPModel 0,39 6,78 18,95

PBSWall!me 0,34 1,61 8,80

PBSFifo 0,07 0,33 0,69

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

%

Overhead percentage on makespan

Fig. 12: Overhead percentage on execution time gain w.r.t.
PBSFifo

7.2.6 Guidelines for algorithm portfolio selection

From the tests reported above, we can observe that the
instance scale heavily affects the performance of the sche-
duler. In fact, being our approach based on search, the
overhead introduced by running our scheduler grows with
the instance size. On the contrary, we can notice that for
realistic-sized instances, our approach is computationally
feasible and provides significantly better results in terms of
quality.

The purpose of this section is to identify a set of methods
that can be used in a portfolio to solve HPC scheduling
problems with increasing scale from lightweight to heavy
ones, (see Figure 13).

We have collected statistics on the execution of the
Eurora HPC with the aim to characterize its workload. We
have generated lower and higher workloads by reducing
respectively increasing, the number of job units to test the
scalability of the system.

1) On one end of the spectrum we have lightweight
workloads, featuring a small number of jobs, each
requiring only few nodes. In this situation find-
ing a good schedule is trivial, since the machine
is under-loaded, and using powerful optimization
techniques provides little benefit.

2) The second class includes mid-range realistic work-
loads, typically they are characterized by less than
4’100 job units for a 65 nodes HPC machine. This
is the range where making good dispatching de-
cisions is not trivial, but the problem size is still
manageable. In this situation, the CP system tends
to provide the best results.

3) Finally, workloads with a very large number of jobs
requiring many computation nodes (namely more
than 270’000 job units * nodes submitted in 24h), call
for the use of overhead-reduction techniques (Sec-
tion 6). This allows to find solutions in a reasonable
amount of time, but with adverse effects on the so-
lution quality. Therefore in this range PBS heuristic
approaches become the techniques of choice.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

Improvement

Instance hardness

Trivial solu�on Ovrehead reduc�on

techniques

No ovrehead reduc�on techniques

Eurora HPC

working

range

Fig. 13: Working ranges

7.3 Execution on Eurora
Thanks to our modeling and design efforts from Section 5
and 6, we have managed to obtain a scheduling system
that is mature enough to be deployed and evaluated on the
actual Eurora HPC machine.

In detail, we have compared the performance of our ap-
proach and the PBSFifo configuration (currently employed
by CINECA) over five weeks of regular utilization of the
HPC machine: the PBS scheduler was employed for the first
three weeks and the CP system during the last two weeks.
During such period, statistics were collected by relying on
the PBS logs. The HPC users were unaware of the change of
the scheduling system.

Since the comparison was performed in a production
environment, it is impossible to guarantee that the two ap-
proaches process the same sequence of jobs. For this reason,
the performance metrics that we employed in Section 7.1.1
are not meaningful in this setting and new metrics must
be employed. This is due to the big variation between
the number of jobs submitted in different days. For this,
after some experimentation, we chose to compare the CP
approach and PBSFifo in terms of: (1) the average WQT per
job, and (2) the average number of used cores over time (i.e.
the average core utilization).

Figure 14 compares the two approaches in terms of the
first metric. Our CP system performed consistently better
with an average WQT per job of ∼ 2.50 ∗ 10−6, against the
∼ 3.93 ∗ 10−6 of PBSFifo. The standard deviation for the
two approaches is very similar. The average core utilization
obtained by both approaches during each week is instead
reported in Figure 15: the two approach have similar perfor-
mance in terms of this second metric, which ranges between
520 and 599 for PBSFifo and between 510 and 573 for CP.

We recall that, since it is not possible to ensure that the
two scheduling approaches process exactly the same jobs,
these results are in part workload-dependent. The metrics
we chose are designed to allow a fair comparison, but
better (e.g. more robust) metrics may definitely exist: their
identification is left as a topic for future research.

7.4 Overhead distribution
Table 7 reports the average time for each execution phase of
our system (i.e. the steps in the flow chart from Figure 2).
From the table, it is clear that moving from the simulated
platform to real HPC leads to a considerable decrease of the
total overhead. The distribution of the total overhead in the

CP Model PBS

Mean+CI(95%) 0,000002510 0,000003938

Mean-CI(95%) 0,000002498 0,000003928

Mean 0,000002504 0,000003933

0,000002400

0,000002600

0,000002800

0,000003000

0,000003200

0,000003400

0,000003600

0,000003800

0,000004000

Weigted queue !me per job

Fig. 14: Weighted queue time extrapolated from Eurora

PBS PBS PBS CPModel CPModel

Mean+CI(95%) 546,12 599,01 619,49 600,57 531,56

Mean-CI(95%) 501,81 558,62 579,45 544,52 487,22

Mean 523,96 578,82 599,47 572,55 509,39

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

#
 c

o
re

s

Average cores u!liza!on on Eurora HPC

Fig. 15: Core utilization on Eurora

Simulated test Eurora
Update jobs 4,11 3,96
Update queues 0 0,02
Update Nodes 3,26 1,45
Check reservations feasibility 0 1,21
Check jobs feasibility 0,05 1,02
Jobs and reservations selection 0,07 0,02
Model creation 2,62 0,93
Model execution 21,91 2,31
Reservation check 0 0
Reservations model execution 0 0
Result commit 0,33 2,53
Total 32,35 13,45

TABLE 7: Optimization model average overheads (seconds)

simulated tests and on the real system is instead depicted
in Figure 16 and 17: in the simulated tests, the model
resolution makes for most of the total overhead; on the real
HPC the distribution is more balanced, and some phases
(reservation/job feasibility check, and result commit) are
proportionally much heavier than in the simulated platform.

The differences are likely due to multiple reasons. For
sure, the model solution time was heavily affected by the
performance gap between our VMs and the Eurora node
where the scheduling system was deployed. It is, therefore,
likely that the CP approach would in practice be more
scalable (i.e. applicable successfully to even larger machines
and workloads than Eurora) than what we observed in the
simulated experiments.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

Fig. 16: Overhead distribution for the simulated test

Fig. 17: Overhead distribution for Eurora

8 CONCLUSION

In this paper we presented a scheduler, based on Constraint
Programming techniques, that can improve the results ob-
tained from commercial schedulers highly tuned for a pro-
duction environment. We implemented all the features to
make it usable on a real-life HPC setting. The scheduler has
been tested both in a simulated environment and on a real
HPC machine with promising results. We have seen that
in a simulated environment with a limited computational
power the model has three working ranges (delimited by
the hardness of the instance of the problem). The proposed
solution can be suitably inserted in a portfolio of schedu-
ling algorithms and dominates commercial approaches in
the following conditions: The statistics on the Eurora HPC
system show an improvement on the weighted queue time
while maintaining similar levels of utilization.

Despite the system has been deployed on a real HPC
machine, a number of improvements are still pending: First,

the uncertainty on the execution time of jobs, can be consid-
ered in the scheduling algorithm and can be characterized
through learning techniques as done in the work by Tsafrir
et al. [26]. Considering the job execution time uncertainty
heavily impacts the scheduler model thus affecting solution
algorithms: techniques such as robust optimization and
stochastic constraint programming have to be considered.
A second improvement can be obtained by providing hot-
starts to the optimization engine: they can be either be
computed as the solution of the previous run or via so-
phisticated heuristics algorithms enriched with back-filling
techniques. Finally a deeper integration of the optimization
engine into the scheduling management framework can be
obtained by a changing its source code, this would need
longer development time but possibly reduce the overhead
introduced by the interaction.

ACKNOWLEDGMENTS

This work was partially supported by the FP7 ERC Advance
project MULTITHERMAN (g.a. 291125), by the YINS RTD
project (no. 20NA21 150939), evaluated by the Swiss NSF
and funded by Nano-Tera.ch with Swiss Confederation fi-
nancing and by CINECA. The authors would like to thank
CINECA in particular C. Cavazzoni, I. Baccarelli and A.
Federico for granting us the access to their systems and
Altair, in particular P. Masera and D. Dorella, for providing
us access to undocumented APIs.

REFERENCES

[1] M. Feldman, “With roadrunner’s retirement, petascale
enters middle age,” http://www.top500.org/blog/
with-roadrunners-retirement-petascale-enters-middle-age/,
2013.

[2] P. Works, “Pbs professional 12.2, administrators guide,
november 2013,” http://citi.clemson.edu/palmetto/files/
PBSProAdminGuide12-2.pdf, 2012.

[3] A. Computing and G. Computing, “Torque resource
manager,” http://docs.adaptivecomputing.com/torque/6-0-0/
torqueAdminGuide-6.0.0.pdf, 2015.

[4] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux
utility for resource management,” in Job Scheduling Strategies for
Parallel Processing. Springer, 2003, pp. 44–60.

[5] A. Bartolini, A. Borghesi, T. Bridi, M. Lombardi, and M. Milano,
“Proactive workload dispatching on the eurora supercomputer,”
in Principles and Practice of Constraint Programming, ser. Lecture
Notes in Computer Science, B. OSullivan, Ed. Springer Interna-
tional Publishing, 2014, vol. 8656, pp. 765–780.

[6] P. Salot, “A survey of various scheduling algorithm in cloud
computing environment,” International Journal of research and en-
gineering Technology (IJRET), ISSN, pp. 2319–1163, 2013.

[7] D. G. Feitelson, “Experimental analysis of the root causes of
performance evaluation results: a backfilling case study,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 16, no. 2, pp.
175–182, 2005.

[8] A. W. M. Alem and D. G. Feitelson, “Utilization, predictability,
workloads, and user runtime estimates in scheduling the ibm sp2
with backfilling,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 12, no. 6, pp. 529–543, 2001.

[9] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing
throughput of overprovisioned hpc data centers under a strict
power budget,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE
Press, 2014, pp. 807–818.

[10] I. A. Moschakis and H. D. Karatza, “Evaluation of gang scheduling
performance and cost in a cloud computing system,” The Journal
of Supercomputing, vol. 59, no. 2, pp. 975–992, 2012.

https://www.researchgate.net/publication/2882420_SLURM_Simple_linux_utility_for_resource_management?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/2882420_SLURM_Simple_linux_utility_for_resource_management?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/2882420_SLURM_Simple_linux_utility_for_resource_management?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/270891241_Proactive_Workload_Dispatching_on_the_EURORA_Supercomputer?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/270891241_Proactive_Workload_Dispatching_on_the_EURORA_Supercomputer?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/270891241_Proactive_Workload_Dispatching_on_the_EURORA_Supercomputer?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/270891241_Proactive_Workload_Dispatching_on_the_EURORA_Supercomputer?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/270891241_Proactive_Workload_Dispatching_on_the_EURORA_Supercomputer?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/276320649_A_survey_of_various_scheduling_algorithm_in_cloud_computing_environment?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/276320649_A_survey_of_various_scheduling_algorithm_in_cloud_computing_environment?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/276320649_A_survey_of_various_scheduling_algorithm_in_cloud_computing_environment?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3300562_Utilization_predictability_workloads_and_user_runtime_estimates_in_scheduling_the_IBM_SP2_with_backfilling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3300562_Utilization_predictability_workloads_and_user_runtime_estimates_in_scheduling_the_IBM_SP2_with_backfilling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3300562_Utilization_predictability_workloads_and_user_runtime_estimates_in_scheduling_the_IBM_SP2_with_backfilling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3300562_Utilization_predictability_workloads_and_user_runtime_estimates_in_scheduling_the_IBM_SP2_with_backfilling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/275953691_Maximizing_Throughput_of_Overprovisioned_HPC_Data_Centers_Under_a_Strict_Power_Budget?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/275953691_Maximizing_Throughput_of_Overprovisioned_HPC_Data_Centers_Under_a_Strict_Power_Budget?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/275953691_Maximizing_Throughput_of_Overprovisioned_HPC_Data_Centers_Under_a_Strict_Power_Budget?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/275953691_Maximizing_Throughput_of_Overprovisioned_HPC_Data_Centers_Under_a_Strict_Power_Budget?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/275953691_Maximizing_Throughput_of_Overprovisioned_HPC_Data_Centers_Under_a_Strict_Power_Budget?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/225436904_Evaluation_of_gang_scheduling_performance_and_cost_in_a_cloud_computing_system?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/225436904_Evaluation_of_gang_scheduling_performance_and_cost_in_a_cloud_computing_system?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/225436904_Evaluation_of_gang_scheduling_performance_and_cost_in_a_cloud_computing_system?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

[11] C. Du, X.-H. Sun, and M. Wu, “Dynamic scheduling with process
migration,” in Cluster Computing and the Grid, 2007. CCGRID 2007.
Seventh IEEE International Symposium on. IEEE, 2007, pp. 92–99.

[12] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Job scheduling for multi-user mapreduce clus-
ters,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-55, 2009.

[13] D. Jackson, “New issues and new capabilities in hpc scheduling
with the maui scheduler,” http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.96.5070&rep=rep1&type=pdf.

[14] S. Agarwal, R. Garg, and N. K. Vishnoi, “The impact of noise
on the scaling of collectives: A theoretical approach,” in High
Performance Computing–HiPC 2005. Springer, 2005, pp. 280–289.

[15] A. Bastoni, B. Brandenburg, and J. Anderson, “Cache-related
preemption and migration delays: Empirical approximation and
impact on schedulability,” Proceedings of OSPERT, pp. 33–44, 2010.

[16] R. Gioiosa, S. A. McKee, and M. Valero, “Designing os for hpc
applications: Scheduling,” in Cluster Computing (CLUSTER), 2010
IEEE International Conference on. IEEE, 2010, pp. 78–87.

[17] S. Soner and C. Özturan, “Integer programming based heteroge-
neous cpu–gpu cluster schedulers for slurm resource manager,”
Journal of Computer and System Sciences, vol. 81, no. 1, pp. 38–56,
2015.

[18] Y. Kessaci, N. Melab, and E. Talbi, “A pareto-based ga for schedu-
ling hpc applications on distributed cloud infrastructures,” in High
Performance Computing and Simulation (HPCS), 2011 International
Conference on. IEEE, 2011, pp. 456–462.

[19] K. Wang and I. Raicu, “Towards next generation resource manage-
ment at extreme-scales,” http://datasys.cs.iit.edu/publications/
2014 IIT PhD-proposal Ke-Wang.pdf, 2014.

[20] J. P. Jones and B. Nitzberg, “Scheduling for parallel supercom-
puting: A historical perspective of achievable utilization,” in Job
Scheduling Strategies for Parallel Processing. Springer, 1999, pp. 1–
16.

[21] D. Klusáček, H. Rudová, R. Baraglia, M. Pasquali, and G. Ca-
pannini, “Comparison of multi-criteria scheduling techniques,” in
Grid Computing. Springer, 2008, pp. 173–184.

[22] V. Chlumsky, D. Klusácek, and M. Ruda, “The extension of torque
scheduler allowing the use of planning and optimization in grids,”
Computer Science, vol. 13, pp. 5–19, 2012.

[23] Y. Yuan, Y. Wu, W. Zheng, and K. Li, “Guarantee strict fairness
and utilizeprediction better in parallel job scheduling,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 25, no. 4, pp. 971–981,
2014.

[24] E. Shmueli and D. G. Feitelson, “On simulation and design of
parallel-systems schedulers: are we doing the right thing?” Parallel
and Distributed Systems, IEEE Transactions on, vol. 20, no. 7, pp. 983–
996, 2009.

[25] ——, “Backfilling with lookahead to optimize the packing of
parallel jobs,” J. Parallel Distrib. Comput., vol. 65, no. 9, pp. 1090–
1107, 2005.

[26] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using system-
generated predictions rather than user runtime estimates,” Parallel
and Distributed Systems, IEEE Transactions on, vol. 18, no. 6, pp.
789–803, 2007.

[27] T. Frühwirth and S. Abdennadher, Essentials of constraint program-
ming. Springer Science & Business Media, 2003.

[28] M. Wallace, “Practical applications of constraint programming,”
Constraints, vol. 1, no. 1-2, pp. 139–168, 1996.

[29] IBM, “Modeling with ibm ilog cp optimizer - practical schedu-
ling examples,” http://public.dhe.ibm.com/common/ssi/ecm/
ws/en/wsw14076usen/WSW14076USEN.PDF.

[30] D. Pisinger and S. Ropke, “Large neighborhood search,” in Hand-
book of metaheuristics. Springer, 2010, pp. 399–419.

[31] D. Godard, P. Laborie, and W. Nuijten, “Randomized large neigh-
borhood search for cumulative scheduling.” in ICAPS, vol. 5, 2005,
pp. 81–89.

[32] P. Laborie and D. Godard, “Self-adapting large neighborhood
search: Application to single-mode scheduling problems,” Proceed-
ings MISTA-07, Paris, pp. 276–284, 2007.

[33] A. Bartolini, M. Cacciari, C. Cavazzoni, G. Tecchiolli, and L. Benini,
“Unveiling eurora - thermal and power characterization of the
most energy-efficient supercomputer in the world,” in Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2014, March
2014.

[34] F. Falciano and E. Rossi, “Fermi: the most powerful computational
resource for italian scientists,” EMBnet. journal, vol. 18, no. A, pp.
p–62, 2012.

Thomas Bridi received the degree in Com-
puter Science Engineering from the University
of Bologna, Italy, in 2014. He is a PhD student
at Department of Computer Science and Engi-
neering (DISI), University of Bologna, Italy. His
research interests include Scheduling Optimiza-
tion and Constraint Programming.

Andrea Bartolini received a Ph.D. degree in
Electrical Engineering from the University of
Bologna, Italy, in 2011. He is currently a postdoc
researcher in the Department of Electrical, Elec-
tronic and Information Engineering Guglielmo
Marconi (DEI) at the University of Bologna.
He also holds a post-doc position in the Inte-
grated Systems Laboratory at ETH Zurich. His
research interests concern dynamic resource
management ranging from embedded to large
scale HPC systems with special emphasis on

software-level thermal and power-aware techniques. His research inter-
est also includes ultra-low power design strategies for biosensors nodes
operating in near-threshold.

Michele Lombardi is a an assistant professor
(no tenure track) at University of Bologna. He
is working on the integration of heterogeneous
techniques for Combinatorial Optimization, and
on hybrid off-line/on-line optimization. His ex-
pertise is on Constraint Programming, Integer
Linear Programming and Machine Learning, with
main applications on resource allocation and
scheduling problems for embedded systems.

Michela Milano is associate professor at the
department of Computer Science and Engi-
neering at the University of Bologna. Her re-
search interest cover theoretical and practical
aspects of constraint reasoning and optimiza-
tion. Application areas include planning and
scheduling, computational sustainability, embed-
ded system design, energy systems and smart
cities. Michela Milano is author of more than 130
papers in International conferences and jour-
nals. She is Editor in Chief of the Constraints

Journal and Area Editor for INFORMS Journal on Computing and Con-
straint Programming Letters. She was program chair of CPAIOR 2005,
CPAIOR 2010 and CP2012. Michela Milano is the coordinator of the
EU-funded ePolicy project and participating to two other EU project on
smart cities.

Luca Benini is currently a Full Professor with
the University of Bologna and the Chair of Digi-
tal Circuits and Systems at ETHZ. His research
interests are in energy efficient system design
and MultiCore SoC design. He is also active
in the area of energy efficient smart sensors
and sensor networks for biomedical and ambient
intelligence applications. He has authored over
700 papers in peer reviewed international jour-
nals and conferences, four books and several
book chapters. He is a member of the Academia

Europaea

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

https://www.researchgate.net/publication/220941529_Dynamic_Scheduling_with_Process_Migration?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220941529_Dynamic_Scheduling_with_Process_Migration?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220941529_Dynamic_Scheduling_with_Process_Migration?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228862665_Job_scheduling_for_multi-user_MapReduce_clusters?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228862665_Job_scheduling_for_multi-user_MapReduce_clusters?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228862665_Job_scheduling_for_multi-user_MapReduce_clusters?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228862665_Job_scheduling_for_multi-user_MapReduce_clusters?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228761200_New_issues_and_new_capabilities_in_HPC_scheduling_with_the_Maui_scheduler?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228761200_New_issues_and_new_capabilities_in_HPC_scheduling_with_the_Maui_scheduler?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228761200_New_issues_and_new_capabilities_in_HPC_scheduling_with_the_Maui_scheduler?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220727900_The_Impact_of_Noise_on_the_Scaling_of_Collectives_A_Theoretical_Approach?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220727900_The_Impact_of_Noise_on_the_Scaling_of_Collectives_A_Theoretical_Approach?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220727900_The_Impact_of_Noise_on_the_Scaling_of_Collectives_A_Theoretical_Approach?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/285756203_Cache-related_preemption_and_migration_delays_Empirical_approximation_and_impact_on_schedulability?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/285756203_Cache-related_preemption_and_migration_delays_Empirical_approximation_and_impact_on_schedulability?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/285756203_Cache-related_preemption_and_migration_delays_Empirical_approximation_and_impact_on_schedulability?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/221201926_Designing_OS_for_HPC_applications_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/221201926_Designing_OS_for_HPC_applications_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/221201926_Designing_OS_for_HPC_applications_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/224255427_A_Pareto-based_GA_for_Scheduling_HPC_Applications_on_Distributed_Cloud_Infrastructures?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/224255427_A_Pareto-based_GA_for_Scheduling_HPC_Applications_on_Distributed_Cloud_Infrastructures?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/224255427_A_Pareto-based_GA_for_Scheduling_HPC_Applications_on_Distributed_Cloud_Infrastructures?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/224255427_A_Pareto-based_GA_for_Scheduling_HPC_Applications_on_Distributed_Cloud_Infrastructures?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/282761627_Towards_Next_Generation_Resource_Management_at_Extreme-Scales?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/282761627_Towards_Next_Generation_Resource_Management_at_Extreme-Scales?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/282761627_Towards_Next_Generation_Resource_Management_at_Extreme-Scales?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/225227429_Scheduling_for_Parallel_Supercomputing_A_Historical_Perspective_of_Achievable_Utilization?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/225227429_Scheduling_for_Parallel_Supercomputing_A_Historical_Perspective_of_Achievable_Utilization?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/225227429_Scheduling_for_Parallel_Supercomputing_A_Historical_Perspective_of_Achievable_Utilization?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/225227429_Scheduling_for_Parallel_Supercomputing_A_Historical_Perspective_of_Achievable_Utilization?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/226461161_Comparison_Of_Multi-Criteria_Scheduling_Techniques?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/226461161_Comparison_Of_Multi-Criteria_Scheduling_Techniques?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/226461161_Comparison_Of_Multi-Criteria_Scheduling_Techniques?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269783383_The_Extension_Of_Torque_Scheduler_Allowing_The_Use_Of_Planning_And_Optimization_In_Grids?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269783383_The_Extension_Of_Torque_Scheduler_Allowing_The_Use_Of_Planning_And_Optimization_In_Grids?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269783383_The_Extension_Of_Torque_Scheduler_Allowing_The_Use_Of_Planning_And_Optimization_In_Grids?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/260525694_Guarantee_Strict_Fairness_and_UtilizePrediction_Better_in_Parallel_Job_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/260525694_Guarantee_Strict_Fairness_and_UtilizePrediction_Better_in_Parallel_Job_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/260525694_Guarantee_Strict_Fairness_and_UtilizePrediction_Better_in_Parallel_Job_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/260525694_Guarantee_Strict_Fairness_and_UtilizePrediction_Better_in_Parallel_Job_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/222665105_Backfilling_with_lookahead_to_optimize_the_packing_of_parallel_jobs?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/222665105_Backfilling_with_lookahead_to_optimize_the_packing_of_parallel_jobs?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/222665105_Backfilling_with_lookahead_to_optimize_the_packing_of_parallel_jobs?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3301207_Backfilling_Using_System-Generated_Predictions_Rather_than_User_Runtime_Estimates?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3301207_Backfilling_Using_System-Generated_Predictions_Rather_than_User_Runtime_Estimates?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3301207_Backfilling_Using_System-Generated_Predictions_Rather_than_User_Runtime_Estimates?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/3301207_Backfilling_Using_System-Generated_Predictions_Rather_than_User_Runtime_Estimates?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/226535969_Practical_applications_of_constraint_programming?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/226535969_Practical_applications_of_constraint_programming?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/226905030_Large_Neighborhood_Search?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/226905030_Large_Neighborhood_Search?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220936139_Randomized_Large_Neighborhood_Search_for_Cumulative_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220936139_Randomized_Large_Neighborhood_Search_for_Cumulative_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/220936139_Randomized_Large_Neighborhood_Search_for_Cumulative_Scheduling?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228346359_Self-adapting_large_neighborhood_search_Application_to_single-mode_scheduling_problems?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228346359_Self-adapting_large_neighborhood_search_Application_to_single-mode_scheduling_problems?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/228346359_Self-adapting_large_neighborhood_search_Application_to_single-mode_scheduling_problems?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269311225_Unveiling_Eurora_-_Thermal_and_power_characterization_of_the_most_energy-efficient_supercomputer_in_the_world?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269311225_Unveiling_Eurora_-_Thermal_and_power_characterization_of_the_most_energy-efficient_supercomputer_in_the_world?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269311225_Unveiling_Eurora_-_Thermal_and_power_characterization_of_the_most_energy-efficient_supercomputer_in_the_world?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269311225_Unveiling_Eurora_-_Thermal_and_power_characterization_of_the_most_energy-efficient_supercomputer_in_the_world?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269311225_Unveiling_Eurora_-_Thermal_and_power_characterization_of_the_most_energy-efficient_supercomputer_in_the_world?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269311225_Unveiling_Eurora_-_Thermal_and_power_characterization_of_the_most_energy-efficient_supercomputer_in_the_world?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269311225_Unveiling_Eurora_-_Thermal_and_power_characterization_of_the_most_energy-efficient_supercomputer_in_the_world?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/269311225_Unveiling_Eurora_-_Thermal_and_power_characterization_of_the_most_energy-efficient_supercomputer_in_the_world?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/233812776_Integer_programming_based_heterogeneous_CPU-GPU_cluster_schedulers_for_SLURM_resource_manager?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/233812776_Integer_programming_based_heterogeneous_CPU-GPU_cluster_schedulers_for_SLURM_resource_manager?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/233812776_Integer_programming_based_heterogeneous_CPU-GPU_cluster_schedulers_for_SLURM_resource_manager?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/233812776_Integer_programming_based_heterogeneous_CPU-GPU_cluster_schedulers_for_SLURM_resource_manager?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==
https://www.researchgate.net/publication/233812776_Integer_programming_based_heterogeneous_CPU-GPU_cluster_schedulers_for_SLURM_resource_manager?el=1_x_8&enrichId=rgreq-032e223c377322969fbe0764aff39f97-XXX&enrichSource=Y292ZXJQYWdlOzI5MDUwODgxMztBUzozMTkzNjMxNTQ5Mzk5MDRAMTQ1MzE1MzUxNzE4NQ==

