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Abstract—In a multicore system, applications running on different cores
interfere at main memory. This inter-application interference degrades
overall system performance and unfairly slows down applications. Prior
works have developed application-aware memory request schedulers to
tackle this problem. State-of-the-art application-aware memory request
schedulers prioritize memory requests of applications that are vulner-
able to interference, by ranking individual applications based on their
memory access characteristics and enforcing a total rank order.

In this paper, we observe that state-of-the-art application-aware
memory schedulers have two major shortcomings. First, such sched-
ulers trade off hardware complexity in order to achieve high performance
or fairness, since ranking applications individually with a total order
based on memory access characteristics leads to high hardware cost
and complexity. Such complexity could prevent the scheduler from
meeting the stringent timing requirements of state-of-the-art DDR pro-
tocols. Second, ranking can unfairly slow down applications that are
at the bottom of the ranking stack, thereby sometimes leading to high
slowdowns and low overall system performance. To overcome these
shortcomings, we propose the Blacklisting Memory Scheduler (BLISS),
which achieves high system performance and fairness while incurring
low hardware cost and complexity. BLISS design is based on two new
observations. First, we find that, to mitigate interference, it is sufficient to
separate applications into only two groups, one containing applications
that are vulnerable to interference and another containing applications
that cause interference, instead of ranking individual applications with
a total order. Vulnerable-to-interference group is prioritized over the
interference-causing group. Second, we show that this grouping can
be efficiently performed by simply counting the number of consecutive
requests served from each application — an application that has a large
number of consecutive requests served is dynamically classified as
interference-causing.

We evaluate BLISS across a wide variety of workloads and system
configurations and compare its performance and hardware complexity
(via RTL implementations), with five state-of-the-art memory schedulers.
Our evaluations show that BLISS achieves 5% better system perfor-
mance and 25% better fairness than the best-performing previous mem-
ory scheduler while greatly reducing critical path latency and hardware
area cost of the memory scheduler (by 79% and 43%, respectively),
thereby achieving a good trade-off between performance, fairness and
hardware complexity.

1 INTRODUCTION

In modern systems, the high latency of accessing large-
capacity off-chip memory and limited memory bandwidth
have made main memory a critical performance bottleneck.
In a multicore system, main memory is typically shared by
applications running on different cores (or, hardware contexts).
Requests from such applications contend for the off-chip
memory bandwidth, resulting in interference. Several prior
works [32} 27} 130, 31]] demonstrated that this inter-application
interference can severely degrade overall system performance
and fairness. This problem will likely get worse as the number
of cores on a multicore chip increases [27].

Prior works proposed different solution approaches to miti-
gate inter-application interference, with the goal of improving
system performance and fairness (e.g., [30, 31, 28} 17, 18,
10, 291 (14} 17, 411 [16l 142] [49]). A prevalent solution direction

is application-aware memory request scheduling (e.g., [30}
31, 128, 117, 18, 41]). The basic idea of application-aware
memory scheduling is to prioritize requests of different ap-
plications differently, based on the applications’ memory ac-
cess characteristics. State-of-the-art application-aware memory
schedulers typically i) monitor applications’ memory access
characteristics, ii) rank applications individually based on
these characteristics such that applications that are vulnerable
to interference are ranked higher and iii) prioritize requests
based on the computed ranking.

We observe that there are two major problems with past
ranking-based schedulers. First, such schedulers trade off
hardware complexity in order to improve performance or
fairness. They incur high hardware complexity (logic and
storage overhead as well as critical path latency) to schedule
requests based on a scheme that ranks individual applications
with a total order. As a result, the critical path latency and
chip area cost of such schedulers are significantly higher
compared to application-unaware schedulers. For example,
as we demonstrate in Section based on our RTL de-
signs, TCM [18]], a state-of-the-art application-aware scheduler
is 8x slower and 1.8x larger than a commonly-employed
application-unaware scheduler, FRFCFS [35]]. Second, such
schedulers not only increase hardware complexity, but also
cause unfair slowdowns. When a total order based ranking is
employed, applications that are at the bottom of the ranking
stack get heavily deprioritized and unfairly slowed down. This
greatly degrades system fairness.

Our goal, in this work, is to design a new memory sched-
uler that does not suffer from these two problems: one that
achieves high system performance and fairness while incurring
low hardware cost and low scheduling latency. To this end,
we propose the Blacklisting memory scheduler (BLISS). Our
BLISS design is based on two new observations.

Observation 1. In contrast to forming a total rank order
of all applications (as done in prior works), we find that, to
mitigate interference, it is sufficient to i) separate applications
into only two groups, one group containing applications that
are vulnerable to interference and another containing appli-
cations that cause interference, and ii) prioritize the requests
of the vulnerable-to-interference group over the requests of
the interference-causing group. Although one prior work,
TCM [18]], proposed to group applications based on memory
intensity, TCM ranks applications individually within each
group and enforces the total rank order during scheduling.
Our approach overcomes the two major problems with such
schedulers that employ per-application ranking. First, separat-
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ing applications into only two groups, as opposed to employing
ranking based on a total order of applications, significantly
reduces hardware complexity (Section [7.2). Second, since our
approach prioritizes only one dynamically-determined group
of applications over another dynamically-determined group, no
single application is heavily deprioritized, improving overall
system fairness (Section [7)).

Observation 2. We observe that applications can be
efficiently classified as either vulnerable-to-interference or
interference-causing by simply counting the number of con-
secutive requests served from an application in a short time
interval. Applications with a large number of consecutively-
served requests are classified as interference-causing. The
rationale behind this approach is that when a large number
of consecutive requests are served from the same application,
requests of other applications are more likely to be delayed,
causing those applications to stall. On the other hand, applica-
tions with very few consecutive requests will likely not delay
other applications and are in fact vulnerable to interference
from other applications that have a large number of requests
generated and served. Our approach to classifying applications
is simpler to implement than prior approaches (e.g., [31} 17}
18]]) that use more complicated metrics such as memory inten-
sity, row-buffer locality, bank-level parallelism or long-term
memory service as proxies for vulnerability to interference
(Section [7.2)).

Mechanism Overview. Based on these two observations,
our mechanism, the Blacklisting Memory Scheduler (BLISS),
counts the number of consecutive requests served from the
same application within a short time interval. When this count
exceeds a threshold, BLISS places the application in the
interference-causing group, which we also call the blacklisted
group. In other words, BLISS blacklists the application such
that it is deprioritized. During scheduling, non-blacklisted
(vulnerable-to-interference) applications’ requests are given
higher priority over requests of blacklisted (interference-
causing) applications. No per-application ranking is employed.
Prioritization is based solely on two groups as opposed to a
total order of applications.

This paper makes the following contributions:

e We present two new observations on how a simple grouping
scheme that avoids per-application ranking can mitigate
interference, based on our analyses and studies of previous
memory schedulers. These observations can enable simple
and effective memory interference mitigation techniques
including and beyond the ones we propose in this work.

e We propose the Blacklisting memory scheduler (BLISS),
which achieves high system performance and fairness while
incurring low hardware cost and complexity. The key idea
is to separate applications into only two groups, vulnerable-
to-interference and interference-causing, and deprioritize
the latter during scheduling, rather than ranking individual
applications with a total order based on their access char-
acteristics (like prior work did).

e We provide a comprehensive complexity analysis of five
previously proposed memory schedulers, comparing their
critical path latency and area via RTL implementations
(Section [7). Our results show that BLISS reduces critical
path latency/area of the memory scheduler by 79%/43%

respectively, compared to the best-performing ranking-based
scheduler, TCM [18]].

e We evaluate BLISS against five previously-proposed mem-
ory schedulers in terms of system performance and fairness
across a wide range of workloads (Section [7.2). Our results
show that BLISS achieves 5% better system performance
and 25% better fairness than the best-performing previous
scheduler, TCM [18]].

e We evaluate the trade-off space between performance, fair-
ness and hardware complexity for five previously-proposed
memory schedulers and BLISS (Section [7.3). We demon-
strate that BLISS achieves the best trade-off between per-
formance, fairness and complexity, compared to previous
memory schedulers.

2 BACKGROUND AND MOTIVATION

In this section, we first provide a brief background on
the organization of a DRAM main memory system. We then
describe previous memory scheduling proposals and their
shortcomings that motivate the need for a new memory sched-
uler - our Blacklisting memory scheduler.

2.1 DRAM Background

The DRAM main memory system is organized hierarchi-
cally as channels, ranks and banks. Channels are independent
and can operate in parallel. Each channel consists of ranks
(typically 1 - 4) that share the command, address and data
buses of the channel. A rank consists of multiple banks that
can operate in parallel. However, all banks within a channel
share the command, address and data buses of the channel.
Each bank is organized as a two-dimensional array of rows
and columns. On a data access, the entire row containing
the data is brought into an internal structure called the row
buffer. Therefore, a subsequent access to the same row can be
served from the row buffer itself and need not access the array.
Such an access is called a row hit. On an access to a different
row, however, the array itself needs to be accessed. Such an
access is called a row miss/conflict. A row hit is served ~2-3x
faster than a row miss/conflict [[11]]. For more detail on DRAM
operation, we refer the reader to [[19} 21, 20} 37].

2.2 Memory Scheduling

Commonly employed memory controllers employ a memory
scheduling policy called First Ready First Come First Served
(FRFCEFS) [50,35] that leverages the row buffer by prioritizing
row hits over row misses/conflicts. Older requests are then
prioritized over newer requests. FRFCFS aims to maximize
DRAM throughput by prioritizing row hits. However, it un-
fairly prioritizes requests of applications that generate a large
number of requests to the same row (high-row-buffer-locality)
and access memory frequently (high-memory-intensity) [27,
30]. Previous work (e.g., [30, 31, 128 [17, [18]]) proposed
application-aware memory scheduling techniques that take into
account the memory access characteristics of applications and
schedule requests appropriately in order to mitigate inter-
application interference and improve system performance and
fairness. We will focus on four state-of-the-art schedulers,
which we evaluate quantitatively in Section

Mutlu and Moscibroda propose PARBS [31]], an application-
aware memory scheduler that batches the oldest requests from
applications and prioritizes the batched requests, with the
goals of preventing starvation and improving fairness. Within
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each batch, PARBS ranks individual applications based on the
number of outstanding requests of each application and, using
this total rank order, prioritizes requests of applications that
have low-memory-intensity to improve system throughput.

Kim et al. [17] observe that applications that receive low
memory service tend to experience interference from appli-
cations that receive high memory service. Based on this ob-
servation, they propose ATLAS, an application-aware memory
scheduling policy that ranks individual applications based on
the amount of long-term memory service each receives and
prioritizes applications that receive low memory service, with
the goal of improving overall system throughput.

Thread cluster memory scheduling (TCM) [18] ranks in-
dividual applications by memory intensity such that low-
memory-intensity applications are prioritized over high-
memory-intensity applications (to improve system through-
put). Kim et al. [[18] also observed that ranking all applications
based on memory intensity and prioritizing low-memory-
intensity applications could slow down the deprioritized high-
memory-intensity applications significantly and unfairly. With
the goal of mitigating this unfairness, TCM clusters applica-
tions into low and high memory-intensity clusters and employs
a different ranking scheme in each cluster. In the low-memory-
intensity cluster, applications are ranked by memory intensity,
whereas, in the high-memory-intensity cluster, applications’
ranks are shuffled to provide fairness. Both clusters employ a
total rank order among applications at any given time.

More recently, Ghose et al. [10] propose a memory sched-
uler that aims to prioritize critical memory requests that stall
the instruction window for long lengths of time. The scheduler
predicts the criticality of a load instruction based on how long
it has stalled the instruction window in the past (using the
instruction address (PC)) and prioritizes requests from load
instructions that have large total and maximum stall times
measured over a period of time. Although this scheduler is not
application-aware, we compare to it as it is the most recent
scheduler that aims to maximize performance by mitigating
memory interference.

2.3 Shortcomings of Previous Schedulers

These state-of-the-art schedulers attempt to achieve two
main goals - high system performance and high fairness.
However, previous schedulers have two major shortcomings.
First, these schedulers increase hardware complexity in order
to achieve high system performance and fairness. Specifically,
most of these schedulers rank individual applications with
a total order, based on their memory access characteristics
(e.g., [31) 28] [17, [18]]). Scheduling requests based on a total
rank order incurs high hardware complexity, as we demon-
strate in Section [7.2] slowing down the memory scheduler
significantly (by 8x for TCM compared to FRFCFS), while
also increasing its area (by 1.8x). Such high critical path
delays in the scheduler directly increase the time it takes to
schedule a request, potentially making the memory controller
latency a bottleneck. Second, a total-order ranking is unfair to
applications at the bottom of the ranking stack. Even shuffling
the ranks periodically (like TCM does) does not fully mitigate
the unfairness and slowdowns experienced by an application
when it is at the bottom of the ranking stack, as we show in
Section

Figure |1| compares four major previous schedulers using
a three-dimensional plot with performance, fairness and sim-
plicity on three different axes|'| On the fairness axis, we plot
the negative of maximum slowdown, and on the simplicity
axis, we plot the negative of critical path latency. Hence,
the ideal scheduler would have high performance, fairness
and simplicity, as indicated by the black triangle. As can
be seen, previous ranking-based schedulers, PARBS, ATLAS
and TCM, increase complexity significantly, compared to the
currently employed FRFCFS scheduler, in order to achieve
high performance and/or fairness.
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Fig. 1: Performance vs. fairness vs. simplicity

Our goal, in this work, is to design a new memory scheduler
that does not suffer from these shortcomings: one that achieves
high system performance and fairness while incurring low
hardware cost and complexity. To this end, we propose the
Blacklisting memory scheduler (BLISS) based on two new
observations described in the next section.

3 KEY OBSERVATIONS

As we described in the previous section, several major state-
of-the-art memory schedulers rank individual applications with
a total order, to mitigate inter-application interference. While
such ranking is one way to mitigate interference, it has
shortcomings, as described in Section @ We seek to over-
come these shortcomings by exploring an alternative means to
protecting vulnerable applications from interference. We make
two key observations on which we build our new memory
scheduling mechanism.

Observation 1. Separating applications into only two
groups (interference-causing and vulnerable-to-interference),
without ranking individual applications using a total order; is
sufficient to mitigate inter-application interference. This leads
to higher performance, fairness and lower complexity, all at
the same time.

We observe that applications that are vulnerable to interfer-
ence can be protected from interference-causing applications
by simply separating them into two groups, one contain-
ing interference-causing applications and another containing
vulnerable-to-interference applications, rather than ranking in-
dividual applications with a total order as many state-of-the-art
schedulers do. To motivate this, we contrast TCM [18]], which
clusters applications into two groups and employs a total rank
order within each cluster, with a simple scheduling mechanism
(Grouping) that simply groups applications only into two
groups, based on memory intensity (as TCM does), and

1. Results across 80 simulated workloads on a 24-core, 4-channel system.
Section @ describes our methodology and metrics.
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prioritizes the low-intensity group without employing ranking
in each group. Grouping uses the FRFCES policy within
each group. Figure [2] shows the number of requests served
during a 100,000 cycle period at intervals of 1,000 cycles, for
three representative applications, astar, hmmer and lbm from
the SPEC CPU2006 benchmark suite [40], using these two
schedulersﬂ These three applications are executed with other
applications in a simulated 24-core 4-channel systemE|

Figure [2] shows that TCM has high variance in the number
of requests served across time, with very few requests be-
ing served during several intervals and many requests being
served during a few intervals. This behavior is seen in most
applications in the high-memory-intensity cluster since TCM
ranks individual applications with a total order. This ranking
causes some high-memory-intensity applications’ requests to
be prioritized over other high-memory-intensity applications’
requests, at any point in time, resulting in high interference.
Although TCM periodically shuffles this total-order ranking,
we observe that an application benefits from ranking only
during those periods when it is ranked very high. These very
highly ranked periods correspond to the spikes in the number
of requests served (for TCM) in Figure [2] for that application.
During the other periods of time when an application is
ranked lower (i.e., most of the shuffling intervals), only a
small number of its requests are served, resulting in very slow
progress. Therefore, most high-memory-intensity applications
experience high slowdowns due to the total-order ranking
employed by TCM.

On the other hand, when applications are separated into only
two groups based on memory intensity and no per-application
ranking is employed within a group, some interference exists
among applications within each group (due to the application-
unaware FRFCFS scheduling in each group). In the high-
memory-intensity group, this interference contributes to the
few low-request-service periods seen for Grouping in Figure[2]
However, the request service behavior of Grouping is less
spiky than that of TCM, resulting in lower memory stall
times and a more steady and overall higher progress rate
for high-memory-intensity applications, as compared to when
applications are ranked in a total order. In the low-memory-
intensity group, there is not much of a difference between
TCM and Grouping, since applications anyway have low mem-
ory intensities and hence, do not cause significant interference
to each other. Therefore, Grouping results in higher system
performance and significantly higher fairness than TCM, as
shown in Figure 3 (across 80 24-core workloads on a simulated
4-channel system).

2. All these three applications are in the high-memory-intensity group. We
found very similar behavior in all other such applications we examined.
3. See Section |§| for our methodology.
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Fig. 2: Request service distribution over time with TCM and Grouping schedulers
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Fig. 3: Performance and fairness of Grouping vs. TCM

Solely grouping applications into two also requires much
lower hardware overhead than ranking-based schedulers that
incur high overhead for computing and enforcing a total rank
order for all applications. Therefore, grouping can not only
achieve better system performance and fairness than ranking,
but it also can do so while incurring lower hardware cost.
However, classifying applications into two groups at coarse
time granularities, on the order of a few million cycles,
like TCM’s clustering mechanism does (and like what we
have evaluated in Figure [3)), can still cause unfair application
slowdowns. This is because applications in one group would
be deprioritized for a long time interval, which is especially
dangerous if application behavior changes during the interval.
Our second observation, which we describe next, minimizes
such unfairness and at the same time reduces the complexity
of grouping even further.

Observation 2. Applications can be classified into
interference-causing and vulnerable-to-interference groups by
monitoring the number of consecutive requests served from
each application at the memory controller. This leads to higher
fairness and lower complexity, at the same time, than grouping
schemes that rely on coarse-grained memory intensity mea-
surement.

Previous work actually attempted to perform grouping,
along with ranking, to mitigate interference. Specifically,
TCM [18] ranks applications by memory intensity and clas-
sifies applications that make up a certain fraction of the
total memory bandwidth usage into a group called the low-
memory-intensity cluster and the remaining applications into a
second group called the high-memory-intensity cluster. While
employing such a grouping scheme, without ranking individ-
ual applications, reduces hardware complexity and unfairness
compared to a total order based ranking scheme (as we
show in Figure @) it 1) can still cause unfair slowdowns
due to classifying applications into groups at coarse time
granularities, which is especially dangerous if application
behavior changes during an interval, and ii) incurs additional
hardware overhead and scheduling latency to compute and
rank applications by long-term memory intensity and total
memory bandwidth usage.

We propose to perform application grouping using a signif-
icantly simpler, novel scheme: simply by counting the number
of requests served from each application in a short time
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interval. Applications that have a large number (i.e., above a
threshold value) of consecutive requests served are classified as
interference-causing (this classification is periodically reset).
The rationale behind this scheme is that when an application
has a large number of consecutive requests served within a
short time period, which is typical of applications with high
memory intensity or high row-buffer locality, it delays other
applications’ requests, thereby stalling their progress. Hence,
identifying and essentially blacklisting such interference-
causing applications by placing them in a separate group and
deprioritizing requests of this blacklisted group can prevent
such applications from hogging the memory bandwidth. As a
result, the interference experienced by vulnerable applications
is mitigated. The blacklisting classification is cleared periodi-
cally, at short time intervals (on the order of 1000s of cycles)
in order not to deprioritize an application for too long of a
time period to cause unfairness or starvation. Such clearing
and re-evaluation of application classification at short time
intervals significantly reduces unfair application slowdowns
(as we quantitatively show in Section [7.7), while reducing
complexity compared to tracking per-application metrics such
as memory intensity.

Summary of Key Observations. In summary, we make two
key novel observations that lead to our design in Section [
First, separating applications into only two groups can lead to a
less complex and more fair and higher performance scheduler.
Second, the two application groups can be formed seamlessly
by monitoring the number of consecutive requests served from
an application and deprioritizing the ones that have too many
requests served in a short time interval.

4 MECHANISM

In this section, we present the details of our Blacklisting
memory scheduler (BLISS) that employs a simple grouping
scheme motivated by our key observations from Section [3]
The basic idea behind BLISS is to observe the number of
consecutive requests served from an application over a short
time interval and blacklist applications that have a relatively
large number of consecutive requests served. The black-
listed (interference-causing) and non-blacklisted (vulnerable-
to-interference) applications are thus separated into two dif-
ferent groups. The memory scheduler then prioritizes the non-
blacklisted group over the blacklisted group. The two main
components of BLISS are i) the blacklisting mechanism and
ii) the memory scheduling mechanism that schedules requests
based on the blacklisting mechanism. We describe each in turn.

4.1 The Blacklisting Mechanism

The blacklisting mechanism needs to keep track of three
quantities: 1) the application (i.e., hardware context) ID of
the last scheduled request (Application IDﬂ 2) the number of
requests served from an application (#Requests Served), and
3) the blacklist status of each application.

When the memory controller is about to issue a request, it
compares the application ID of the request with the Applica-
tion ID of the last scheduled request.

4. An application here denotes a hardware context. There can be as
many applications executing actively as there are hardware contexts. Multiple
hardware contexts belonging to the same application are considered separate
applications by our mechanism, but our mechanism can be extended to deal
with such multithreaded applications.

o If the application IDs of the two requests are the same, the
#Requests Served counter is incremented.

e If the application IDs of the two requests are not the
same, the #Requests Served counter is reset to zero and
the Application ID register is updated with the application
ID of the request that is being issued.

If the #Requests Served exceeds a Blacklisting Threshold

(set to 4 in most of our evaluations):

e The application with ID Application ID is blacklisted (clas-
sified as interference-causing).

e The #Requests Served counter is reset to zero.

The blacklist information is cleared periodically after every

Clearing Interval (set to 10000 cycles in our major evalua-

tions).

4.2 Blacklist-Based Memory Scheduling

Once the blacklist information is computed, it is used
to determine the scheduling priority of a request. Memory
requests are prioritized in the following order:

1) Non-blacklisted applications’ requests
2) Row-buffer hit requests
3) Older requests

Prioritizing requests of non-blacklisted applications over re-
quests of blacklisted applications mitigates interference. Row-
buffer hits are then prioritized to optimize DRAM bandwidth
utilization. Finally, older requests are prioritized over younger
requests for forward progress.

5 IMPLEMENTATION

The Blacklisting memory scheduler requires additional stor-
age (flip flops) and logic over an FRFCFS scheduler to 1)
perform blacklisting and 2) prioritize non-blacklisted applica-
tions’ requests. We analyze the storage and logic cost of it.

5.1 Storage Cost

In order to perform blacklisting, the memory scheduler

needs the following storage components:

e one register to store Application ID

e one counter for #Requests Served

e one register to store the Blacklisting Threshold that deter-
mines when an application should be blacklisted

e a blacklist bit vector to indicate the blacklist status of each
application (one bit for each hardware context)

In order to prioritize non-blacklisted applications’ requests,
the memory controller needs to store the application ID
(hardware context ID) of each request so it can determine the
blacklist status of the application and appropriately schedule
the request.

5.2 Logic Cost

The memory scheduler requires comparison logic to
e determine when an application’s #Requests Served exceeds
the Blacklisting Threshold and set the bit corresponding to
the application in the Blacklist bit vector.
e prioritize non-blacklisted applications’ requests.
We provide a detailed quantitative evaluation of the hard-
ware area cost and logic latency of implementing BLISS and
previously proposed memory schedulers, in Section
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6 METHODOLOGY
6.1 System Configuration
We model the DRAM memory system using a cycle-

level in-house DDR3-SDRAM simulator. The simulator was
validated against Micron’s behavioral Verilog model [25] and
DRAMSim2 [36]. This DDR3 simulator is integrated with a
cycle-level in-house simulator that models out-of-order exe-
cution cores, driven by a Pin [23] tool at the frontend, Each
core has a private cache of 512 KB size. We present most of
our results on a system with the DRAM main memory as the
only shared resource in order to isolate the effects of memory
bandwidth interference on application performance. We also
present results with shared caches in Section Table
provides more details of our simulated system. We perform
most of our studies on a system with 24 cores and 4 channels.
We provide a sensitivity analysis for a wide range of core and
channel counts, in Section Each channel has one rank
and each rank has eight banks. We stripe data across channels
and banks at the granularity of a row.

16-64 cores, 5.3GHz, 3-wide issue,
8 MSHRs, 128-entry instruction window

Processor

Last-level cache 64B cache-line, 16-way associative,

512KB private cache-slice per core

Memory controller 128-entry read/write request queue per controller

Timing: DDR3-1066 (8-8-8) [26]
Organization: 1-8 channels, 1 rank-per-channel,
8 banks-per-rank, 8 KB row-buffer

Memory

TABLE 1: Configuration of the simulated system

6.2 Workloads

We perform our main studies using 24-core multipro-
grammed workloads made of applications from the SPEC
CPU2006 suite [40]], TPC-C, Matlab and the NAS parallel
benchmark suite [I]E] We classify a benchmark as memory-
intensive if it has a Misses Per Kilo Instruction (MPKI) greater
than 5 and memory-non-intensive otherwise. We construct
four categories of workloads (with 20 workloads in each
category), with 25, 50, 75 and 100 percent of memory-
intensive applications. This makes up a total of 80 workloads
with a range of memory intensities, constructed using random
combinations of benchmarks, modeling a cloud computing like
scenario where workloads of various types are consolidated on
the same node to improve efficiency. We also evaluate 16-, 32-
and 64- core workloads, with different memory intensities,
created using a similar methodology as described above for
the 24-core workloads. We simulate each workload for 100
million representative cycles, as done by previous studies in

memory scheduling [311 [17} [18].
6.3 Metrics
We quantitatively compare BLISS with previous memory

schedulers in terms of system performance, fairness and com-
plexity. We use the weighted speedup [6, 9, 39] metric to
measure system performance. We use the maximum slowdown
metric [6, |17, [18, 44] to measure unfairness. We report
the harmonic speedup metric [24] as another measure of
system performance. The harmonic speedup metric also serves
as a measure of balance between system performance and
fairness [24]. We report area in micrometer? (um?) and
scheduler critical path latency in nanoseconds (ns) as measures
of complexity.

5. Each benchmark is single threaded.

6.4 RTL Synthesis Methodology

In order to obtain timing/area results for BLISS and previ-
ous schedulers, we implement them in Register Transfer Level
(RTL), using Verilog. We synthesize the RTL implementations
with a commercial 32 nm standard cell library, using the
Design Compiler tool from Synopsys.
6.5 Mechanism Parameters

For BLISS, we use a value of four for Blacklisting Thresh-
old, and a value of 10000 cycles for Clearing Interval.
These values provide a good balance between performance
and fairness, as we observe from our sensitivity studies in
Section For the other schedulers, we tuned their param-
eters to achieve high performance and fairness on our system
configurations and workloads. We use a Marking-Cap of 5 for
PARBS, cap of 4 for FRFCFS-Cap, HistoryWeight of 0.875
for ATLAS, ClusterThresh of 0.2 and ShuffleInterval of 1000
cycles for TCM.
7 EVALUATION

We compare BLISS with five previously proposed memory
schedulers, FRFCFS, FRFCFS with a cap (FRFCFS-Cap) [30],
PARBS, ATLAS and TCM. FRFCFS-Cap is a modified ver-
sion of FRFCFS that caps the number of consecutive row-
buffer hitting requests that can be served from an applica-
tion [30]. Figure [] shows the average system performance
(weighted speedup and harmonic speedup) and unfairness
(maximum slowdown) across all our workloads. Figure [3]
shows a Pareto plot of weighted speedup and maximum
slowdown. We make three major observations. First, BLISS
achieves 5% better weighted speedup, 25% lower maximum
slowdown and 19% better harmonic speedup than the best
performing previous scheduler (in terms of weighted speedup),
TCM, while reducing the critical path and area by 79% and
43% respectively (as we will show in Section [7.2). Therefore,
we conclude that BLISS achieves both high system perfor-
mance and fairness, at low hardware cost and complexity.

Second, BLISS significantly outperforms all these five pre-
vious schedulers in terms of system performance, however, it
has 10% higher unfairness than PARBS, the previous scheduler
with the least unfairness. PARBS creates request batches
containing the oldest requests from each application. Older
batches are prioritized over newer batches. However, within
each batch, individual applications’ requests are ranked and
prioritized based on memory intensity. PARBS aims to pre-
serve fairness by batching older requests, while still employing
ranking within a batch to prioritize low-memory-intensity
applications. We observe that the batching aspect of PARBS is
quite effective in mitigating unfairness, although it increases
complexity. This unfairness reduction also contributes to the
high harmonic speedup of PARBS. However, batching restricts
the amount of request reordering that can be achieved through
ranking. Hence, low-memory-intensity applications that would
benefit from prioritization via aggressive request reordering
have lower performance. As a result, PARBS has 8% lower
weighted speedup than BLISS. Furthermore, PARBS has a
6.5x longer critical path and ~2x greater area than BLISS,
as we will show in Section Therefore, we conclude that
BLISS achieves better system performance than PARBS, at
much lower hardware cost, while slightly trading off fairness.

Third, BLISS has 4% higher unfairness than FRFCFS-
Cap, but it also 8% higher performance than FRFCFS-Cap.
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FRFCFS-Cap has higher fairness than BLISS since it re-
stricts the length of only the ongoing row hit streak, whereas
blacklisting an application can deprioritize the application for
a longer time, until the next clearing interval. As a result,
FRFCFS-Cap slows down high-row-buffer-locality applica-
tions to a lower degree than BLISS. However, restricting
only the on-going streak rather than blacklisting an interfering
application for a longer time causes more interference to
other applications, degrading system performance compared
to BLISS. Furthermore, FRFCFS-Cap is unable to mitigate
interference due to applications with high memory inten-
sity yet low-row-buffer-locality, whereas BLISS is effective
in mitigating interference due to such applications as well.
Hence, we conclude that BLISS achieves higher performance
(weighted speedup) than FRFCFS-Cap, while slightly trading
off fairness.

7.1 Analysis of Individual Workloads

In this section, we analyze the performance and fairness for
individual workloads, when employing different schedulers.
Figure [6] shows the performance and fairness normalized to
the baseline FRFCFS scheduler for all our 80 workloads, for
BLISS and previous schedulers, in the form of S-curves [38]].
The workloads are sorted based on the performance improve-
ment of BLISS. We draw three major observations. First,
BLISS achieves the best performance among all previous
schedulers for most of our workloads. For a few workloads,
ATLAS achieves higher performance, by virtue of always
prioritizing applications that receive low memory service.
However, always prioritizing applications that receive low
memory service can unfairly slow down applications with high
memory intensities, thereby degrading fairness significantly
(as shown in the maximum slowdown plot, Figure [6] bottom).
Second, BLISS achieves significantly higher fairness than AT-
LAS and TCM, the best-performing previous schedulers, while
also achieving higher performance than them and approaches
the fairness of the fairest previous schedulers, PARBS and
FRFCFS-Cap. As described in the analysis of average per-
formance and fairness results above, PARBS, by virtue of
request batching and FRFCFS-Cap, by virtue of restricting
only the current row hit streak achieve higher fairness (lower

maximum slowdown) than BLISS for a number of workloads.
However, these schedulers achieve higher fairness at the cost
of lower system performance, as shown in Figure [6] Third,
for some workloads with very high memory intensities, the
default FRFCFS scheduler achieves the best fairness. This is
because memory bandwidth becomes a very scarce resource
when the memory intensity of a workload is very high. Hence,
prioritizing row hits utilizes memory bandwidth efficiently for
such workloads, thereby resulting in higher fairness. Based
on these observations, we conclude that BLISS achieves the
best performance and a good trade-off between fairness and
performance for most of the workloads we examine.
7.2 Hardware Complexity

Figures [7] and [] show the critical path latency and area
of five previous schedulers and BLISS for a 24-core system
for every memory channel. We draw two major conclu-
sions. First, previously proposed ranking-based schedulers,
PARBS/ATLAS/TCM, greatly increase the critical path la-
tency and area of the memory scheduler: by 11x/5.3x/8.1x
and 2.4x/1.7x/1.8x respectively, compared to FRFCFS and
FRFCFS-Cap, whereas BLISS increases latency and area by
only 1.7x and 3.2% over FRFCFS/FRFCFS-CapE] Second,
PARBS, ATLAS and TCM cannot meet the stringent worst-
case timing requirements posed by the DDR3 and DDR4
standards [11} [12]. In the case where every request is a row-
buffer hit, the memory controller would have to schedule a
request every read-to-read cycle time (tccp), the minimum
value of which is 4 cycles for both DDR3 and DDR4. TCM
and ATLAS can meet this worst-case timing only until DDR3-
800 (read-to-read cycle time of 10 ns) and DDR3-1333 (read-
to-read cycle time of 6 ns) respectively, whereas BLISS can
meet the worst-case timing all the way down to the highest
released frequency for DDR4, DDR4-3200 (read-to-read time
of 2.5 ns). Hence, the high critical path latency of PARBS,
ATLAS and TCM is a serious impediment to their adoption in
today’s and future memory interfaces. Techniques like pipelin-
ing could potentially be employed to reduce the critical path
latency of these previous schedulers. However, the additional
flops required for pipelining would increase area, power and
design effort significantly. Therefore, we conclude that BLISS,
with its greatly lower complexity and cost as well as higher
system performance and competitive or better fairness, is a
more effective alternative to state-of-the-art application-aware
memory schedulers.
7.3 Analysis of Trade-offs Between Performance,

Fairness and Complexity

In the previous sections, we studied the performance, fair-

ness and complexity of different schedulers individually. In

6. The area numbers are for the lowest value of critical path latency that
the scheduler is able to meet.



SAFARI Technical Report No. 2015-004 (March, 2015)

FRFCFS ----- ATLAS oo
FRFCFS-Cap - TCM
. PARBS ----- BLISS ——
1.45 |

)

o
w:
a

Weighted Speedup
(Normalized
o

10 20 30 40 50 60 70 80
Workload Number

FRFCFS ----- ATLAS oo
FRFCFS-Cap - TCM

PARBS -- BLISS =———

N
(6]
.

Maximum Slowdown
(Normalized)
3

o
3

10 20 30 40 50 60 70 80
Workload Number

Fig. 6: System performance and fairness for all workloads

FRFCFS —— ATLAS mmmm
FRFCFS-Cap === TCM ——=
PARBS s BLISS mm—m

DDR3-800

DDR3-1333

DDR4-3200

Critical Path Latency
(in ns)

Fig. 7: Critical path: BLISS vs. previous schedulers

FRFCFS —— ATLAS mmm
FRFCFS-Ca{SJ  E— TCM ——=
PARBS mmmm BLISS mmmmm

100000
90000
80000
70000
60000
50000
40000
30000

Area
(in um squared)

Fig. 8: Area: BLISS vs. previous schedulers

this section, we will analyze the trade-offs between these
metrics for different schedulers. Figure 9] shows a three-
dimensional radar plot with performance, fairness and sim-
plicity on three different axes. On the fairness axis, we plot
the negative of the maximum slowdown numbers, and on the
simplicity axis, we plot the negative of the critical path latency
numbers. Hence, the ideal scheduler would have high perfor-
mance, fairness and simplicity, as indicated by the encompass-
ing, dashed black triangle. We draw three major conclusions
about the different schedulers we study. First, application-
unaware schedulers, such as FRFCFS and FRFCFS-Cap, are
simple. However, they have low performance and/or fairness.
This is because, as described in our performance analysis
above, FRFCFS allows long streaks of row hits from one ap-
plication to cause interference to other applications. FRFCFS-
Cap attempts to tackle this problem by restricting the length of
current row hit streak. While such a scheme improves fairness,
it still does not improve performance significantly. Second,
application-aware schedulers, such as PARBS, ATLAS and
TCM, improve performance or fairness by ranking based on
applications’ memory access characteristics. However, they do
so at the cost of increasing complexity (reducing simplicity)
significantly, since they employ a full ordered ranking across
all applications. Third, BLISS, achieves high performance and
fairness, while keeping the design simple, thereby approaching
the ideal scheduler design (i.e., leading to a triangle that
is closer to the ideal triangle). This is because BLISS re-
quires only simple hardware changes to the memory controller
to blacklist applications that have long streaks of requests
served, which effectively mitigates interference. Therefore,

we conclude that BLISS achieves the best trade-off between
performance, fairness and simplicity.
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Fig. 9: Performance, fairness and simplicity trade-offs

7.4 Understanding the Benefits of BLISS

We present the distribution of the number of consecutive
requests served (streaks) from individual applications to bet-
ter understand why BLISS effectively mitigates interference.
Figure shows the distribution of requests served across
different streak lengths ranging from 1 to 16 for FRFCFS,
PARBS, TCM and BLISS for six representative applications
from the same 24-core workload[] The figure captions in-
dicate the memory intensity, in misses per kilo instruction
(MPKI) and row-buffer hit rate (RBH) of each application
when it is run alone. Figures and show the
streak length distributions of applications that have a tendency
to cause interference (libquantum, mcf and Ibm). All these
applications have high memory intensity and/or high row-
buffer locality. Figures [I0d] [T0e] and [T0f] show applications
that are vulnerable to interference (calculix, cactusADM and
sphinx3). These applications have lower memory intensities
and row-buffer localities, compared to the interference-causing
applications. We observe that BLISS shifts the distribution
of streak lengths towards the left for the interference-causing
applications, while it shifts the streak length distribution to
the right for the interference-prone applications. Hence, BLISS
breaks long streaks of consecutive requests for interference-
causing applications, while enabling longer streaks for vulner-
able applications. This enables such vulnerable applications
to make faster progress, thereby resulting in better system
performance and fairness. We have observed similar results
for most of our workloads.

7. A value of 16 captures streak lengths 16 and above.



SAFARI Technical Report No. 2015-004 (March, 2015)

0.5

o
o

FRFCFS
PARBS

0.4 TCM
BLISS ——

o
~

0.3

o
w

0.2

o
N

o

Fraction of Requests
Fraction of Requests

0.1

o
o

FRFCFS
PARBS

TCM
BLISS ——

FRFCFS
PARBS

TCM
BLISS ——

o
~

o
w

o
)

o

Fraction of Requests

e
6 8 10 12 14 16
Streak Length

(a) libquantum (MPKI: 52; RBH: 99%)

4 6

0.5

Streak Length

(b) mcf (MPKI: 146; RBH: 40%)

10 12 14 16

8
Streak Length

(c) Ibm (MPKI: 41; RBH: 89%)

8 10 12 14 16 4 6

0.5

0.5

FRFCFS

0.4 0.4

0.3 0.3

0.2 0.2

Fraction of Requests
Fraction of Requests

0.1 0.1

FRFCFS FRFCFS

0.4

0.3

0.2

Fraction of Requests

0.1

6
Streak

(e) sphinx3 (MPKI

6 8 10 12 14 16
Streak Length

(d) calculix (MPKI: 0.1; RBH: 85%)

8 10 12 14 16

6 8 10 12 14 16
Streak Length

(f) cactusADM (MPKI: 7; RBH: 49%)

Length

: 24; RBH: 91%)

Fig. 10: Distribution of streak lengths

7.5 Average Request Latency
In this section, we evaluate the average memory request

latency (from when a request is generated until when it is
served) metric and seek to understand its correlation with
performance and fairness. Figure [IT] presents the average
memory request latency (from when the request is generated
until when it is served) for the five previously proposed
memory schedulers and BLISS. Two major observations are
in order. First, FRFCFS has the lowest average request latency
among all the schedulers. This is expected since FRFCFS
maximizes DRAM throughput by prioritizing row-buffer hits.
Hence, the number of requests served is maximized overall
(across all applications). However, maximizing throughput
(i.e., minimizing overall average request latency) degrades the
performance of low-memory-intensity applications, since these
applications’ requests are often delayed behind row-buffer
hits and older requests. This results in degradation in system
performance and fairness, as shown in Figure ]
FRFCFS —— ATLAS memmm

FRFCFS-Cap m=m TCM —=
PARBS mmmm BLISS mmmm
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Fig. 11: The Average Request Latency Metric

Second, ATLAS and TCM, memory schedulers that prior-
itize requests of low-memory-intensity applications by em-
ploying a full ordered ranking achieve relatively low av-
erage latency. This is because these schedulers reduce the
latency of serving requests from latency-critical, low-memory-
intensity applications significantly. Furthermore, prioritizing
low-memory-intensity applications’ requests does not increase
the latency of high-memory-intensity applications signifi-
cantly. This is because high-memory-intensity applications
already have high memory access latencies (even when run
alone) due to queueing delays. Hence, average request latency
does not increase much from deprioritizing requests of such
applications. However, always prioritizing such latency-critical
applications results in lower memory throughput for high-
memory-intensity applications, resulting in unfair slowdowns

(as we show in Figure [). Third, memory schedulers that
provide the best fairness, PARBS, FRFCFS-Cap and BLISS
have high average memory latencies. This is because these
schedulers, while employing techniques to prevent requests of
vulnerable applications with low memory intensity and low
row-buffer locality from being delayed, also avoid unfairly
delaying requests of high-memory-intensity applications. As
a result, they do not reduce the request service latency of
low-memory-intensity applications significantly, at the cost of
denying memory throughput to high-memory-intensity appli-
cations, unlike ATLAS or TCM. Based on these observations,
we conclude that while some applications benefit from low
memory access latencies, other applications benefit more from
higher memory throughput than lower latency. Hence, average
memory latency is not a suitable metric to estimate system
performance or fairness.

7.6

The Blacklisting scheduler we have presented and eval-
vated so far clears the blacklisting information periodically
(every 10000 cycles in our evaluations so far), such that all
applications are removed from the blacklist at the end of a
Clearing Interval. In this section, we evaluate an alternative
design where an individual application is removed from the
blacklist Clearing Interval cycles after it has been blacklisted
(independent of the other applications). In order to implement
this alternative design, each application would need an addi-
tional counter to keep track of the number of remaining cycles
until the application would be removed from the blacklist. This
counter is set (to the Clearing Interval) when an application
is blacklisted and is decremented every cycle until it becomes
zero. When it becomes zero, the corresponding application is
removed from the blacklist. We use a Clearing Interval of
10000 cycles for this alternative design as well.

Table 2] shows the system performance and fairness of the
original BLISS design (BLISS) and the alternative design in
which individual applications are removed from the blacklist
asynchronously (BLISS-Individual-Clearing). As can be seen,
the performance and fairness of the two designs are similar.
Furthermore, the first design (BLISS) is simpler since it does
not need to maintain an additional counter for each application.

Impact of Clearing the Blacklist Asynchronously
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in terms of performance, fairness and complexity.

Metric BLISS | BLISS-Individual-Clearing
Weighted Speedup 9.18 9.12
Maximum Slowdown 6.54 6.60

blacklists only applications with high row-buffer locality,
causing requests of non-blacklisted high-memory-intensity ap-
plications to interfere with requests of low-memory-intensity
applications. However, the performance impact of this inter-

TABLE 2: Clearing the blacklist asynchronously

7.7 Comparison with TCM’s Clustering Mechanism

Figure [T12] shows the system performance and fairness
of BLISS, TCM and TCM’s clustering mechanism (TCM-
Cluster). TCM-Cluster is a modified version of TCM that
performs clustering, but does not rank applications within
each cluster. We draw two major conclusions. First, TCM-
Cluster has similar system performance as BLISS, since both
BLISS and TCM-Cluster prioritize vulnerable applications by
separating them into a group and prioritizing that group rather
than ranking individual applications. Second, TCM-Cluster
has significantly higher unfairness compared to BLISS. This
is because TCM-Cluster always deprioritizes high-memory-
intensity applications, regardless of whether or not they are
causing interference (as described in Observation 2 in Sec-
tion EI) BLISS, on the other hand, observes an application at
fine time granularities, independently at every memory channel
and blacklists an application at a channel only when it is
generating a number of consecutive requests (i.e., potentially
causing interference to other applications).
7.8 Evaluation of Row Hit Based Blacklisting

BLISS, by virtue of restricting the number of consecutive
requests that are served from an application, attempts to mit-
igate the interference caused by both high-memory-intensity
and high- row-buffer-locality applications. In this section, we
attempt to isolate the benefits from restricting consecutive row-
buffer hitting requests vs. non-row-buffer hitting requests. To
this end, we evaluate the performance and fairness benefits of
a mechanism that places an application in the blacklist when a
certain number of row-buffer hitting requests (N) to the same
row have been served for an application (we call this FRFCFS-
Cap-Blacklisting as the scheduler essentially is FRFCFS-Cap
with blacklisting). We use an N value of 4 in our evaluations.

Figure [13] compares the system performance and fairness
of BLISS with FRFCFS-Cap-Blacklisting. We make three
major observations. First, FRFCFS-Cap-Blacklisting has sim-
ilar system performance as BLISS. On further analysis of
individual workloads, we find that FRFCFS-Cap-Blacklisting

10

ference is offset by the performance improvement of high-
memory-intensity applications that are not blacklisted. Second,
FRFCFS-Cap-Blacklisting has higher unfairness (higher max-
imum slowdown and lower harmonic speedup) than BLISS.
This is because the high-memory-intensity applications that
are not blacklisted are prioritized over the blacklisted high-
row-buffer-locality applications, thereby interfering with and
slowing down the high- row-buffer-locality applications sig-
nificantly. Third, FRFCFS-Cap-Blacklisting requires a per-
bank counter to count and cap the number of row-buffer hits,
whereas BLISS needs only one counter per-channel to count
the number of consecutive requests from the same application.
Therefore, we conclude that BLISS is more effective in miti-
gating unfairness while incurring lower hardware cost, than the
FRFCFS-Cap-Blacklisting scheduler that we build combining
principles from FRFCFS-Cap and BLISS.
7.9 Comparison with Criticality-Aware Scheduling
We compare the system performance and fairness of BLISS
with those of criticality-aware memory schedulers [[10]. The
basic idea behind criticality-aware memory scheduling is to
prioritize memory requests from load instructions that have
stalled the instruction window for long periods of time in
the past. Ghose et al. [[10] evaluate prioritizing load requests
based on both maximum stall time (Crit-MaxStall) and total
stall time (Crit-TotalStall) caused by load instructions in the
past. Figure [T4] shows the system performance and fairness
of BLISS and the criticality-aware scheduling mechanisms,
normalized to FRFCFS, across 40 workloads. Two obser-
vations are in order. First, BLISS significantly outperforms
criticality-aware scheduling mechanisms in terms of both sys-
tem performance and fairness. This is because the criticality-
aware scheduling mechanisms unfairly deprioritize and slow
down low-memory-intensity applications that inherently gen-
erate fewer requests, since stall times tend to be low for
such applications. Second, criticality-aware scheduling incurs
hardware cost to prioritize requests with higher stall times.
Specifically, the number of bits to represent stall times is on
the order of 12-14, as described in [10]. Hence, the logic for
comparing stall times and prioritizing requests with higher
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stall times would incur even higher cost than per-application
ranking mechanisms where the number of bits to represent a
core’s rank grows only as as loga NumberO fCores (e.g. 5
bits for a 32-core system). Therefore, we conclude that BLISS
achieves significantly better system performance and fairness,

while incurring lower hardware cost.
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7.10 Effect of Workload Memory Intensity and Row-

buffer Locality

In this section, we study the impact of workload memory
intensity and row-buffer locality on performance and fairness
of BLISS and five previous schedulers.
Workload Memory Intensity. Figure shows system per-
formance and fairness for workloads with different memory
intensities, classified into different categories based on the
fraction of high-memory-intensity applications in a workloadﬁ
We draw three major conclusions. First, BLISS outperforms
previous memory schedulers in terms of system performance
across all intensity categories. Second, the system performance
benefits of BLISS increase with workload memory intensity.
This is because as the number of high-memory-intensity ap-
plications in a workload increases, ranking individual applica-
tions, as done by previous schedulers, causes more unfairness
and degrades system performance. Third, BLISS achieves
significantly lower unfairness than previous memory sched-
ulers, except FRFCFS-Cap and PARBS, across all intensity
categories. Therefore, we conclude that BLISS is effective in
mitigating interference and improving system performance and
fairness across workloads with different compositions of high-
and low-memory-intensity applications.
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Fig. 15: Sensitivity to workload memory intensity
Workload Row-buffer Locality. Figure [I6] shows the system
performance and fairness of five previous schedulers and
BLISS when the number of high row-buffer locality applica-
tions in a workload is varied[’] We draw three observations.
First, BLISS achieves the best performance and close to
the best fairness in most row-buffer locality categories. Sec-
ond, BLISS’ performance and fairness benefits over baseline
FRFCEFS increase as the number of high-row-buffer-locality
applications in a workload increases. As the number of high-
row-buffer-locality applications in a workload increases, there
is more interference to the low-row-buffer-locality applications

8. We classify applications with MPKI less than 5 as low-memory-intensity
and the rest as high-memory-intensity.

9. We classify an application as having high row-buffer locality if its row-
buffer hit rate is greater than 90%.
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that are vulnerable. Hence, there is more opportunity for
BLISS to mitigate this interference and improve performance
and fairness. Third, when all applications in a workload have
high row-buffer locality (100%), the performance and fairness
improvements of BLISS over baseline FRFCFS are a bit
lower than the other categories. This is because, when all
applications have high row-buffer locality, they each hog the
row-buffer in turn and are not as susceptible to interference
as the other categories in which there are vulnerable low-row-
buffer-locality applications. However, the performance/fairness
benefits of BLISS are still significant since BLISS is effective
in regulating how the row-buffer is shared among different
applications. Overall, we conclude that BLISS is effective
in achieving high performance and fairness across workloads
with different compositions of high- and low-row-buffer-
locality applications.
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7.11 Sensitivity to System Parameters

Core and channel count. Figures [17| and [18| show the system
performance and fairness of FRFCFS, PARBS, TCM and
BLISS for different core counts (when the channel count
is 4) and different channel counts (when the core count is
24), across 40 workloads for each core/channel count. The
numbers over the bars indicate percentage increase or decrease
compared to FRFCFS. We did not optimize the parameters
of different schedulers for each configuration as this requires
months of simulation time. We draw three major conclusions.
First, the absolute values of weighted speedup increases with
increasing core/channel count, whereas the absolute values
of maximum slowdown increase/decrease with increasing
core/channel count respectively, as expected. Second, BLISS
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achieves higher system performance and lower unfairness than
all the other scheduling policies (except PARBS, in terms
of fairness) similar to our results on the 24-core, 4-channel
system, by virtue of its effective interference mitigation. The
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only anomaly is that TCM has marginally higher weighted
speedup than BLISS for the 64-core system. However, this
increase comes at the cost of significant increase in unfairness.
Third, BLISS’ system performance benefit (as indicated by the
percentages on top of bars, over FRFCFS) increases when the
system becomes more bandwidth constrained, i.e., high core
counts and low channel counts. As contention increases in the
system, BLISS has greater opportunity to mitigate it@]
Cache size. Figure [I9] shows the system performance and
fairness for five previous schedulers and BLISS with different
last level cache sizes (private to each core).

FRFCFS ATLAS mmmm FRFCFS C—— ATLAS mmm
FRFCFS-Cap == — FRFCFS-Cap ===1 —
PARBS mmmm BLISS mmmmm PARBS mmmm BLISS mmmmm

Weighted Speedup
Maximum Slowdown

Fig. 19: Sensitivity to cache size

We make two observations. First, the absolute values of
weighted speedup increase and maximum slowdown decrease,
as the cache size becomes larger for all schedulers, as ex-
pected. This is because contention for memory bandwidth re-
duces with increasing cache capacity, improving performance
and fairness. Second, across all the cache capacity points
we evaluate, BLISS achieves significant performance and
fairness benefits over the best-performing previous schedulers,
while approaching close to the fairness of the fairest previous
schedulers.
Shared Caches. Figure shows system performance and
fairness with a 32 MB shared cache (instead of the 512 KB
per core private caches used in our other experiments). BLISS
achieves 5%/24% better performance/fairness compared to
TCM, demonstrating that BLISS is effective in mitigating
memory interference in the presence of large shared caches
as well.
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Fig. 20: Performance and fairness with a shared cache
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7.12 Sensitivity to Algorithm Parameters

Tables [3] and [] show the system performance and fairness
respectively of BLISS for different values of the Blacklisting
Threshold and Clearing Interval. Three major conclusions are
in order. First, a Clearing Interval of 10000 cycles provides
a good balance between performance and fairness. If the
blacklist is cleared too frequently (1000 cycles), interference-
causing applications are not deprioritized for long enough, re-
sulting in low system performance. In contrast, if the blacklist
is cleared too infrequently, interference-causing applications
are deprioritized for too long, resulting in high unfairness.
Second, a Blacklisting Threshold of 4 provides a good balance

10. Fairness benefits reduce at very high core counts and very low channel
counts, since memory bandwidth becomes highly saturated.

between performance and fairness. When Blacklisting Thresh-
old is very small, applications are blacklisted as soon as they
have very few requests served, resulting in poor interference
mitigation as too many applications are blacklisted. On the
other hand, when Blacklisting Threshold is large, low- and
high-memory-intensity applications are not segregated effec-
tively, leading to high unfairness.

Interval
Threshold 1000 | 10000 | 100000
2 876 | 8.66 795
4 8.61 9.18 8.60
8 842 | 9.05 924
TABLE 3: Perf. sensitivity to threshold and interval
Interval
Threshold 1000 | 10000 | 100000
2 6.07 | 6.4 778
4 6.03 6.54 7.01
3 6.02 | 7.39 7.29

TABLE 4: Unfairness sensitivity to threshold and interval
7.13 Interleaving and Scheduling Interaction

In this section, we study the impact of the address inter-

leaving policy on the performance and fairness of different
schedulers. Our analysis so far has assumed a row-interleaved
policy, where data is distributed across channels, banks and
rows at the granularity of a row. This policy optimizes for
row-buffer locality by mapping a consecutive row of data to
the same channel, bank, rank. In this section, we will consider
two other interleaving policies, cache block interleaving and
sub-row interleaving.
Interaction with cache block interleaving. In a cache-block-
interleaved system, data is striped across channels, banks and
ranks at the granularity of a cache block. Such a policy
optimizes for bank level parallelism, by distributing data at
a small (cache block) granularity across channels, banks and
ranks.

Figure shows the system performance and fairness of
FRFCFS with row interleaving (FRFCFS-Row), as a compar-
ison point, five previous schedulers, and BLISS with cache
block interleaving. We draw three observations. First, system
performance and fairness of the baseline FRFCFS scheduler
improve significantly with cache block interleaving, compared
to with row interleaving. This is because cache block in-
terleaving enables more requests to be served in parallel at
the different channels and banks, by distributing data across
channels and banks at the small granularity of a cache block.
Hence, most applications, and particularly, applications that
do not have very high row-buffer locality benefit from cache
block interleaving.

FRFCFS-Row ——1 FRFCFS-Row ——1
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FRFCFS-Cap mmmmm BLISS mmm—m FRFCFS-Cap mmmmm BLISS
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Fig. 21: Scheduling and cache block interleaving
Second, as expected, application-aware schedulers such
as ATLAS and TCM achieve the best performance among
previous schedulers, by means of prioritizing requests of
applications with low memory intensities. However, PARBS
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and FRFCFS-Cap do not improve fairness over the baseline,
in contrast to our results with row interleaving. This is because
cache block interleaving already attempts to provide fairness
by increasing the parallelism in the system and enabling
more requests from across different applications to be served
in parallel, thereby reducing unfair applications slowdowns.
More specifically, requests that would be row-buffer hits to the
same bank, with row interleaving, are now distributed across
multiple channels and banks, with cache block interleaving.
Hence, applications’ propensity to cause interference reduces,
providing lower scope for request capping based schedulers
such as FRFCFS-Cap and PARBS to mitigate interference.
Third, BLISS achieves within 1.3% of the performance of the
best performing previous scheduler (ATLAS), while achiev-
ing 6.2% better fairness than the fairest previous scheduler
(PARBS). BLISS effectively mitigates interference by regu-
lating the number of consecutive requests served from high-
memory-intensity applications that generate a large number of
requests, thereby achieving high performance and fairness.
Interaction with sub-row interleaving. While memory
scheduling has been a prevalent approach to mitigate memory
interference, previous work has also proposed other solutions,
as we describe in Section One such previous work by
Kaseridis et al. [14] proposes minimalist open page, an inter-
leaving policy that distributes data across channels, ranks and
banks at the granularity of a sub-row (partial row), rather than
an entire row, exploiting both row-buffer locality and bank-
level parallelism. We examine BLISS’ interaction with such a
sub-row interleaving policy.

Figure shows the system performance and fairness of
FRFCFS with row interleaving (FRFCFS-Row), FRFCFS with
cache block interleaving (FRFCFS-Block) and five previously
proposed schedulers and BLISS, with sub-row interleaving
(when data is striped across channels, ranks and banks at the
granularity of four cache blocks). Three observations are in
order. First, sub-row interleaving provides significant benefits
over row interleaving, as can be observed for FRFCFS (and
other scheduling policies by comparing with Figure [). This
is because sub-row interleaving enables applications to exploit
both row-buffer locality and bank-level parallelism, unlike
row interleaving that is mainly focused on exploiting row-
buffer locality. Second, sub-row interleaving achieves similar
performance and fairness as cache block interleaving. We
observe that this is because cache block interleaving enables
applications to exploit parallelism effectively, which makes up
for the lost row-buffer locality from distributing data at the
granularity of a cache block across all channels and banks.
Third, BLISS achieves close to the performance (within 1.5%)
of the best performing previous scheduler (TCM), while reduc-
ing unfairness significantly and approaching the fairness of the
fairest previous schedulers. One thing to note is that BLISS has
higher unfairness than FRFCFS, when a sub-row-interleaved
policy is employed. This is because the capping decisions from
sub-row interleaving and BLISS could collectively restrict
high-row-buffer locality applications to a large degree, thereby
slowing them down and causing higher unfairness. Co-design
of the scheduling and interleaving policies to achieve different
goals such as performance/fairness is an important area of
future research. We conclude that a BLISS-like scheduler, with
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its high performance and low complexity is a significantly
better alternative to schedulers such as ATLAS/TCM in the
pursuit of such scheduling-interleaving policy co-design.

FRFCFS-Row ———1 PARBS mm— FRFCFS-Row C——1 PARBS mmmm
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Fig. 22: Scheduling and sub-row interleaving

8 RELATED WORK

To our knowledge, BLISS is the first memory scheduler
design that attempts to optimize, at the same time, for high
performance, fairness and low complexity, which are three
competing yet important goals. The closest previous works to
BLISS are other memory schedulers. We have already com-
pared BLISS both qualitatively and quantitatively to previously
proposed memory schedulers, FRFCES [35, [50], PARBS [31}
28], ATLAS [17], TCM [18] and criticality-aware memory
scheduling [10]], which have been designed to mitigate inter-
ference in a multicore system. Other previous schedulers [27,
30, 132] have been proposed earlier that PARBS, ATLAS and
TCM have been shown to outperform [31} [17, [18].

Parallel Application Memory Scheduling (PAMS) [8] tack-
les the problem of mitigating interference between different
threads of a multithreaded application, while Staged Mem-
ory Scheduling (SMS) [2] attempts to mitigate interference
between the CPU and GPU in CPU-GPU systems. Princi-
ples from BLISS can be employed in both of these con-
texts to identify and deprioritize interference-causing threads,
thereby mitigating interference experienced by vulnerable
threads/applications. FIRM [48]] proposes request scheduling
mechanisms to tackle the problem of heavy write traffic in
persistent memory systems. BLISS can be combined with
FIRM’s write handling mechanisms to achieve better fairness
in persistent memory systems. Complexity effective memory
access scheduling [47] attempts to achieve the performance
of FRFCFS using a First Come First Served scheduler in
GPU systems, by preventing row-buffer locality from being
destroyed when data is transmitted over the on-chip network.
Their proposal is complementary to ours. BLISS could be
combined with such a scheduler design to prevent threads from
hogging the row-buffer and banks.

While memory scheduling is a major solution direction
towards mitigating interference, previous works have also
explored other approaches such as address interleaving [14],
memory bank/channel partitioning [29, |13, 22 46|, source
throttling [[7, 43} [3] |4, 34} |33} [15] and thread scheduling [49}
42, 15, |45]] to mitigate interference.

Subrow Interleaving: Kaseridis et al. [14] propose minimalist
open page, a data mapping policy that interleaves data at the
granularity of a sub-row across channels and banks such that
applications with high row-buffer locality are prevented from
hogging the row buffer, while still preserving some amount of
row-buffer-locality. We study the interactions of BLISS with
minimalist open page in Section showing BLISS’ benefits
on a sub-row interleaved memory system.

Memory Channel/Bank Partitioning: Previous works [29]
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13122, 146] propose techniques to mitigate inter-application in-
terference by partitioning channels/banks among applications
such that the data of interfering applications are mapped to
different channels/banks. Our approach is complementary to
these schemes and can be used in conjunction with them to
achieve more effective interference mitigation.

Source Throttling: Source throttling techniques (e.g., [7)
43 130 14, 134 33| [15]) propose to throttle the memory re-
quest injection rates of interference-causing applications at the
processor core itself rather than regulating an application’s
access behavior at the memory, unlike memory scheduling,
partitioning or interleaving. BLISS is complementary to source
throttling and can be combined with it to achieve better
interference mitigation.

OS Thread Scheduling: Previous works [49, 42 |45] pro-
pose to mitigate shared resource contention by co-scheduling
threads that interact well and interfere less at the shared
resources. Such a solution relies on the presence of enough
threads with such symbiotic properties, whereas our proposal
can mitigate memory interference even if interfering threads
are co-scheduled. Furthermore, such thread scheduling policies
and BLISS can be combined in a synergistic manner to further
improve system performance and fairness. Other techniques
to map applications to cores to mitigate memory interference,
such as [5]], can be combined with BLISS.

9 CONCLUSION

We introduce the Blacklisting memory scheduler (BLISS),
a new and simple approach to memory scheduling in
systems with multiple threads. We observe that the per-
application ranking mechanisms employed by previously pro-
posed application-aware memory schedulers incur high hard-
ware cost, cause high unfairness, and lead to high scheduling
latency to the point that the scheduler cannot meet the fast
command scheduling requirements of state-of-the-art DDR
protocols. BLISS overcomes these problems based on the
key observation that it is sufficient to group applications into
only two groups, rather than employing a total rank order
among all applications. Our evaluations across a variety of
workloads and systems demonstrate that BLISS has better
system performance and fairness than previously proposed
ranking-based schedulers, while incurring significantly lower
hardware cost and latency in making scheduling decisions.
We conclude that BLISS, with its low complexity, high system
performance and high fairness, can be an efficient and effective
memory scheduling substrate for current and future multicore
and multithreaded systems.
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