Loading [a11y]/accessibility-menu.js
CIACP: A Correlation- and Iteration- Aware Cache Partitioning Mechanism to Improve Performance of Multiple Coarse-Grained Reconfigurable Arrays | IEEE Journals & Magazine | IEEE Xplore

CIACP: A Correlation- and Iteration- Aware Cache Partitioning Mechanism to Improve Performance of Multiple Coarse-Grained Reconfigurable Arrays


Abstract:

Multiple coarse-grained reconfigurable arrays (CGRA), which are organized in parallel or pipeline to complete applications, have become a productive solution to balance t...Show More

Abstract:

Multiple coarse-grained reconfigurable arrays (CGRA), which are organized in parallel or pipeline to complete applications, have become a productive solution to balance the performance with the flexibility. One of the keys to obtain high performance from multiple CGRAs is to manage the shared on-chip cache efficiently to reduce off-chip memory bandwidth requirements. Cache partitioning has been viewed as a promising technique to enhance the efficiency of a shared cache. However, the majority of prior partitioning techniques were developed for multi-core platform and aimed at multi-programmed workloads. They cannot directly address the adverse impacts of data correlation and computation imbalance among competing CGRAs in multi-CGRA platform. This paper proposes a correlation- and iteration- aware cache partitioning (CIACP) mechanism for shared cache partitioning in multiple CGRAs systems. This mechanism employs correlation monitors (CMONs) to trace the amount of overlapping data among parallel CGRAs, and iteration monitors (IMONs) to track the computation load of each CGRA. Using the information collected by CMONs and IMONs, the CIACP mechanism can eliminate redundant cache utilization of the overlapping data and can also shorten the total execution time of pipelined CGRAs. Experimental results showed that CIACP outperformed state-of-the-art utility-based cache partitioning techniques by up to 16 percent in performance.
Published in: IEEE Transactions on Parallel and Distributed Systems ( Volume: 28, Issue: 1, 01 January 2017)
Page(s): 29 - 43
Date of Publication: 14 April 2016

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.