
1

A Parallel Random Forest Algorithm for Big Data
in a Spark Cloud Computing Environment

Jianguo Chen, Kenli Li, Senior Member, IEEE , Zhuo Tang, Member, IEEE ,
Kashif Bilal, Shui Yu, Member, IEEE , Chuliang Weng, Member, IEEE , and Keqin Li, Fellow, IEEE

Abstract— With the emergence of the big data age, the issue of how to obtain valuable knowledge from a dataset efficiently and
accurately has attracted increasingly attention from both academia and industry. This paper presents a Parallel Random Forest (PRF)
algorithm for big data on the Apache Spark platform. The PRF algorithm is optimized based on a hybrid approach combining data-parallel
and task-parallel optimization. From the perspective of data-parallel optimization, a vertical data-partitioning method is performed to
reduce the data communication cost effectively, and a data-multiplexing method is performed is performed to allow the training dataset
to be reused and diminish the volume of data. From the perspective of task-parallel optimization, a dual parallel approach is carried out in
the training process of RF, and a task Directed Acyclic Graph (DAG) is created according to the parallel training process of PRF and the
dependence of the Resilient Distributed Datasets (RDD) objects. Then, different task schedulers are invoked for the tasks in the DAG.
Moreover, to improve the algorithm’s accuracy for large, high-dimensional, and noisy data, we perform a dimension-reduction approach
in the training process and a weighted voting approach in the prediction process prior to parallelization. Extensive experimental results
indicate the superiority and notable advantages of the PRF algorithm over the relevant algorithms implemented by Spark MLlib and
other studies in terms of the classification accuracy, performance, and scalability.

Index Terms—Apache Spark, Big Data, Cloud Computing, Data Parallel, Random Forest, Task Parallel.

F

1 INTRODUCTION

1.1 Motivation

W ITH the continuous emergence of a variety of new
information dissemination methods, and the rise of

cloud computing and Internet of Things (IoT) technologies,
data increase constantly with a high speed. The scale of
global data continuously increases at a rate of 2 times every
two years [1]. The application value of data in every field
is becoming more important than ever. There exists a large
amount of worthwhile information in available data.

The emergence of the big data age also poses serious
problems and challenges besides the obvious benefits. Be-
cause of business demands and competitive pressure, al-
most every business has a high demand for data processing
in real-time and validity [2]. As a result, the first problem
is how to mine valuable information from massive data
efficiently and accurately. At the same time, big data hold
characteristics such as high dimensionality, complexity, and
noise. Enormous data often hold properties found in various
input variables in hundreds or thousands of levels, while

• Jianguo Chen, Kenli Li, Zhuo Tang, and Keqin Li are with the College of
Computer Science and Electronic Engineering, Hunan University, and
the National Supercomputing Center in Changsha, Hunan, Changsha
410082, China.
Corresponding author: Kenli Li, Email: lkl@hnu.edu.cn.

• Kashif Bilal is with the Qatar University,Doha 2713, Qatar, and the
Comsats Institute of Information Technology, Islamabad 45550, Pakistan.

• Shui Yu is with the School of Information Technology, Deakin University,
Melbourne, Vic.3216, Australia.

• Chuliang Weng is with the School of Computer Science and Software
Engineering, Institute for Data Science and Engineering, East China
Normal University, Shanghai 200241, China.

• Keqin Li is also with the Department of Computer Science, State Univer-
sity of New York, New Paltz, NY 12561, USA.

each one of them may contain a little information. The
second problem is to choose appropriate techniques that
may lead to good classification performance for a high-
dimensional dataset. Considering the aforementioned facts,
data mining and analysis for large-scale data have become
a hot topic in academia and industrial research.

The speed of data mining and analysis for large-scale
data has also attracted much attention from both academia
and industry. Studies on distributed and parallel data min-
ing based on cloud computing platforms have achieved
abundant favorable achievements [3, 4]. Hadoop [5] is a
famous cloud platform widely used in data mining. In [6, 7],
some machine learning algorithms were proposed based on
the MapReduce model. However, when these algorithms
are implemented based on MapReduce, the intermediate
results gained in each iteration are written to the Hadoop
Distributed File System (HDFS) and loaded from it. This
costs much time for disk I/O operations and also massive
resources for communication and storage. Apache Spark
[8] is another good cloud platform that is suitable for data
mining. In comparison with Hadoop, a Resilient Distributed
Datasets (RDD) model and a Directed Acyclic Graph (DAG)
model built on a memory computing framework is sup-
ported for Spark. It allows us to store a data cache in
memory and to perform computation and iteration for the
same data directly from memory. The Spark platform saves
huge amounts of disk I/O operation time. Therefore, it is
more suitable for data mining with iterative computation.

The Random Forest (RF) algorithm [9] is a suitable data
mining algorithm for big data. It is an ensemble learning
algorithm using feature sub-space to construct the model.
Moreover, all decision trees can be trained concurrently,
hence it is also suitable for parallelization.

ar
X

iv
:1

81
0.

07
74

8v
1

 [
cs

.D
C

]
 1

7
O

ct
 2

01
8

2

1.2 Our Contributions
In this paper, we propose a Parallel Random Forest (PRF)
algorithm for big data that is implemented on the Apache
Spark platform. The PRF algorithm is optimized based on a
hybrid approach combining data-parallel and task-parallel
optimization. To improve the classification accuracy of PRF,
an optimization is proposed prior to the parallel process.
Extensive experiment results indicate the superiority of PRF
and depict its significant advantages over other algorithms
in terms of the classification accuracy and performance. Our
contributions in this paper are summarized as follows.

• An optimization approach is proposed to improve
the accuracy of PRF, which includes a dimension-
reduction approach in the training process and a
weighted voting method in the prediction process.

• A hybrid parallel approach of PRF is utilized to
improve the performance of the algorithm, com-
bining data-parallel and task-parallel optimization.
In the data-parallel optimization, a vertical data-
partitioning method and a data-multiplexing method
are performed.

• Based on the data-parallel optimization, a task-
parallel optimization is proposed and implemented
on Spark. A training task DAG of PRF is constructed
based on the RDD model, and different task sched-
ulers are invoked to perform the tasks in the DAG.
The performance of PRF is improved noticeably.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 gives the RF algorithm
optimization from two aspects. The parallel implementation
of the RF algorithm on Spark is developed in Section 4.
Experimental results and evaluations are shown in Section 5
with respect to the classification accuracy and performance.
Finally, Section 6 presents a conclusion and future work.

2 RELATED WORK

Although traditional data processing techniques have
achieved good performance for small-scale and low-
dimensional datasets, they are difficult to be applied to
large-scale data efficiently [10–12]. When a dataset becomes
more complex with characteristics of a complex structure,
high dimensionality, and a large size, the accuracy and
performance of traditional data mining algorithms are sig-
nificantly declined [13].

Due to the need to address the high-dimensional and
noisy data, various improvement methods have been in-
troduced by researchers. Xu [14] proposed a dimension-
reduction method for the registration of high-dimensional
data. The method combines datasets to obtain an image
pair with a detailed texture and results in improved image
registration. Tao et al. [15] and Lin et al. [16] introduced
some classification algorithms for high-dimensional data to
address the issue of dimension-reduction. These algorithms
use multiple kernel learning framework and multilevel
maximum margin features and achieve efficient dimension-
ality reduction in binary classification problems. Strobl [17]
and Bernard [18] studied the variable importance measures
of RF and proposed some improved models for it. Taghi et
al. [19] compared the boosting and bagging techniques and

proposed an algorithm for noisy and imbalanced data. Yu
et al. [20] and Biau [21] focused on RF for high-dimensional
and noisy data and applied RF in many applications such
as multi-class action detection and facial feature detection,
and achieved a good effort. Based on the existing research
results, we propose a new optimization approach in this
paper to address the problem of high-dimensional and noisy
data, which reduces the dimensionality of the data accord-
ing to the structure of the RF and improves the algorithm’s
accuracy with a low computational cost.

Focusing on the performance of classification algorithms
for large-scale data, numerous studies on the intersection
of parallel/distributed computing and the learning of tree
models were proposed. Basilico et al. [22] proposed a
COMET algorithm based on MapReduce, in which multiple
RF ensembles are built on distributed blocks of data. Svore
et al. [23] proposed a boosted decision tree ranking algo-
rithm, which addresses the speed and memory constraints
by distributed computing. Panda et al. [24] introduced a
scalable distributed framework based on MapReduce for
the parallel learning of tree models over large datasets. A
parallel boosted regression tree algorithm was proposed in
[25] for web search ranking, in which a novel method for
parallelizing the training of GBRT was performed based on
data partitioning and distributed computing.

Focusing on resource allocation and task-parallel exe-
cution in a parallel and distributed environment, Warneke
et al. [26] implemented a dynamic resource allocation for
efficient parallel data processing in a cloud environment.
Lena et al. [27] carried out an energy-aware scheduling of
MapReduce jobs for big data applications. Luis et al. [28]
proposed a robust resource allocation of data processing on
a heterogeneous parallel system, in which the arrival time of
datasets are uncertainty. Zhang et al. [29] proposed an evo-
lutionary scheduling of dynamic multitasking workloads
for big data analysis in an elastic cloud. Meanwhile, our
team also focused on parallel tasks scheduling on heteroge-
neous cluster and distributed systems and achieved positive
results[30, 31].

Apache Spark Mllib [32] parallelized the RF algorithm
(referred to Spark-MLRF in this paper) based on a data-
parallel optimization to improve the performance of the
algorithm. However, there exist many drawbacks in the
Spark-MLRF. First, in the stage of determining the best split
segment for continuous features, a method of sampling for
each partition of the dataset is used to reduce the data trans-
mission operations. However, the cost of this method is its
reduced accuracy. In addition, because the data-partitioning
method in Spark-MLRF is a horizontal partition, the data
communication of the feature variable gain ratio computing
is a global communication.

To improve the performance of the RF algorithm and
mitigate the data communication cost and workload imbal-
ance problems of large-scale data in parallel and distributed
environments, we propose a hybrid parallel approach for
RF combining data-parallel and task-parallel optimization
based on the Spark RDD and DAG models. In compari-
son with the existing study results, our method reduces
the volume of the training dataset without decreasing the
algorithm’s accuracy. Moreover, our method mitigates the
data communication and workload imbalance problems of

3

large-scale data in parallel and distributed environments.

3 RANDOM FOREST ALGORITHM OPTIMIZATION

Owing to the improvement of the classification accuracy for
high-dimensional and large-scale data, we propose an opti-
mization approach for the RF algorithm. First, a dimension-
reduction method is performed in the training process.
Second, a weighted voting method is constructed in the pre-
diction process. After these optimizations, the classification
accuracy of the algorithm is evidently improved.

3.1 Random Forest Algorithm
The random forest algorithm is an ensemble classifier al-
gorithm based on the decision tree model. It generates k
different training data subsets from an original dataset using
a bootstrap sampling approach, and then, k decision trees
are built by training these subsets. A random forest is finally
constructed from these decision trees. Each sample of the
testing dataset is predicted by all decision trees, and the
final classification result is returned depending on the votes
of these trees.

The original training dataset is formalized as S =
{(xi, yj), i = 1, 2, ..., N ; j = 1, 2, ...,M}, where x is a
sample and y is a feature variable of S. Namely, the orig-
inal training dataset contains N samples, and there are M
feature variables in each sample. The main process of the
construction of the RF algorithm is presented in Fig. 1.

Fig. 1. Process of the construction of the RF algorithm

The steps of the construction of the random forest algo-
rithm are as follows.

Step 1. Sampling k training subsets.
In this step, k training subsets are sampled from the

original training dataset S in a bootstrap sampling man-
ner. Namely, N records are selected from S by a random
sampling and replacement method in each sampling time.
After the current step, k training subsets are constructed as
a collection of training subsets STrain:

STrain = {S1, S2, ..., Sk}.

At the same time, the records that are not to be selected
in each sampling period are composed as an Out-Of-Bag
(OOB) dataset. In this way, k OOB sets are constructed as a
collection of SOOB :

SOOB = {OOB1, OOB2, ..., OOBk},

where k � N , Si

⋂
OOBi = φ and Si

⋃
OOBi = S. To

obtain the classification accuracy of each tree model, these
OOB sets are used as testing sets after the training process.

Step 2. Constructing each decision tree model.
In an RF model, each meta decision tree is created by

a C4.5 or CART algorithm from each training subset Si.
In the growth process of each tree, m feature variables of
dataset Si are randomly selected from M variables. In each
tree node’s splitting process, the gain ratio of each feature
variable is calculated, and the best one is chosen as the
splitting node. This splitting process is repeated until a leaf
node is generated. Finally, k decision trees are trained from
k training subsets in the same way.

Step 3. Collecting k trees into an RF model.
The k trained trees are collected into an RF model, which

is defined in Eq. (1):

H(X,Θj) =

k∑
i=1

hi(x,Θj), (j = 1, 2, ...,m), (1)

where hi(x,Θj) is a meta decision tree classifier, X are the
input feature vectors of the training dataset, and Θj is an
independent and identically distributed random vector that
determines the growth process of the tree.

3.2 Dimension Reduction for High-Dimensional Data
To improve the accuracy of the RF algorithm for the high-
dimensional data, we present a new dimension-reduction
method to reduce the number of dimensions according
to the importance of the feature variables. In the training
process of each decision tree, the Gain Ratio (GR) of each
feature variable of the training subset is calculated and
sorted in descending order. The top k variables (k � M)
in the ordered list are selected as the principal variables,
and then, we randomly select (m − k) further variables
from the remaining (M − k) ones. Therefore, the number
of dimensions of the dataset is reduced from M to m. The
process of dimension-reduction is presented in Fig. 2.

Fig. 2. Dimension-reduction in the training process

First, in the training process of each decision tree, the
entropy of each feature variable is calculated prior to the
node-splitting process. The entropy of the target variable in
the training subset Si (i = 1, 2, ..., k) is defined in Eq. (2):

Entropy(Si) =

c1∑
a=1

−pa log pa, (2)

4

where c1 is the number of different values of the target
variable in Si, and pa is the probability of the type of value
a within all types in the target variable subset.

Second, the entropy for each input variable of Si, except
for the target variable, is calculated. The entropy of each
input variable yij is defined in Eq. (3):

Entropy(yij) =
∑

v∈V (yij)

|S(v,i)|
|Si|

Entropy(v(yij)), (3)

where the elements of Eq. (3) are described in Table 1.

TABLE 1
Explanation of the elements of Eq. (3)

Element Description
yij the j-th feature variable of Si, j = 1, 2, ...,M .

V (yij) the set of all possible values of yij .
|Si| the number of samples in Si.
S(v,i) a sample subset in Si, where the value of yj is v.
|S(v,i)| the number of the sample subset S(v,i).

Third, the self-split information I(yij) of each input
variable is calculated, as defined in Eq. (4):

I(yij) =

c2∑
a=1

−p(a,j) log2(p(a,j)), (4)

where c2 is the number of different values of yij , and p(a,j)
is the probability of the type of value a within all types
in variable yj . Then, the information gain of each feature
variable is calculated, as defined in Eq. (5):

G(yij) =Entropy(Si)− Entropy(yij)

=Entropy(Si)

−
∑

v∈V (yij)

|S(v,i)|
|Si|

Entropy(v(yij)),
(5)

where v(yj) ∈ V (yj).
By using the information gain to measure the feature

variables, the largest value is selected easily, but it will lead
to an over fitting problem. To overcome this problem, a gain
ratio value is taken to measure the feature variables, and
the features with the maximum value are selected. The gain
ratio of the feature variable yij is defined in Eq. (6):

GR(yij) =
G(yij)

I(yij)
. (6)

To reduce the dimensions of the training dataset, we
calculate the importance of each feature variable according
to the gain ratio of the variable. Then, we select the most
important features and delete the ones with less importance.
The importance of each feature variable is defined as fol-
lows.

Definition 1. The importance of each feature variable in
a training subset refers to the portion of the gain ratio of the
feature variable compared with the total feature variables.
The importance of feature variable yij is defined as V I(yij)
in Eq. (7):

V I(yij) =
GR(yij)∑M

(a=1)GR(y(i,a))
. (7)

The importance values of all feature variables are sorted
in descending order, and the top k (k � M,k < m) values
are selected as the most important. We then randomly select
(m− k) further feature variables from the remaining (M −
k) ones. Thus, the number of dimensions of the dataset is
reduced from M to m. Taking the training subset Si as an
example, the detailed steps of the dimension-reduction in
the training process are presented in Algorithm 3.1.

Algorithm 3.1 Dimension-reduction in the training process
Input:

Si: the ith training subset;
k: the number of important variables selected by V I ;
m: the number of the selected feature variables.

Output:
Fi: a set of m important feature variables of Si.

1: create an empty string array Fi;
2: calculate Entropy(Si) for the target feature variable;
3: for each feature variable yij in Si do
4: calculate Entropy(yij) for each input feature variable;
5: calculate gain G(yij)← Entropy(Si)− Entropy(yij);
6: calculate split information I(yij) ←∑c2

a=1−p(a,j) log2(p(a,j));
7: calculate gain ratio GR(yij)← G(yij)

I(yij)
;

8: end for
9: calculate variable importance V I(yij) ← GR(yij)∑M

(a=1)
GR(y(i,a))

for feature variable yij ;
10: sort M feature variables in descending order by V I(yij);
11: put top k feature variables to Fi[0, ..., k − 1];
12: set c← 0;
13: for j = k to M − 1 do
14: while c < (m− k) do
15: select yij from (M − k) randomly;
16: put yij to Fi[k + c];
17: c← c+ 1;
18: end while
19: end for
20: return Fi.

In comparison with the original RF algorithm, our
dimension-reduction method ensures that the m selected
feature variables are optimal while maintaining the same
computational complexity as the original algorithm. This
balances the accuracy and diversity of the feature selection
ensemble of the RF algorithm and prevents the problem of
classification over fitting.

3.3 Weighted Voting Method
In the prediction and voting process, the original RF algo-
rithm uses a traditional direct voting method. In this case, if
the RF model contains noisy decision trees, it likely leads to
a classification or regression error for the testing dataset.
Consequently, its accuracy is decreased. To address this
problem, a weighted voting approach is proposed in this
section to improve the classification accuracy for the testing
dataset. The accuracy of the classification or regression of
each tree is regarded as the voting weight of the tree.

After the training process, each OOB set OOBi is tested
by its corresponding trained tree hi. Then, the classification
accuracy CAi of each decision tree hi is computed.

5

Definition 2. The classification accuracy of a decision
tree is defined as the ratio of the average number of votes
in the correct classes to that in all classes, including error
classes, as classified by the trained decision tree. The classi-
fication accuracy is defined in Eq. (8):

CAi =
I(hi(x) = y)

I(hi(x) = y) +
∑
I(hi(x) = z)

, (8)

where I(·) is an indicator function, y is a value in the correct
class, and z is a value in the error class (z 6= y).

In the prediction process, each record of the testing
dataset X is predicted by all decision trees in the RF model,
and then, a final vote result is obtained for the testing record.
When the target variable of X is quantitative data, the RF is
trained as a regression model. The result of the prediction is
the average value of k trees. The weighted regression result
Hr(X) of X is defined in Eq. (9):

Hr(X) =
1

k

k∑
i=1

[wi × hi(x)]

=
1

k

k∑
i=1

[CAi × hi(x)],

(9)

where wi is the voting weight of the decision tree hi.
Similarly, when the target feature of X is qualitative

data, the RF is trained as a classification model. The result of
the prediction is the majority vote of the classification results
of k trees. The weighted classification result Hc(X) of X is
defined in Eq. (10):

Hc(X) = Majorityki=1[wi × hi(x)]

= Majorityki=1[CAi × hi(x)].
(10)

The steps of the weighted voting method in the predic-
tion process are described in Algorithm 3.2.

Algorithm 3.2 Weighted voting in the prediction process
Input:

X : a testing dataset;
PRFtrained: the trained PRF model.

Output:
H(X): the final prediction result for X .

1: for each testing data x in X do
2: for each decision tree Ti in PRFtrained do
3: predict the classification or regression result hi(x) by

Ti;
4: end for
5: end for
6: set classification accuracy CAi as the weight wi of Ti;
7: for each testing data x in X do
8: if (operation type == classification) then
9: vote the final result Hc(x)←Majorityk

i=1[wi × hi(x)];

10: H(X)← Hc(x);
11: else if (operation type == regression) then
12: vote the final result Hr(x)← 1

k

∑k
i=1 [wi × hi(x)];

13: H(X)← Hr(x);
14: end if
15: end for
16: return H(X).

In the weighted voting method of RF, each tree classifier
corresponds to a specified reasonable weight for voting on

the testing data. Hence, this improves the overall classifica-
tion accuracy of RF and reduces the generalization error.

3.4 Computational Complexity
The computational complexity of the original RF algorithm
is O(kMN logN), where k is the number of decision trees
in RF, M is the number of features, N is the number of
samples, and logN is the average depth of all tree models.
In our improved PRF algorithm with dimension-reduction
(PRF-DR) described in Section 3, the time complexity of the
dimension reduction is O(MN). The computational com-
plexity of the splitting process for each tree node is set as one
unit (1), which contains functions such as entropy(), gain(),
and gainratio() for each feature subspace. After the dimen-
sion reduction, the number of features is reduced from M
to m (m�M). Therefore, the computational complexity of
training a meta tree classifier is O(MN + mN logN), and
the total computational complexity of the PRF-DR algorithm
is O(k(MN +mN logN)).

4 PARALLELIZATION OF THE RANDOM FOREST
ALGORITHM ON SPARK

To improve the performance of the RF algorithm and miti-
gate the data communication cost and workload imbalance
problems of large-scale data in a parallel and distributed en-
vironment, we propose a Parallel Random Forest (PRF) algo-
rithm on Spark. The PRF algorithm is optimized based on a
hybrid parallel approach combining data-parallel and task-
parallel optimization. From the perspective of data-parallel
optimization, a vertical data-partitioning method and a
data-multiplexing method are performed. These methods
reduce the volume of data and the number of data trans-
mission operations in the distributed environment without
reducing the accuracy of the algorithm. From the perspec-
tive of task-parallel optimization, a dual-parallel approach
is carried out in the training process of the PRF algorithm,
and a task DAG is created according to the dependence
of the RDD objects. Then, different task schedulers are
invoked to perform the tasks in the DAG. The dual-parallel
training approach maximizes the parallelization of PRF and
improves the performance of PRF. Then task schedulers
further minimize the data communication cost among the
Spark cluster and achieve a better workload balance.

4.1 Data-Parallel Optimization
We introduce the data-parallel optimization of the PRF
algorithm, which includes a vertical data-partitioning and
a data-multiplexing approach. First, taking advantage of
the RF algorithm’s natural independence of feature vari-
ables and the resource requirements of computing tasks,
a vertical data-partitioning method is proposed for the
training dataset. The training dataset is split into several
feature subsets, and each feature subset is allocated to the
Spark cluster in a static data allocation way. Second, to
address the problem that the data volume increases linearly
with the increase in the scale of RF, we present a data-
multiplexing method for PRF by modifying the traditional
sampling method. Notably, our data-parallel optimization
method reduces the volume of data and the number of data

6

transmission operations without reducing the accuracy of
the algorithm. The increase in the scale of the PRF does not
lead to a change in the data size and storage location.

4.1.1 Vertical Data Partitioning
In the training process of PRF, the gain-ratio computing
tasks of each feature variable take up most of the training
time. However, these tasks only require the data of the
current feature variable and the target feature variable.
Therefore, to reduce the volume of data and the data com-
munication cost in a distributed environment, we propose
a vertical data-partitioning approach for PRF according to
the independence of feature variables and the resource
requirements of computing tasks. The training dataset is
divided into several feature subsets.

Assume that the size of training dataset S is N and there
are M feature variables in each record. y0 ∼ yM−2 are
the input feature variables, and yM−1 is the target feature
variable. Each input feature variable yj and the variable
yM−1 of all records are selected and generated to a feature
subset FSj , which is represented as:

FSj =

< 0, y0j , y0(M−1) >,
< 1, y1j , y1(M−1) >,

...,
< i, yij , yi(M−1) >,

...,
< (N − 1), y(N−1)j , y(N−1)(M−1) >

,

where i is the index of each record of the training dataset S,
and j is the index of the current feature variable. In such a
way, S is split into (M−1) feature subsets before dimension-
reduction. Each subset is loaded as an RDD object and is
independent of the other subsets. The process of the vertical
data-partitioning is presented in Fig. 3.

Fig. 3. Process of the vertical data-partitioning method

4.1.2 Data-Multiplexing Method
To address the problem that the volume of the sampled
training dataset increases linearly with the increase in the
RF scale, we present a data-multiplexing method for PRF
by modifying the traditional sampling method. In each
sampling period, we do not copy the sampled data but
just note down their indexes into a Data-Sampling-Index
(DSI) table. Then, the DSI table is allocated to all slave
nodes together with the feature subsets. The computing

tasks in the training process of each decision tree load the
corresponding data from the same feature subset via the DSI
table. Thus, each feature subset is reused effectively, and the
volume of the training dataset will not increase any more
despite the expansion of the RF scale.

First, we create a DSI table to save the data indexes
generated in all sampling times. As mentioned in Section
3.1, the scale of a RF model is k. Namely, there are k
sampling times for the training dataset, and N data indexes
are noted down in each sampling time. An example of the
DSI table of PRF is presented in Table 2.

TABLE 2
Example of the DSI table of PRF

Data indexes of training dataset

Sa
m

pl
in

g
ti

m
es

Sample0 1 3 8 5 10 0 ...
Sample1 2 4 1 9 7 8 ...
Sample2 9 1 12 92 2 5 ...
Sample3 3 8 87 62 0 2 ...

...
Samplek−1 9 1 4 43 3 5 ...

Second, the DSI table is allocated to all slave nodes of
the Spark cluster together with all feature subsets. In the
subsequent training process, the gain-ratio computing tasks
of different trees for the same feature variable are dispatched
to the slaves where the required subset is located.

Third, each gain-ratio computing task accesses the rele-
vant data indexes from the DSI table, and obtains the feature
records from the same feature subset according to these
indexes. The process of the data-multiplexing method of
PRF is presented in Fig. 4.

Fig. 4. Process of the data-multiplexing method of PRF

In Fig. 4, each RDDFS refers to an RDD object
of a feature subset, and each TGR refers to a gain-
ratio computing task. For example, we allocate tasks
{TGR1.1, TGR1.2, TGR1.3} to Slave1 for the feature subset
RDDFS1, allocate tasks {TGR2.1, TGR2.2, TGR2.3} to Slave2
for RDDFS2, and allocate tasks {TGR3.1, TGR3.2, TGR3.3} to
Slave3 for RDDFS3. From the perspective of the decision
trees, tasks in the same slave node belong to different
trees. For example, tasks TGR1.1, TGR1.2, and TGR1.3 in the
Slave1 belong to “DecisionTree1”, “DecisionTree2”, and
“DecisionTree3”, respectively. These tasks obtain records
from the same feature subset according to the corresponding

7

indexes in DSI, and compute the gain ratio of the feature
variable for different decision trees. After that, the interme-
diate results of these tasks are submitted to the correspond-
ing subsequent tasks to build meta decision trees. Results
of the tasks {TGR1.1, TGR2.1, TGR3.1} are combined for the
tree node splitting process of “DecisionTree1”, and results
of the tasks {TGR1.2, TGR2.2, TGR3.2} are combined for that
of “DecisionTree2”.

4.1.3 Static Data Allocation

To achieve a better balance of data storage and workload,
after the vertical data-partitioning, a static data allocation
method is applied for the feature subsets. Namely, these
subsets are allocated to a distributed Spark cluster before
the training process of PRF. Moreover, because of the dif-
ference of the data type and volume of each feature subset,
the workloads of the relevant subsequent computing tasks
will be different as well. As we know, a Spark cluster is
constructed by a master node and several slave nodes. We
define our allocation function to determine each feature
subset be allocated to which nodes, and allocate each feature
subset according to its volume. There are 3 scenarios in the
data allocation scheme. Examples of the 3 scenarios of the
data allocation method are shown in Fig. 5.

Fig. 5. Example of 3 scenarios of the data allocation

In Fig. 5, (a) when the size of a feature subset is greater
than the available storage capacity of a slave node, this sub-
set is allocated to limited multiple slaves that have similar
physical locations. (b) When the size of a feature subset is
equal to the available storage capacity of a slave node, the
subset is allocated to the node. (c) When the size of a feature
subset is smaller than the available storage capacity of a
slave node, this node will accommodate multiple feature
subsets. In case (a), the data communication operations of
the subsequent gain-ratio computing tasks occur among the
slave nodes where the current feature subset is located.
These data operations are local communications but not
global communications. In cases (b) and (c), no data com-
munication operations occur among different slave nodes
in the subsequent gain-ratio computation process. The steps
of the vertical data-partitioning and static data allocation of
PRF are presented in Algorithm 4.1.

In Algorithm 4.1, RDDo is split into (M − 1) RDDFS

objects via the vertical data-partitioning function firstly.
Then, each RDDFS is allocated to slave nodes according
to its volume and the available storage capacity of the slave
nodes. To reuse the training dataset, each RDD object of the
feature subset is allocated and persisted to Spark cluster via
a dataAllocation() function and a persist() function.

Algorithm 4.1 Vertical data-partitioning and static data
allocation of PRF

Input:
RDDo: an RDD object of the original training dataset S.

Output:
LFS : a list of the indexes of each feature subset’s RDD
object and the allocated slave nodes.

1: for j = 0 to (M − 2) do
2: RDDFSj ← RDDo.map
3: < i, yij , yi(M−1) >← RDDo.verticalPartition(j);
4: end map.collect()
5: slaves← findAvailableSlaves().sortbyIP();
6: if RDDFSj .size < slaves[0].availablesize then
7: dataAllocation(RDDFSj , slaves[0]);
8: slaves[0].availablesize ← slaves[0].availablesize -

RDDFSj .size;
9: LFS ← < RDDFSj .id, slaves[0].nodeid >;

10: else
11: while RDDFSj 6= null do
12: (RDD

′
FSj , RDD

′′
FSj) ← dataPartition(RDDFSj ,

slaves[i].availablesize));
13: dataAllocation(RDD

′
FSj , slaves[i]);

14: RDD
′
FSj .persist();

15: slaves[i].availablesize ← slaves[i].availablesize -
RDD

′
FSj .size;

16: slavesids← slaves[i].nodeid;
17: RDDFSj ← RDD

′′
FSj ;

18: i← i+ 1;
19: end while
20: LFS ← < RDDFSj .id, slavesids >;
21: end if
22: end for
23: return LFS .

4.2 Task-Parallel Optimization

Each decision tree of PRF is built independent of each other,
and each sub-node of a decision tree is also split indepen-
dently. The structures of the PRF model and decision tree
model make the computing tasks have natural parallelism.
Based on the results of the data-parallel optimization, we
propose a task-parallel optimization for PRF and implement
it on Spark. A dual-parallel approach is carried out in the
training process of PRF, and a task DAG is created according
to the dual-parallel training process and the dependence of
the RDD objects. Then, different task schedulers are invoked
to perform the tasks in the DAG.

4.2.1 Parallel Training Process of PRF

In our task-parallel optimization approach, a dual-parallel
training approach is proposed in the training process of
PRF on Spark. k decision trees of the PRF model are built
in parallel at the first level of the training process. And
(M−1) feature variables in each decision tree are calculated
concurrently for tree node splitting at the second level of the
training process.

There are several computing tasks in the training process
of each decision tree of PRF. According to the required data
resources and the data communication cost, the computing
tasks are divided into two types, gain-ratio computing tasks
and node-splitting tasks, which are defined as follows.

Definition 3. Gain-ratio-computing task (TGR) is a task
set that is employed to compute the gain ratio of a feature

8

variable from the corresponding feature subset, which in-
cludes a series of calculations for each feature variable, i.e.,
the entropy, the self-split information, the information gain,
and the gain ratio. The results of TGR tasks are submitted to
the corresponding subsequent node-splitting tasks.

Definition 4. Node-splitting task (TNS) is a task set that
is employed to collect the results of the relevant TGR tasks
and split the decision tree nodes, which includes a series
of calculations for each tree node, such as determining the
best splitting variable holds the highest gain ratio value and
splitting the tree node by the variable. After the tree node
splitting, the results of TNS tasks are distributed to each
slave to begin the next stage of the PRF’s training process.

The steps of the parallel training process of the PRF
model are presented in Algorithm 4.2.

Algorithm 4.2 Parallel training process of the PRF model

Input:
k: the number of decision trees of the PRF model;
TDSI : the DSI table of PRF;
LFS : a list of the indexes of each feature subset’s RDD
object and the allocated slave nodes.

Output:
PRFtrained: the trained PRF model.

1: for i = 0 to (k − 1) do
2: for j = 0 to (M − 2) do
3: load feature subset RDDFSj ← loadData(LFS [i]);

//TGR:
4: RDD(GR,best) ← sc.parallelize(RDDFSj).map
5: load sampled data RDD(i,j) ← (TDSI [i], RDDFSj);
6: calculate the gain ratio GR(i,j) ← GR(RDD(i,j));
7: end map

//TNS :
8: RDD(GR,best).collect().sorByKey(GR).top(1);
9: for each value y(j,v) in RDD(GR,best) do

10: split tree node Nodej ←< y(j,v), V alue >;
11: append Nodej to Ti;
12: end for
13: end for
14: PRFtrained ← Ti;
15: end for
16: return PRFtrained.

According to the parallel training process of PRF and the
dependence of each RDD object, each job of the program of
PRF’s training process is split into different stages, and a
task DAG is constructed with the dependence of these job
stages. Taking a decision tree model of PRF as an example,
a task DAG of the training process is presented in Fig. 6.

There are several stages in the task DAG, which corre-
spond to the levels of the decision tree model. In stage 1,
after the dimension-reduction, (m − 1) TGR tasks (TGR1.0

∼ TGR1.(m−2)) are generated for the (m − 1) input feature
variables. These TGRs compute the gain ratio the corre-
sponding feature variable, and submit their results to TNS1.
TNS1 finds the best splitting variable and splits the first tree
node for the current decision tree model. Assuming that y0
is the best splitting variable at the current stage, and the
value of y0 is in the range of {v01, v02, v03}. Hence, the
first tree node is constructed by y0, and 3 sub-nodes are
split from the node, as shown in Fig. 6(b). After tree node
splitting, the intermediate result of TNS1 are distributed
to all slave nodes. The result includes information of the

Fig. 6. Example of the task DAG for a decision tree of PRF

splitting variable and the data index list of {v01, v02, v03}.
In stage 2, because y0 is the splitting feature, there

is no TGR task for FS0. The potential workload balance
problem of this issue will be discussed in Section 4.3.4.
New TGR tasks are generated for all other feature subsets
according to the result of TNS1. Due to the data index list
of {v01, v02, v03}, there are no more than 3 TGR tasks for
each feature subset. For example, tasks TGR2.11, TGR2.12,
and TGR2.13 calculate the data of FS1 with the indexes
corresponding to v01, v02, and v03, respectively. And the
condition is similar in tasks for FS2 ∼ FS(m−2). Then, the
results of tasks {TGR2.11, TGR2.21, TGR2.(m−2)1} are submit-
ted to task TNS2.1 for the same sub-tree-node splitting. Tasks
of other tree nodes and other stages are performed similarly.
In such a way, a task DAG of the training process of each
decision tree model is built. In addition, k DAGs are built
respectively for the k decision trees of the PRF model.

4.2.2 Task-Parallel Scheduling
After the construction of the task DAGs of all the decision
trees, the tasks in these DAGs are submitted to the Spark
task scheduler. There exist two types of computing tasks
in the DAG, which have different resource requirements
and parallelizables. To improve the performance of PRF
efficiently and further minimize the data communication
cost of tasks in the distributed environment, we invoke two
different task-parallel schedulers to perform these tasks.

In Spark, the TaskSchedulerListener module mon-
itors the submitted jobs, splits the job into differ-
ent stages and tasks, and submits these tasks to the
TaskScheduler module. The TaskScheduler module re-
ceives the tasks and allocates and executes them us-
ing the appropriate executors. According to the differ-
ent allocations, the TaskScheduler module includes 3
sub-modules, such as LocalScheduler, ClusterScheduler,
and MessosScheduler. Meanwhile, each task holds 5
types of locality property value: PROCESS LOCAL,
NODE LOCAL, NO PREF , PACK LOCAL, and
ANY . We set the value of the locality properties of these
two types of tasks and submit them into different task
schedulers. We invoke LocalScheduler for TGR tasks and
ClusterScheduler to perform TNS tasks.

9

(1) LocalScheduler for TGR tasks.
The LocalScheduler module is a thread pool of the

local computer, all tasks submitted by DAGScheduler is
executed in the thread pool, and the results will then be
returned to DAGScheduler. We set the locality property
value of each TGR as NODE LOCAL and submit it to
a LocalScheduler module. In LocalScheduler, all TGR

tasks of PRF are allocated to the slave nodes where the
corresponding feature subsets are located. These tasks are
independent of each other, and there is no synchronization
restraint among them. If a feature subset is allocated to
multiple slave nodes, the corresponding TGR tasks of each
decision tree are allocated to these nodes. And there exist
local data communication operations of the tasks among
these nodes. If one or more feature subsets are allocated
to one slave node, the corresponding TGR tasks are posted
to the current node. And there is no data communication
operation between the current node and the others in the
subsequent computation process.

(2) ClusterScheduler for TNS tasks.
The ClusterScheduler module monitors the execution

situation of the computing resources and tasks in the whole
Spark cluster and allocates tasks to suitable workers. As
mentioned above, TNS tasks are used to collect the results
of the corresponding TGR tasks and split the decision tree
nodes. TNS tasks are independent of all feature subsets
and can be scheduled and allocated in the whole Spark
cluster. In addition, these TNS tasks rely on the results
of the corresponding TGR tasks, therefore, there is a wait
and synchronization restraint for these tasks. Therefore, we
invoke the ClusterScheduler to perform TNS tasks. We
set the locality property value of each TNS as ANY and
submit to a ClusterScheduler module. The task-parallel
scheduling scheme for TNS tasks is described in Algorithm
4.3. A diagram of task-parallel scheduling for the tasks in
the above DAG is shown in Fig. 7.

Algorithm 4.3 Task-parallel scheduling for TNS tasks

Input:
TSNS : a task set of all TNS submitted by DAGScheduler.

Output:
ERTS : the execution results of TSNS .

1: create manager ← new TaskSetManager(TSNS);
2: append to taskset manager activeTSQueue← manager;
3: if hasReceivedTask == false then
4: create starvationT imer ← scheduleAtFixedRate(new

TimerTask);
5: rank the priority of TS2← activeTSQueue.FIFO();
6: for each task Ti in TS2 do
7: get available worker executora from workers;
8: ERTS ← executora.launchTask(Ti.taskid);
9: end for

10: end if
11: return ERTS .

4.3 Parallel Optimization Method Analysis
We discuss our hybrid parallel optimization method from
5 aspects as follows. In comparison with Spark-MLRF and
other parallel methods of RF, our hybrid parallel opti-
mization approach of PRF achieves advantages in terms of
performance, workload balance, and scalability.

Fig. 7. Task-parallel scheduling based on the DAG in Fig. 6

4.3.1 Computational Complexity Analysis
As discussed in Section 3.4, the total computational com-
plexity of the improved PRF algorithm with dimension-
reduction is O(k(MN + mN logN)). After the paralleliza-
tion of the PRF algorithm on Spark, M features of train-
ing dataset are calculated in parallel in the process of
dimension-reduction, and k trees are trained concurrently.
Therefore, the theoretical computational complexity of the
PRF algorithm is O(k(MN+mN logN)

k×M) ≈ O(N(logN + 1)).

4.3.2 Data Volume Analysis
Taking advantage of the data-multiplexing method, the
training dataset is reused effectively. Assume that the vol-
ume of the original dataset is (N ×M) and the RF model’s
scale is k, the volumes of the sampled training dataset in
the original RF and Spark-MLRF are both (N × M × k).
In our PRF, the volume of the sampled training dataset
is (N × 2 × (M − 1)) ≈ (2NM). Moreover, the increase
of the scale of PRF does not lead to changes in the data
size and storage location. Therefore, compared with the
sampling method of the original RF and Spark-MLRF, the
data-parallel method of our PRF decreases the total volume
of the training dataset for PRF.

4.3.3 Data Communication Analysis
In PRF, there exist data communication operations in the
process of data allocation and the training process. Assume
that there are n slaves in a Spark cluster, and the data
volume of the sampled training dataset is (2NM). In the
process of data allocation, the average data communication
cost is (2MN

n). In the process of the PRF model training, if a
feature subset is allocated to several computer nodes, local
data communication operations of the subsequent comput-
ing tasks occur among these nodes. If one or more feature
subsets are allocated to one computer node, there is no

10

data communication operation among different nodes in the
subsequent computation process. Generally, there is a small
amount of data communication cost for the intermediate
results in each stage of the decision tree’s training pro-
cess. The vertical data-partitioning and static data allocation
method mitigates the amount of data communication in the
distributed environment and overcomes the performance
bottleneck of the traditional parallel method.

4.3.4 Resource and Workload Balance Analysis
From the view point of the entire training process of PRF
in the whole Spark cluster, our hybrid parallel optimization
approach achieves a better storage and workload balance
than other algorithms. One reason is that because the dif-
ferent volumes of feature subsets might lead to different
workloads of the TGR tasks for each feature variable, we
allocate the feature subsets to the Spark cluster according
to its volume. A feature subset with a large volume is
allocated to multiple slave nodes. And the corresponding
TGR tasks are scheduled among these nodes in parallel. A
feature subsets with a small volume are allocated to one
slave node. And the corresponding TGR tasks are scheduled
on the current node.

A second reason is that with the tree nodes’ splitting,
the slave nodes where the split variables’ feature subsets are
located will revert to an idle status. From the view point
of the entire training process of PRF, profit from the data-
multiplexing method of PRF, each feature subset is shared
and reused by all decision trees, and it might be split for
different tree nodes in different trees. That is, although a
feature subset is split and useless to a decision tree, it is
still useful to other trees. Therefore, our PRF not only does
not lead to the problem of waste of resources and workload
imbalance, but also makes full use of the data resources and
achieves an overall workload balance.

4.3.5 Algorithm Scalability Analysis
We discuss the stability and scalability of our PRF algorithm
from 3 perspectives. (1) The data-multiplexing method of
PRF makes the training dataset be reused effectively. When
the scale of PRF expands, namely, the number of decision
trees increases, the data size and the storage location of the
feature subsets need not change. It only results in an increase
in computing tasks for new decision trees and a small
amount of data communication cost for the intermediate
results of these tasks. (2) When the Spark cluster’s scale
expands, only a few feature subsets with a high storage
load are migrated to the new computer nodes to achieve
storage load and workload balance. (3) When the scale of
the training dataset increases, it is only necessary to split
feature subsets from the new data in the same vertical
data-partitioning way, and append each new subset to the
corresponding original one. Therefore, we can draw the
conclusion that our PRF algorithm with the hybrid parallel
optimization method achieves good stability and scalability.

5 EXPERIMENTS

5.1 Experiment Setup
All the experiments are performed on a Spark cloud plat-
form, which is built of one master node and 100 slave

nodes. Each node executes in Ubuntu 12.04.4 and has one
Pentium (R) Dual-Core 3.20GHz CPU and 8GB memory.
All nodes are connected by a high-speed Gigabit network
and are configured with Hadoop 2.5.0 and Spark 1.1.0. The
algorithm is implemented in Scala 2.10.4. Two groups of
datasets with large scale and high dimensionality are used
in the experiments. One is from the UCI machine learning
repository [33], as shown in Table 3. Another is from a actual
medical project, as shown in Table 4.

TABLE 3
Datasets from the UCI machine learning repository

Datasets Instances Features Classes Data Size Data Size
(Original) (Maximum)

URL Reputation
(URL)

2396130 3231961 5 2.1GB 1.0TB

You Tube Video
Games (Games)

120000 1000000 14 25.1GB 2.0TB

Bag of Words
(Words)

8000000 100000 24 15.8GB 1.3TB

Gas sensor arrays
(Gas)

1800000 1950000 15 50.2GB 2.0TB

TABLE 4
Datasets from a medical project

Datasets Instances Features Classes Data size Data size
(Original) (Maximum)

Patient 279877 25652 18 3.8GB 1.5TB
Outpatient 3657789 47562 9 10.6GB 1.0TB
Medicine 7502058 52460 12 20.4GB 2.0TB
Cancer 3568000 46532 21 5.8GB 2.0TB

In Table 3 and Table 4, Datasize(Original) refers to
the original size of the data from the UCI and the project,
and Datasize(Maximum) refers to the peak size of data
sampled by all of the comparison algorithms.

In the Spark platform, the training data not be loaded
into the memory as a whole. Spark can be used to process
datasets that are greater than the total cluster memory ca-
pacity. RDD objects in a single executor process are accessed
by an iteration, and the data are buffered or thrown away
after the processing. The cost of memory is very small when
there is no requirement of caching the results of the RDD
objects. In this case, the results of the iterations are retained
in a memory pool by the cache manager. When the data in
the memory are not applicable, they will be saved on disk.
In this case, part of the data can be kept in the memory and
the rest is stored in the disk. Therefore, the training data
with the peak size of 2.0TB can be executed on Spark.

5.2 Classification Accuracy
We evaluate the classification accuracy of PRF by compari-
son with RF, DRF, and Spark-MLRF.

5.2.1 Classification Accuracy for Different Tree Scales
To illustrate the classification accuracy of PRF, experiments
are performed for the RF, DRF [18], Spark-MLRF, and PRF
algorithms. The datasets are outlined in Table 3 and Table 4.
Each case involves different scales of the decision tree. The
experimental results are presented in Fig. 8.

11

Fig. 8. Average classification accuracy for different tree scales

Fig. 8 shows that the average classification accuracies of
all of the comparative algorithms are not high when the
number of decision trees is equal to 10. As the number of
decision trees increases, the average classification accuracies
of these algorithms increase gradually and have a tendency
toward a convergence. The classification accuracy of PRF is
higher than that of RF by 8.9%, on average, and 10.6% higher
in the best case when the number of decision trees is equal to
1500. It is higher than that of DRF by 6.1%, on average, and
7.3% higher in the best case when the number of decision
trees is equal to 1300. The classification accuracy of PRF
is higher than that of Spark-MLRF by 4.6% on average,
and 5.8% in the best case when the number of decision
trees is equal to 1500. Therefore, compared with RF, DRF,
and Spark-MLRF, PRF improves the classification accuracy
significantly.

5.2.2 Classification Accuracy for Different Data Sizes
Experiments are performed to compare the classification
accuracy of PRF with the RF, DRF, and Spark-MLRF al-
gorithms. Datasets from the project described in Table 4
are used in the experiments. The experimental results are
presented in Fig. 9.

Fig. 9. Average classification accuracy for different data sizes

The classification accuracies of PRF in all of the cases are
greater than that of RF, DRF, and Spark-MLRF obviously
for each scale of data. The classification accuracy of PRF is

greater than that of DRF by 8.6%, on average, and 10.7%
higher in the best case when the number of samples is equal
to 3,000,000. The classification accuracy of PRF is greater
than that of Spark-MLRF by 8.1%, on average, and 11.3%
higher in the best case when the number of samples is
equal to 3,000,000. For Spark-MLRF, because of the method
of sampling for each partition of the dataset, as the size
of the dataset increases, the ratio of the random selection
of the dataset increases, and the accuracy of Spark-MLRF
decreases inevitably. Therefore, compared with RF, DRF,
and Spark-MLRF, PRF improves the classification accuracy
significantly for different scales of datasets.

5.2.3 OOB Error Rate for Different Tree Scales
We observe the classification error rate of PRF under dif-
ferent conditions. In each condition, the Patient dataset is
chosen, and two scales (500 and 1000) of decision trees are
constructed. The experimental results are presented in Fig.
10 and Table 5.

Fig. 10. OOB error rates of PRF for different tree scales

When the number of decision trees of PRF increases, the
OOB error rate in each case declines gradually and tends to
a convergence condition. The average OOB error rate of PRF
is 0.138 when the number of decision trees is equal to 500,
and it is 0.089 when the number of decision trees is equal to
1000.

TABLE 5
OOB error rates of PRF for different tree scales

Tree=500 Tree=1000
Rate OOB Class1 Class2 OOB Class1 Class2
max 0.207 0.270 0.354 0.151 0.132 0.318
min 0.113 0.051 0.092 0.067 0.010 0.121

mean 0.138 0.094 0.225 0.089 0.056 0.175

5.3 Performance Evaluation
Various experiments are constructed to evaluate the perfor-
mance of PRF by comparison with the RF and Spark-MLRF
algorithms in terms of the execution time, speedup, data
volume, and data communication cost.

5.3.1 Average Execution Time for Different Datasets
Experiments are performed to compare the performance
of PRF with that of RF and Spark-MLRF. Four groups of
training datasets are used in the experiments, such as URL,
Games, Outpatient, and Patient. In these experiments, the
number of decision trees in each algorithm is both 500, and
the number of Spark slaves is 10. The experimental results
are presented in Fig. 11.

12

Fig. 11. Average execution time of the algorithms for different datasets

When the data size is small (e.g., less than 1.0GB), the
execution times of PRF and Spark-MLRF are higher than
that of RF. The reason is that there is a fixed time required to
submit the algorithms to the Spark cluster and configure
the programs. When the data size is greater than 1.0GB,
the average execution times of PRF and Spark-MLRF are
less than that of RF in the four cases. For example, in the
Outpatient case, when the data size grows from 1.0 to
500.0GB, the average execution time of RF increases from
19.9 to 517.8 seconds, while that of Spark-MLRF increases
from 24.8 to 186.2 seconds, and that of PRF increases from
23.5 to 101.3 seconds. Hence, our PRF algorithm achieves
a faster processing speed than RF and Spark-MLRF. When
the data size increases, the benefit is more noticeable. Taking
advantage of the hybrid parallel optimization, PRF achieves
significant strengths over Spark-MLRF and RF in terms of
performance.

5.3.2 Average Execution Time for Different Cluster Scales

In this section, the performance of PRF on the Spark plat-
form for different scales of slave nodes is considered. The
number of slave nodes is gradually increased from 10 to
100, and the experiment results are presented in Fig. 12.

Fig. 12. Average execution time of PRF for different cluster scales

In Fig. 12, because of the different data sizes and contents
of the training data, the execution times of PRF in each case
are different. When the number of slave nodes increases
from 10 to 50, the average execution times of PRF in all cases
obviously decrease. For example, the average execution time
of PRF decreases from 405.4 to 182.6 seconds in the Gas
case and from 174.8 to 78.3 seconds in the Medicine case.
By comparison, the average execution times of PRF in the
other cases decrease less obviously when the number of
slave nodes increases from 50 to 100. For example, the
average execution time of PRF decreases from 182.4 to 76.0
seconds in the Gas case and from 78.3 to 33.0 seconds in
the Medicine case. This is because when the number of the
Spark slaves greater than that of training dataset’s feature
variables, each feature subset might be allocated to multiple
slaves. In such a case, there are more data communication
operations among these slaves than before, which leads to
more execution time of PRF.

5.3.3 Speedup of PRF in Different Environments

Experiments in a stand-alone environment and a Spark
cloud platform are performed to evaluate the speedup of
PRF. Because of the different volume of training datasets,
the execution times of PRF are not in the same range in
different cases. To observe the comparison of the execution
time intuitively, a normalization of execution time is taken.
Let T(i,sa) be the execution time of PRF for dataset Si in
the stand-alone environment, and first normalized to 1. The
execution time of PRF on Spark is normalized as described
in Eq. (11):

T
′

i =

{ T(i,sa)

T(i,sa)
= 1 Stand− alone,

T(i,Spark)

T(i,sa)
Spark.

(11)

The speedup of PRF on Spark for Si is defined in Eq.
(12):

Speedup(i,Spark) =
T

′

(i,Spark)

T
′

(i,sa)

. (12)

The results of the comparative analyses are presented in
Fig. 13. Taking benefits of the parallel algorithm and cloud
environment, the speedup of PRF on Spark tends to increase
in each experiment with the number of slave nodes. When
the number of slave nodes is equal to 100, the speedup factor
of PRF in all cases is in the range of 60.0 - 87.3, which is less
than the theoretical value (100). Because there exists data
communication time in a distributed environment and a
fixed time for the application submission and configuration,
it is understandable that the whole speedup of PRF is less
than the theoretical value. Due to the different data volumes
and contents, the speedup of PRF in each case is different.

When the number of slave nodes is less than 50, the
speedup in each case shows a rapid growth trend. For
instance, compared with the stand-alone environment, the
speedup factor of Gas is 65.5 when the number of slave
nodes is equal to 50, and the speedup factor of Patient
is 61.5. However, the speedup in each case shows a slow
growth trend when the number of slave nodes is greater
than 50. This is because there are more data allocation, task

13

Fig. 13. Speedup of PRF in different environments

scheduling, and data communication operations required
for PRF.

5.3.4 Data Volume Analysis for Different RF Scales

We analyze the volume of the training data in PRF against
RF and Spark-MLRF. Taking the Games case as an example,
the volumes of the training data in the different RF scales
are shown in Fig. 14.

Fig. 14. Size of training dataset for different RF scales

In Fig. 14, due to the use of the same horizontal sampling
method, the training data volumes of RF and Spark-MLRF
both show a linear increasing trend with the increasing of
the RF model scale. Contrary, in PRF, the total volume of
all training feature subsets is 2 times the size of the orig-
inal training dataset. Making use of the data-multiplexing
approach of PRF, the training dataset is effectively reused.
When the number of decision trees is larger than 2, despite
the expansion of RF scale, the volume of the training data
will not increases any further.

5.3.5 Data Communication Cost Analysis

Experiments are performed for different scales of the Spark
cluster to compare the Data Communication Cost (CDC)
of PRF with that of Spark-MLRF. The suffer-write size of
slave nodes in the Spark cluster is monitored as the CDC of

Fig. 15. Data communication costs of PRF and Spark-MLRF

the algorithms. Taking the Patient case as an example, the
results of the comparison of CDC are presented in Fig. 15.

From Fig. 15, it is clear that the CDC of PRF are less than
that of Spark-MLRF in all cases, and the distinction is larger
with increasing number of slave nodes. Although Spark-
MLRF also uses the data-parallel method, the horizontal
partitioning method for training data makes the computing
tasks have to frequent access data across different slaves.
As the number of slaves increases from 5 to 50, the CDC of
Spark-MLRF increases from 350.0MB to 2180.0MB. Different
from Spark-MLRF, in PRF, the vertical data-partitioning and
allocation method and the task scheduling method make
the most of the computing tasks (TGR) access data from the
local slave, reducing the amount of data transmission in the
distributed environment. As the number of slaves increases
from 5 to 50, the CDC of PRF increases from 50.0MB to
320.0MB, which is much lower than that of Spark-MLRF.
Therefore, PRF minimizes the CDC of RF in a distributed
environment. The expansion of the cluster’s scale does not
lead to an obviously increase inCDC . In conclusion, our PRF
achieves a superiority and notable advantages over Spark-
MLRF in terms of stability and scalability.

6 CONCLUSIONS

In this paper, a parallel random forest algorithm has been
proposed for big data. The accuracy of the PRF algorithm is
optimized through dimension-reduction and the weighted
vote approach. Then, a hybrid parallel approach of PRF
combining data-parallel and task-parallel optimization is
performed and implemented on Apache Spark. Taking
advantage of the data-parallel optimization, the training
dataset is reused and the volume of data is reduced signif-
icantly. Benefitting from the task-parallel optimization, the
data transmission cost is effectively reduced and the per-
formance of the algorithm is obviously improved. Experi-
mental results indicate the superiority and notable strengths
of PRF over the other algorithms in terms of classification
accuracy, performance, and scalability. For future work, we
will focus on the incremental parallel random forest algo-
rithm for data streams in cloud environment, and improve
the data allocation and task scheduling mechanism for the
algorithm on a distributed and parallel environment.

14

ACKNOWLEDGMENT

The research was partially funded by the Key Program of
National Natural Science Foundation of China (Grant Nos.
61133005, 61432005), the National Natural Science Founda-
tion of China (Grant Nos. 61370095, 61472124, 61202109,
61472126,61672221), the National Research Foundation of
Qatar (NPRP, Grant Nos. 8-519-1-108), and the Natural
Science Foundation of Hunan Province of China (Grant Nos.
2015JJ4100, 2016JJ4002).

REFERENCES
[1] X. Wu, X. Zhu, and G.-Q. Wu, “Data mining with big

data,” Knowledge and Data Engineering, IEEE Transactions
on, vol. 26, no. 1, pp. 97–107, January 2014.

[2] L. Kuang, F. Hao, and Y. L.T., “A tensor-based approach
for big data representation and dimensionality reduction,”
Emerging Topics in Computing, IEEE Transactions on, vol. 2,
no. 3, pp. 280–291, April 2014.

[3] A. Andrzejak, F. Langner, and S. Zabala, “Interpretable
models from distributed data via merging of deci-
sion trees,” in Computational Intelligence and Data Mining
(CIDM), 2013 IEEE Symposium on. IEEE, 2013, pp. 1–9.

[4] P. K. Ray, S. R. Mohanty, N. Kishor, and J. P. S. Catalao,
“Optimal feature and decision tree-based classification
of power quality disturbances in distributed generation
systems,” Sustainable Energy, IEEE Transactions on, vol. 5,
no. 1, pp. 200–208, January 2014.

[5] Apache, “Hadoop,” Website, June 2016, http://hadoop.
apache.org.

[6] S. del Rio, V. Lopez, J. M. Benitez, and F. Herrera, “On the
use of mapreduce for imbalanced big data using random
forest,” Information Sciences, vol. 285, pp. 112–137, Novem-
ber 2014.

[7] K. Singh, S. C. Guntuku, A. Thakur, and C. Hota, “Big
data analytics framework for peer-to-peer botnet detection
using random forests,” Information Sciences, vol. 278, pp.
488–497, September 2014.

[8] Apache, “Spark,” Website, June 2016, http:
//spark-project.org.

[9] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, October 2001.

[10] G. Wu and P. H. Huang, “A vectorization-optimization-
method-based type-2 fuzzy neural network for noisy data
classification,” Fuzzy Systems, IEEE Transactions on, vol. 21,
no. 1, pp. 1–15, February 2013.

[11] H. Abdulsalam, D. B. Skillicorn, and P. Martin, “Classifica-
tion using streaming random forests,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 23, no. 1, pp. 22–36,
January 2011.

[12] C. Lindner, P. A. Bromiley, M. C. Ionita, and T. F. Cootes,
“Robust and accurate shape model matching using ran-
dom forest regression-voting,” Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, vol. 25, no. 3, pp.
1–14, December 2014.

[13] X. Yun, G. Wu, G. Zhang, K. Li, , and S. Wang, “Fastraq: A
fast approach to range-aggregate queries in big data envi-
ronments,” Cloud Computing, IEEE Transactions on, vol. 3,
no. 2, pp. 206–218, April 2015.

[14] M. Xu, H. Chen, and P. K. Varshney, “Dimensionality
reduction for registration of high-dimensional data sets,”
Image Processing, IEEE Transactions on, vol. 22, no. 8, pp.
3041–3049, August 2013.

[15] Q. Tao, D. Chu, and J. Wang, “Recursive support vector
machines for dimensionality reduction,” Neural Networks,
IEEE Transactions on, vol. 19, no. 1, pp. 189–193, January
2008.

[16] Y. Lin, T. Liu, and C. Fuh, “Multiple kernel learning for
dimensionality reduction,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 33, no. 6, pp. 1147–
1160, June 2011.

[17] C. Strobl, A. Boulesteix, T. Kneib, and T. Augustin, “Con-
ditional variable importance for random forests,” BMC
Bioinformatics, vol. 9, no. 14, pp. 1–11, 2007.

[18] S. Bernard, S. Adam, and L. Heutte, “Dynamic random
forests,” Pattern Recognition Letters, vol. 33, no. 12, pp.
1580–1586, September 2012.

[19] T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano, “Com-
paring boosting and bagging techniques with noisy and
imbalanced data,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 41, no. 3, pp. 552–568, May 2011.

[20] G. Yu, N. A. Goussies, J. Yuan, and Z. Liu, “Fast action
detection via discriminative random forest voting and top-
k subvolume search,” Multimedia, IEEE Transactions on,
vol. 13, no. 3, pp. 507–517, June 2011.

[21] G. Biau, “Analysis of a random forests model,” Journal of
Machine Learning Research, vol. 13, no. 1, pp. 1063–1095,
January 2012.

[22] J. D. Basilico, M. A. Munson, T. G. Kolda, K. R. Dixon, and
W. P. Kegelmeyer, “Comet: A recipe for learning and using
large ensembles on massive data,” in IEEE International
Conference on Data Mining, October 2011, pp. 41–50.

[23] K. M. Svore and C. J. Burges, “Distributed stochastic aware
random forests efficient data mining for big data,” in Big
Data (BigData Congress), 2013 IEEE International Congress
on. Cambridge University Press, 2013, pp. 425–426.

[24] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo, “Planet:
Massively parallel learning of tree ensembles with mapre-
duce,” Proceedings of the Vldb Endowment, vol. 2, no. 2, pp.
1426–1437, August 2009.

[25] S. Tyree, K. Q. Weinberger, and K. Agrawal, “Parallel
boosted regression trees for web search ranking,” in In-
ternational Conference on World Wide Web, March 2011, pp.
387–396.

[26] D. Warneke and O. Kao, “Exploiting dynamic resource
allocation for efficient parallel data processing in the
cloud,” Parallel and Distributed Systems, IEEE Transactions
on, vol. 22, no. 6, pp. 985–997, June 2011.

[27] L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and
W. Shi, “Energy-aware scheduling of mapreduce jobs for
big data applications,” Parallel and Distributed Systems,
IEEE Transactions on, vol. 26, no. 3, pp. 1–10, March 2015.

[28] L. D. Briceno, H. J. Siegel, A. A. Maciejewski, M. Oltikar,
and J. Brateman, “Heuristics for robust resource allocation
of satellite weather data processing on a heterogeneous
parallel system,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 22, no. 11, pp. 1780–1787, February
2011.

[29] F. Zhang, J. Cao, W. Tan, S. Khan, K. Li, and A. Zomaya,
“Evolutionary scheduling of dynamic multitasking work-
loads for big-data analytics in elastic cloud,” Emerging
Topics in Computing, IEEE Transactions on, vol. 2, no. 3, pp.
338–351, August 2014.

[30] K. Li, X. Tang, B. Veeravalli, and K. Li, “Scheduling
precedence constrained stochastic tasks on heterogeneous
cluster systems,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 64, no. 1, pp. 191–204, January 2015.

[31] Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task
scheduling on heterogeneous computing systems using
multiple priority queues,” Information Sciences, vol. 270,
no. 6, pp. 255–287, June 2014.

[32] A. Spark, “Spark mllib - random forest,” Web-
site, June 2016, http://spark.apache.org/docs/latest/
mllib-ensembles.html.

[33] U. of California, “Uci machine learning repository,” Web-
site, June 2016, http://archive.ics.uci.edu/ml/datasets.

http://hadoop.apache.org
http://hadoop.apache.org
http://spark-project.org
http://spark-project.org
http://spark.apache.org/docs/latest/mllib-ensembles.html
http://spark.apache.org/docs/latest/mllib-ensembles.html
http://archive.ics.uci.edu/ml/datasets

15

Jianguo Chen received the Ph.D. degree in Col-
lege of Computer Science and Electronic Engi-
neering at Hunan University, China. He was a
visiting Ph.D. student at the University of Illinois
at Chicago from 2017 to 2018. He is currently
a postdoctoral in University of Toronto and Hu-
nan University. His major research areas include
parallel computing, cloud computing, machine
learning, data mining, bioinformatics and big
data. He has published research articles in inter-
national conference and journals of data-mining

algorithms and parallel computing, such as IEEE TPDS, IEEE/ACM
TCBB, and Information Sciences.

Kenli Li received the Ph.D. degree in computer
science from Huazhong University of Science
and Technology, China, in 2003. He was a vis-
iting scholar at University of Illinois at Urbana-
Champaign from 2004 to 2005. He is currently a
full professor of computer science and technol-
ogy at Hunan University and director of National
Supercomputing Center in Changsha. His major
research areas include parallel computing, high-
performance computing, grid and cloud comput-
ing. He has published more than 180 research

papers in international conferences and journals, such as IEEE-TC,
IEEE-TPDS, IEEE-TSP, JPDC, ICPP, CCGrid. He is an outstanding
member of CCF. He is a senior member of the IEEE and serves on
the editorial board of IEEE Transactions on Computers.

Zhuo Tang received the Ph.D. in computer sci-
ence from Huazhong University of Science and
Technology, China, in 2008. He is currently an
associate professor of Computer Science and
Technology at Hunan University. His research
interests include security model, parallel algo-
rithms, and resources scheduling for distributed
computing systems, grid and cloud computing.
He is a member of ACM and CCF.

Kashif Bilal received his PhD from North
Dakota State University USA. He is currently
a post-doctoral researcher at Qatar University,
Qatar. His research interests include cloud com-
puting, energy efficient high speed networks,
and robustness.Kashif is awarded CoE Student
Researcher of the year 2014 based on his re-
search contributions during his doctoral studies
at North Dakota State University.

Shui Yu is currently a Senior Lecturer of School
of Information Technology, Deakin University. He
is a member of Deakin University Academic
Board (2015-2016), a Senior Member of IEEE,
and a member of AAAS, the vice chair of Tech-
nical Subcommittee on Big Data Processing,
Analytics, and Networking of IEEE Communica-
tion Society. He is currently serving the editorial
boards of IEEE TPDS, IEEE CST, IEEE Access.

Chuliang Weng is a principal researcher at
Huawei Shannon Lab. He received his Ph.D.
from Shanghai Jiao Tong University in 2004, and
from 2011 to 2012, he was a visiting scientist
with the Department of Computer Science at
Columbia University in the City of New York.
His research interests include parallel and dis-
tributed systems, operating systems and virtual-
ization, and storage systems. He is a member of
the IEEE, ACM and CCF.

Keqin Li is a SUNY Distinguished Professor
of computer science in the State University of
New York. His current research interests include
parallel computing and high-performance com-
puting, distributed computing, energy-efficient
computing and communication, heterogeneous
computing systems, cloud computing, big data
computing, CPU-GPU hybrid and cooperative
computing, multi-core computing, storage and
file systems, wireless communication networks,
sensor networks, peer-to-peer file sharing sys-

tems, mobile computing, service computing, Internet of things and
cyber-physical systems. He has published over 590 journal articles,
book chapters, and refereed conference papers, and has received sev-
eral best paper awards. He is currently serving or has served on the ed-
itorial boards of IEEE Transactions on Parallel and Distributed Systems,
IEEE Transactions on Computers, IEEE Transactions on Cloud Comput-
ing, IEEE Transactions on Services Computing, and IEEE Transactions
on Sustainable Computing. He is an IEEE Fellow.

	1 Introduction
	1.1 Motivation
	1.2 Our Contributions

	2 Related Work
	3 Random Forest Algorithm Optimization
	3.1 Random Forest Algorithm
	3.2 Dimension Reduction for High-Dimensional Data
	3.3 Weighted Voting Method
	3.4 Computational Complexity

	4 Parallelization of the Random Forest Algorithm on Spark
	4.1 Data-Parallel Optimization
	4.1.1 Vertical Data Partitioning
	4.1.2 Data-Multiplexing Method
	4.1.3 Static Data Allocation

	4.2 Task-Parallel Optimization
	4.2.1 Parallel Training Process of PRF
	4.2.2 Task-Parallel Scheduling

	4.3 Parallel Optimization Method Analysis
	4.3.1 Computational Complexity Analysis
	4.3.2 Data Volume Analysis
	4.3.3 Data Communication Analysis
	4.3.4 Resource and Workload Balance Analysis
	4.3.5 Algorithm Scalability Analysis

	5 Experiments
	5.1 Experiment Setup
	5.2 Classification Accuracy
	5.2.1 Classification Accuracy for Different Tree Scales
	5.2.2 Classification Accuracy for Different Data Sizes
	5.2.3 OOB Error Rate for Different Tree Scales

	5.3 Performance Evaluation
	5.3.1 Average Execution Time for Different Datasets
	5.3.2 Average Execution Time for Different Cluster Scales
	5.3.3 Speedup of PRF in Different Environments
	5.3.4 Data Volume Analysis for Different RF Scales
	5.3.5 Data Communication Cost Analysis

	6 Conclusions
	Biographies
	Jianguo Chen
	Kenli Li
	Zhuo Tang
	Kashif Bilal
	Shui Yu
	Chuliang Weng
	Keqin Li

